

2

the ability for robots to reason about and manipulate multiple

objects at once [22], [23]. These works leverage image-based

feedback controllers, that lack the level of semantic reasoning

and explicit object grounding we desire for multi-step planning

to logical goals.

Research over the past few years has shown increasing

ability for robots to manipulate and rearrange novel objects

in cluttered environments by learning to predict the effects

of the robot’s actions [14]–[17], [20], [21]. Significantly less

attention has been given to reasoning about novel environ-

ments and how environmental structures relate and interact

with the objects being manipulated. For example, a robot

should be able to reason that an object on a high shelf

is above an object in a drawer lower in the same cabinet.

While traditional planning-based manipulation approaches rea-

son about the environment, these are typically monolithic

geometric representations focusing on collision avoidance for

planning and navigation [9], [15], [24]–[26]. However, these

models of immobile environmental components have not been

fully integrated into neural representations for multi-object

manipulation. In particular we desire that the robot can reason

about logic-based object-environment goals to enable efficient

task planning [5].

We further advocate for the use of logical relations for

specifying goals as in [15], [17] as they provide a useful

language for communication between robot and human. A

human can easily construct a goal for tasking a robot by

providing a conjunction of desired logical relations between

objects in the scene. On the flip side, the robot can use its

predictions of logical relations to communicate its belief over

the current scene or future states it intends to achieve through

manipulation. This contrasts with several recent approaches to

rearrangement which provide images as goals to the robot [27].

Generating images for all desired goals requires a much higher

burden on the user and in many cases would require the user to

actively rearrange the scene, obviating the need for the robot.

To enable reasoning about manipulation effects simultane-

ously on multiple objects and environments, we propose a

learned relational dynamics model with a structured, object-

aware latent state space for use in TAMP. Motivated by recent

success in robotics and vision problems we choose to examine

both transformers-based neural network architectures [28]–

[30] and graph neural networks [21], [31], [32]. A core tech-

nical question we address is how to integrate these multiple

distinct environmental components and objects into a single

learnable model.

We contribute two novel models to TAMP, environment-

aware relational dynamics transformer (eRDTransformer) and

relational dynamics graph neural network (RD-GNN). Com-

pared to traditional TAMP approaches, the main novelties

of our approaches are (1): our proposed approaches take as

input a segmented, partial view point cloud of the objects

and environments in the scene. (2): Both models encode this

observation into the latent space, from which the network

can predict inter-object and object-environment relations for

both the current scene and future states given a sequence

of actions. To enable these future predictions, we learn a

dynamics function (i.e. state transition function) in the latent

space. We then use the learned network to perform planning

to achieve a desired relational goal.

Fig. 1 illustrates how our learned model can be used for

multi-step planning. Importantly, our planning framework can

incorporate multiple distinct robot skills and produce multi-

step task plans to achieve the specified goals. Our planner per-

forms diverse multi-object rearrangements including picking

and placing multiple objects to different layers of a bookshelf,

pushing objects to the boundary or off a table, pushing objects

to be in contact on a bookshelf, and lifting and placing multiple

objects at once.

We show that eRDTransformer and RD-GNN outperform

similarly structured multi-layer perceptrons (MLPs) operating

directly on object pairs both in terms of planning success rate

and predicting post-manipulation relations to enable success-

ful planning. Crucially, using a transformer or graph neural

network allows the robot to use the same model to reason

about a variable number of objects. Further, by directly using

partial view point cloud information as input, the robot can

reason about objects of novel shape and size without access

to explicit object models.

We perform extensive simulated and real world experiments

to further test the hypothesis that we can train eRDTransformer

and RD-GNN using only the pre- and post-manipulation

relational labels for supervision, in addition to the input point

cloud and actions. Our experiments show that using this

relational supervision outperforms training to predict changes

in object pose, coupled with an analytic approach to predicting

relations from the object bounding boxes. Further, we show

that training with both relational and pose estimation losses

provides no real benefit over training with relations alone.

This manuscript significantly extends previous work using

RD-GNN presented in [33]. The specific extensions include:

(i) We demonstrate that planning using the learned network

enables a robot to achieve many multi-object rearrangement

tasks in different environments. We evaluate these tasks on

a variety of different furniture shapes and styles showing the

ability of our network to understand how relations change as

a function of both object and environmental geometry. We

additionally show that our model trained purely in simulation

transfers reliably to the real world with no fine-tuning; and

(ii) we compare eRDTransformer to both RD-GNN and an

extension of the graph-based neural networks (GNN) model

eRD-GNN. We show eRDTransformer performs much better

compared to RD-GNN and eRD-GNN in both simulation

and real world evaluation. Through ablation we find that

using a transformer to encode the latent-space dynamics offers

the biggest benefit over alternative models. Finally, (iii) we

propose learning a classifier to predict whether a specific

segment in the point clouds is a movable object or fixed part of

the environment (e.g. a shelf). We use this classifier as a skill

precondition and verify that its use improves the effectiveness

of task planning.

