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Fig. 1: Planning using our memory models: We show several examples of how our model can achieve desired goal relations including unobserved
objects, novel objects’ appearance and reappearance. We provide a detailed explanation of this figure in section. IV-E.

Abstract— Robots need to have a memory of previously
observed, but currently occluded objects to work reliably in
realistic environments. We investigate the problem of encod-
ing object-oriented memory into a multi-object manipulation
reasoning and planning framework. We propose DOOM and
LOOM, which leverage transformer relational dynamics to
encode the history of trajectories given partial-view point clouds
and an object discovery and tracking engine. Our approaches
can perform multiple challenging tasks including reasoning
with occluded objects, novel objects appearance, and object
reappearance. Throughout our extensive simulation and real-
world experiments, we find that our approaches perform well
in terms of different numbers of objects and different numbers

1Robotics Center and Kahlert School of Computing, University of Utah,
Salt Lake City, UT 84112, USA. 2 Oregon State University. 3NVIDIA;
Seattle, WA, USA. yixuan.huang@utah.edu

of distractor actions. Furthermore, we show our approaches
outperform an implicit memory baseline.

I. INTRODUCTION

For robots to assist humans in their daily lives in roles

such as home assistants and caregivers for elders, they must

be able to reason about objects not observed in their current

perceptual data. For example, if asked to retrieve an apple

stored inside a cabinet, the robot should remember where it

was placed and that it must first open the cabinet to grasp

the object. Further if the robot picks up a box with objects

in it, it should know that these objects will move with the

box, while those sitting near the box will not. It is desirable

for robots to maintain these models across multiple tasks in
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order to enable long-term autonomy.

The problem of maintaining a persistent model of a

robot’s world from partial observations has a rich history

in robotics, primarily in the form of mapping [1–5]. While

some attempts have been made to incorporate object-level

semantics into sensor-derived maps [6–8], these approaches

primarily build immutable, monolithic models not suitable

for complex manipulation planning such as multi-object

rearrangement [9–18]. Such reasoning can enable robots

to predict preconditions for actions [12], achieve language

goals [13], and achieve logical goal relations [15,18]. Thus

a problem arises in how to build a consistent estimate of

the world state amenable to contemporary, learning-based

approaches to manipulation planning.

The standard learning-based approach to persistent mem-

ory treats the problem as a sequence prediction task, typically

using autoregressive recurrent or transformer-based neural

networks [19–23]. While these models have shown some

interesting results, we hypothesize that they will have diffi-

culty maintaining long-term memory of objects that remain

occluded through many updates to a recurrent memory. One

approach to overcome this issue would be to maintain the

entire history of robot observations in order to use as input to

a model (e.g. transformer) that could selectively attend to the

relevant bits of input to determine a coherent state estimate.

This is obviously untenable for long-horizon tasks as the

input would grow linearly with time, inevitably becoming

too large to efficiently manage.

We instead argue for an explicit way to encode the state of

all currently and previously observed objects in a consistent

manner. In recent years, there have been promising solutions

for the unsupervised video object segmentation (UVOS) [24]

task where the algorithm simultaneously discovers previously

unknown objects and tracks them through time [25–28].

Especially interesting for our sake, such algorithms allow

for tracking under heavy and long-term complete occlusions.

This opens up an opportunity to use a UVOS algorithm in

robot manipulation tasks where we may not have segmenta-

tion labels for objects of interest.

In this paper we advocate for using a UVOS algorithm to

explicitly manage our object-oriented memory. We hypothe-

size that explicit encoding of objects into the memory will be

more robust than implicit autoregressive models in managing

long-term history and successfully performing downstream

planning. The representation should provide sufficient infor-

mation to enable the prediction of inter-object and object-

environment relations, while also having the ability to predict

the effects of the robot’s actions on all objects in memory.

