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Abstract Global climate goals require a transition to a deeply decarbonized energy system. Meeting the
objectives of the Paris Agreement through countries' nationally determined contributions and long-term
strategies represents a complex problem with consequences across multiple systems shrouded by deep
uncertainty. Robust, large-ensemble methods and analyses mapping a wide range of possible future states of the
world are needed to help policymakers design effective strategies to meet emissions reduction goals. This study
contributes a scenario discovery analysis applied to a large ensemble of 5,760 model realizations generated
using the Global Change Analysis Model. Eleven energy-related uncertainties are systematically varied,
representing national mitigation pledges, institutional factors, and techno-economic parameters, among others.
The resulting ensemble maps how uncertainties impact common energy system metrics used to characterize
national and global pathways toward deep decarbonization. Results show globally consistent but regionally
variable energy transitions as measured by multiple metrics, including electricity costs and stranded assets.
Larger economies and developing regions experience more severe economic outcomes across a broad sampling
of uncertainty. The scale of CO, removal globally determines how much the energy system can continue to emit,
but the relative role of different CO, removal options in meeting decarbonization goals varies across regions.
Previous studies characterizing uncertainty have typically focused on a few scenarios, and other large-ensemble
work has not (to our knowledge) combined this framework with national emissions pledges or institutional
factors. Our results underscore the value of large-ensemble scenario discovery for decision support as countries
begin to design strategies to meet their goals.

Plain Language Summary Most countries have pledged to significantly reduce greenhouse gas
emissions over the next few decades. These emissions primarily come from burning fossil fuels for electricity,
heat, energy for industrial processes, and transportation fuel. Converting to cleaner forms of energy requires
transforming the energy system. However, decision makers must consider the countless, unpredictable ways the
future could unfold. Modelers address this “deep uncertainty” by running computer simulations many times and
computing how impactful various inputs are on the outcome. We explore different ways countries may meet
emissions reduction goals and how impacts vary regionally, considering 11 sources of uncertainty with 5,760
simulations. We find larger economies and developing regions experience the most severe economic outcomes
consistently across our wide range of inputs. Further, removing carbon dioxide from the air through engineered
and natural solutions allows some flexibility to continue emitting during the transition, but the role of different
options varies regionally, and is subject to future costs and the way emissions are priced. Previous work has
typically focused on representative scenarios, rather than a “large ensemble,” and has not combined this
framework with modeling national emissions pledges. These findings are helpful for decisionmakers as
countries design strategies to meet their goals.

1. Introduction

Global climate policy is taking shape across multiple scales and using a variety of strategies to address diverse sets
of objectives. Most notably, the Paris Agreement has been at the forefront of international cooperation and
accountability in limiting global warming from anthropogenic climate change (United Nations, 2015). Under this
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multilateral agreement, countries periodically submit and update nationally determined contributions (NDCs) to
articulate intended action plans. Though unique to each country, NDCs typically lay out shorter-term emissions
reduction goals (e.g., by 2030) (UNFCCC, 2022b). In addition to NDCs, countries have also communicated long-
term strategies (LTS), many of which contain net-zero targets (usually for 2050), to help inform and align near-
term activities (UNFCCC, 2022a). In order to meet the goals set forth by the Paris Agreement, a major global
transition to a deeply decarbonized energy system is underway (UNFCCC, 2023).

The global energy system is the largest contributor to greenhouse gas emissions (34% in 2019), of which over
two-thirds comes from electricity and heat (IPCC, 2022). Other energy-intensive sectors including transportation
(15%), industry (24%), and buildings (6%) bring this global contribution to roughly 80%. Therefore, decarbon-
ization pathways must consider abatement strategies across the full landscape of energy-related emissions.
However, there are many technological, financial, and policy tools available to help shape future pathways, as
well as exogenous forces driving potential outcomes (Riahi, 2022). There is significant future uncertainty
associated with the evolution of energy systems coming from many sources, such as socioeconomics, technology,
institutions, demand patterns, and climate feedbacks, to name a few (Fodstad et al., 2022; Yue et al., 2018). These
issues represent deep uncertainties with unknown functional forms which cannot be well-characterized by a
probability distribution, and dynamically evolve across sectors with complex and potentially wide-reaching
consequences (Srikrishnan et al., 2022; Workman et al., 2021).

As countries begin to implement emissions reduction pledges outlined in their NDCs, deep uncertainties (Walker
et al., 2013) associated with the energy transition will emerge and impose challenges on decisionmakers in
designing strategies to meet emissions goals (Paredes-Vergara et al., 2024). For decision makers, it is important to
gain an understanding of a very wide range of plausible outcomes and characterize their associated pathways, in
order to provide informed guidance on the most critical drivers as well as potential tradeoffs and synergies arising
from different combinations of uncertain factors. In the context of a global energy transition driven by national
decarbonization commitments, mapping and exploring a broad outcome space can help identify key challenges
and opportunities, and how they may be distributed across regions, under a robust set of circumstances.

Previous research in this space has typically focused on a select few plausible futures to explore, which limits the
range and diversity of outcomes (Fawcett et al., 2015; G. C. Iyer, Edmonds, et al., 2015; Kriegler et al., 2018; Ou
etal., 2021). Other work has examined structural differences across multiple models, but with limited sampling of
uncertainty (Arango-Aramburo et al., 2019; Browning et al., 2023; Burleyson et al., 2020; Kober et al., 2016;
Lucena et al., 2016; McFarland et al., 2015; Pietzcker et al., 2017; van de Ven et al., 2023; Van Der Zwaan
et al., 2016; Wilkerson et al., 2015). While there are existing large ensemble studies to draw from Groves
et al. (2020), Huppmann et al. (2018), McJeon et al. (2011), there remains a dearth of research contributing a
systematic exploration of a wide range of uncertainties using large-ensemble simulations to characterize NDC-
and LTS-consistent energy transitions. Refer to the Supporting Information S1 for further discussion on current
literature. The present study addresses this gap by applying scenario discovery to the Global Change Analysis
Model (GCAM) (Bond-Lamberty et al., 2022; Calvin et al., 2019) to explore how future uncertainties in the
energy system drive global and national pathways toward deep decarbonization under Paris Agreement emissions
pledges. In doing so, our study characterizes global and regional outcomes across a broad uncertainty space and
identifies decision-relevant drivers and tradeoffs to assist planners in designing robust strategies to meet their
long-term decarbonization goals.