II. RELATED WORK

Neural networks, including graph neural networks, have

been applied to reason about spatial relationships and perform

planning based on said reasoning [15]–[17], [32], [34]. Paxton

3

et al. [15] present a framework to reason about pairwise

relations and plan to find an object placement that is physically

feasible and satisfies the goal relations. The pairwise, MLP-

based model allows only one object to be manipulated at

a time by considering rigid object transformation via pick-

and-place. In contrast, we examine GNNs and transformers to

handle multi-object interactions where more than one object

may move during a single action. Zhu et al. [17] presents

a grounded hierarchical planning framework for long-horizon

planning manipulation tasks that leverages a symbolic scene

graph to predict high-level plan actions and a geometric scene

graph to predict low-level motions. Unlike our work, Zhu et

al. [17] do not examine multi-object dynamic interactions.

Lou et al. [35] predict spatial relations between objects in

clutter using GNNs to aid in finding better grasps, but do

not model how relations will change post grasp. Furthermore,

Driess et al. [36] learn to predict multi-object interactions

using graph nets, with supervised reconstruction for NERF-

like embeddings. Unlike our proposed approach, they do not

predict object relations and learn and plan at a much finer time

scale which makes their simulation-only experiments unlikely

to transfer well to the real world. Biza et al. [37] similarly

examine learning object-oriented models of the world with

pose estimation supervision. They show the ability to embed

pose-based goals into a latent space, but do not explicitly

reason about relations or manipulating multiple objects at

once. In [20] a GNN-based policy learns to perform multi-

object rearrangement tasks including stacking and unstacking.

However, the policy requires full object pose information and

manipulates one object at a time.

Transformer-based approaches [28], [29] have shown im-

pressive results in robot manipulation research. Brohan et

al. [29] propose a “Robotics Transformer” system to perform

many real world manipulation tasks but it requires a huge

number of demonstrations. Liu et al. [16], [38] leverage

transformer and diffusion models to rearrange objects based on

language goals but they can only move one object each time.

Wang et al. [30] leverage transformer model and pretrained

scene representation to enable multi-step manipulations in

household environments. However, they are limited in 2D

space since they use pixel location to do the planning which

might limit their model’s capability in real world applications.

Our work focuses on multi-step manipulation in 3D space with

strong results in the real world. Zhu et al. [39] leverage a

transformer to improve the performance of imitation learning

approach for robot manipulation. However, they do not reason

about the relations between objects and environments and are

limited in 2D space. Liu et al. [40] pretrains a multimodal

transformer to encode vision observations and language in-

structions. They train a transformer policy to perform different

manipulation tasks. Furthermore, each of [16], [29], [38],

[40] consider natural language. Our proposed framework is a

variant of TAMP leveraging logical relations to enable efficient

task planning. We view this as a benefit compared to natural

language in terms of structuring the search and offering easier

human inspection of the model and plans.

Reasoning about the environment during robot manipula-

tion is important since objects always interact with varied

environments. Garrett et al. [41] propose an online learning

approach to enable multi-step manipulation in the kitchen

environment with only partial observable information. Kase

et al. [42] proposes a hybrid approach to learn both high-

level symbolic plans and low-level motion planner in a photo-

realistic kitchen scenario. Radosavovic et al. [43] leverages

the visual pretraining to build useful embeddings for real

world robotics task with different environments. Silver et

al. [44] learn neuro-symbolic skills for bilevel planning and

show several experiments with different environments. Wada

et al. [45] achieved nice results about reorienting objects into

different layers of bookshelf but they require object models

and can only move one object each time. Kim et al. [46]

present a graph-based approach to predict collision between a

robot and the surrounding environment. Agia et al [47] propose

a framework to coordinate different action primitives that

can achieve long-horizon planning with different environments

and skills. However, the approach only operates on low-

dimensional state features like object pose.

Traditionally 3D environment models built from sensor data

provide a monolithic geometric representation focusing on

collision avoidance for planning and navigation [24], [25]

or object placement [9], [15], [26]. Other works examine

building semantic segmentation maps of environments often

using multiple sensor readings over time [48], [49] in order to

locate and possibly manipulate objects [50]–[52] or fixtures in

the environment [41]. These methods often rely on accurate

models of the objects being manipulated [41], [45], [50] or

don’t explicitly reason about the object-environment relations

or how those could change through robot intervention [39],

[40], [53].

Long-horizon planning has become an important prob-

lem for robot manipulation. Task and motion planning

(TAMP) [1]–[7] defines a promising method to solve long

horizon problems. TAMP approaches typically assume models

of how objects and potentially their relations change. While

learning has been used for various aspects of TAMP, no work

has shown how to plan with multi-object dynamic interac-

tions from point cloud data. Simeonov et al. [32] propose

an approach to object manipulations from point cloud data.

They leverage a plan skeleton to solve long horizon planning

problems. However, they do not reason about object relations

and only manipulate one object with each action. Furthermore,

they assume multiple cameras to get effectively full point

clouds of each object, while we use partial-view point clouds

obtained from a single camera. Liang et al. [7] learn to plan

with different skill primitives which sometimes include multi-

object dynamic interactions. They perform multi-step skill

planning using a heuristic graph search. However, they assume

knowledge of object state and do not explicitly reason about

object relations for learning. Curtis et al. [8] learn perception

modules to rearrange unknown objects into a goal region.

