2305.10857v3 [cs.RO] 28 Jan 2024

arxiv

Latent Space Planning for Multi-Object
Manipulation with Environment-Aware
Relational Classifiers

Yixuan Huang!, Nichols Crawford Taylor', Adam Conkey?, Weiyu Liu®, Tucker Hermans

1,4

Goal: Put all chip boxes to the
bottom layer of the shelf

—
—

— . o g o
| ¢ .3 : . £
— : s
— 7 7

— 4o Ay

—> P(7 = glxo, A, A1)

Fig. 1: Multi-step Planning: The robot encodes the segmented scene point cloud into a learned latent state space using the encoder. The robot then plans a
sequence of actions using a learned latent dynamics function multiple times to predict relations that match the goal relations g. The robot plans to pick-and-place
two red chip boxes separately to achieve the goal of organizing all chip boxes to the bottom layer of the shelf.

Abstract—Objects rarely sit in isolation in everyday human
environments. If we want robots to operate and perform tasks in
our human environments, they must understand how the objects
they manipulate will interact with structural elements of the
environment for all but the simplest of tasks. As such, we’d like
our robots to reason about how multiple objects and environ-
mental elements relate to one another and how those relations
may change as the robot interacts with the world. We examine
the problem of predicting inter-object and object-environment
relations between previously unseen objects and novel environ-
ments purely from partial-view point clouds. Our approach
enables robots to plan and execute sequences to complete multi-
object manipulation tasks defined from logical relations. This
removes the burden of providing explicit, continuous object
states as goals to the robot. We explore several different neural
network architectures for this task. We find the best performing
model to be a novel transformer-based neural network that
both predicts object-environment relations and learns a latent-
space dynamics function. We achieve reliable sim-to-real transfer
without any fine-tuning. Our experiments show that our model
understands how changes in observed environmental geometry
relate to semantic relations between objects. We show more videos
on our website: https://sites.google.com/view/erelationaldynamics.

Index Terms—Maulti-object manipulation, Learning for motion
planning, Semantic manipulation.
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I. INTRODUCTION

OR robots to act as our assistants, caregivers, and cowork-
F ers at home, at work, and in the wild they will need to
contend with varying environments. Environmental structure
has profound impacts on manipulation. Placing a large tray
on a small table is much different than placing a cup onto a
high shelf. The task and motion planning (TAMP) formulation
shows promise in addressing tasks of this nature [1]-[8].
However, TAMP solvers typically assume known relational
dynamics (e.g. symbolic/logical effects of actions) [1], [2],
[4]-[6], [8] or they assume known object pose and access
to explicit 3D object models [1], [2], [S]-[7]. No work to
date explicitly reasons about object-environment relational
dynamics with unknown objects observed from partial-view
data.

Robots operating in varying human environments must
contend with many objects at a time. This could include future
home assistants putting away groceries, warehouse robots
packaging items for shipment, or grocery store robots stocking
shelves. As such, robotic multi-object manipulation and rear-
rangement has received much attention in the literature [9]—
[18]. The most recent of these works show excellent results
in reasoning about novel objects from partial view sensory
information [14]-[17], [19]-[21]. However, robots using these
approaches operate in a limited capacity manipulating individ-
ual objects one at a time. In contrast, some works have shown



the ability for robots to reason about and manipulate multiple
objects at once [22], [23]. These works leverage image-based
feedback controllers, that lack the level of semantic reasoning
and explicit object grounding we desire for multi-step planning
to logical goals.

Research over the past few years has shown increasing
ability for robots to manipulate and rearrange novel objects
in cluttered environments by learning to predict the effects
of the robot’s actions [14]-[17], [20], [21]. Significantly less
attention has been given to reasoning about novel environ-
ments and how environmental structures relate and interact
with the objects being manipulated. For example, a robot
should be able to reason that an object on a high shelf
is above an object in a drawer lower in the same cabinet.
While traditional planning-based manipulation approaches rea-
son about the environment, these are typically monolithic
geometric representations focusing on collision avoidance for
planning and navigation [9], [15], [24]-[26]. However, these
models of immobile environmental components have not been
fully integrated into neural representations for multi-object
manipulation. In particular we desire that the robot can reason
about logic-based object-environment goals to enable efficient
task planning [5].

We further advocate for the use of logical relations for
specifying goals as in [15], [17] as they provide a useful
language for communication between robot and human. A
human can easily construct a goal for tasking a robot by
providing a conjunction of desired logical relations between
objects in the scene. On the flip side, the robot can use its
predictions of logical relations to communicate its belief over
the current scene or future states it intends to achieve through
manipulation. This contrasts with several recent approaches to
rearrangement which provide images as goals to the robot [27].
Generating images for all desired goals requires a much higher
burden on the user and in many cases would require the user to
actively rearrange the scene, obviating the need for the robot.

To enable reasoning about manipulation effects simultane-
ously on multiple objects and environments, we propose a
learned relational dynamics model with a structured, object-
aware latent state space for use in TAMP. Motivated by recent
success in robotics and vision problems we choose to examine
both transformers-based neural network architectures [28]—
[30] and graph neural networks [21], [31], [32]. A core tech-
nical question we address is how to integrate these multiple
distinct environmental components and objects into a single
learnable model.

We contribute two novel models to TAMP, environment-
aware relational dynamics transformer (eRDTransformer) and
relational dynamics graph neural network (RD-GNN). Com-
pared to traditional TAMP approaches, the main novelties
of our approaches are (1): our proposed approaches take as
input a segmented, partial view point cloud of the objects
and environments in the scene. (2): Both models encode this
observation into the latent space, from which the network
can predict inter-object and object-environment relations for
both the current scene and future states given a sequence
of actions. To enable these future predictions, we learn a
dynamics function (i.e. state transition function) in the latent

space. We then use the learned network to perform planning
to achieve a desired relational goal.

Fig. 1 illustrates how our learned model can be used for
multi-step planning. Importantly, our planning framework can
incorporate multiple distinct robot skills and produce multi-
step task plans to achieve the specified goals. Our planner per-
forms diverse multi-object rearrangements including picking
and placing multiple objects to different layers of a bookshelf,
pushing objects to the boundary or off a table, pushing objects
to be in contact on a bookshelf, and lifting and placing multiple
objects at once.

We show that eRDTransformer and RD-GNN outperform
similarly structured multi-layer perceptrons (MLPs) operating
directly on object pairs both in terms of planning success rate
and predicting post-manipulation relations to enable success-
ful planning. Crucially, using a transformer or graph neural
network allows the robot to use the same model to reason
about a variable number of objects. Further, by directly using
partial view point cloud information as input, the robot can
reason about objects of novel shape and size without access
to explicit object models.