Our large ensemble of model realizations is generated using GCAM, described briefly in Section 3.1. Eleven
energy-related uncertain factors and a suite of output metrics, illustrated in Figure 1, are systematically varied
within the model configuration. These scenario factors represent national mitigation pledges, institutional factors,
and techno-economic parameters, and are described in more detail in Section 3.2, followed by a description of the
scenario discovery framework. Results are presented for 10 aggregated global regions, constructed from GCAM's
32 geopolitical regions. Section 4 characterizes uncertainty in outcomes of interest such as electricity price,
stranded assets, and carbon dioxide removal (CDR), to identify drivers of global and regional pathways toward
deep decarbonization under national emissions pledges. The paper concludes with a discussion of results and
implications for robust mitigation policy, highlighting the value of large-ensemble scenario discovery frame-
works for countries beginning to design strategies to meet their goals.
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Figure 1. Uncertain factors varied in the ensemble and analysis metrics used.

2. Background

Some level of uncertainty will generally accompany any model used to aid planning decisions, inform policy, or
otherwise convey insight about the systems and processes it represents (Beven, 2018). Over the last century,
uncertainty has been described by several hierarchies and classifications using a variety of methods (Walker
etal., 2003). A common dichotomy applied to uncertainty is to categorize it as epistemic (reducible through, e.g.,
more data or improved knowledge of the truth) or aleatory (irreducible due to inherent randomness) (Kiureghian
& Ditlevsen, 2009). In simulation and optimization modeling, uncertainty can also be categorized as parametric
(uncertainty in model parameters' true values), structural (uncertainty in the mathematical abstractions of real-
world processes), and sampling (coverage from sampling a random variable, i.e., aleatory uncertainty) (Srik-
rishnan et al., 2022).

The severity of a given uncertainty can range from well-characterized (a single probability distribution and a
single objective) to a state of deep uncertainty, in which the likelihood of different scenarios is completely un-
known or cannot be agreed upon (Lempert et al., 2003). The concept of deep uncertainty can be traced through the
20th century from Knightian uncertainty (Knight, 1921) and the inability to quantify outcomes or human de-
cisions using probability distributions, through “wicked problems” (Rittel & Webber, 1973) and the possibility of
fundamental disagreements on objectives, problem formulations, and model functional forms. Well-characterized
uncertainty can be mitigated in modeling through a variety of methods, such as sensitivity analysis for parametric
uncertainty (Pianosi et al., 2016), comparing across multiple models to address structural uncertainty (Marangoni
et al., 2017; van de Ven et al., 2023), and Monte Carlo analysis for sampling uncertainty of a stochastic process
(New & Hulme, 2000). However, deep uncertainty in inherently interconnected and complex systems may be
more difficult or even impossible to assess using these standard methods. Further, the lack of probabilistic data
and tools available to deeply uncertain systems can shift the research goals from predicting system behavior to
analyzing sets of “what-if” scenarios. This philosophy is central to exploratory modeling (Bankes, 1993).
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Exploratory modeling is a generalized approach developed to study systems dealing with deep uncertainty
(Bankes, 1993; Lempert, 2002). Whereas the traditional view of a model as a probabilistic predictive tool may be
concerned with uncertainty quantification, an exploratory modeling framework primarily involves uncertainty
characterization, which instead aims to describe and characterize the influential factors driving a model's
outcome space through systematic computational experimentation (Kwakkel & Pruyt, 2013). By assessing many
plausible alternatives with the goal of decision support, exploratory modeling can help identify vulnerabilities as
well as robust solutions when significant deep uncertainty prevents probabilistic analysis (Kasprzyk et al., 2013;
Lempert, 2019).

Communicating insights from large ensembles of model realizations is often done using scenarios which, in this
context, refer to small numbers of narrative storylines describing sets of conditions, trends, pathways, and vul-
nerabilities packaged in interpretable and decision-relevant clusters (Garb et al., 2008). Scenarios enable dis-
cussion about future states of the world without relying on probabilistic forecasts (Lempert, 2013). Scenario
analysis exists broadly across domains, but is particularly useful in climate and human-earth systems modeling
(for a review, see EEA, 2009). Distilling information from many (dozens to millions) modeled futures into a
handful of digestible scenarios can be done with techniques such as scenario discovery, a model-agnostic
approach to developing scenario narratives in complex systems (Groves & Lempert, 2007; Lempert
et al., 2006). Scenario discovery can refer to any methodology aimed at identifying areas of interest within the
outcome space of a model via a systematic exploration of deep uncertainties, with the ultimate goal of connecting
critical drivers (model parameters and structural forms, exogenous uncertainties, policy levers) to outcome
metrics and narrative storylines to inform decision-making (Bryant & Lempert, 2010; Lempert et al., 2003, 2008).
This approach is used widely in human-earth systems modeling (Birnbaum et al., 2022; Dolan et al., 2022;
Guivarch et al., 2022; Kwakkel et al., 2013; Lamontagne et al., 2018; McJeon et al., 2011; Moksnes et al., 2019;
Morris et al., 2022; Shortridge & Guikema, 2016; Woodard et al., 2023) using a variety of statistical, machine
learning, and data mining techniques (Jafino & Kwakkel, 2021; Kwakkel & Cunningham, 2016; Kwakkel & Jaxa-
Rozen, 2016; Lempert et al., 2008; Steinmann et al., 2020). In this study, we apply scenario discovery to GCAM,
an actively developed and widely used multisector model for large ensemble analyses; refer to Section 3.1 for
more details.

3. Methods
3.1. Global Change Analysis Model (GCAM)

GCAM is a global model with detailed process representations of and interactions across five systems: energy,
water, agricultural and land use, climate, and economy. The model runs in 5-year time steps starting from 2015
(the calibration year) out to 2100. This study adapts GCAM v6 (Bond-Lamberty et al., 2022) with assumptions
used in the creation of GCAM-LAC (Khan et al., 2020), which breaks out Uruguay as a standalone region. While
a detailed description of the GCAM model is available (https://github.com/JGCRI/gcam-doc), the description
below provides a summary of the energy system which is most relevant to this study.