However, they assume the effects of actions are known and do

not reason about object-environment relations. Furthermore,

they rely on shape completion to reconstruct object meshes

from point clouds while we directly plan with partial-view

point clouds.

5

the following constrained optimization problem:

argmax
τ=(A0,...,AH−1)

H∏

k=1

P (rk = gk|xk) = Dr(xk) (1)

subject to xk+1 = δ(xk, Ak) ∀k = 0, . . . , H − 1 (2)

x0 = E(Ep(Z0)) (3)

Ak ∈ A ∀k = 0, . . . , H − 1 (4)

θmin � θk � θmax ∀k = 0, . . . , H − 1 (5)

The constraints in this optimization problem encode the latent

space dynamics (Eq. (2)), grounding of the initial latent state

from the observed point cloud Eq. (3), and constraints on the

action parameters Eqs. (4–5). We thus chain together predicted

action effects decoding each state to predict the inter-object

relations. Fig. 1 visualizes planning with this model.

After solving this optimization problem the robot can exe-

cute the planned actions in the physical world. Our proposed

network enables the robot to validate if it achieved its goal

by computing rk = Dr(E(Ep(Zk))). Where Zk denotes the

current point cloud observation.

V. LEARNING MULTI-OBJECT AND

OBJECT-ENVIRONMENT RELATIONAL DYNAMICS

We propose using a latent-space approach to planning. We

visualize our approach and the components of the neural

network model in Fig 2. The learned model contains three

main components: an encoder, decoder, and latent dynamics

model. We now provide an overview of the input-output

structure for each component and a brief overview of how

we can use it for planning. We give details on the specific

instances we implement of each component, as well as how

we train the model in subsequent sections.

Encoder: The model takes in a segmented point cloud of the

current observation Zt. We pass the point cloud segments into

our point cloud encoder [54] to get a feature vector for each

segment, Pi = Ep(Oi) ∀Oi ∈ Zt. We use a learned positional

embedding in PyTorch [55] to encode the segment identifier as

Ii = Embp(i). We then concatenate the feature vector with the

positional embedding identifier for each object, P ′

i = Pi ⊕ Ii.

To improve the generalization ability we randomly generate

the object IDs during training [56] over a range larger than the

highest number of objects expected to be seen at deployment.

The network then passes these updated features through an

encoder E generating a latent feature xi = E(P ′

i) for each

segment. The combined output of all encoders forms the latent

state Xt.

Decoder: Based on these latent features, we can use our

decoder, D, to generate all outputs associated with the current

time step. We have two distinct kinds of decoders (1) relational

decoders, Dr, and (2) an environment identity decoder, De.

The relational decoder predicts all segment-segment relations

using a set of binary relational classifiers r̂t = Dr(Xt). The

environment identity decoder predicts if a given segment is

a movable object or an immobile part of the environment,

ŷt = De(Xt), ŷ defines a vector of outputs for all segments.

Actions and Dynamics: We can learn a dynamics function

δ to predict the resulting latent state based on the current

latent state and a selected action X̂t+1 = δ(Xt, At), where

At contains the discrete skill to use and its associated action

parameters, θ. We use a discrete parameter to define which

object the action will operate on and we encode this into

the neural network using the learned positional embedding

Embp(i) for segment i. We use an action encoder, Ea, to

transform the raw continuous action parameters, θc sent to

the robot controller or motion planner into learned action

features, θ′c. We denote the total encoded action parameters

as θ′ = Embp(i)⊕ θ′c. We learn a separate dynamics function

for each robot skill primitive. This removes the burden of

the network having to learn to map skill codes to distinct

dynamics outcomes. When needing to be explicit, we will

denote the skill specific dynamics as δl for the dynamics

function associated with skill primitive Al.

Latent Space Planning: Based on the latent state predicted

using our learned dynamics function, we can use our decoder

to predict the relations at the resulting state r̂′t+1 = De(X̂t+1).
By recursively calling this dynamics function with a sequence

of actions τ = (A0, . . . , AH−1), we can generate rollouts with

time horizon H for use in a planning algorithm to compare

the predicted relations with the goal relations.

A. Learning Relational Dynamics with GNNs

We now turn our attention to our relational dynamics graph

neural network, RD-GNN, which takes as input the segmented

object point cloud and a candidate action and predicts the

current and post-manipulation inter-object relations.

Given the output of our point cloud encoder, we define our

input graph xI = (V I , EI) with nodes V I = {Ep(Oi) ⊕ k}
where k denotes a one-hot encoding providing a unique iden-

tity label for each node. To improve the generalization ability

we randomly generate the object IDs during training [56] over

a range larger than the highest number of objects expected to

be seen at deployment.

We define edges to and from all node pairs in the graph

creating a fully-connected, directed input graph. We set all

input edge feature e−→
ij

∈ EI to be empty. This topology

enables message passing between all nodes, but provides no

explicit edge features as input for learning.