We perform extensive simulated and real world experiments
to further test the hypothesis that we can train eRDTransformer
and RD-GNN using only the pre- and post-manipulation
relational labels for supervision, in addition to the input point
cloud and actions. Our experiments show that using this
relational supervision outperforms training to predict changes
in object pose, coupled with an analytic approach to predicting
relations from the object bounding boxes. Further, we show
that training with both relational and pose estimation losses
provides no real benefit over training with relations alone.

This manuscript significantly extends previous work using
RD-GNN presented in [33]. The specific extensions include:
(i) We demonstrate that planning using the learned network
enables a robot to achieve many multi-object rearrangement
tasks in different environments. We evaluate these tasks on
a variety of different furniture shapes and styles showing the
ability of our network to understand how relations change as
a function of both object and environmental geometry. We
additionally show that our model trained purely in simulation
transfers reliably to the real world with no fine-tuning; and
(i) we compare eRDTransformer to both RD-GNN and an
extension of the graph-based neural networks (GNN) model
eRD-GNN. We show eRDTransformer performs much better
compared to RD-GNN and eRD-GNN in both simulation
and real world evaluation. Through ablation we find that
using a transformer to encode the latent-space dynamics offers
the biggest benefit over alternative models. Finally, (iii) we
propose learning a classifier to predict whether a specific
segment in the point clouds is a movable object or fixed part of
the environment (e.g. a shelf). We use this classifier as a skill
precondition and verify that its use improves the effectiveness
of task planning.

II. RELATED WORK

Neural networks, including graph neural networks, have
been applied to reason about spatial relationships and perform
planning based on said reasoning [15]-[17], [32], [34]. Paxton



et al. [15] present a framework to reason about pairwise
relations and plan to find an object placement that is physically
feasible and satisfies the goal relations. The pairwise, MLP-
based model allows only one object to be manipulated at
a time by considering rigid object transformation via pick-
and-place. In contrast, we examine GNNs and transformers to
handle multi-object interactions where more than one object
may move during a single action. Zhu et al. [17] presents
a grounded hierarchical planning framework for long-horizon
planning manipulation tasks that leverages a symbolic scene
graph to predict high-level plan actions and a geometric scene
graph to predict low-level motions. Unlike our work, Zhu et
al. [17] do not examine multi-object dynamic interactions.
Lou et al. [35] predict spatial relations between objects in
clutter using GNNs to aid in finding better grasps, but do
not model how relations will change post grasp. Furthermore,
Driess et al. [36] learn to predict multi-object interactions
using graph nets, with supervised reconstruction for NERF-
like embeddings. Unlike our proposed approach, they do not
predict object relations and learn and plan at a much finer time
scale which makes their simulation-only experiments unlikely
to transfer well to the real world. Biza et al. [37] similarly
examine learning object-oriented models of the world with
pose estimation supervision. They show the ability to embed
pose-based goals into a latent space, but do not explicitly
reason about relations or manipulating multiple objects at
once. In [20] a GNN-based policy learns to perform multi-
object rearrangement tasks including stacking and unstacking.
However, the policy requires full object pose information and
manipulates one object at a time.

Transformer-based approaches [28], [29] have shown im-
pressive results in robot manipulation research. Brohan et
al. [29] propose a “Robotics Transformer” system to perform
many real world manipulation tasks but it requires a huge
number of demonstrations. Liu et al. [16], [38] leverage
transformer and diffusion models to rearrange objects based on
language goals but they can only move one object each time.
Wang et al. [30] leverage transformer model and pretrained
scene representation to enable multi-step manipulations in
household environments. However, they are limited in 2D
space since they use pixel location to do the planning which
might limit their model’s capability in real world applications.
Our work focuses on multi-step manipulation in 3D space with
strong results in the real world. Zhu et al. [39] leverage a
transformer to improve the performance of imitation learning
approach for robot manipulation. However, they do not reason
about the relations between objects and environments and are
limited in 2D space. Liu et al. [40] pretrains a multimodal
transformer to encode vision observations and language in-
structions. They train a transformer policy to perform different
manipulation tasks. Furthermore, each of [16], [29], [38],
[40] consider natural language. Our proposed framework is a
variant of TAMP leveraging logical relations to enable efficient
task planning. We view this as a benefit compared to natural
language in terms of structuring the search and offering easier
human inspection of the model and plans.

Reasoning about the environment during robot manipula-
tion is important since objects always interact with varied

environments. Garrett et al. [41] propose an online learning
approach to enable multi-step manipulation in the kitchen
environment with only partial observable information. Kase
et al. [42] proposes a hybrid approach to learn both high-
level symbolic plans and low-level motion planner in a photo-
realistic kitchen scenario. Radosavovic et al. [43] leverages
the visual pretraining to build useful embeddings for real
world robotics task with different environments. Silver et
al. [44] learn neuro-symbolic skills for bilevel planning and
show several experiments with different environments. Wada
et al. [45] achieved nice results about reorienting objects into
different layers of bookshelf but they require object models
and can only move one object each time. Kim et al. [46]
present a graph-based approach to predict collision between a
robot and the surrounding environment. Agia et al [47] propose
a framework to coordinate different action primitives that
can achieve long-horizon planning with different environments
and skills. However, the approach only operates on low-
dimensional state features like object pose.

Traditionally 3D environment models built from sensor data
provide a monolithic geometric representation focusing on
collision avoidance for planning and navigation [24], [25]
or object placement [9], [15], [26]. Other works examine
building semantic segmentation maps of environments often
using multiple sensor readings over time [48], [49] in order to
locate and possibly manipulate objects [S0]-[52] or fixtures in
the environment [41]. These methods often rely on accurate
models of the objects being manipulated [41], [45], [50] or
don’t explicitly reason about the object-environment relations
or how those could change through robot intervention [39],
[40], [53].

Long-horizon planning has become an important prob-
lem for robot manipulation. Task and motion planning
(TAMP) [1]-[7] defines a promising method to solve long
horizon problems. TAMP approaches typically assume models
of how objects and potentially their relations change. While
learning has been used for various aspects of TAMP, no work
has shown how to plan with multi-object dynamic interac-
tions from point cloud data. Simeonov et al. [32] propose
an approach to object manipulations from point cloud data.
They leverage a plan skeleton to solve long horizon planning
problems. However, they do not reason about object relations
and only manipulate one object with each action. Furthermore,
they assume multiple cameras to get effectively full point
clouds of each object, while we use partial-view point clouds
obtained from a single camera. Liang et al. [7] learn to plan
with different skill primitives which sometimes include multi-
object dynamic interactions. They perform multi-step skill
planning using a heuristic graph search. However, they assume
knowledge of object state and do not explicitly reason about
object relations for learning. Curtis et al. [8] learn perception
modules to rearrange unknown objects into a goal region.
However, they assume the effects of actions are known and do
not reason about object-environment relations. Furthermore,
they rely on shape completion to reconstruct object meshes
from point clouds while we directly plan with partial-view
point clouds.
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Fig. 2: Taking a segmented, partial-view point cloud as input, we first process it using PointConv to generate segment-specific features. We
then pass these features into an encoder to predict a latent state X. We can decode X to predict both if the segment is a movable object
and relations between objects and environment segments. By learning an action-conditioned latent-space dynamic model, our approach can
be used to solve multi-step planning problems. In green we highlight relations that satisfy relations in the logical goal g.