Specifically, we examine incorporating an explicit UVOS-

based memory model into the framework of Huang et

al. [17,18], which was an effective framework to learn rela-

tional dynamics across varying object and environments. Key

to its success is the ability to encode a variable number of

objects for a given observation using a graph neural net [17]

or transformer-based encoder [18]. Prediction of relations

enables the model’s use in logic-based task planning [29],

where relations have proved an effective means of com-

munication between robots and humans [10,12,13,15,17,30].

However, the existing framework assumes all relevant objects

to be observable; and thus fails to successfully plan and

execute in the scenarios shown in Fig. 1.

We propose two ways to integrate predictions from the

video tracker of [28] with the relational dynamics predic-

tion model of [18]. Both approaches augment the current

state estimate with information from currently unobserved

objects for use in predicting inter-object relations and action

effects. One approach directly augments the latent space

of the dynamics model by concatenating the previously

predicted latent state tokens for unobserved objects with

those currently observed. We term this Latent Occluded

Object Memory (LOOM). The second method, termed Direct

Occluded Object Memory (DOOM), directly augments the

input point cloud with the previously observed object point

cloud transformed based on its previously predicted pose

estimate. Figure 2 illustrates the LOOM and DOOM models.

To validate our proposed approaches, we test on varying

tasks involving occluded objects, novel objects, and objects

that reappear. We show some example tasks in Fig. 1. We

show that both forms of memory-based state augmentation

can reliably plan actions to change inter-object relations in-

volving currently unobserved objects, such as placing object

A to the left of currently occluded object B. Furthermore

we compare our explicit memory approach to a baseline

implicit memory model in a scenario specifically designed

to test the models’ long-term memory. Our experiments

show that the implicit memory model fails to effectively

reason about occluded objects, while our explicit, UVOS-

based memory models continue to plan reliably. Our work

thus represents the first successful approach of using memory

models for reasoning about and planning to inter-object

goal relations for an a priori unknown, variable number of

objects under severe occlusion. For more real-world robot

executions, additional results, and supplemental material in-

cluding limitations and failure case analysis, see our website

https://sites.google.com/view/rdmemory.

II. RELATED WORK

Reasoning about object permanence is an important ca-

pability for robot manipulation [22,31–33]. Xu et al. [31]

and Ebert et al. [22] are the first ones to propose deep

learning models to reason about occluded objects and do

downstream planning with the learned dynamics models.

However, they assume goal images or goal configurations

for planning which may not always be available from human

operators. They additionally examine only planar pushing

tasks with only a single moving object at each time. Our

work examines a much more diverse set of tasks and skills,

while also requiring only logic-based goal representations.

Curtis et al. [33] propose a system with modules that can

estimate affordances and properties to perform multi-step

manipulation tasks with unknown and occluded objects.

However, they assume complete object shape and have many

engineered modules including the affordance module.



Fig. 2: Overview of our approaches. As the robot takes action over time, some objects may disappear and reappear, and some objects
may newly appear in the scene. In this paper, we propose two types of object-oriented memory, called DOOM and LOOM, that enable
the robot to plan with occluded and newly appeared objects. DOOM and LOOM utilize a UVOS algorithm to keep track of the current
object list and update object memory slots based on the occlusion status of each object accordingly. (Best viewed in color.)

Encoding memory for manipulation and navigation has

received some attention [23,34–37]. Shafiullah et al. [34]

propose an implicit model for semantic navigation but this

model cannot be directly applicable to manipulation tasks.

Kim et al. [23] propose both RNNs and transformers to pre-

dict memory-based gaze via imitation learning. However, the

work focuses on gaze prediction and shows no experiments

with occluded objects or objects with novel appearances.

Reasoning about occluded objects with memory has re-

ceived attention in the vision community in the context

of visual tracking [28,38,39] and video object segmenta-

tion [40,41]. However, these memory models have been stud-

ied in the context of object re-identification across occlusion

only (i.e., appearance matching) and cannot be utilized for

reasoning about how occluded objects may move based on

a robot’s actions. Our work builds on these approaches by

combining them with a learned action effects model.