We use a graph neural network as the encoder to transform

our input graph, xI to a latent state X = E(xI). Here E

represents a layer of graph message passing and aggregation

as defined in the previous section. We use our latent graph em-

bedding as input to three sub-networks: our relational classi-

fier, r = Dr(X), environment identity classifier, y = De(X),
and our latent graph dynamics function X

′

= δ(X, A).
We construct our relational classifier as a multi-layer per-

ceptron (MLP) that operates on a pair of nodes and their asso-

ciated edges from X, taking the form of an edge aggregation

network r−→
ij

= Dr(vi,vj ,yi,yj , e−→ij). We predict relations

for all object pairs by running this classifier for each pair of

nodes in the graph as a form of graph convolution. While

some relations may be mutually exclusive, in general the

spatial relations are independent of one another, necessitating

individual binary classifiers and not a softmax-based multi-

class classifier. Note we never specify mutually exclusive goal

6

relations. We use another MLP to predict environment identity

as yi = De(vi,yi).
We additionally examine learning to predict the object

pose (defined as its centroid and bounding box orientation

in simulation) for all objects in the scene. To this end we

learn a pose regressor xi = Dp(X) which we train using a

node aggregation network with an output MLP with 3 outputs

encoding position and 6 encoding orientation as in [57].

The final piece to define is our latent graph dynamics

function X
′

= δ(X, A). Recall that A defines the action

(skill) including its skill parameters being evaluated through

the dynamics. We encode any discrete skill variables (e.g.

object identity) using a one-hot-encoding for use as input into

the network. We pass this action through an action encoder

A′ = φA(A) which we implement as an MLP. We build

separate node δv(·) and edge δe(·) dynamics functions which

respectively take as input the node or edge features of the

latent graph concatenated with the encoded action. As output

they predict the change in graph features ∆vL
i ,∆eL−→

ij
. Given

these definitions we define our graph dynamics functions as

vL′

i = vL
i +δv(v

L
i ⊕φA(A)) and eL

′

−→
ij

= eL−→
ij
+δe(e

L
−→
ij
⊕φA(A)).

We incorporate multiple skills by learning a separate dynamics

functions for each skill, using the same shared latent space.

B. Transformers for Environment-Object Relational Dynamics

Based on the high-level introduction of our approach in

section V, we define our novel environment-aware relational

dynamics transformer as eRDTransformer. Following the gen-

eral structure outlined above we use a transformer for the

encoder and dynamics, but use MLPs for the decoder. This

matches the structure of the previously proposed RD-GNN, but

replaces the primary GNN components with a transformer. The

encoder reads in the processed object segments and learned

IDs P ′ in an arbitrary order with no causal masking. We

concatenate all of the N latent state feature vectors together

to give the full latent state Xt = x1 ⊕ x2 ⊕ . . . ⊕ xN . For

encoding the input to the transformer dynamics model, we

append the encoded action to the end of the sequence of N

latent segment codes and output a sequence of length N to

predicted the subsequent latent state. For decoding, we follow

the recent literature [34] to use a simple MLP to read out

relations and environment identity predictions associated with

each segment.

C. Loss Functions for Training

We train our model end-to-end using a combination of loss

function terms. The first set of loss functions are quite standard

aiming to predict the desired labels for each scene observation

encoded through the latent space. Assuming our training

dataset has K samples, the first loss term is our additional

cross entropy loss between predicted environment identity and

ground truth identity LE =
∑K

k=1 CE(yk, De(E(Ep(Zk)))).
For the current sample we evaluate an additional a cross-

entropy loss between predicted and ground truth relations

LR =
∑K

k=1 CE(rk, Dr(E(Ep(Zk)))). For pose estimation we

define an L2 loss on the current and predicted object poses in

an analogous manner replacing Dr with Dp. We examine the

effect of this loss in our experiments. Note the environment

identity loss only applies to environment-aware models.

The second form of loss function acts to ensure agreement

in the latent space between states encoded from perception and

those predicted through the learned latent dynamics function.

For each observed point cloud Zt, we have a latent state

encoding of Xt = E(Ep(Zt)). Since datasets are collected

in several sequences, we can observe the effects of ap-

plying an action sequence τt of length H by computing

the output of the dynamics function H times recursively.

We denote the resulting latent space sequence as X
′

t+H =
δ(..., δ(Xt, A1), ..., AH), where we use the “prime” symbol to

denote prediction though the dynamics function. We can then

define our latent space loss as the L2 norm between Xt+H =
E(Ep(Zt+H)) and X

′

t+H as Ld =
∑t+H−1

i=t

∑H

j=i ||Xi+j −

X
′

i+j ||
2
2. Here the outer sum ensures we compute the loss with

a latent space encoding starting for each observed scene in the

sequence.

Based on each predicted latent state X
′

t+j , we can also

decode from the latent state to our supervisory signals of

environment identity and relations using the cross-entropy loss.

We train our model end to end using the sum of all of these

loss terms with the Adam optimizer.