II1. PRELIMINARY KNOWLEDGE
A. Graph Neural Networks

We define a directed graph G = {V,FE} with nodes
V = {v;} and edges as I/ = {e;:} where each v; and e is
a feature vector for node 7 or the edge from ¢ to j respectively.
We seek to encode information associated with this graph
into a neural network; following [31] we can reason about
our graph network operations in terms of message passing
in the graph, where a single graph net layer of update and
aggregation functions performs one round of message passing
between neighbors in the graph. By constructing multiple
graph layers, information from nodes across the graph can
propagate in the form of deeper and deeper features.

Update functions transform individual node or edge fea-
tures. We use feed-forward multi-layer perceptrons as update
functions in this paper. We denote node updates as v} =
Jfn(v;) and edge updates as e% =fe (e%) Aggregations take
inputs from multiple parts of the graph and reduce them to
a fixed feature length, thus enabling consistent output feature
dimensions from a variable input size. We denote a message
from node i to node j as my» — (viv; @e7) and define our
message update functions as m’, = f,,, (me) Here & denotes
vector concatenation. To deﬁnejour aggregat10n functions we
introduce an intermediate variable y; = m 2 jen)(mi;)
which takes the average of all messages incoming to node v;
denoted as those coming from nodes in node 7’s neighborhood
N (7). Using this we can define our node aggregation function
as vi = g,(v; @ y;) and the edge aggregations as e%j =
9e(vi®Vv;Dy; Dy;De ) where g,(-) and g.(-) define MLPs.
This edge aggregation tf]us concatenates and then transforms
the features associated with the two neighboring nodes and the
messages passing between them. For more details on graph
nets including alternative aggregation functions see [31].

B. Transformer Neural Networks

Transformers are an attention-based approach for sequential
data. The input for a transformer contains a sequence of
length n, which we denote N = nq, ..., n,, and outputs node
features as N’ = nf,...,n},. The core part of the transformer
is to sequentially get the attention between different nodes,
where we view this interaction as a special case of message

passing. Specifically, each input feature n; will be linearly
projected to a query ¢;, key k;, and value v;. Then each
output n} is a weighted sum of values based on attention. The
function to compute attention is Attention(Q, K,V) =
softmax(9E— )V where dy, is the dimension of keys K. We
can pass the 1nput N through £ layers of transformer to get
useful output sequences of varying lengths. For more details
on transformers, we refer you to the original paper [28].

IV. PROBLEM DEFINITION

We assume the robot perceives the world as a point cloud
7 with N associated object and environment segments O; C
Z,i = 1,2,...,N. The robot receives a goal defined as a
logical conjunction of M desired object and environment
relations, g = r1 Ara A ... Ay, 75 € 'R, where g represents
the goal conjunction, r; denotes each goal relation, and R
represents the set of all possible relations. Example relations
in R include planar spatial relations such as “entity i is in
front of entity j” or 3D relations such as “entity i is on top of
entity j” and “entity i is in contact with entity j.” Interestingly,
since we have the environment as part of the relations, we
can define the goal relations like Above(O;, O) where Oy
defines an environment segment such as a table or shelf.

We provide our robot with a set of L parametric action
primitives A = {A1,..., A} where A; defines the discrete
skill, which has associated skill parameters ;. For example,
a push skill, A;, with parameter, 6;, encoding the end effector
pose and push length or a pick-and-place skill defined by the
grasp and placement poses.

We define the robot’s planning task as finding a sequence
of skills and skill parameters 7 = (Ag, ..., Ag_1) that when
sequentially executed transform the objects such that they
satisfy all relations defined in the logical goal g.

We can now formally define our planning objective as
maximizing the probability of achieving the goal relations with



the following constrained optimization problem:

H
arg max H P(ry = gi|xx) = Dp(Xx) (1)
T:(A(),.,.,AHfl) k=1

subject to Xk41 =0(xk, Ax)VE=0,....,. H—1 (2)
xo = E(Ep(Zo)) 3)
A e A Vk=0,....H—1 4
Omin =20k X Omax Ve =0,....,H—1 (5)

The constraints in this optimization problem encode the latent
space dynamics (Eq. (2)), grounding of the initial latent state
from the observed point cloud Eq. (3), and constraints on the
action parameters Egs. (4-5). We thus chain together predicted
action effects decoding each state to predict the inter-object
relations. Fig. 1 visualizes planning with this model.

After solving this optimization problem the robot can exe-
cute the planned actions in the physical world. Our proposed
network enables the robot to validate if it achieved its goal
by computing ry, = D, (E(E,(Zy))). Where Zj, denotes the
current point cloud observation.

V. LEARNING MULTI-OBJECT AND
OBJECT-ENVIRONMENT RELATIONAL DYNAMICS

We propose using a latent-space approach to planning. We
visualize our approach and the components of the neural
network model in Fig 2. The learned model contains three
main components: an encoder, decoder, and latent dynamics
model. We now provide an overview of the input-output
structure for each component and a brief overview of how
we can use it for planning. We give details on the specific
instances we implement of each component, as well as how
we train the model in subsequent sections.

Encoder: The model takes in a segmented point cloud of the
current observation Z;. We pass the point cloud segments into
our point cloud encoder [54] to get a feature vector for each
segment, P, = E,(0;)VO; € Z;. We use a learned positional
embedding in PyTorch [55] to encode the segment identifier as
I; = Emb, (7). We then concatenate the feature vector with the
positional embedding identifier for each object, P/ = P, @ I;.
To improve the generalization ability we randomly generate
the object IDs during training [56] over a range larger than the
highest number of objects expected to be seen at deployment.
The network then passes these updated features through an
encoder E generating a latent feature x, = E(P/) for each
segment. The combined output of all encoders forms the latent
state X;.

