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Point Cloud Models Improve
Visual Robustness in Robotic Learners
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Abstract—Visual control policies can encounter significant
performance degradation when visual conditions like lighting or
camera position differ from those seen during training — often
exhibiting sharp declines in capability even for minor differences.
In this work, we examine robustness to a suite of these types of
visual changes for RGB-D and point cloud based visual control
policies. To perform these experiments on both model-free and
model-based reinforcement learners, we introduce a novel Point
Cloud World Model (PCWM) and point cloud based control
policies. Our experiments show that policies that explicitly encode
point clouds are significantly more robust than their RGB-D
counterparts. Further, we find our proposed PCWM significantly
outperforms prior works in terms of sample efficiency during
training. Taken together, these results suggest reasoning about the
3D scene through point clouds can improve performance, reduce
learning time, and increase robustness for robotic learners.
Project Webpage: https:/pvskand.github.io/projects/PCWM

Index Terms—point cloud world model, model-based reinforce-
ment learning, vision-based robot control, robustness

1. INTRODUCTION

To broaden the application and deployment of robot manip-
ulators in the world, we must extend their understanding of
and ability to operate in unstructured environments [1]. How-
ever, the dynamics of such environments contain significant
uncertainty. Furthermore, robots can typically only sense these
environments through partial observations. Modeling every
aspect of the world “in the wild” is thus intractable. Owing
to this, planning under such situations can be prohibitively
expensive especially in unseen scenes when novel objects are
introduced. Hence, to endow manipulators to act in complex
scenarios with only partial view sensing information, recent
works have relied on learning based robotic control [2]—[4].

However, learning-based robot control policies that rely on
imagery as input can exhibit significant performance degrada-
tions when visual conditions like lighting, camera position, or
object textures differ from those seen during training [5]. This
lack of robustness is a hurdle for in-the-wild deployment and
has prompted the extensive study of data augmentation [6]—
[8] and pretraining [3], [9], [1O] techniques in visual policy
learning. In this work, we examine the question of policy
robustness from the perspective of visual input representation
— finding policies that encode observations as XYZ-RGB
point clouds rather than RGB-D images demonstrate greater
robustness.

To illustrate this phenomenon, we examine a simple control
task in Fig. 1 where a robotic arm must lift a red cube from
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Fig. 1. Motivating Example. We compare DreamerV3, a state-of-the-art RL
model that is trained on RGB-D inputs with our Point Cloud World Model
(PCWM) on a simple task of lifting a cube. We find the point clouds are
significantly more robust to viewpoint changes compared to RGB-D.

a table up to a green goal point. We trained state-of-the-art
model-based reinforcement learning (RL) policies [11] for this
task with RGB-D input (denoted DreamerV3) and point cloud
input (denoted PCWM). When tested on novel viewpoints, we
observe that the success rate of DreamerV3 drops by half even
for a slight variation and fails completely on more significant
changes. In contrast, the PCWIM’s performance decays much
more slowly. We find similar trends in our larger suite of
experiments later in this paper. At first glance, the reasons for
this are unclear. XYZ-RGB point clouds and RGB-D images
contain much of the same information. How then can we
account for such a difference between these policies?

We hypothesize this difference comes from how these
modalities are typically encoded. In standard practice, RGB-
D inputs are encoded with convolutional networks — simply
treating the depth information as a fourth image channel.
Under these architectures, convolutional kernels aggregate
features based on closeness in the 2D pixel space, even when
neighboring pixels may have vastly different depths and thus
correspond to different parts of the scene. This could lead to
features between far away objects being averaged together,
leading to worse performance. In contrast, point cloud rep-
resentations allow the XYZ coordinates to directly serve as
features, enabling networks to learn geometric invariances
and equivariances such as those with respect to rotation and
scaling [12] — which are functions of the XYZ coordinates.

To study this phenomenon in robot control settings, we
develop a suite of point cloud-based control policies and train
them with state-of-the-art model-free and model-based rein-
forcement learning algorithms. For model-based, we propose
a first-of-its-kind point cloud-based world model (PCWM). We



train these models on a suite of robot control tasks and ex-
amine generalization to out-of-distribution camera viewpoints,
field-of-view, lighting conditions, and distractor objects. We
find point cloud-based models to be significantly more robust
than their RGB-D counterparts — even maintaining perfor-
mance under large shifts in visual conditions. Further, we
find our PCWM model-based framework achieves better sample
efficiency and higher task performance than its RGB-D model-
based counterpart [11] on several manipulation tasks.

Contributions. We summarize our main contributions:

o We study robustness to changes in viewpoint, field-of-view,
lighting, and distractor objects for RGB-D and point cloud-
based visual control policies.

o We propose Point Cloud World Models (PCWMs), a model-
based reinforcement learning framework based on partial
point clouds. We show gains in sample efficiency and
robustness over comparable RGB-D models.