Other works have also investigated using graph neural net-

works [10,17,42–44], transformers [13,45–47], and diffusion

models [9,48,49] to reason about and manipulate multiple

objects. However, none have examined explicit memory man-

agement. Since multi-object manipulation usually requires

a multi-step process, task and motion planning has shown

promise in solving long-horizon, multi-object planning prob-

lem [18,50–54]. These planners either require all objects to

be known a priori in order to perform tracking for belief

space planning [52] or ignore occlusion of unknown objects.

III. APPROACH

We assume the robot perceives the world as a point cloud,

Zt, at each timestep t. The robot then takes action At and

receives subsequent observation Zt+1. At new observation

Zt+1, some objects may become occluded and other, new

objects may appear. Based on the history of observations

and actions (Z0:t, A0:t), we would like the robot to plan

to achieve a goal, potentially involving previously observed,

but currently occluded objects.

We define the goal as a logical conjunction of M desired

object and environment relations, g = r1∧r2∧ ...∧rM , rj ∈
R, where g denotes the goal conjunction, rj represents

a goal relation, and R denotes all possible relations. Our

robot is given a set of L parametric action primitives

A = {A1, . . . , AL} where Al defines a skill, which has

associated continuous skill parameters θl. For example, a

push skill is defined with parameters encoding the push

direction and length, or a pick-and-dump skill is defined

with parameters encoding the grasp pose and dump pose.

The robot’s planning task is defined as finding skills and

its parameters τ = ((A0, θ0), . . . , (AH−1, θH−1)) such that,

when sequentially executed, transform the objects to satisfy

all desired object and environment relations in the goal g.

To solve this problem we propose a novel memory-

based neural network framework. Instead of taking the entire

history of observations as input, the model takes the current

observation, Zt, current action (At, θt) and a compressed

memory of the previous observations Z0:t−1 and actions

A0:t−1, and predicts the resulting relations r′t+1 and object

poses p′t+1. As shown in Fig. 1, this enables our framework

to remember the pose of disappeared objects after several

actions. By chaining together predictions, we can effectively

perform multi-step planning. We propose two different im-

plementations of this framework called DOOM and LOOM,

which respectively use a point cloud-based encoding and

latent space encoding to represent the memory, Q. We show

an overview of our approaches in Fig. 2. We now explain

the various components of this framework.

Segmentation and Tracking At timestep t, we first perform



Fig. 3: Two examples of our training dataset (top row) and one testing example (bottom row). We train with a maximum of 5 segments
including objects and the environments. The testing example has 8 segments with different shapes and a novel view point. In the history,
the robot pushes the mug below the shelf then picks and places two apples inside the bowl. During planning, the robot picks and places
the orange to achieve the goal relation based on the current observation and history. Left/Right are defined from the robot’s viewpoint.

UVOS using [28] and obtain N object and environment

segments Oi
t ⊂ Zt, i = 1, 2, ..., N . The UVOS approach

checks for new objects by examining the objectness of object

proposals on key frames, when the robot finishes the execu-

tion of a skill. Then object segments that can be matched with

previously tracked objects are assigned consistent IDs, while

those that do not match any previous object are assigned new

IDs. For non-key frames, the algorithm tracks all segments

with a space-time transformer model [41] where each object

has its own memory. It stores prior appearances of all

objects hence can easily re-identify previously observed and

disappeared objects. To familiarize the UVOS model with

the robot, it is fine-tuned using annotations of the robot arm

and objects from YCB-Video dataset [55]. Nonetheless, it

still demonstrates generalization to novel object types, such

as the tall cups (Row. 1), apple and orange (Row. 2) shown in

Fig. 1 that it was never trained on. For environment segments,

we use RANSAC [56] to find planar surfaces.

