


train these models on a suite of robot control tasks and ex-

amine generalization to out-of-distribution camera viewpoints,

field-of-view, lighting conditions, and distractor objects. We

find point cloud-based models to be significantly more robust

than their RGB-D counterparts – even maintaining perfor-

mance under large shifts in visual conditions. Further, we

find our PCWM model-based framework achieves better sample

efficiency and higher task performance than its RGB-D model-

based counterpart [11] on several manipulation tasks.

Contributions. We summarize our main contributions:

• We study robustness to changes in viewpoint, field-of-view,

lighting, and distractor objects for RGB-D and point cloud-

based visual control policies.

• We propose Point Cloud World Models (PCWMs), a model-

based reinforcement learning framework based on partial

point clouds. We show gains in sample efficiency and

robustness over comparable RGB-D models.

• Beyond increased robustness, we show PCWMs adapt more

quickly when finetuned in new environments with signifi-

cant differences in visual conditions.

II. RELATED WORK

Point Clouds in RL. Visual policy learning has seen sig-

nificant progress in game playing [13], [14], robotic and

dexterous manipulation [15]–[17], and locomotion tasks [7],

[18], [19]. Most of this work leverages RGB(-D) imagery,

hence explicit consideration for 3D representation learning has

been limited [20]–[22]. Several recent works have proposed

model-free policies that learn from partial point clouds [23]–

[25] – demonstrating that the rich 3D information in point

clouds can improve sample efficiency in interactive robotic

tasks. We extend this body of work by (1) introducing a

novel model-based RL framework for point clouds (PCWM)

and (2) demonstrating that point clouds offer increased visual

robustness for both model-based and model-free policies.

Recently, GROOT [26] showed how point clouds can be robust

to environment changes in the context of imitation learning,

however, we focus on agents trained with RL policies.

Robustness in RL. Prior work has demonstrated that vision-

based policies learned from RGB(-D) input can have poor

generalization to new visual conditions [27]–[32]. These in-

clude changes due to new task instances, differences in object

textures or lighting, novel viewpoints, or a combination of

these induced by sim-to-sim or sim-to-real transfer. Inspired by

work in computer vision, data augmentation [7], [33], [34] and

representation pretraining [3], [10], [35] techniques have been

employed to ameliorate this lack of robustness. These methods

require careful design of image augmentations or laborious

curation of diverse pretraining datasets to improve general-

ization [36]–[38]. While these techniques have demonstrated

positive impacts, visual control policies for robotics can still

exhibit a significant generalization gap [5]. In this work, we

study the role of input representation in policy robustness. Our

findings suggest that point cloud-based policies can be robust

to viewpoints, lighting conditions and addition of new objects

in the scene even without any of the above techniques.

Model-based RL. One technique in sequential decision mak-

ing is to learn a model of the environment [39] and use it for

planning [40]–[43] or policy learning [11], [18], [44], [45]. In

the case of high dimensional inputs such as images, a popular

approach is to learn the environment dynamics in a compact

latent space that is supervised using rewards [46], [47] and im-

age reconstruction [2], [48]–[50]. Such model-based RL agents

[11], [18], [44], [45] have showcased higher sample efficiency

compared to analogous model-free policies. However, these

works have focused on settings where observations are RGB

images or privileged state information such as the location of

scene objects. We propose the first point cloud world model

and investigate its sample efficiency and robustness.

Point Cloud Dynamics. Prior work has proposed variants

of graph neural networks [51] to learn dynamics with point

clouds [52], [53]. While these approaches can model realis-

tic collision dynamics, they require point-to-point correspon-

dences between frames. When deploying these models as

part of a planning system in the real-world, prior work has

applied mesh reconstruction on point clouds obtained by either

multiple cameras [54] or a single RGB-D camera [55], which

could be prone to errors for novel objects. While a dynamics

model that takes partial point clouds as input was proposed

[56], it requires 6-DoF object poses for its supervision and was

not tested within an RL framework. In this work, we propose

the first point cloud dynamics model that enables world model

training in RL by directly operating on partial point clouds and

using only the reward signal for its supervision.

III. POINT CLOUD WORLD MODELS

Our model-based reinforcement learning approach for point

clouds consists of two learned components – a world model

that simulates the effects of actions (Sec. III-A) and a policy

learned in this simulated environment that maps states to

actions (Sec. III-B). As in prior work for high-dimensional

inputs [11], [18], [44], [48], we consider a latent world model

that simulates the world in a learned lower-dimensional space.