Decoder: Based on these latent features, we can use our
decoder, D, to generate all outputs associated with the current
time step. We have two distinct kinds of decoders (1) relational
decoders, D,, and (2) an environment identity decoder, D..
The relational decoder predicts all segment-segment relations
using a set of binary relational classifiers ¥y = D,.(X;). The
environment identity decoder predicts if a given segment is
a movable object or an immobile part of the environment,
i = D.(X;), y defines a vector of outputs for all segments.

Actions and Dynamics: We can learn a dynamics function
0 to predict the resulting latent state based on the current

latent state and a selected action Xy = 6(Xy, A;), where
A; contains the discrete skill to use and its associated action
parameters, 6. We use a discrete parameter to define which
object the action will operate on and we encode this into
the neural network using the learned positional embedding
Emb, (i) for segment . We use an action encoder, E,, to
transform the raw continuous action parameters, 6. sent to
the robot controller or motion planner into learned action
features, 92. We denote the total encoded action parameters
as 0’ = Emb, (i) ® 0... We learn a separate dynamics function
for each robot skill primitive. This removes the burden of
the network having to learn to map skill codes to distinct
dynamics outcomes. When needing to be explicit, we will
denote the skill specific dynamics as ¢; for the dynamics
function associated with skill primitive A;.

Latent Space Planning: Based on the latent state predicted
using our learned dynamics function, we can use our decoder
to predict the relations at the resulting state 1} , | = De(Xii1).
By recursively calling this dynamics function with a sequence
of actions 7 = (Ao, ..., Ag_1), we can generate rollouts with
time horizon H for use in a planning algorithm to compare
the predicted relations with the goal relations.

A. Learning Relational Dynamics with GNNs

We now turn our attention to our relational dynamics graph
neural network, RD-GNN, which takes as input the segmented
object point cloud and a candidate action and predicts the
current and post-manipulation inter-object relations.

Given the output of our point cloud encoder, we define our
input graph x! = (V1 ET) with nodes V! = {E,(O;) @ k}
where k denotes a one-hot encoding providing a unique iden-
tity label for each node. To improve the generalization ability
we randomly generate the object IDs during training [56] over
a range larger than the highest number of objects expected to
be seen at deployment.

We define edges to and from all node pairs in the graph
creating a fully-connected, directed input graph. We set all
input edge feature ey € ET to be empty. This topology
enables message passing between all nodes, but provides no
explicit edge features as input for learning.

We use a graph neural network as the encoder to transform
our input graph, x! to a latent state X = E(x!). Here £
represents a layer of graph message passing and aggregation
as defined in the previous section. We use our latent graph em-
bedding as input to three sub-networks: our relational classi-
fier, r = D,.(X), environment identity classifier, y = D.(X),
and our latent graph dynamics function X' =6 (X, A).

We construct our relational classifier as a multi-layer per-
ceptron (MLP) that operates on a pair of nodes and their asso-
ciated edges from X, taking the form of an edge aggregation
network r» = DT(Vi,Vj,Yi7y_j7eB?). We predict relations
for all object pairs by running this classifier for each pair of
nodes in the graph as a form of graph convolution. While
some relations may be mutually exclusive, in general the
spatial relations are independent of one another, necessitating
individual binary classifiers and not a softmax-based multi-
class classifier. Note we never specify mutually exclusive goal



relations. We use another MLP to predict environment identity
as y; = De(vi,yi)-

We additionally examine learning to predict the object
pose (defined as its centroid and bounding box orientation
in simulation) for all objects in the scene. To this end we
learn a pose regressor x; = D,(X) which we train using a
node aggregation network with an output MLP with 3 outputs
encoding position and 6 encoding orientation as in [57].

The final piece to define is our latent graph dynamics
function X' = §(X, A). Recall that A defines the action
(skill) including its skill parameters being evaluated through
the dynamics. We encode any discrete skill variables (e.g.
object identity) using a one-hot-encoding for use as input into
the network. We pass this action through an action encoder
A" = ¢4(A) which we implement as an MLP. We build
separate node J,(-) and edge d.(-) dynamics functions which
respectively take as input the node or edge features of the
latent graph concatenated with the encoded action. As output
they predict the change in graph features Av’, Ae%. Given
these definitions we define our graph dynamics funétions as
vl =vI46,(vE@p(A)) and el_g = e%+6e(e%@¢A(A)).
We incorporate multiple skills by lejarning a separage dynamics
functions for each skill, using the same shared latent space.

B. Transformers for Environment-Object Relational Dynamics

Based on the high-level introduction of our approach in
section V, we define our novel environment-aware relational
dynamics transformer as eRDTransformer. Following the gen-
eral structure outlined above we use a transformer for the
encoder and dynamics, but use MLPs for the decoder. This
matches the structure of the previously proposed RD-GNN, but
replaces the primary GNN components with a transformer. The
encoder reads in the processed object segments and learned
IDs P’ in an arbitrary order with no causal masking. We
concatenate all of the NV latent state feature vectors together
to give the full latent state X; = x; ® X9 @ ... P x. For
encoding the input to the transformer dynamics model, we
append the encoded action to the end of the sequence of N
latent segment codes and output a sequence of length N to
predicted the subsequent latent state. For decoding, we follow
the recent literature [34] to use a simple MLP to read out
relations and environment identity predictions associated with
each segment.

C. Loss Functions for Training

We train our model end-to-end using a combination of loss
function terms. The first set of loss functions are quite standard
aiming to predict the desired labels for each scene observation
encoded through the latent space. Assuming our training
dataset has K samples, the first loss term is our additional
cross entropy loss between predicted environment identity and
ground truth identity Lg = Zle CE(yk, De(E(Ep(Zk))))-
For the current sample we evaluate an additional a cross-
entropy loss between predicted and ground truth relations
Lr = Zszl CE(rg, Dy (E(Ey(Zy)))). For pose estimation we
define an L2 loss on the current and predicted object poses in
an analogous manner replacing D, with D,. We examine the

effect of this loss in our experiments. Note the environment
identity loss only applies to environment-aware models.

The second form of loss function acts to ensure agreement
in the latent space between states encoded from perception and
those predicted through the learned latent dynamics function.

For each observed point cloud Z;, we have a latent state
encoding of X, = E(E,(Z,)). Since datasets are collected
in several sequences, we can observe the effects of ap-
plying an action sequence 7; of length H by computing
the output of the dynamics function H times recursively.
We denote the resulting latent space sequence as X; ‘=
0(.er; 0(X4, A1), ..., A ), where we use the “prime” symbol to
denote prediction though the dynamics function. We can then
define our latent space loss as the L2 norm between X4y =
E(Ey(Zi+n)) and X, 5 as Lg = S ZJH:l [ Xig; —
X; +4l |2. Here the outer sum ensures we compute the loss with
a latent space encoding starting for each observed scene in the
sequence.