Pose and relation detection To jointly reason about the

pose of each object and the relations between each pair of

objects, we first process each segment Oi
t with a point cloud

encoder [57] to get a feature vector P i
t = Ep(O

i
t). We use

a learned positional embedding to encode the ID of each

object as Ii. We randomly generate the ID for each object

during training to improve generalization [58]. The latent

space at step t is denoted as x
i
t = E(P i

t ⊕ Ii), where E

is a transformer encoding the interaction between different

segments. To predict object pose and relations at the current

step, we define three different decoders: the pose decoder

Dp, the relation decoder Dr, and the environment identity

decoder De. The third decoder classifies whether a given

segment is movable or not (e.g. is a table or shelf) as êit =
De(x

i
t). The associated predictions of the other decoders are

p̂it = Dp(x
i
t) and r̂

ij
t = Dr(x

i
t,x

j
t ).

Pose and relation prediction To get the predicted pose and

relations for future steps, we utilize a latent space dynamics

model to propagate the current state information to the future

after multiple actions. We define the latent space dynamics

to propagate the x
i
t to x

′i
t+1 as x

′i
t+1 = δ(xi

t, At(i, θ)).
where i is the ID of the object to manipulate and θ are

continuous parameters. We use the same learned positional

embedding to encode the discrete ID, as well as an MLP Mac

to encode θ. Since we have different skills, we use a different

δl and Macl for each skill parameter l. After we get x′i
t+1,

our framework decodes it to a predicted pose p′
i
t+1 and a

relation r′
ij
t+1. Note we use p′

i
t+1 which discriminates from

p̂it+1, as p′
i
t+1 comes from the observation Zt while p̂it+1

comes from the observation Zt+1. With the ability to predict

the pose and relation with latent space dynamics, even if

there are occluded objects in Zt+1, we can still estimate the

pose of the occluded objects from (Zt, At, δ). Finally, we can

apply δ(·) H times with a sequence of actions A0, ..., AH−1

to predict states H time steps ahead as p′
i
t+H and r′

ij
t+H .

Reasoning about occluded objects We explore two different

approaches to reason about occluded objects. Consider object

k to be occluded. In our first approach, we use the predicted

pose to transform the point cloud of the object k from time

t− 1, Ok
t−1, to t in order to recover the missing observation

as O′k
t . We then combine the transformed point cloud O′k

t

with the current observations as (Z ′

t = O1
t , ..., O

′k
t , ..., O

N
t ).

This allows the relational classifier to detect the relations at t

even if the kth object is completely occluded. We can repeat

this process for any arbitrary number of occluded objects.

We name this DOOM for Direct Occluded Object Memory.

Alternatively, we can copy the predicted latent space embed-

ding x
′k
t for the occluded object to the current latent state as

x
k
t giving updated latent state x̂′

t = x
0
t , ...x

′k
t , ...,x

N
t . We call

this approach LOOM for Latent Occluded Object Memory.

Figure 2 illustrates DOOM and LOOM.

Reasoning about reappeared objects When an occluded

object reappears, the UVOS tracker identifies it as the previ-

ously occluded object. We can then remove the augmented

memory state associated with the object from the model and

instead pass this object’s observation through the point cloud

encoder like normal for both DOOM and LOOM.

Reasoning about novel objects’ appearance UVOS iden-

tifies novel objects when they first appear. In this case, each

novel object segment receives a unique ID and is handled

the same as any other observable object.

Planning with DOOM and LOOM For planning we

use the cross-entropy method (CEM) as in [17,18]. Since

planning takes place prior to future observations, nothing

changes when using DOOM or LOOM compared to the

model in [18], except that the initial state must encode any

unobserved objects as described above.

Training details Our training loss is the sum of three terms.