GCAM solves each modeling period through market equilibrium, linking the five integrated systems across 33
geopolitical regions (32 in the core model, plus Uruguay) which are further divided into 235 water basins and 384
land use regions. These solutions determine market-clearing prices and quantities of energy, water, agriculture,
land use, and emissions markets in each region and time step, informed only by the conditions in the previous
period and driven by exogenous socioeconomic assumptions as well as representations of policies, resources, and
technologies. Greenhouse gas (GHG) emissions are tracked endogenously for 24 gases.

Flows of energy in GCAM can be described by renewable and nonrenewable primary energy resources being
collected and transformed through various processes into final energy carriers (e.g., electricity, hydrogen, fossil
fuels) in order to meet the demands of the buildings, industry, and transportation end use sectors. Individual
technologies and processes compete for market share on a levelized cost basis, which is comprised of exogenous
non-energy capital costs and endogenous fuel costs, subject to any technology or emissions policies implemented.
Fossil fuel resources, uranium, wind, and rooftop PV utilize exogenous supply curves to determine resource costs,
which increase with higher cumulative extraction/deployment levels. A logit choice model controls market
competition, which protects against a single technology dominating the market share.
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The energy system in GCAM is coupled with the agriculture and land use system mainly through commercial
biomass (supplied by the agriculture and land use system and demanded by the energy system) and fertilizer
(supplied by the energy system and demanded by the agriculture and land use system). Additionally, cooling
water is demanded by many technologies within the energy system, linking it with GCAM's water system. CO,
emissions are tracked when fossil fuels are combusted or converted to other forms, while agriculture and land use
change (LUC) CO, emissions are tracked via the amount of LUC within a region.

3.2. Uncertain Factors Varied in This Analysis

Figure 1 gives an overview of the large ensemble of GCAM realizations developed in this work, and the indi-
vidual uncertain factors are also summarized in Table 1. Broadly, the uncertain factors we draw from represent a
wide range of energy system and economic uncertainty, and are arranged into five groups. Sensitivity cases for
each uncertain factor (variations away from each factor's reference case) were developed from a review of the
broad energy transition literature, identifying commonly varied as well as potentially underexplored uncertainties.
When applicable, implementation of these sensitivities is based on previous studies using GCAM and referenced
in Table 1. The uncertain factors are varied discretely rather than sampled across a continuous range, and are
combined in a full factorial ensemble. This resulted in a total of 5,760 unique model realizations.

3.2.1. Climate Mitigation

To introduce climate mitigation, we consider countries' GHG emission mitigation pledges. Specifically, we use
assumptions from the “Updated pledges-Continued ambition” scenario in (G. Iyer et al., 2022; Ou et al., 2021).
This regional constraint assumes that countries achieve stated LTS, shorter-term pledges, and net-zero emissions
targets, followed by a minimum decarbonization rate thereafter.

Another uncertain factor we include only for simulations with climate pledges implemented is the Level of Land
Use CO, Sinks, implemented through policy action by adjusting the rate at which LUC CO, emissions are priced.
Increasing this rate incentivizes afforestation, allowing the energy system to emit more CO, (Calvin et al., 2014;
Wise et al., 2009).

3.2.2. Socioeconomic Factors

Here, we implement changes in population and GDP consistent with assumptions in the five Shared Socioeco-
nomic Pathways (SSPs) (Calvin et al., 2017; O’Neill et al., 2014, 2017; Riahi et al., 2017). The SSP scenarios
include numerous components in addition to these socioeconomic markers, driven by narrative descriptions of
diverging development strategies across sectors. Note that the resulting model inputs applied in this study are not
full representations of the SSPs, but rather the socioeconomic components of population and GDP are dis-
aggregated and used as a separate uncertain factor.

3.2.3. Institutional Factors

We consider the quality of institutions as well as technology-specific risks in providing comparative advantage
for securing mitigation investment and development across regions. In the “Reference” case, all regions are
modeled with uniform institutions and investment costs. Following the methodology in G. C. Iyer, Clarke,
et al. (2015), we then apply for the “Risk” sensitivity case (a) regional variations in investment risks to the energy
sector via the cost of capital based on a GDP-weighted model of institutional quality, here constructed with data
from the World Bank (World Bank, 2020); and (b) premiums on “high-risk” clean energy technologies to
represent, for example, regulatory challenges and market uncertainty. Regionally heterogeneous cost of capital
has also been demonstrated to reduce potential bias in energy modeling (Egli et al., 2019).

3.2.4. Techno-Economic Factors

Cost of Wind and Solar is varied between low, medium, and high levels, consistent with the core capital cost
forecast assumptions present in GCAM created from the National Renewable Energy Laboratory's Annual
Technology Baseline report (NREL, 2019). These two technologies (wind and solar PV) comprise the primary
intermittent or variable renewable energy technologies. Advanced Hydrogen assumes an advanced scaling of
hydrogen in the energy system through centralized transport and distribution infrastructure (pipeline) and
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increases the share of hydrogen vehicles adopted; it is adapted from the advanced hydrogen GCAM assumptions
in (Wolfram et al., 2022). Direct Air Capture (DAC) Cost increases the costs of DAC from the reference level to a
“high” level consistent with the SSP3 formulation parameterized in Fuhrman et al. (2021). Engineered CDR
technologies such as DAC and bioenergy with carbon capture and storage (BECCS) have been previously
identified as a significant factor in affecting net-zero pathways (G. Iyer et al., 2021).

3.2.5. Demand-Side Factors

Industry Energy Efficiency and Buildings Energy Efficiency are separate uncertain factors which reduce energy in
industrial and buildings end-use sectors by adjusting coefficients related to energy efficiency and use. These two
factors are implemented based on assumptions in Gambihir et al. (2022). Electrification of Transport models an
increased share of electric vehicles and freight transport over time as well as shifts toward transit, ridesharing, and
lower aviation and shipping demand, also using assumptions from (Gambhir et al., 2022). Climate Impacts on
Demand updates the number of heating and cooling degree days (and thus building energy demands) in each
region using output from the HadGEM2-ES climate model. These impacts are calibrated to RCP6.0 (a pathway
with significant 3—4°C warming) for simulations with no mitigation policy, and to RCP2.6 (a sub-2°C warming
pathway) for emissions-constrained runs. Refer to Hartin et al. (2021) for details on the methodology. Climate-
impacted electricity supply generated from wind and solar PV was also considered but ultimately excluded from
this study, as previous work found potential climate impacts and their associated uncertainty to have only a
modest impact on future generation compared to other uncertain factors considered (Santos Da Silva et al., 2021;
Zapata et al., 2022).