Based on each predicted latent state X; 4+j» We can also
decode from the latent state to our supervisory signals of
environment identity and relations using the cross-entropy loss.
We train our model end to end using the sum of all of these
loss terms with the Adam optimizer.

VI. GRAPH SEARCH FOR EFFICIENT MULTI-STEP
PLANNING

Our planning problem requires the robot to find a se-
quence of discrete skills with associated skill parameters,
7T = ((As,60),...,(An,0x)) that lead from the observed
initial scene Zj to a state that satisfies a given conjunction
of goal relations g = r; Arg A ... Ary,r; € R. We encode
the observed scene into an associated latent state using the
learned encoder xo = FE(Zj) and use the learned latent
dynamics model to predict the latent states resulting from
selected actions. We can then predict the relations in the
resulting latent state using the learned decoder and compare
them to the goal to evaluate if the plan succeeds. This results
in a mixed-integer programming problem, where the discrete
choices of which skill, A;, to use selects a different associated
continuous dynamics function, ¢;(-). The RD-GNN avoided
this complexity by assuming access to a plan skeleton of
logical subgoals, G = (g1,...,8x), that if achieved would
result in satisfying all goal relations. We note that this access
to a skeleton has been a common first step in researching
complex learning-based manipulation tasks [32], [58].

To avoid the need for this plan skeleton, we improve on the
approach of [33] by proposing a graph search to enumerate
combinations of goal relations to create plan skeletons. We
note that given a state, x; and associated subgoal g;;; we
can solve a simpler one-step optimization problem to find
an action, A; and associated parameters 6; that our learned
model predicts most likely satisfy the relations in the subgoal.
We can then perform a graph search over subgoals where
we store in each node the subgoal, as well as the one step
action and resulting latent state that satisfy the subgoal. If the
one-step optimization fails to find an action that achieves the
subgoal with high confidence, we mark the subgoal as visited
and remove it from consideration. If the single-step planning
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Fig. 3: For the same initial scene (left) we show different valid states found by our planner and model for two different goal settings. For the
first goal relation, the robot can either pick the green object or the red object to place atop the yellow object. For the second goal relation,
the robot can either push the green object or pick-and-place the green object to deconstruct the towers.

problem results in a high confidence prediction of relations
that satisfy the goal, we continuously search the remaining
goal relations. After all goal relations g are satisfied, the search
ends. We use an iterative-deepening style search [59] to bias
towards shorter subgoal sequences. We visualize our graph
search procedure in Fig. 4.

(ratp,x,2 )

Fig. 4: Visualization of our logical subgoal graph search. The root
node of the tree contains the initial state encoded from the observed
scene as well as an empty subgoal and null action. The search
prioritizes longer subgoals first to induce shorter plans. The green
shaded nodes represent satisfied subgoals. If a satisfied subgoal
matches the given goal the search ends.

To solve our single-step planning problem we use the cross-
entropy method (CEM) planning approach. This uses the
derivative-free, sampling-based CEM solver to iteratively eval-
uate a random set of continuous skill parameters and then fit
a new distribution to the top-K samples at each iteration. This
distribution is then used to sample actions for the subsequent
iteration. We found that we only needed 2 iterations of CEM
to find good skill parameters if the correct discrete skill and
object of interest were selected. The solver runs independently
for each possible discrete skill and object pair. Note since
we have learned using our environment identity classifier
whether a given segment is manipulable or immobile, we can
prune from consideration segments predicted as immobile. We
perform experiments in Section VIII to quantify the advantage
of this approach.

VII. EXPERIMENTS WITH INTER-OBJECT INTERACTIONS

We now describe the training data collection and experi-
mental validation for our approach to learning and planning
with eRDTransformer and RD-GNN. In our experiments we

examine the following relations: left, right, behind,
in-front, above, below and contact. We get the
contact relation directly from simulation and we define
other relations following Paxton et al. [15]. We train and
evaluate our model on multi-object rearrangement tasks using
pushing and pick-and-place skills. We conduct experiments in
simulation and on a physical robot manipulating both blocks
and YCB objects [60].

A. Dataset Collection

We conduct large scale data collection using the Isaac Gym
simulator [61]. We collect a dataset by generating scenes with
a variable number of cuboid objects of random size with
arbitrary pose. In the training dataset, we have a maximum
of 6 objects on the table. We then execute a random push or
pick-and-place skill on one of the objects in the scene. For the
push skill, the robot randomly pushes one object in the scene
with random direction and length. For the pick-and-place skill,
the robot randomly picks one object in the scene and places
the object in a random pose. We record the partial view point
cloud before and after the manipulation, the executed action,
and the ground truth relations between all object pairs in the
scene. We collected a total of 39,600 push and pick-and-place
attempts. Fig. 3 shows an example scene with various pushing
and pick-and-place actions and outcomes from the simulator.

B. Baseline Approaches

We implement several baselines for comparison to our pro-
posed models eRDTransformer and RD-GNN . Pairwise MLP
Relational Dynamics (MLP): predicts relations and dynamics
for pairs of objects using an MLP instead of a GNN or
transformer to construct the latent space and dynamics. This
baseline acts as an analogous model to that in [15]. Direct
Pose Dynamics GNN (DPD-GNN): uses a GNN to predict the
pose for each object conditioned on a chosen action. We use
an analytic relational classifier to predict relations from the
predicted poses and their associated bounding boxes. This acts
as a graph-neural-network model similar to the point-cloud
dynamics model from [32]. Pose Estimation GNN (PE-GNN):
We replace the relational output heads on our model with
pose estimation regressors. We again use analytic relational
classifiers for evaluation. Combined Relational Dynamics and
Pose Estimation (RD-PE-GNN): This combines our model
with the pose estimation regressor for both the current and next
time step. Relational Dynamics without Latent Regularization
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Fig. 5: Comparing planning success rate of the different models as a function of (left) the number of objects in the scene, (middle) the
number of relations specified in the goal, and (right) the number of steps. The legend applies to all three plots. We see that eRDTransformer,
RD-GNN, and RD-PE-GNN achieve comparable performance while significantly outperforming the baseline models. The success rate drops
for all models as we specify more relations in the goal. Even when fully constrained the top performing models achieve high success rates.

(RD-GNN-w/o-LR): We train a version of our model without
using the latent space loss L.

C. Evaluation Metrics

We first examine the efficacy of our model in correctly
predicting which relations will be present after executing a
specified action. We show the prediction accuracy between
the predicted relations and the ground truth relations post-
manipulation. Then we examine the ability of our model
to detect inter-object relations for objects in the observed
scene post-manipulation. We show the F1 score between the
detected and ground truth relations post manipulation. In the
experiments, we show the average prediction F1 score and
detection F1 score across all relational classifiers predictions
on our simulation test data across 300 skill executions. We use
the F1 score, rather than accuracy, as our evaluation metric,
because there are imbalanced class distributions in terms of
true and false relations in the dataset.