First, we want our model to predict the pose, relations, and

environment identity at the current step t. Given predictions

(p̂it, r̂
ij
t , êit) and ground truth labels (pit, r

ij
t , eit), we get the



TABLE I: Comparison in terms of the F1 score on the relational predictions.
Objects 4 5 6 7 all Distractors 1 2 3 all

DOOM 0.998 0.975 0.974 0.958 0.976 DOOM 0.918 0.907 0.901 0.909

LOOM 0.994 0.978 0.972 0.951 0.974 LOOM 0.894 0.873 0.868 0.878
Baseline 0.938 0.786 0.765 0.702 0.798 Baseline 0.797 0.763 0.751 0.770

current observation loss Lc =
∑H

t=1
CE(r̂ijt , r

ij
t ) + ||p̂it −

pit||
2
2 + CE(êit, e

i
t). Second, we require our models to learn

that the predicted latent space from the previous observation

x
′i
t+x should be similar to the latent space from the current

time observation x
i
t+x. We call this the latent space regular-

ization loss, defined as Lls =
∑H

t=1

∑H

x=t ||x
i
t+x−x

′i
t+x||

2
2.

Last, our model should predict correct outputs from the

state, x
′i
t+x predicted by the latent dynamics; giving loss:

Ld =
∑H

t=1

∑H

x=t CE(r′
ij
t+x, r

ij
t+x) + ||p′

i
t+x − pit+x||

2
2 +

CE(e′
i
t+x, e

i
t+x). We train on the full loss function L =

Lc + Lls + Ld using the Adam optimizer.

IV. EXPERIMENTS & RESULTS

A. Dataset Generation and Relations Definition

We generate a dataset with more than 20,000 skill exe-

cutions. We generate skill executions with three steps: (1):

We create scenes with a variable number of objects in

the Isaac Gym simulator [59]. (2): We generate a random

skill primitive with random continuous parameters. (3): We

execute this skill in simulation. We repeat this process to

create a training sequence with multiple timesteps. After the

skill executions, we record the point clouds, poses, bounding

boxes, and relations pre and post-manipulation. During data

collection, if an object Ok
t disappears at a timestep t due

to occlusion, we augment the point clouds at t with the

transformed point cloud of the disappeared object from

a previous timestep. We show an example of the dataset

generation process in Fig. 3. In this section, the number of

objects is defined as the number of segments including object

and environment segments.

We define 9 relations for model evaluation: left, right,

front, behind, above, below, contact, boundary, inside. The

relations are defined based on the pose and extent of object

bounding boxes in the simulation. The simulator provides us

with the contact relation. We define inside(A, B) = 1 if the

bounding box of A is surrounded by the bounding box of B,

except that the inside object can stick out the top of the larger

object a maximum of 3cm. We define the boundary relation

as in [18] and other relations (left, right, etc.) as in [15].

Furthermore, we use the inside relation as a heuristic during

planning and don’t attempt to directly grasp or push objects

predicted to be contained inside others.

B. Baseline Approach

Our framework is built upon previous works [17,18],

which include comparisons to different baselines and inten-

sive ablation studies. We refer the readers to our prior works

to see the effectiveness of our planning framework compared

to other alternatives, such as the one mainly relying on

explicit pose estimation similar to [31]. In this paper, we

use a transformer to implicitly encode the history similar

to [19] as our baseline approach. The transformer learns

how to combine the history of previous observations and the

current observation. For each observation Zt, we concatenate

the accumulated history with a type embedding htype and

feed it into an MLP to get ht = MLP ([Ep(E(Xt)) +
ht−1, htype(t)]) while we use h0 = Ep(E(X0)). The type

embedding htype encodes whether the segment is observable

at the current step. We pass ht to the transformer to model the

interaction between object tokens, and then use the decoders

to predict object relations and poses.

C. Relational Prediction Evaluation

To test our hypothesis that an explicit object-oriented

memory representation is more effective, we evaluate the

ability of DOOM and LOOM to predict relations after an

action. We define a distractor action as an action applied

after some objects disappear from the scene due to occlusion.

After an object disappears from the scene, we manipulate

other objects several times and then ask the model to reason

about the occluded object. In the evaluation across different

numbers of objects shown in Table. I, DOOM/LOOM im-

prove over Baseline by close to 20%. In the evaluation across

different numbers of distractor actions shown in Table. I,

DOOM/LOOM improve over Baseline by more than 10%.