3.3. Output Metrics

The bottom panel of Figure 1 lists energy-economic metrics used in the analysis, which represent commonly
reported benchmarks, performance metrics, and quantitative descriptors of the bulk electric power system and
broader energy system (Akpan & Olanrewaju, 2023; Blair et al., 2015; DeCarolis et al., 2017; Dodds et al., 2015;
Ibrahim et al., 2023). We compute these metrics at the regional level, though in some cases present them as global
aggregations. Electricity Price is given as the marginal cost of generation (analogous to a wholesale price
exclusive of regional tariffs or subsidies), an important benchmark for estimating energy costs over time, and is
weighted by total electricity generation when aggregated across regions. Electricity Share gives the rate of
electrification in a region as a percentage of total final energy. Increased electrification is necessary for incor-
porating more renewables in the energy mix, while sectors which cannot easily be electrified are considered
“hard-to-abate” (Paltsev et al., 2021). Energy Burden is calculated in each region as per capita spending on
residential energy use divided by per capita GDP, and is a widely used metric for energy equity and energy justice
considerations (Baker et al., 2023). Capacity Investments and Stranded Assets are economic metrics reporting the
costs of new capacity additions and premature capacity retirements in the power sector, respectively, due to
implementing climate pledges (Binsted et al., 2020; G. C. Iyer, Edmonds, et al., 2015; Zhao et al., 2021). Finally,
CO, Removal through BECCS and DAC and LUC CO, Emissions quantify the global CO, budget pathway for
mitigation in each realization. CO, Removal through BECCS and DAC includes the two engineered CDR
technologies, while LUC CO, Emissions reports the net carbon flows between the land system and the atmosphere
(the Level of Land Use CO, Sinks, therefore, is an equivalent magnitude of carbon flows but with an opposite
sign). In order to meet emissions pledges, CO, from the energy system must be reduced through a combination of
clean generation (e.g., wind and solar), carbon capture (of thermal generation point sources), CDR technologies
(BECCS and DAC), and natural carbon sinks (e.g., forest cover). Increased removal of CO, from the atmosphere
would allow the energy system to emit more to reach the same goal; conversely, decarbonization efforts in the
energy sector can reduce the need for CO, removal technologies. Further detail on how each metric is computed
from GCAM outputs is given in Supporting Information S1.

3.4. Scenario Discovery

We perform scenario discovery to identify combinations of features which drive relevant outcomes in our
ensemble. Quantifying the influence of individually varied uncertain factors can be generally referred to as a
feature importance analysis, another model-agnostic collection of techniques that compute the relative strength of
the effect a feature has on the ability to predict a specific variable or metric (Saarela & Jauhiainen, 2021). This is
often done through fitting a machine learning model using, for example, classification and regression trees,
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logistic regression, or the patient rule induction method (Breiman et al., 1984; Friedman & Fisher, 1999; Kwakkel
& Cunningham, 2016; Lempert et al., 2008), and evaluating that model by computing scores or ranks for feature
importance using indicators such as squared error reduction, Shapley values, classification rate, permutation
importance, or Gini index (Chen et al., 2023; Parr et al., 2024). In this study, we train a random forest model
(Breiman, 2001) to quantify the relative importance of each uncertain factor in determining energy system
outcomes, both globally and for aggregated regions. Feature importance for this model is computed using the
mean reduction in squared prediction error achieved by including a given feature. Rather than fit a binary
classification model to assess only the most extreme outcomes, we use regression to characterize the full dis-
tribution of futures supplied by our ensemble.

3.5. Outcome Space Under Mitigation Pledges

The modeled climate pledges result in a fundamental transformation of the global economy and accelerate a low-
carbon energy transition. Model realizations with mitigation pledges show consistent emissions reductions over
time, while unconstrained scenarios exhibit wide variability in their peak emissions and associated climate
forcing, highlighting the deep uncertainty in the future energy system in the absence of policy (Figure S1 in
Supporting Information S1). Similarly, LUC emissions generally plummet under the climate pledges during the
short- (2030) to medium-term (2050) transition to offset energy system emissions (Figure S2 in Supporting
Information S1). The global electricity generation mix reveals that climate pledges cause wind and solar to be the
primary generation sources to replace fossil fuels as the leading source of electricity (Figures S3 and S4 in
Supporting Information S1). Fossil fuels remain relevant, however, due to countries without stringent emissions
reductions as well as maturation of technologies to remove CO, from the atmosphere or capture it from point
sources. Figures S5 and S6 in Supporting Information S1 illustrate the adoption of BECCS and DAC technologies
for emissions-constrained simulations, along with scenarios from IPCC AR6 shown in black (Riahi, 2022). The
rise in these technologies after mid-century coincides with the relaxation of land use sinks seen in Figure S2 in
Supporting Information S1. Though our modeling of emissions reduction pathways includes all GHGs, the
analysis presented focuses on CO, emissions.

4. Results
Our study highlights three key findings as discussed in the following sections:

¢ Costs of the energy transition, as measured by multiple metrics, are unevenly distributed across regions under
a wide range of future states of the world.

¢ Regional investment risk has global implications for mitigation pathways, robust to broad uncertainties and
with strong relative impacts, underscoring the need for de-risking investments.

e The scale of CDR determines how much the energy system can continue to emit, but the relative role of
different CDR options (namely BECCS, DAC, and land use sinks) in meeting decarbonization goals varies
across regions and scenario pathways.