Finally, we examine the ability of our model to desired goal
relations with a single action step or multiple action steps. We
ran 20 planning trials containing varying numbers of objects
and goal relations using each model in simulation.

TABLE I: F1 score for inter-object relational dynamics evaluation

Approaches Prediction Detection
eRDTransformer 0.899 0.961
RD-GNN 0.906 0.974
RD-PE-GNN 0.879 0.977
PE-GNN 0.133 0.899
DPD-GNN 0.319 N/A
MLP 0.678 0.971
RD-GNN-w/o-LR 0.693 0.977

D. Inductive Bias of Transformers and GNNs

We first examine whether the transformers and GNNs have
better inductive bias compared to the MLP baseline. The
average prediction and detection FF1 score for eRDTransformer,
RD-GNN, and MLP is shown in table 1. We found that
eRDTransformer performs comparably to RD-GNN while
outperforming MLP baselines in terms of prediction F1 score.
All three approaches perform great with average detection IF1
score. In terms of planning success rate in Figire 5, we find
again eRDTransformer and RD-GNN perform much better

than the MLP baseline. Fig. 3 shows a variety of success-
fully executed single-step plans using RD-GNN. Notably we
generate diverse plans for the same goal and initial setting.

This evaluation shows the effectiveness of using transform-
ers and GNNs to address multi-object relational dynamics.
We attribute the better results to the inductive bias of the
transformers and GNNs.

E. Effects of Relational Supervision and Latent Regularization

In this experiment, we aim to understand whether rela-
tional supervision and latent regularization are important.
We compare our model RD-GNN to several baselines using
pose supervision DPD-GNN, PE-GNN, and RD-PE-GNN.
Additionally, we compared our model to a variant without
latent regularization RD-GNN-w/o-LR. We show the average
prediction F1 score and detection F1 score in table 1 while
showing the planning success rate in Fig. 5. During the
comparisons, we found RD-GNN performs better than PE-
GNN, DPD-GNN, and RD-GNN-w/o-LR while performing
comparably to RD-PE-GNN in terms of prediction F1 score
and planning success rate. All the approaches perform pretty
well in terms of detection F1 score except PE-GNN.

The comparisons between RD-GNN, RD-PE-GNN, PE-
GNN, and DPD-GNN demonstrated that using relational su-
pervision is better than using pose supervision and training
with both the relational and pose estimation loss provides no
real benefit over training with only relational loss. Further-
more, The comparison between RD-GNN and RD-GNN-w/o-
LR shows the importance of latent regularization loss during
model training.

F. Multi-Step Planning and Real-World Experiments

We now turn our attention to multi-step planning and real
world planning focusing on only eRDTransformer, RD-GNN,
and RD-PE-GNN as the best single step performers. We show
planning success rates for plans ranging in length from 1 to
3 planning steps in simulation in Fig. 5 (right). We use four
objects for the multi-step test in simulation and the real world.
We see that for both eRDTransformer, RD-GNN, and RD-PE-
GNN approaches, the success rate drops with plan length. All
models achieve high success rates.

We show planning success rate for real world experiments in
Fig. 6. We ran test trials using YCB objects [60] with 5 trials
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for each setting of varying number of scene objects or plan
steps. For all the real world experiments, we use 5 relations in
the goal. Our results verify that our methods transfer to real
world settings without any fine-tuning and generalize to real
world objects when trained only on cuboids in simulation.

We qualitatively show several real-world plan executions
in Fig. 7. These visualizations show that our framework can
reason about inter-object interaction and plan to achieve goal
relations with different numbers of objects in the real world.
Even though our training dataset includes a maximum of
6 cuboids, our tests show our approach can generalize to
different YCB objects including scenes with more than 6
(shown for 7) objects. As shown in the bottom row of Fig. 7,
the robot can choose to push either a red mug or a blue cup
to achieve different goal relations with the same initial scene.
These results highlight our framework’s ability to reason about
different goal relations.

VIII. EXPERIMENTS WITH OBJECT-ENVIRONMENT
INTERACTIONS

In this section, we show the experiments to address object-
environment interactions using our approach eRDTransformer.
We train and evaluate our approach based on the following
ground-truth relations definition: left, right, behind,
in-front, above, below, contact, and boundary.
We get contact directly from physics-based simulation. We
define the boundary(A, B) = 1 if above(A, B) = 1, the
center of A to the nearest edge of the bounding box of B is
less than 10 cm, and the smallest extent of bounding box of B
is larger than 20 cm. For other relations, we define them the
same way as [15].

A. Dataset Generation

We collect a large training dataset using the Isaac Gym
simulator [61]. We randomly generate environments including
varied tables and bookshelves containing a variety of cuboid
objects of different sizes. We execute random behavior se-
quences using both pick-place and push skills. During the
simulated robot executions, we save ground truth segmented
partial-view point clouds before and after execution of each

robot skill along with the skill executed and the ground truth
relations. We collect in total 13,000 skill executions with
different environments. Fig. 8 visualizes some simulation envi-
ronments. For the shelf environments, we have two horizontal
shelves and four cuboids on the shelves. The four cuboids
have random poses and different sizes. The size and height
of the shelves are fixed. Then the robot randomly picks one
cuboid and places the cuboid at another pose. For the table
environments, we have three cuboids on top of the table.
The table and three cuboids have different sizes and poses.
The three cuboids always make up a stack. Then the robot
randomly executes a push skill on one of these three cuboids
with random direction and distance.

During collection of the dataset objects will sometimes be
out of camera view after, e.g. falling off the table. To get
a dense point cloud of objects that are out of the camera
view, we augment the observed point cloud at the current
step with an object-segment point cloud from the previous
timestep rigidly transformed to the resulting object pose. Note
this data augmentation method only applies to training datasets
where we need ground truth encoding of all segments at each
timestep to compute the latent-space loss term.

B. Basline Approaches

eRD-GNN is the environment-aware extension to the
relational-dynamics graph net (RD-GNN). The model uses
GNN as the encoder and decoder while using MLPs to encode
the graph dynamics in latent space. Note in the GNN-based
approach, the latent space X is a latent graph that contains
latent nodes and latent edges. We implement the same graph
net message passing and aggregation functions as in RD-GNN.
We implement the relational decoder as an MLP D,. to predict
the relations between all pairs of nodes in the graph. We
further extend over the previous RD-GNN implementation by
adding our environment identity decoder, D, to predict the
environment identity for each segment.