« Beyond increased robustness, we show PCWMs adapt more
quickly when finetuned in new environments with signifi-
cant differences in visual conditions.

II. RELATED WORK

Point Clouds in RL. Visual policy learning has seen sig-
nificant progress in game playing [13], [14], robotic and
dexterous manipulation [15]-[17], and locomotion tasks [7],
[18], [19]. Most of this work leverages RGB(-D) imagery,
hence explicit consideration for 3D representation learning has
been limited [20]-[22]. Several recent works have proposed
model-free policies that learn from partial point clouds [23]-
[25] — demonstrating that the rich 3D information in point
clouds can improve sample efficiency in interactive robotic
tasks. We extend this body of work by (1) introducing a
novel model-based RL framework for point clouds (PCWM)
and (2) demonstrating that point clouds offer increased visual
robustness for both model-based and model-free policies.
Recently, GROOT [26] showed how point clouds can be robust
to environment changes in the context of imitation learning,
however, we focus on agents trained with RL policies.

Robustness in RL. Prior work has demonstrated that vision-
based policies learned from RGB(-D) input can have poor
generalization to new visual conditions [27]-[32]. These in-
clude changes due to new task instances, differences in object
textures or lighting, novel viewpoints, or a combination of
these induced by sim-to-sim or sim-to-real transfer. Inspired by
work in computer vision, data augmentation [7], [33], [34] and
representation pretraining [3], [10], [35] techniques have been
employed to ameliorate this lack of robustness. These methods
require careful design of image augmentations or laborious
curation of diverse pretraining datasets to improve general-
ization [36]-[38]. While these techniques have demonstrated
positive impacts, visual control policies for robotics can still
exhibit a significant generalization gap [5]. In this work, we
study the role of input representation in policy robustness. Our
findings suggest that point cloud-based policies can be robust

to viewpoints, lighting conditions and addition of new objects
in the scene even without any of the above techniques.

Model-based RL. One technique in sequential decision mak-
ing is to learn a model of the environment [39] and use it for
planning [40]-[43] or policy learning [11], [18], [44], [45]. In
the case of high dimensional inputs such as images, a popular
approach is to learn the environment dynamics in a compact
latent space that is supervised using rewards [46], [47] and im-
age reconstruction [2], [48]-[50]. Such model-based RL agents
[11], [18], [44], [45] have showcased higher sample efficiency
compared to analogous model-free policies. However, these
works have focused on settings where observations are RGB
images or privileged state information such as the location of
scene objects. We propose the first point cloud world model
and investigate its sample efficiency and robustness.

Point Cloud Dynamics. Prior work has proposed variants
of graph neural networks [51] to learn dynamics with point
clouds [52], [53]. While these approaches can model realis-
tic collision dynamics, they require point-to-point correspon-
dences between frames. When deploying these models as
part of a planning system in the real-world, prior work has
applied mesh reconstruction on point clouds obtained by either
multiple cameras [54] or a single RGB-D camera [55], which
could be prone to errors for novel objects. While a dynamics
model that takes partial point clouds as input was proposed
[56], it requires 6-DoF object poses for its supervision and was
not tested within an RL framework. In this work, we propose
the first point cloud dynamics model that enables world model
training in RL by directly operating on partial point clouds and
using only the reward signal for its supervision.

III. POINT CLOUD WORLD MODELS

Our model-based reinforcement learning approach for point
clouds consists of two learned components — a world model
that simulates the effects of actions (Sec. III-A) and a policy
learned in this simulated environment that maps states to
actions (Sec. III-B). As in prior work for high-dimensional
inputs [11], [18], [44], [48], we consider a latent world model
that simulates the world in a learned lower-dimensional space.

Problem Formulation. We pose our problem as an
infinite-horizon Partially Observable Markov Decision Process
(POMDP) [57] defined by a tuple (S, A,7,R,0,v,p0). S
represents the state space with a complete scene point cloud,
which is not accessible to the agent. The observation space,
O € RNV*6 denotes partial point cloud observations with N
points featurized with position (x,y,z) and color (r,g,b).
A € R™ is an m-dimensional continuous action space,
T : 0 x A —= O is the transition function, R : O — R
is the reward function, v € [0,1) is the discount factor and
po denotes the initial state distribution. The goal of the agent
is to learn a policy 7w : O — A that maximizes the expected
sum of discounted rewards; max, E.[> 7> v R(s:)].