4.1. Costs of the Energy Transition, as Measured by Multiple Metrics, Can Be Unevenly Distributed
Across a Wide Range of Future States of the World

4.1.1. Electricity Price

Globally, future electricity prices tend to decrease from the 2015 (calibration year) average in the absence of
policy, while usually increasing when mitigation pledges are met. The top panel of Figure 2 shows distributions of
electricity price in 2050 across all model realizations both with and without climate pledges for each aggregated
region in GCAM, as well as weighted (by total generation) averages globally. There is some overlap between the
two boxplots, meaning that the lowest-price NDC + LTS cases can experience lower costs than the most
expensive No Policy cases. The increase in electricity price due to mitigation policy as well as the deviation from
historical prices varies considerably across regions. Russia and the Middle East (regions without stringent
emissions reduction goals by 2050 at the time of writing) have a significant proportion (92% and 76%, respec-
tively) of NDC + LTS simulations with prices below historical levels due to relatively low carbon prices and no
economic incentive to adopt potentially more costly clean technologies. China and India, two highly populated
and rapidly developing regions with ambitious decarbonization pledges, experience the greatest cost increases.
Notably, while the price variability in the No Policy cases is large, the introduction of climate pledges greatly
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Figure 2. (top) Regional and global weighted electricity price for model regions, split between scenarios with and without climate pledges implemented. Model
calibration year 2015 prices are shown for comparison; (bottom) most influential drivers of global weighted average electricity price ($/MWh) in 2050, defined as
marginal cost of generation. Similar to a decision tree, the full scenario ensemble is divided into subsets based on the scenario features shown below each split, with
earlier splits corresponding to higher influence. The width of each path segment is scaled according to the number of model realizations traveling through it, while the
vertical midpoint of each splitting node corresponds to the average price on the right. The global average price for the full scenario ensemble is marked with a dashed
gray line; prices above this level are shaded red, while lower prices are shaded blue. Splits are determined using a random forest implementation in R. “Other OECD”
includes Canada, Japan, South Korea, Australia, and New Zealand. “Other Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC”
refers to Latin America and the Caribbean.
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Figure 3. (left) Cumulative stranded assets (costs associated with premature retirements of generating capacity) globally over
time due to implementing climate pledges, with the year 2050 highlighted; (right) cumulative stranded assets in 2050 for
aggregated global regions due to implementing climate pledges. Values are computed as the difference between pairs of
scenarios which differ only by the inclusion of national emissions pledges. “Other OECD” includes Canada, Japan, South
Korea, Australia, and New Zealand. “Other Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast
Asia. “LAC” refers to Latin America and the Caribbean.

increases the variance of electricity price outcomes in all regions. This suggests the need for more adaptive policy
planning or better regional coordination to manage this uncertainty.

In addition to the impacts on the electric power system imposed by emissions pledges, electricity price is also
driven by many assumptions related to technology costs and performance, demand levels, and the enabling
environment for new solutions. The bottom panel in Figure 2 illustrates the results of a random forest analysis
quantifying the impact of the scenario factors on global weighted average electricity prices in 2050. Resembling a
decision tree, this alluvial diagram divides the full 5,760-member ensemble into subsets based on the four most
influential drivers of electricity price, in order of importance. The vertical axis is scaled and color-coded to show
average weighted prices for different scenario combinations, with the mean for the full ensemble marked with a
dashed line. Factor branches for each split are reported at the bottom of the figure. Thus, the national emissions
pledges (NDCs + LTS) rank as the most critical driver of electricity prices in 2050, followed by Institutional
Factors, Cost of Wind, and Solar (high vs. medium or low), and Socioeconomic Factors (SSP1/5 vs. SSP2/3/4).
The range of average prices is quite wide, showing that different combinations of inputs can have significant
effects on global price outcomes. Electricity prices are highest when investment costs (Institutional Factors) are
regionally and technologically differentiated and the Cost of Wind and Solar is high, in combination with either
SSP1 (lowest population, high GDP) or SSP5 (low population, highest GDP). Additionally, this plot reveals the
subset of realizations which implement emissions pledges and still result in a lower global average electricity
price in 2050 (uniform institutions and low or medium wind and solar cost). A more complete picture of feature
importance across uncertain factors, metrics, time periods, and regions is shown in Figures S7 and S8 in Sup-
porting Information S1.

4.1.2. Stranded Assets

Stranded assets in the form of premature retirements of electric generating capacity are shown in Figure 3. The left
panel shows a global time series through 2100, while the right panel gives a snapshot of 2050 across regions.
Climate mitigation pledges increase stranded assets in all cases, consistent with previous work (Binsted
et al., 2020), but significant variability is observed throughout the wide range of transition pathways sampled.
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Figure 4. (left) Residential energy burden, computed as a ratio of residential energy spending to GDP per capita, for
aggregated global regions for three model periods, showing the 3,840 simulations with climate pledges; (right) Change in
energy burden caused by sensitivities in two uncertain factors (climate pledges and Buildings Energy Efficiency) for each
model configuration, computed as the percentage point (pp) difference between pairs of realizations which differ only by
inclusion/exclusion of these two scenario factors. Note that the changes shown are absolute changes in the energy burden,
which carries units of percent, rather than percent changes in energy burden. “Other OECD” includes Canada, Japan, South
Korea, Australia, and New Zealand. “Other Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast
Asia. “LAC” refers to Latin America and the Caribbean.

Globally, most premature retirements happen in the shorter-term period of rapid transition from the present until
around 2050. Regionally, larger economies and developed regions with net-zero pledges show the greatest
stranded assets, while regions with less strict climate goals suffer fewer stranded assets. Interestingly, these results
were found to change very little when scaled by regional GDP, rather than reporting total value of the stranded
assets; that is, accounting for regional differences in the scale of economic activity did not appreciably alter the
relative outcomes. Thus, this metric suggests that regional variability in climate pledge ambition can also manifest
as disproportionate differences in stranded assets, independent of other factors and across a broad uncertainty
space. Several of these regions, especially India and China, also experience the highest increase in electricity
prices as shown in Figure 2.

4.1.3. Energy Burden

Distributions of average household energy burden in NDC + LTS scenarios are plotted over time in the left panel
of Figure 4. Though this metric represents an oversimplification of energy equity measures, these long-term
aggregate trends reveal temporal patterns as well as systemic differences across regions. Energy burden is
decreasing over time, robust to our ensemble of uncertainties, even though electricity costs tend to rise as a result
of mitigation efforts. This is generally due to increases in per capita GDP over time, as well as baseline efficiency
improvements in buildings energy use. The clear outlier is Africa (especially in the near-term), due in part to a
high usage of traditional biomass, which is tracked in GCAM as a separate commodity in certain regions.
Additionally, as for many developing regions, lower rates of access to energy and financial markets obscure this
already aggregated measure when viewed per capita. However, despite the regional differences seen early on,

WESSEL ET AL.