VI. GRAPH SEARCH FOR EFFICIENT MULTI-STEP

PLANNING

Our planning problem requires the robot to find a se-

quence of discrete skills with associated skill parameters,

τ = ((Ao, θ0), . . . , (AH , θH)) that lead from the observed

initial scene Z0 to a state that satisfies a given conjunction

of goal relations g = r1 ∧ r2 ∧ ... ∧ rM , rj ∈ R. We encode

the observed scene into an associated latent state using the

learned encoder x0 = E(Z0) and use the learned latent

dynamics model to predict the latent states resulting from

selected actions. We can then predict the relations in the

resulting latent state using the learned decoder and compare

them to the goal to evaluate if the plan succeeds. This results

in a mixed-integer programming problem, where the discrete

choices of which skill, Al, to use selects a different associated

continuous dynamics function, δl(·). The RD-GNN avoided

this complexity by assuming access to a plan skeleton of

logical subgoals, G = (ḡ1, . . . , ḡH), that if achieved would

result in satisfying all goal relations. We note that this access

to a skeleton has been a common first step in researching

complex learning-based manipulation tasks [32], [58].

To avoid the need for this plan skeleton, we improve on the

approach of [33] by proposing a graph search to enumerate

combinations of goal relations to create plan skeletons. We

note that given a state, xt and associated subgoal ḡt+1 we

can solve a simpler one-step optimization problem to find

an action, At and associated parameters θt that our learned

model predicts most likely satisfy the relations in the subgoal.

We can then perform a graph search over subgoals where

we store in each node the subgoal, as well as the one step

action and resulting latent state that satisfy the subgoal. If the

one-step optimization fails to find an action that achieves the

subgoal with high confidence, we mark the subgoal as visited

and remove it from consideration. If the single-step planning

10

Fig. 7: We show several multi-step planning executions (top) and single-step planning executions (middle, bottom) in the real world using
our approaches. We can reason about a different number of objects with varied geometry. Note relations are defined from the camera’s
perspective.

Fig. 8: Visualization of the simulation dataset collection with table and shelf environments.

to predict how these relations will change (prediction). Fig. 8

visualizes the environments used for evaluation. We evaluated

these F1 scores on these tasks for all of our models across

a varying number of objects with environments containing

either one table or two shelves as immobile surfaces. For

each approach, we get our simulation test data with 80 skill

executions for evaluation.

Furthermore, we evaluate how well these models work

in the context of manipulation planning for both single-step

and multi-steps. We ran 20 trials using each model for each

environment. We used different numbers of goal relations

for different environments with a maximum number of goal

relations of 17.

D. Transformer for Object-Environment Relational Dynamics

Both eRDTransformer and RD-GNN have shown great per-

formance in reasoning about multi-object relational dynamics.

So now we investigate which structure is better for reasoning

about object-environment relational dynamics. We show the

comparisons among eRDTransformer, RD-GNN, and eRD-

GNN.

Through the comparisons in table II, we found that these

three approaches perform comparably well in terms of env

detection F1 score and detection F1 score except RD-GNN

cannot predict which segment is the environment. The main

difference comes from the prediction F1 score, the eRDTrans-

former performs obviously better than eRD-GNN and RD-

GNN. In the evaluation of single-step and multi-step planning

success rate in Fig. 11, we found that eRDTransformer per-

forms better than eRD-GNN while RD-GNN performs worst.

From the evaluations, we found that eRDTransformer out-

performs RD-GNN and eRD-GNN in terms of both planning

success rates and predicting post-manipulation relations, which

demonstrates that the transformers provide better inductive

bias than GNNs to explicitly reason about object-environment

relational dynamics.

11

Fig. 9: Two test examples with more complex shelves and novel view
points. For the left column with 4 varied height shelves, the goal is
to put the white cleaner that’s on the top layer of the shelf to the
bottom layer. For the second column with 6 varied height shelves,
we would like our robot to put the white cleaner which is on the
bottom layer of the shelf to the top layer.

E. Ablation Study

In this experiment, we study the effect on the performance

when using a transformer for different model components. We

show the results to compare our model eRDTransformer with

two ablations eRDT-trans-dec and eRDT-mlp-dyn. During the

comparisons in table II, we found that all three models perform

equally well at env detection and relation detection. We found

that eRDTransformer performs better than eRDT-trans-dec in

terms of predicting post-manipulation relations while eRDT-

mlp-dyn performs worst. During the evaluation of single-step

and multi-step planning success rate in Fig. 11, we found

eRDTransformer performs best, eRDT-trans-dec second, while

eRDT-mlp-dyn performs worst.

Through the ablation study, we found that using the trans-

former as the dynamics is most important for our latent space

planning framework while using a transformer for the decoder

hurts the performance, especially in multi-step planning.

TABLE II: Different F1 score to evaluate object-environment
relational dynamics

Approaches Prediction Detection Env Detection

eRDTransformer 0.917 0.959 1.000
eRDT-trans-dec 0.846 0.950 1.000
eRD-GNN 0.790 0.950 1.000
RDGNN 0.795 0.961 N/A
eRDT-mlp-dyn 0.472 0.957 1.000

F. The benefit of predicting whether segments are manipulable

Our final evaluation in simulation shows the benefit of

predicting whether or not segments are manipulable improves

planning performance. Fig. 12 shows that not only does prun-

ing immobile segments from consideration improve planning

efficiency, it also improves the success rate. We can attribute

this to the planner sometimes electing to manipulate a table

or shelf instead of the relevant objects.