We define two slightly different models based on eRD-
Transformer to study the effects on performance with using
a transformer for different model components.
eRDT-trans-dec leverages transformers for the encoder, dy-
namics function as in eRDTransformer. But eRDT-trans-dec
uses an extra transformer in the decoder. For decoding with
the transformer, we first pass the latent codes through another
transformer decoder and then readout relations and environ-
ment identity predictions associated with each segment using
an MLP. This allows us to understand the contribution of the
transformer in the decoder.
eRDT-mlp-dyn serves a similar role to the previous model
as an ablation. Here we replace the dynamics function from
eRDTransformer with an MLP. This helps us to understand the
importance of using a transformer as the dynamics function.

C. Evaluation Metrics

We first examine the predictive performance of the proposed
models. We evaluate both the ability of the models to predict
relations and environment identity in the currently observed
scene and post-manipulation scene (detection) and the ability
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Fig. 8: Visualization of the simulation dataset collection with table and shelf environments.

to predict how these relations will change (prediction). Fig. 8
visualizes the environments used for evaluation. We evaluated
these F1 scores on these tasks for all of our models across
a varying number of objects with environments containing
either one table or two shelves as immobile surfaces. For
each approach, we get our simulation test data with 80 skill
executions for evaluation.

Furthermore, we evaluate how well these models work
in the context of manipulation planning for both single-step
and multi-steps. We ran 20 trials using each model for each
environment. We used different numbers of goal relations
for different environments with a maximum number of goal
relations of 17.

D. Transformer for Object-Environment Relational Dynamics

Both eRDTransformer and RD-GNN have shown great per-
formance in reasoning about multi-object relational dynamics.
So now we investigate which structure is better for reasoning
about object-environment relational dynamics. We show the

comparisons among eRDTransformer, RD-GNN, and eRD-
GNN.

Through the comparisons in table II, we found that these
three approaches perform comparably well in terms of env
detection F1 score and detection F1 score except RD-GNN
cannot predict which segment is the environment. The main
difference comes from the prediction F1 score, the eRDTrans-
former performs obviously better than eRD-GNN and RD-
GNN. In the evaluation of single-step and multi-step planning
success rate in Fig. 11, we found that eRDTransformer per-
forms better than eRD-GNN while RD-GNN performs worst.

From the evaluations, we found that eRDTransformer out-
performs RD-GNN and eRD-GNN in terms of both planning
success rates and predicting post-manipulation relations, which
demonstrates that the transformers provide better inductive
bias than GNNs to explicitly reason about object-environment
relational dynamics.
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Fig. 9: Two test examples with more complex shelves and novel view
points. For the left column with 4 varied height shelves, the goal is
to put the white cleaner that’s on the top layer of the shelf to the
bottom layer. For the second column with 6 varied height shelves,
we would like our robot to put the white cleaner which is on the
bottom layer of the shelf to the top layer.

E. Ablation Study

In this experiment, we study the effect on the performance
when using a transformer for different model components. We
show the results to compare our model eRDTransformer with
two ablations eRDT-trans-dec and eRDT-mlp-dyn. During the
comparisons in table II, we found that all three models perform
equally well at env detection and relation detection. We found
that eRDTransformer performs better than eRDT-trans-dec in
terms of predicting post-manipulation relations while eRDT-
mlp-dyn performs worst. During the evaluation of single-step
and multi-step planning success rate in Fig. 11, we found
eRDTransformer performs best, eERDT-trans-dec second, while
eRDT-mlp-dyn performs worst.

Through the ablation study, we found that using the trans-
former as the dynamics is most important for our latent space
planning framework while using a transformer for the decoder
hurts the performance, especially in multi-step planning.

TABLE II: Different F1 score to evaluate object-environment
relational dynamics

Approaches Prediction Detection Env Detection
eRDTransformer 0.917 0.959 1.000
eRDT-trans-dec ~ 0.846 0.950 1.000
eRD-GNN 0.790 0.950 1.000
RDGNN 0.795 0.961 N/A
eRDT-mlp-dyn  0.472 0.957 1.000

FE. The benefit of predicting whether segments are manipulable

Our final evaluation in simulation shows the benefit of
predicting whether or not segments are manipulable improves
planning performance. Fig. 12 shows that not only does prun-
ing immobile segments from consideration improve planning
efficiency, it also improves the success rate. We can attribute
this to the planner sometimes electing to manipulate a table
or shelf instead of the relevant objects.

11

G. Real World Manipulation Evaluation

We now evaluate the manipulation success of eRDTrans-
former and the best performing GNN model eRD-GNN in the
real world. In particular we examine to what extent the trans-
former models trained purely in simulation only on cuboid
objects across varied environments transfer to real world YCB
objects [60] and environments without any fine-tuning. We first
conducted quantitative experiments by executing 5 trials for
each model on different environments and different number
of steps. Fig. 13 shows that the eRDTransformer once again
performs consistently better than eRD-GNN. We then compare
multi-step experimental results in the real world as shown in
Fig. 13. We find again that eRDTransformer performs best
up to three steps while eRD-GNN performs very poorly with
more than 1 step. Note we only train with random-sized cuboid
objects in simulation but can generalize to YCB objects in the
real world without any fine-tuning.

H. Discussion

We first show the generalization ability of our framework
in terms of different numbers of objects, different shapes of
objects, and varied environments. We show some training
examples with varied environments in Fig. 8. For the table
environment, all training examples contain three cuboid ob-
jects of varying size above a rectangular table of varying size
and orientation. During testing, we test with 2—4 YCB objects
above the table and 5 different table shapes, shown in Fig. 15.

For the shelf environments, we train with four cuboids in
the environment. We test on two different real-world shelves
shown in Fig. 10 and different simulated shelves in Fig. 9.
Our tests examine generalization to 4-6 YCB objects in the
environment shown in Fig. 1 and Fig. 10. Furthermore, even
though our training dataset contains two layers of shelves, our
framework can generalize to complex environments with 4 or
6 layers of shelves of varying heights viewed from novel view
points as shown in Fig. 9.

We qualitatively show the capability of eRDTransformer to
reason about the geometry of varied environments in Fig. 14.
In particular these results highlight the understanding of the
subtle difference between environments encoded in the learned
model. For the same scene the robot understands how to ma-
nipulate an object to be above, under, or in contact with a shelf.
Furthermore, given the same goal relation contact (white
cleaner, shelf) = 1 with the same environment, but
different initial object pose, standing versus lying down,
our framework can choose between different actions, picking
versus pushing, to achieve the goal relations. The robot can
also choose to use pick-and-place to achieve a desired object-
environment contact relation when the shelf is high and
chooses to push when the shelf is low.