Problem Formulation. We pose our problem as an

infinite-horizon Partially Observable Markov Decision Process

(POMDP) [57] defined by a tuple (S,A, T ,R,O, γ, ρ0). S
represents the state space with a complete scene point cloud,

which is not accessible to the agent. The observation space,

O ∈ R
N×6 denotes partial point cloud observations with N

points featurized with position (x, y, z) and color (r, g, b).
A ∈ R

m is an m-dimensional continuous action space,

T : O × A → O is the transition function, R : O → R

is the reward function, γ ∈ [0, 1) is the discount factor and

ρ0 denotes the initial state distribution. The goal of the agent

is to learn a policy π : O → A that maximizes the expected

sum of discounted rewards; maxπ Eπ[
∑

∞

t=1
γtR(st)].

A. World Model

We base our world model on the Recurrent State-Space

Model (RSSM) framework [48] which learns a recurrent







TABLE I
AVERAGE REWARD IN ORIGINAL (GREY) AND VISUALLY PERTURBED SETTINGS COMPUTED FROM 25 EPISODES IN EACH PERTURBED CONDITION (SEE

SEC. V-B) AND STANDARD DEVIATIONS ACROSS 3 RANDOM SEEDS. PCWMS ACHIEVE HIGHER REWARD AND ARE MORE ROBUST TO VISUAL CHANGES.

PCWM (Ours) RGBD-WM

Task Original Viewpoint Field of View Lighting Original Viewpoint Field of View Lighting

Lift Cube 325 ± 20 280 ± 50 257 ± 33 259 ± 31 305 ± 13 73 ± 98 112 ± 137 126 ± 11

Clutter Pick 358 ± 29 286 ± 71 246 ± 64 349 ± 27 329 ± 47 85 ± 39 30 ± 13 242 ± 98

Stack Cube 1721 ± 283 1269 ± 412 1006 ± 343 1465 ± 143 251 ± 12 193 ± 59 202 ± 23 213 ± 29

Open Cabinet Drawer -500 ± 32 -647 ± 59 -631 ± 48 -549 ± 43 -1410 ± 29 -2460 ± 132 -1782 ± 238 -1638 ± 126

Open Cabinet Door -1726 ± 48 -1972 ± 177 -1983 ± 56 -1794 ± 53 -1925 ± 17 -2303 ± 396 -2120 ± 194 -2120 ± 194

Move Bucket -3632 ± 85 -3901 ± 135 -3881 ± 47 -3681 ± 29 -4168 ± 89 -4572 ± 21 -4419 ± 39 -4276 ± 55

to the target object in all three and bimanual coordination

for MoveBucket. While all models achieve > 75% success

rates for OpenCabinetDrawer, we find they struggle on

OpenCabinetDoor and MoveBucket, indicating the need

for more interaction to achieve task success.

B. Point cloud-based policies are more robust to changes in

visual conditions than analogous RGB-D policies.

The models in the previous discussion were all trained in

single, fixed imaging conditions – i.e. with a fixed camera

viewpoint, field of view, and scene lighting. Here, we examine

their performance when these conditions are systematically

varied. Note this set of experiments does not involve any

further policy training. Below we describe these variations:

• Viewpoint. We alter either camera pitch or yaw by 0.05

radian increments through ranges that keep the task objects

and manipulators in frame. We select -0.9 to 0.4 radians for

yaw and -0.65 to 0.35 for pitch for a total of 42 conditions.

• Field of View. We vary the field of view of the camera at

three discrete levels {π

2
, π

4
, π

5
} yielding 3 conditions.

• Lighting. We consider 6 lighting conditions – varying am-

bient illumination through 5 stages from bright to dark and

adding a yellow spotlight focused on the table.

These conditions are visualized in Fig. 4 for the Clutter

Pick task and average rewards across these conditions for

all tasks are shown in Tab. I for PCWM and RGBD-WM. We

take the model with best return to compute the results across

3 different seeds. Given their lower overall performance, we

do not include the model-free methods in this comparison.