G. Real World Manipulation Evaluation

We now evaluate the manipulation success of eRDTrans-

former and the best performing GNN model eRD-GNN in the

real world. In particular we examine to what extent the trans-

former models trained purely in simulation only on cuboid

objects across varied environments transfer to real world YCB

objects [60] and environments without any fine-tuning. We first

conducted quantitative experiments by executing 5 trials for

each model on different environments and different number

of steps. Fig. 13 shows that the eRDTransformer once again

performs consistently better than eRD-GNN. We then compare

multi-step experimental results in the real world as shown in

Fig. 13. We find again that eRDTransformer performs best

up to three steps while eRD-GNN performs very poorly with

more than 1 step. Note we only train with random-sized cuboid

objects in simulation but can generalize to YCB objects in the

real world without any fine-tuning.

H. Discussion

We first show the generalization ability of our framework

in terms of different numbers of objects, different shapes of

objects, and varied environments. We show some training

examples with varied environments in Fig. 8. For the table

environment, all training examples contain three cuboid ob-

jects of varying size above a rectangular table of varying size

and orientation. During testing, we test with 2–4 YCB objects

above the table and 5 different table shapes, shown in Fig. 15.

For the shelf environments, we train with four cuboids in

the environment. We test on two different real-world shelves

shown in Fig. 10 and different simulated shelves in Fig. 9.

Our tests examine generalization to 4–6 YCB objects in the

environment shown in Fig. 1 and Fig. 10. Furthermore, even

though our training dataset contains two layers of shelves, our

framework can generalize to complex environments with 4 or

6 layers of shelves of varying heights viewed from novel view

points as shown in Fig. 9.

We qualitatively show the capability of eRDTransformer to

reason about the geometry of varied environments in Fig. 14.

In particular these results highlight the understanding of the

subtle difference between environments encoded in the learned

model. For the same scene the robot understands how to ma-

nipulate an object to be above, under, or in contact with a shelf.

Furthermore, given the same goal relation contact(white

cleaner, shelf) = 1 with the same environment, but

different initial object pose, standing versus lying down,

our framework can choose between different actions, picking

versus pushing, to achieve the goal relations. The robot can

also choose to use pick-and-place to achieve a desired object-

environment contact relation when the shelf is high and

chooses to push when the shelf is low.

These evaluations show the ability of the network to reason

about semantically different outcomes of geometrically similar

actions and relative object poses. We find it particularly com-

pelling that our approach can reliably reason about geometric

implications between objects and environment structures of

varying shape and pose. As shown in Fig. 15 the model learns

to differentiate between pushing a collection of objects to the

14

Fig. 15: Experiments visualizing the nuanced reasoning of our learned model. Given the same initial scene the robot is tasked with moving
all objects either to the boundary or off of the supporting table. The robot succeeds for each of five tables of varying shape, size, and height.
These results highlight the model’s ability to ground the object-environment semantic concepts to the geometry of the observed scene.

the cabinet”. As an additional training issue, we only train

with block-shaped objects. While this proved sufficient for

demonstrating the benefits of relational dynamics, we do not

capture detailed shape information that robots must reason

about for more complicated tasks and interactions.

Furthermore, our framework cannot reason about any oc-

cluded objects nor any novel objects that appear after a skill

execution. Said differently, all relevant objects must be ob-

served in the initial scene. This limits our work’s applications

to more complex environments such as households or offices

where objects are inside cabinets or boxes. To address this

issue, we wish to incorporate object tracking and memory into

our model to enable replanning and reasoning about objects

that become occluded or disoccluded during manipulation.

To work with more complex environments, we also need to

include more low-level skills like opening/closing a cabinet

or pouring a cup of liquid. Another interesting direction for

future work would be to integrate natural language goals [16],

[29], [40].

X. CONCLUSION

We propose the first TAMP framework with learned, multi-

object relational dynamics based on input from partial-view

point clouds. Our proposed novel framework can reason about

relations between unknown objects and varied environments.

By encoding how actions change the relations between objects

and the environment, our approach can achieve multi-step

planning with a variable number of objects and environmental

components. We demonstrate the ability of our model to under-

stand how subtle geometric change in different environments

effect logical relations. Through large-scale experiments in

simulation and the real world, we show the effectiveness of

our approach in manipulation planning. We can attribute this

to better accuracy when predicting both object-environment

relations and latent space dynamics compared to baselines

analogous to previously proposed approaches. In particular,

our proposed transformer-based model performs best in our

evaluations. Further we showed relations provide a better

source of supervision for training our model for planning than

using a pose estimation loss.

Overall, our approach provides the first example of predict-

ing manipulation sequences using learned relational dynamics

from partial view point clouds. We leverage these predictions

for planning and executing dynamic rearrangements with

multiple objects and environments on a physical robot.

ACKNOWLEDGMENTS

The authors thank Mohit Sharma, Chris Paxton, and Mo-

hanraj Devendran Shanthi for useful discussion. This work

was partially supported by NSF Award #2024778, by DARPA

under grant N66001-19-2-4035, and by a Sloan Research

Fellowship.

REFERENCES

[1] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to
guide task and motion planning using score-space representation,” The

International Journal of Robotics Research, vol. 38, no. 7, pp. 793–812,
2019.