12 of 21

d ‘01 ‘PT0T “LLTYTET

:sdny woiy papeoy

ASU2DITT SUOWIWIO) dA1IEAI)) d[qearjdde ay) Aq pauIaA0S aIe S2[A1IE V() (asn JO Sa[NI 10} AIeIqi] AuI[uQ) AJ[IA\ UO (SUOHIPUOD-PUB-SULIA)/WI0D AS[IM KIRIqI[aur[uo//:sdyy) SUONIPUO)) pue SULd ], oY) 23S *[$70z/1 1/t1] U0 AIeiqry aurjuQ Ad[IA\ @imnsu [eLoway a[[oned £q +S.H004AET0T/6201°01/10p/w0d KM "



I ¥edl

'
\I Earth's Future 10.1029/2024EF004754
ADVANCING EARTH
AND SPACE SCIENCES
14 Year: 2050 5
=== Electricity Price ($/MWh) i
> | Energy Burden (%) E
-ﬁ 0.8 Stranded Assets ($B) i
c Land Use Carbon Sinks (MtCO;) i
a 0.6 CDR through BECCS + DAC (MtCO,) |
) ' === Share of Elec. in Final Energy (%) -+
> m= Capacity Investments ($B) |
g} 1
O 0.4 |
=) i
E |
3 0.2 i
0+ : . i . .
-2 -1 0 1 2

Standardized change due to Institutional Factors under climate pledges

Figure 5. Cumulative distribution function (CDF) plot showing standardized changes in the values of select metrics when
institutional factors are switched on in each scenario configuration (only showing scenarios with nationally determined
contributions + long-term strategies implemented). The horizontal axis represents the number of standard deviations
separating the two values used to compute each change. A curve lying entirely to the right (left) of zero implies that
institutional factors always increase (decrease) that metric. These curves are not intended to represent probabilities of
exceedance, but rather are empirical distributions of model output constructed from differences between pairs of model
realizations. Note that a steep CDF curve suggests that varying this factor results in a very consistent change in the outcome;
it does not represent underlying variability of the outcome itself.

energy burden in 2100 becomes more homogeneous across regions (in terms of both the mean and the spread of
the outcomes), due to the NDC + LTS policy scenario construction in Ou et al., 2021, in which countries without
net-zero pledges continue decarbonizing beyond 2030 at the same rate required to achieve their shorter-term NDC
goals, or at a minimum rate of 2% (whichever is greater). The right panel of Figure 4 gives the difference in energy
burden in 2050 due to climate pledges (darker boxes, mostly increases) as well as Buildings Energy Efficiency
(pale boxes, exclusively decreases), which represent two influential drivers of energy burden in our ensemble.
Although mitigation policy tends to increase energy burden, increased energy efficiency in buildings is seen to
offset these increases. Regions with the highest energy burden in the left panel tend to also experience the greatest
benefits from increasing energy efficiency.

The feature importance heatmap for energy burden in Figure S7 in Supporting Information S1 identifies a similar
list of critical drivers as seen for electricity price. In this case, however, the influence of Socioeconomic Factors
outweighs both Institutional Factors and Cost of Wind and Solar, and is roughly equal in importance to Buildings
Energy Efficiency. The emergence of this factor in driving energy burden is a result of energy burden being tied to
residential energy use. Although Buildings Energy Efficiency does not show up as a top driver of electricity prices,
its uncertainty can still have hidden implications for the average household, and could help alleviate economic
strain caused by rising costs of energy. Passenger transport service costs, another potential measure of energy
burden, are shown in Figure S9 in Supporting Information S1.

4.2. Regional Investment Risk Has Global Implications for Mitigation Pathways

Figure 5 maps empirical cumulative distribution functions (CDFs) of the difference in standardized global 2050
model outcomes resulting from regionally and technologically differentiated investment costs. These observed
pairwise differences are computed to isolate the effect of Institutional Factors, which represents one manifes-
tation of the variability in accessing capital for low-carbon development due to investment risk. This metric is
highlighted for its prominence in driving economic outcomes, as shown through feature importance in Figure S7
in Supporting Information S1. The curves are composed by rank-ordering the resulting distributions of computed
values, creating monotonically increasing empirical CDFs. Metrics are standardized in order to compare different
scales on the same plot; thus, the difference between standardized values represents the number of standard
deviations (computed from the full ensemble) separating the two values. For most metrics, the curve lies to one
side of zero; these cases show a consistent impact of Institutional Factors across the ensemble (e.g., electricity
price always increases, consistent with Figure 2). Further, a steep CDF curve suggests little variability in the
magnitude of the change, suggesting that in those cases, Institutional Factors may be highly influential but
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Figure 6. The use of engineered carbon dioxide removal technologies and natural land use sinks (negative land use change
emissions) to offset energy system CO, emissions. Error bars show the full range of outcomes across the scenario ensemble
for the 3,840 realizations that implement climate pledges. The pale shaded region in the background gives the range for net
CO, emissions by summing the individual components. The boxplot at the bottom of the figure shows the distribution of
years in which global net-zero CO, is achieved.

interacting little with other uncertain factors in the ensemble. In contrast, curves with a more gradual slope
correspond to higher variability in the distribution of pairwise responses, such as the electricity price curve (and
especially the upper tail). Here, the horizontal range of the curve is wider, and approximately the highest 10% of
increases due to Institutional Factors (cumulative density >0.9) show significantly higher variability still, which
are realizations consistent with the findings in Figure 2. Across a broad range of uncertainties, a higher energy
burden is seen, along with lower electrification rate and stranded assets; these results follow intuitively
considering the higher costs of capital experienced in these scenarios. Because less investment is garnered for
low-carbon energy and CDR technologies, the resulting carbon price increases to offset the emissions, and thus
more land use sinks are utilized. If clean energy investments are stifled through disparities in institutional quality
in a region, attempts to offset the continuing emissions can result in further cost increases under mitigation policy.
Figure S10 in Supporting Information S1 shows CDFs for individual regions.