Across settings, we find PCWM policies achieve significantly

better performance than those from RGBD-WM. However, in

many tasks this difference in performance was also evident

in the original unperturbed setting due to PCWM’s increased

sample efficiency. Focusing on the LiftCube setting where

both methods achieve similar task performance in the original

environment, we still observe significant differences in perfor-

mance in perturbed conditions. For example, PCWM achieves

only 6% less average reward across viewpoint changes com-

pared to a 76% reduction for RGBD-WM.

Finer-grained Analysis. The above analysis aggregates over

a range of conditions to provide a general sense of policy

robustness. To examine this more closely, we take Clutter

Pick as an exemplar task and examine policy robustness in

each condition separately. Further, we extend the analysis to

the model-free methods – PC-PPO and RGBD-PPO. To ensure

all models have similar baseline competency in the original

setting, we continue to train all methods beyond the steps

shown in Fig. 3 until convergence. All achieve >90% task

success rate. We also consider including additional distraction

objects as another perturbation. Results are shown in Fig. 4.

We denote point cloud methods in red and RGB-D in blue.

For viewpoint changes, we see that both RGB-D policies

(RGBD-WM and RGBD-PPO) rapidly drop in success rate for

minor changes. This effect results in 0% success rate when

pitch or yaw change by more than ±0.1 radians (or about

5.7◦). In contrast, the point cloud-based models are robust

even to extreme changes, provided the arm remains clearly in

view. Changes in viewpoint do not distort object shapes or

relative distance between points. We hypothesize point cloud-

based policies remain performant in these instances as they

learn to rely on these features rather than absolute positions

or object scales.

For field of view (FoV) changes, we observe that point cloud

policies suffer a minor penalty under different conditions, yet

RGBD policies achieve a 0% success rate for all perturbed

settings. Changes to the FoV greatly affect the captured image

– dramatically scaling the image contents as in the example

frames. For RGB-D models, this results in significantly out-

of-distribution inputs. For point clouds, the geometric relation-

ships between points and their positions relative to the camera

do not shift with the FoV changes.

For lighting changes, we find RGB-D methods to be im-

pacted by irregular lighting (spotlight) or darker scenes, but

respond similarly to point cloud models for other conditions.

RGB networks are known to be somewhat robust to lighting

changes [73], but point cloud models meet or exceed them. For

additional distractor objects, we see no significant difference

between point cloud and RGB-D models – suggesting the

robustness exhibited by point clouds may not extend to settings

where changes require that the policy performs higher-order

relational reasoning with an increased number of objects.

C. PCWM adapt more quickly than RGB-D counterparts when

trained further in viewpoint perturbed environments.

In case of task failures on novel settings, it is desirable to

have a model that can be fine-tuned as quickly as possible

and not have to learn about the task from scratch. To test

if PCWM can adapt well in such situations, we select 2

conditions from viewpoint (Rel. Pitch (0.4) and Rel. Yaw (-
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IX. APPENDIX

A. Hyperparameters

We provide the hyper parameters for the (a) world model,

(b) policy and (c) general components of PCWM.

TABLE II
PCWM HYPER PARAMETERS. WE USE THE SAME VALUES FOR ALL THE

TASKS EXCEPT FOR THE THE NUMBER OF INPUT POINT CLOUD POINTS

(N ). WE VARY N DEPENDING ON THE TASK AS REPORTED IN III.

Description Symbol Value

General

Number of environments – 1

Number of points (in input point cloud) N {1024, 2048, 4096}

Training Batch size B 8

Training sequence length T 64

Multi-step rollout length H 5

World Model

Deterministic State ht 256

Stochastic State zt 32

Learning rate – 10
−4

Adam epsilon – 10
−8

Gradient Clipping – 1000

Actor Critic

Imagination Horizon H 15

Discount factor γ 0.997

Return lambda λ 0.95

Actor Entropy scale – 3× 10
−4

Learning rate – 3× 10
−5

Adam epsilon – 10
−5

Gradient Clipping – 100

B. Environment Details

Here we provide the action space for each of the manipu-

lation and the corresponding number of points chosen for the

training of PCWM.

TABLE III
WE VARY THE NUMBER OF INPUT POINTS DEPENDING ON THE TASK SO AS

TO INCLUDE MAXIMUM POSSIBLE INFORMATION IN THE OBSERVATION

FOR THE AGENT

Environment Action dim Num. Points

Lift Cube 8 1024

Clutter Pick 8 1024

Stack Cube 8 1024

Open Cabinet Door 12 2084

Open Cabinet Drawer 12 2084

Move Bucket 20 4096