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sample-based
methods for factored task and motion planning.” in Robotics: Science

and Systems, 2017.
[3] B. Kim and L. Shimanuki, “Learning value functions with relational state

representations for guiding task-and-motion planning,” in Conference on

Robot Learning. PMLR, 2020, pp. 955–968.

15

[4] D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial
scene image,” arXiv preprint arXiv:2006.05398, 2020.

[5] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on

Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[6] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” arXiv

preprint arXiv:2010.01083, 2020.

[7] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer,
“Search-Based Task Planning with Learned Skill Effect Models for
Lifelong Robotic Manipulation,” in IEEE Intl. Conf. on Robotics and

Automation, 2022.

[8] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett,
“Long-horizon manipulation of unknown objects via task and motion
planning with estimated affordances,” in 2022 International Conference

on Robotics and Automation (ICRA). IEEE, 2022, pp. 1940–1946.

[9] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push Planning
for Object Placement on Cluttered Table Surfaces,” in IEEE/RSJ Intl.

Conf. on Intelligent Robots and Systems, 11 2011. [Online]. Available:
http://www.cs.utah.edu/∼thermans/papers/cosgun-iros2011.pdf

[10] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in IEEE Intl. Conf. on Robotics and Automation, 2012, pp.
3875–3882.

[11] M. Gupta and G. S. Sukhatme, “Using manipulation primitives for brick
sorting in clutter,” in IEEE Intl. Conf. on Robotics and Automation, 2012,
pp. 3883–3889.

[12] S. Panda, A. A. Hafez, and C. Jawahar, “Learning support order for
manipulation in clutter,” in IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems, 2013, pp. 809–815.

[13] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa, “Object
search by manipulation,” Autonomous Robots, vol. 36, no. 1-2, pp. 153–
167, 2014.

[14] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof
grasping for target-driven object manipulation in clutter,” in IEEE Intl.

Conf. on Robotics and Automation. IEEE, 2020, pp. 6232–6238.

[15] C. Paxton, C. Xie, T. Hermans, and D. Fox, “Predicting Stable
Configurations for Semantic Placement of Novel Objects,” in
Conference on Robot Learning (CoRL), 11 2021. [Online]. Available:
https://arxiv.org/abs/2108.12062

[16] W. Liu, C. Paxton, T. Hermans, and D. Fox, “StructFormer: Learning
Spatial Structure for Language-Guided Semantic Rearrangement of
Novel Objects,” in IEEE Intl. Conf. on Robotics and Automation, 2022.
[Online]. Available: https://sites.google.com/view/structformer

[17] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning for
long-horizon manipulation with geometric and symbolic scene graphs,”
in IEEE Intl. Conf. on Robotics and Automation, 2021.

[18] Z. Pan, A. Zeng, Y. Li, J. Yu, and K. Hauser, “Algorithms and systems
for manipulating multiple objects,” IEEE Transactions on Robotics,
2022.

[19] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical multi-
object manipulation using relational reinforcement learning,” in IEEE

Intl. Conf. on Robotics and Automation, 2020, pp. 4051–4058.

[20] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and
interpretable robot manipulation with graph neural networks,” IEEE

Robotics and Automation Letters, 2022.

[21] M. Sharma and O. Kroemer, “Relational learning for skill precondi-
tions,” in Conference on Robot Learning, 2020.

[22] M. Wilson and T. Hermans, “Learning to manipulate object collections
using grounded state representations,” in Conference on Robot Learning,
2020, pp. 490–502.

[23] H. Suh and R. Tedrake, “The surprising effectiveness of linear models
for visual foresight in object pile manipulation,” in Intl. Workshop on

Algorithmic Foundations of Robotics, 2020.

[24] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based
on octrees,” Autonomous Robots, 2013, software available at http:
//octomap.github.com. [Online]. Available: http://octomap.github.com

[25] A. Kuntz, C. Bowen, and R. Alterovitz, “Fast Anytime Motion
Planning in Point Clouds by Interleaving Sampling and Interior
Point Optimization,” in International Symposium on Robotics Research

(ISRR), 2017. [Online]. Available: https://arm.cs.utah.edu/wp-content/
uploads/sites/136/2020/05/Kuntz2017 ISRR.pdf

[26] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new
objects in a scene,” The International Journal of Robotics Research,
vol. 31, no. 9, p. 1021–1043, May 2012.

[27] A. H. Qureshi, A. Mousavian, C. Paxton, M. Yip, and D. Fox, “NeRP:
Neural Rearrangement Planning for Unknown Objects,” in Robotics:

Science and Systems, Virtual, July 2021.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.

[29] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint

arXiv:2212.06817, 2022.

[30] C. Wang, D. Xu, and L. Fei-Fei, “Generalizable task planning through
representation pretraining,” arXiv preprint arXiv:2205.07993, 2022.

[31] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner,
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

[32] A. Simeonov, Y. Du, B. Kim, F. R. Hogan, J. Tenenbaum, P. Agrawal,
and A. Rodriguez, “A long horizon planning framework for manipulating
rigid pointcloud objects,” in Conference on Robot Learning, 2020.