4.3. CDR Deployment Determines Allowable Energy System Emissions, but the Relative Role of Different
CDR Options in Meeting Decarbonization Goals Varies Across Regions

Figure 6 shows CO, emissions and sinks over time and the distribution of the timing of net-zero CO, across our
scenario ensemble under national climate pledges. CO, from the energy system is reduced through a combination
of clean generation, carbon capture, CDR from BECCS and DAC, and natural land use carbon sinks; allowable
energy system emissions are therefore determined by net CO, removal. On average, global net-zero CO, is
achieved around 2060 under the modeled emissions trajectories. For regions in which every country has a net-zero
pledge in place, the timing of net-zero has low variability. It is the regions without such mitigation goals that
primarily drive the variability seen in the boxplot in Figure 6, pushing global net-zero past 2080 in some cases.
Figures S11 and S12 in Supporting Information S1 show the variability in the timing of net-zero CO, across each
uncertain factor and across regions, respectively; the most critical drivers globally are Socioeconomic Factors and
DAC Cost.

Tradeoffs affecting energy system CO, emissions are further illustrated in Figure 7 through a parallel axis plot,
which shows the cumulative net sum by 2050 of each emissions component from Figure 6 across the NDC + LTS
simulations in our ensemble. Each line represents a single realization and is grouped by color based on the DAC
Cost and Level of Land Use CO, Sinks factors. Thicker lines depict a “representative” scenario from each group
following a mean pathway. Here, a tradeoff can be defined as any instance in which two lines cross paths between
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Figure 7. Parallel axis plot showing cumulative CO, emissions budget contributions under climate pledges in 2050. Scenarios
are grouped according to the Direct Air Capture Cost and Level of Land Use CO, Sinks factors, and each column is scaled
independently according to each metric's minimum and maximum values. Thicker lines depict a “representative” scenario
from each group following a mean pathway. A tradeoff occurs when two lines cross paths in between columns. Each column
is oriented according to its net contribution to CO, emissions, such that the bottom of the plot is the direction of net negative
emissions.

columns, while the slopes and proximity of the lines indicate the strength and consistency of the tradeoff or
relationship across the ensemble.

By 2050, the amount of CO, sequestered by carbon sinks in the land system shows the strongest tradeoff with
energy system CO, emissions (first two columns of Figure 7). This illustrates the flexibility afforded to the energy
system by the land use system in the form of land use carbon sinks. Additionally, a tradeoff emerges between
these carbon sinks and deployment of engineered CDR technologies (BECCS and DAC), confirming the com-
plementary roles of these decarbonization solutions (i.e., deploying more BECCS and DAC requires fewer land
use sinks to meet the same goal, and vice-versa). Finally, high-cost DAC scenarios are shown to deploy very little
of this technology by 2050, leading to a system favoring other CDR options and reduced emissions from energy.

To examine the robustness of the outcomes stemming from the Level of Land Use CO, Sinks on a regional scale,
we quantify the direct effect of varying this uncertain factor in each region across our ensemble. Figure 8 plots
CDFs for the difference in two outcomes between pairs of NDC + LTS realizations which differ only by this
uncertain factor, which updates the carbon pricing scheme to place a higher value on reducing emissions in the
land use system. These curves are constructed for the year 2050, before DAC Cost becomes the dominant driver of
engineered CDR investment. Differences are standardized rather than showing a percent change, due to the
reference case values for CDR adoption approaching zero in many realizations.

Figure 8 shows the complementarity of BECCS and DAC with land use carbon sinks, confirming broadly that
increased land use sinks is tied to reduced deployment of BECCS and DAC regionally, consistent with the global
finding. However, this is not a universal result, as some scenarios show these metrics increasing or decreasing
together in certain regions, such as in Africa or the Other OECD countries. As in Figure 5, a steep CDF curve
suggests a lack of compound interactive or synergistic effects between the Level of Land Use CO, Sinks sensi-
tivity and other uncertain factors in determining the plotted metrics, as seen in several of the larger economies
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Standardized change due to Land Use CO, Sinks Sensitivity under climate pledges

Figure 8. Cumulative distribution function plot showing regional changes in the standardized values of engineered carbon
dioxide removal adoption (“CDR through BECCS + DAC”) and land use sinks (“Land Use Carbon Sinks”) when the Level
of Land Use CO, Sinks sensitivity case is implemented (only for scenarios with climate pledges). The horizontal axis
represents the number of standard deviations separating the two values used to compute each change. A curve lying entirely
to the right (left) of zero implies that this increase in the Level of Land Use CO, Sinks always increases (decreases) that
metric's value. Positive values for each metric correspond to more net carbon pulled out of the atmosphere via that method.
“Other OECD” includes Canada, Japan, South Korea, Australia, and New Zealand. “Other Asia” includes Pakistan,
Indonesia, Central Asia, South Asia, and Southeast Asia.

with net-zero targets, such as Europe and China. Alternatively, regions such as Other Asia and Latin America,
show a wider range of outcomes, due to less stringent CO, reduction pledges and therefore lower deployment of
negative emissions strategies. The horizontal range of these curves shows the regional variability and wide-
ranging effects of the Level of Land Use CO, Sinks sensitivity on these outcomes, suggesting that the role of
different CDR options in meeting decarbonization goals varies across regions, and that considerable uncertainty
remains in how a policy targeting land use carbon sinks would affect a region's mitigation pathway.

5. Conclusion
5.1. Discussion of Results

Curbing anthropogenic carbon emissions to limit temperature increase is a global objective, requiring sustained
effort from all nations. However, international commitments and pledges can unevenly distribute responsibility
and/or the financial burden of decarbonization among countries and regions due to comparative advantages in
renewable resources, favorable institutions, and how ambitious each country's mitigation pledges are (Marino &
Ribot, 2012; Markkanen & Anger-Kraavi, 2019; Sovacool, 2021). This work establishes a new large ensemble of
model realizations which vary a broad suite of energy-related uncertain factors with countries' NDC + LTS
pledges in order to gather robust insights into energy transition pathways as governments begin to implement
climate mitigation measures to meet Paris Agreement temperature goals. Our results suggest that the costs of the
energy transition, as measured by multiple metrics, can be unevenly distributed across regions and scenario-
dependent in both magnitude and relative impact throughout a wide range of future states of the world. The
variable increase in electricity prices and stranded assets across regions due to the implementation of national
emissions pledges exemplifies this result, as shown in Figures 2 and 3, respectively. Our 5,760-member ensemble
provides valuable insight regarding the robustness and nuance of these results under a broad sampling of
uncertainty.