These evaluations show the ability of the network to reason
about semantically different outcomes of geometrically similar
actions and relative object poses. We find it particularly com-
pelling that our approach can reliably reason about geometric
implications between objects and environment structures of
varying shape and pose. As shown in Fig. 15 the model learns
to differentiate between pushing a collection of objects to the



T = (}aYs mo|
‘SOX0(Q Pa4)10eIu0)

(ueosayjo)
‘91IyMm)10eIU0D

T =

Fig. 10: Real-world evaluation with different shapes of shelves and different numbers of objects. Our framework achieves goals such as
picking and placing an object onto different layers of the shelf and pushing several objects to make contact with one another in a shelf

environment.
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(bottom) planning in simulation. Empty bars denote 0% success.

boundary of versus pushing off of tables of different geometry.
Further the model can be used to reliably plan to one or the
other, selecting pushing actions with very similar parameters
that generate significantly different outcomes.

Finally, we note that during early experiments with smaller
training datasets, we found that our GNN-based model per-
formed comparably to the transformer-based networks. How-
ever, in the presence of larger, more diverse datasets, the
transformer-based models perform significantly better than
the GNN-based approaches. Our insight is that using a
transformer-based model to encode latent dynamics is the core
component to increase the model’s capability to handle larger
and more diverse datasets.

Finally, we note that during the evaluation of inter-object
interactions shown in Fig. 5 and table I, eRDTransformer
performs comparable to RD-GNN. However, during a more
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Fig. 12: Pruning segments classified as immobile environment re-
gions from search improves planning success and decreases planning
time.

complex evaluation of object-environment interactions shown
in Fig. 11 and table 1I, eRDTransformer consistently outper-
forms the GNN-based approaches.

As shown in our ablation study (Sec. VIII-E), using the
transformer as the dynamics model provides the most sig-
nificant benefit over alternative models. We attribute the
transformer-based model’s capability in larger scenes with
more complex inter-object and object-environment interactions
to the use of the learnable attention metrics. Specifically,
the attention mechanism in the transformer-based dynamics
enables the model to learn not just how a specific action affects
objects but which objects and parts of the environment are
affected. This is in contrast to the generic GNN’s message
passing layers which must pass information through multiple
layers to ensure information about all objects passes to all
others. We note that transformers can be understood as a
specific implementation of a GNN using self-attention as the
message passing protocol.

IX. LIMITATIONS AND FUTURE WORK

Our framework has several limitations. First, we do not
perform replanning during multi-step robot executions, which
requires high accuracy of the latent dynamics prediction to
succeed at multi-step planning. As such, we only show up to
3 steps for multi-step planning. This connects with our rather
limited graph search, which was sufficient for these experi-
ments, but we know would scale inefficiently to longer-horizon
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Fig. 14: We show several real-world examples of how our framework can enable planning for multiple objects across varying shelf-like
environments. We show that we can reason about different objects and shelf poses, shape, and height; while also handling different goal

relations.

and more complex tasks. This motivates us to integrate better
task planners into our framework. Our work is the first one
to learn the relational dynamics for multi-object-environment
with partial-view point clouds. We learn the environment
identity as an easy precondition, but this is much simpler than
most state-of-the-art TAMP solvers. We think learning a more
complete and expressive set of preconditions could enable
integrating PDDL [5] into our learned relational dynamics.
This in turn would enable the framework to generalize to
longer robot manipulation tasks. However, we note that our
experiments show a similar trend in planning success rate and
prediction F1 score. This indicates our planning algorithm
works effectively when given an accurate predictor. Thus,
anyone looking to further improve performance should first
focus on improving prediction accuracy.

Second, we don’t explicitly integrate the robot’s reachable
space into our planning framework, which causes the out-

put skill primitive from our approach to sometimes not be
executable on the robot. We use the RRTConnect motion
planner in [62] to execute the skill in our paper, but this
motion planner does not have a high success rate especially
in complex environments such as those involving the shelf.
We augment the generic planning by including offset reaching
and retraction waypoints to reduce the burden on the motion
planner. We plan to incorporate the more advanced motion
planner proposed in [63] to improve the motion planner
success rate.

Third, on a theoretical level we have no proof that the
relations we use in training our representation provide a
sufficient basis for predicting all inter-object interactions of
interest. Currently, we only have empirical results to show they
seem to work well. For example, we don’t include an inside
relation in this paper so we cannot plan to achieve goals like
“put the apple inside the basket” or “put the sugar box inside
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Fig. 15: Experiments visualizing the nuanced reasoning of our learned model. Given the same initial scene the robot is tasked with moving
all objects either to the boundary or off of the supporting table. The robot succeeds for each of five tables of varying shape, size, and height.
These results highlight the model’s ability to ground the object-environment semantic concepts to the geometry of the observed scene.

the cabinet”. As an additional training issue, we only train
with block-shaped objects. While this proved sufficient for
demonstrating the benefits of relational dynamics, we do not
capture detailed shape information that robots must reason
about for more complicated tasks and interactions.

Furthermore, our framework cannot reason about any oc-
cluded objects nor any novel objects that appear after a skill
execution. Said differently, all relevant objects must be ob-
served in the initial scene. This limits our work’s applications
to more complex environments such as households or offices
where objects are inside cabinets or boxes. To address this
issue, we wish to incorporate object tracking and memory into
our model to enable replanning and reasoning about objects
that become occluded or disoccluded during manipulation.
To work with more complex environments, we also need to
include more low-level skills like opening/closing a cabinet
or pouring a cup of liquid. Another interesting direction for
future work would be to integrate natural language goals [16],
[29], [40].

X. CONCLUSION

We propose the first TAMP framework with learned, multi-
object relational dynamics based on input from partial-view
point clouds. Our proposed novel framework can reason about
relations between unknown objects and varied environments.
By encoding how actions change the relations between objects
and the environment, our approach can achieve multi-step
planning with a variable number of objects and environmental
components. We demonstrate the ability of our model to under-
stand how subtle geometric change in different environments
effect logical relations. Through large-scale experiments in

simulation and the real world, we show the effectiveness of
our approach in manipulation planning. We can attribute this
to better accuracy when predicting both object-environment
relations and latent space dynamics compared to baselines
analogous to previously proposed approaches. In particular,
our proposed transformer-based model performs best in our
evaluations. Further we showed relations provide a better
source of supervision for training our model for planning than
using a pose estimation loss.

Overall, our approach provides the first example of predict-
ing manipulation sequences using learned relational dynamics
from partial view point clouds. We leverage these predictions
for planning and executing dynamic rearrangements with
multiple objects and environments on a physical robot.
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