[33] Y. Huang, A. Conkey, and T. Hermans, “Planning for Multi-Object
Manipulation with Graph Neural Network Relational Classifiers,” in
IEEE International Conference on Robotics and Automation (ICRA),
2023. [Online]. Available: https://arxiv.org/abs/2209.11943

[34] W. Yuan, C. Paxton, K. Desingh, and D. Fox, “Sornet: Spatial object-
centric representations for sequential manipulation,” in Conference on

Robot Learning. PMLR, 2022, pp. 148–157.

[35] X. Lou, Y. Yang, and C. Choi, “Learning object relations with graph
neural networks for target-driven grasping in dense clutter,” in IEEE

Intl. Conf. on Robotics and Automation, 2022.

[36] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,” in
ICRA Workshop on Motion Planning with Implicit Neural Represen-

tations of Geometry, 2022.

[37] O. Biza, T. Kipf, D. Klee, R. Platt, J.-W. van de Meent, and L. L.
Wong, “Factored world models for zero-shot generalization in robotic
manipulation,” arXiv preprint arXiv:2202.05333, 2022.

[38] W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion:
Object-centric diffusion for semantic rearrangement of novel objects,”
arXiv preprint arXiv:2211.04604, 2022.

[39] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “Viola: Imitation learning
for vision-based manipulation with object proposal priors,” 6th Annual

Conference on Robot Learning (CoRL), 2022.

[40] H. Liu, L. Lee, K. Lee, and P. Abbeel, “Instruction-following
agents with jointly pre-trained vision-language models,” arXiv preprint

arXiv:2210.13431, 2022.

[41] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox,
“Online replanning in belief space for partially observable task and
motion problems,” in 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2020, pp. 5678–5684.

[42] K. Kase, C. Paxton, H. Mazhar, T. Ogata, and D. Fox, “Transferable task
execution from pixels through deep planning domain learning,” in 2020

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10 459–10 465.

[43] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell,
“Real-world robot learning with masked visual pre-training,” arXiv

preprint arXiv:2210.03109, 2022.

[44] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P.
Kaelbling, “Learning neuro-symbolic skills for bilevel planning,” in
6th Annual Conference on Robot Learning, 2022. [Online]. Available:
https://openreview.net/forum?id=OIaJRUo5UXy

[45] K. Wada, S. James, and A. J. Davison, “ReorientBot: Learning object
reorientation for specific-posed placement,” in IEEE International Con-

ference on Robotics and Automation (ICRA), 2022.

[46] Y. Kim, J. Kim, and D. Park, “Graphdistnet: A graph-based collision-
distance estimator for gradient-based trajectory optimization,” IEEE

Robotics and Automation Letters, vol. 7, no. 4, pp. 11 118–11 125, 2022.

[47] C. Agia, T. Migimatsu, J. Wu, and J. Bohg, “Taps: Task-agnostic policy
sequencing,” arXiv preprint arXiv:2210.12250, 2022.

[48] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards
3d point cloud based object maps for household environments,”
Robotics and Autonomous Systems, vol. 56, no. 11, pp. 927–941, 2008.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889008001140

[49] S. Khandelwal, M. Suhail, and L. Sigal, “Segmentation-grounded scene
graph generation,” in Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, 2021, pp. 15 879–15 889.

16

[50] K. Wada, E. Sucar, S. James, D. Lenton, and A. J. Davison, “More-
Fusion: Multi-object reasoning for 6D pose estimation from volumetric
fusion,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.
[51] K. Wada, S. James, and A. J. Davison, “SafePicking: Learning safe

object extraction via object-level mapping,” in IEEE International Con-

ference on Robotics and Automation (ICRA), 2022.
[52] E. Sucar, K. Wada, and A. Davison, “NodeSLAM: Neural object

descriptors for multi-view shape reconstruction,” in Proceedings of the

International Conference on 3D Vision (3DV), 2020.
[53] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-

task transformer for robotic manipulation,” in Proceedings of the 6th

Conference on Robot Learning (CoRL), 2022.
[54] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep Convolutional Networks

on 3D Point Clouds,” in IEEE Conf. on Computer Vision and Pattern

Recognition, 2019, pp. 9621–9630.
[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural

Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[56] H. Cui, Z. Lu, P. Li, and C. Yang, “On positional and structural

node features for graph neural networks on non-attributed graphs,” in
Proceedings of the 31st ACM International Conference on Information

& Knowledge Management, 2022, pp. 3898–3902. [Online]. Available:
https://arxiv.org/abs/2107.01495

[57] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of
rotation representations in neural networks,” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2019, pp. 5738–5746.

[58] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” in 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 3684–3691.

[59] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[60] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The YCB object and model set: Towards common benchmarks
for manipulation research,” in Intl. Conf. on Advanced Robotics, 2015.

[61] NVIDIA, “Isaac Gym,” https://developer.nvidia.com/isaac-gym, 2020.

[62] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to
entry of complex robotic software: a moveit! case study,” arXiv preprint

arXiv:1404.3785, 2014.

[63] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk,
V. Blukis, A. Millane, H. Oleynikova, A. Handa, F. Ramos, et al.,
“Curobo: Parallelized collision-free robot motion generation,” in 2023

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 8112–8119.