Stranded assets in particular represent an economic risk associated with transitioning away from a fossil-fuel
based energy system. Strategic long-term planning of energy infrastructure is a significant challenge given the
relatively long economic lifetimes of projects compared to the agreed upon time frames in which CO, emissions
reductions are necessary. Forced or premature retirements of generating capacity due to policy drivers (e.g.,
enforcing emissions reductions) can have implications for energy prices, as levelized costs are generally
computed over full economic lifetimes. We find that the presence of net-zero emissions pledges in large,
developed regions (e.g., USA, Europe) as well as other large economies (e.g., India, China) correspond to the
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greatest losses here, while regions with less ambitious climate goals suffer fewer stranded assets. In addition to
high electricity costs and stranded assets, some developing countries (e.g., Africa and India) also consistently
experience greater increases in energy burden to meet their decarbonization goals.

In determining the most critical drivers for our outcomes of interest across the NDC + LTS simulations, we find
regionally and technologically differentiated investment costs (Institutional Factors) to carry a high importance
for several metrics, as seen in Figures S7 and S8 in Supporting Information S1. These findings also underscore the
role of lowering investment risks (especially in developing regions) through public institutions to encourage
private investment or otherwise incentivize development. Our results indicate that negative outcomes emerge
(higher electricity costs and energy burden, lower electrification, more land use sinks needed to meet emissions
goals) when the cost of capital for clean energy projects is adjusted to reflect regional variations in institutional
quality and investment risk, especially for developing countries and regions which carry generally higher risks.
Additionally, such regions could be less resilient to such economic strain, especially under emissions constraints.
These findings are consistent with work from which our Institutional Factors sensitivity case was adapted (G. C.
Iyer, Clarke, et al., 2015) across a broad uncertainty space. Modeled representations of institutional differences
remain somewhat under-explored (especially under an expanded sampling of uncertain factors), and our results
speak to the importance of including such regional differences with regard to institutions and interest rates in
multi-region studies.

The investment pathways to meet national emissions pledges explored in this ensemble are also closely tied to the
scale and types of CDR utilized. The speed at which technologies like DAC mature can be a limiting factor in their
use over relevant near- to medium-term mitigation timeframes. Across our ensemble, the strongest tradeoff
controlling energy system emissions through 2050 is the global stock of land use sinks. Given the comple-
mentarity of these natural carbon sinks with engineered CDR technologies, the adoption and diffusion of BECCS
and DAC can help alleviate the burden on the land use system, while a larger global stock of land use sinks can
dampen the need for these technologies. Still, additional considerations would ultimately influence the decision
making in navigating these tradeoffs, such as impacts on air quality and ecosystem services under different land
use regimes.

5.2. Future Work

Our new ensemble can be used as a novel data set to inform international climate strategies and research for
decision support, and can be expanded or narrowed in focus to other individual regions or additional sensitivities
and uncertain factors. The broad global and regional dynamics characterized in this work can benchmark further
analyses and provide insight on the impact of various uncertainties on the robustness of a given pathway, while
model outputs can be used for multi-model comparisons. Further, this ensemble can be used to provide boundary
conditions to inform finer-scale decarbonization modeling exercises with, for example, more detailed power
system models.

Some of the limitations of this study lend themselves to future work. First, we made several simplifying as-
sumptions to assemble a wide range of uncertainties and maintain computational tractability while leveraging the
strengths of our chosen modeling platform. We limited the number of unique cases for each uncertain factor to
allow for higher dimensionality. Some factors (e.g., Cost of Wind and Solar) represent specific forecasted pre-
dictions, while others (e.g., Level of Land Use CO, Sinks) are modeled to capture an upper bound. The cost
sensitivity of engineered CDR technologies includes DAC but does not vary the cost of BECCS, as BECCS can be
applied in a variety of sectors while cost ranges for each of these applications are not readily available. A more
thorough continuous sampling of uncertain factors could yield a more detailed ensemble, but would prohibitively
increase the size of the ensemble without necessarily adding additional insight. Future work could further
examine the cross-sectoral consequences of this uncertainty space across the food-energy water nexus using
additional parametric sensitivities. Although the uncertain factors considered in our ensemble generally focus on
the energy system, the coupled feedbacks observed in our simulations reveal noteworthy implications across
sectors (e.g., water availability, food prices) that were not explored here.

Second, we quantified metrics at aggregated scales. For example, electricity price impacts and considerations of
energy inequities such as energy burden can become hidden when spatial scales are aggregated, and populations
are homogenized. While research in this space generally resolves to much finer spatial scales from neighborhood-
to household-level (Ross et al., 2018), aggregate analyses such as the present study can still illuminate systemic
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differences across regions, especially as they relate to national energy pathways and decarbonization strategies.
These insights still hold relevance on an intergovernmental policy scale. Future work could apply downscaling
techniques on the model outputs or soft-coupling to higher-resolution models or data sets, such as regional
population income distributions (Narayan et al., 2024), to explore distributional outcomes and compare metrics
across scales.

Finally, our study does not attempt to capture emergent behaviors, disruptive innovations, or other potential
system shocks due to for example, climate change, which could add additional deep uncertainty and complexity to
the system. Other frameworks such as agent-based modeling could be integrated or coupled with GCAM to
capture such dynamics, but would add significant complexity and computational burden. However, the modeling
framework employed aids in laying a foundation for multi-sector ensembles of increasingly large sample sizes
and structural complexity, to meet the growing demand for training data for next-generation deep learning
models. Nonetheless, this work provides a rich data set for the advancement of scenario research, to which other
machine learning methodologies could be applied.

Data Availability Statement
GCAM is an open-source model available at https://github.com/JGCRI/gcam-core.
Plutus is an open-source model available at https://github.com/JGCRI/plutus.

All post-processed model output data used in this analysis and code to run the ensemble, query output databases,
process query data, and generate all figures is published on Zenodo (Wessel et al., 2024).
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