D. Planning to Goal Relations Success Rate Evaluation

1) Generalization to a different number of objects: We

first show how well our approaches generalize to a variable

number of objects. Examples in our training dataset contain

a maximum of 5 objects. In the qualitative results shown in

Fig. 3, we show that our approaches can generalize to 8 novel

objects with different shapes and different viewpoints. In the

results shown in Fig. 4, we find that our approaches LOOM

and DOOM perform well and are robust to changes in the

number of objects presented in the scene. In contrast, the

baseline approach performs well on scenes with 4 objects,

but struggles on scenes with more objects.

2) Generalization to a different number of distractor ac-

tions: The advantage of explicit object-oriented memory is

prominent when generalizing to different number of dis-

tractor actions (Fig. 4). Our approaches perform well for

different numbers of distractor actions, but the baseline per-

formance drops significantly with even one distractor action.

We show qualitative results in Fig. 5. Note that distractor

actions are not generated during training. This verifies our

hypothesis that the performance of the implicit memory

approach can significantly decrease with distractor actions.

Note that the difference in the planning success rate is more

significant than the F1 score of the relational prediction.

That is because when evaluating the relational predictions, all

relations across all objects were considered, including visible

objects, so that Baseline performs reasonably well. However,

when evaluating planning success, the goal relations include

occluded objects so Baseline performs poorly, as it does not

reason about occluded objects well.
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Fig. 9: Two failure cases of our approaches. The first failure case is caused by a failed grasp while the second failure case is caused by
unstable placement.

as input. For the output of the dynamics model, we discard

the action token and only keep the object tokens. For the

decoders, the pose decoder Dp is a 2-layer MLP with

ReLU as an activation function. The relation decoder Dr

and environment identity decoder De are 2-layer MLPs with

Sigmoid as an activation function.

The input for our model is partial-view point clouds. After

the segmentation from UVOS, we use farthest point sampling

to downsample each segment to 128 points. The PointConv

model consists of 3 layers and outputs a 128-dimension

feature for each segment. The learned positional embedding

also outputs a 128-dimension feature per ID.

For the details of our Baseline model, htype is a 128

dimension feature per segment to encode whether this seg-

ment is observable at the current step. The MLP contains

2 layers with ReLU as an activation function and outputs a

256-dimension feature. We train our approaches and Baseline

using the Adam optimizer with 1e− 4 as a learning rate.

E. Limitations

We acknowledge several limitations of the proposed ap-

proach. First, we have not integrated the planner and tracker

so our framework cannot achieve real-time planning. Second,

while we show diverse tasks with different objects like con-

tainers and shelves, we have not included demonstrations of

more compelling tasks like opening/closing drawers, which

would require a robust impedance controller. Third, as shown

in the problem definition, our framework assumes a known

history of how the objects become occluded, limiting its

ability to address occlusion without history.

F. Failure case analysis

We show two failure cases of our approaches in Fig. 9.

For the first example, the robot first puts the apple inside

the pitcher and then moves the pitcher a bit. Then the robot

receives a goal of putting the orange in contact with the

apple. The robot plans to pick the orange but the grasp fails.

For the second example, the robot first pushes the yellow

mustard below the shelf and then pushes the coffee can. Then

the robot picks and places the white cleaner to achieve the

goal relation as left(cleaner, yellow mustard) = 1. However,

the placement of the cleaner is unstable and thus the goal

relation is not successfully achieved. These two failure cases

are mainly caused by low-level skill execution failures. The

failure cases motivate future directions to implement better

low-level skills and incorporate the low-level skills into our

high-level planning framework.

G. Extra simulation results

We show extra visualizations of the comparison to baseline

in Fig. 7 and Fig. 8. During the comparison, we find that our

approaches DOOM and LOOM consistently outperform the

baseline in terms of the relational prediction F1 score.