A. World Model

We base our world model on the Recurrent State-Space
Model (RSSM) framework [48] which learns a recurrent
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Fig. 2. PCWM training: Given a sequence of T partial point cloud observations
o1.7, we encode them using a PointConv encoder. For each timestep ¢, we
compute a posterior stochastic latent z; using an encoding of o; and hidden
state h; that encodes the history. The hidden state is further used to compute
the prior latent Z; which is used to predict multi-step rewards over a horizon

H providing supervision for the world model alongside a KL-loss for temporal
consistency See Sec. I1I-A.

world model with a d-dimensional latent variable z. The
RSSM model is derived from an evidence lower bound on
the likelihood of an observation sequence oq.r given actions
ai.r. This results in a loss composed of two components:
a reconstruction term measuring how well observations (and
rewards) can be predicted from the latent representation and
a KL divergence term keeping predicted latent states near
corresponding real observation encodings.

For point cloud observations, designing the reconstruction
task is non-trivial — irregular point densities may bias the loss
function to denser regions and jointly predicting the structure
and featurization of a point cloud from a latent vector is
challenging. To sidestep these issues, we follow [46], [5§]
by dropping observation reconstruction and relying only on
multi-step reward prediction and the KL term for supervision.

More concretely, our world model shown in Fig. 2 is
parameterized by ¢ and consists of the following components:

Representation: 2 ~ q¢(ht, 0¢)

Recurrent Model: (Zt 1, 1, ai-1)

Dynamics: £~ p¢(z |74)
Reward: P~ py(re|he, 2t)
Continuation Predictor: & ~ pg(Celhe, 2¢)

D
where we use ~ to denote the sampling operation. The
continuation flag ¢; € {0,1} indicates whether the episode
has ended. Except for the input encoder network within
dg, we retain architectural choices from [11] for the other
components.

Given a partial point cloud o; € RV*6 with N points, we
encode it using a series of PointConv layers [59] to obtain
an embedding e; € R™*?, where n is the number of points
in the downsampled point cloud with each point consisting
of a d-dimensional feature. We then aggregate the features

of n points in the point cloud latent space to obtain the d-
dimensional feature agg(e;), where agg is an aggregation
function that is used to predict the latent z.

Like TD-MPC [46] and VPN [58], we find that supervising
rewards by rolling out each latent in the future for H
steps helps learn a better world model and leads to better
performance. Along with this, we simultaneously train the
continuation predictor ¢; using binary cross entropy loss.
Since z; is predicted using the input point cloud (o;) and for
dynamics model rollouts we do not have access to o, we
employ a KL loss term to ensure that posterior prediction,
z; and prior prediction Z; are close. Hence, this way, Z; can
be used for accurate rollouts to train the policy. The overall
world model training objective can thus be written as follows

current-step loss

T H
Ly = Z]%(Tt,ct | Bty ze) + Zm)(?ﬁtﬂ' | Pty Zeti)

t=1 =1

+ KL(qp(ze | bty 00) || po (22 | i) )

one-step temporal consistency
B. Policy Learning 2)
For the policy, we adopt the Actor-Critic framework [60]
similar to DreamerV3 [11], which consists of a Critic network
that predicts the value at a given state and an Actor that
predicts the action distribution given a state.

Actor network:

ar ~ my(as|zs)
Critic network: (v tr)]

vy (z) & Eg o [0 -

The critic is learned by discrete regression [11], [61] using
generalized A-targets [62]. We train the actor network to
maximize the value function via dynamics backpropagation
[18], updating actor parameters using the gradients computed
through the world model. Further, we use symlog predictions
[11] for the reward predictor and the critic. Symlog is helpful
in dealing with environments with varying reward scales across
different tasks. The overall framework alternates between the
world model training, policy training, and data collection using
the most recent policy.

IV. EXPERIMENTAL SETUP

Environments. We conduct our experiments on the Man-
1Skill2 [63] benchmark on a simulated 7-DoF Franka Panda
robotic arm with a parallel gripper. We consider Maniskill2 as
it is built on top of the photorealistic physics simulator Sapien
[64] where several works have shown Sim2Real transfer [24],
[65], [66]. We consider two representative manipulation tasks
— (i) Pick & Place and (i) Mobile Manipulation.

For Pick & Place, we consider LiftCube (lifting a single
cube) and StackCube (stacking one cube on top of another).
Additionally, we add a ClutteredLiftCube task, where
the goal of the agent is to pick the (unique) red cube among
a number of distractor cubes in the scene. For these tasks, we
consider an 8-d action space consisting of delta position of arm
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Fig. 3. Task performance: We report training curves for six manipulation tasks. Our proposed PCWM either matches or outperforms baselines in all settings
— demonstrating strong sample efficiency gains in several tasks. PCWM is truncated after achieving task success for Pick & Place tasks (top row).

joints (7) and gripper distance (1). For Mobile Manipulation,
we consider OpenCabinetDrawer (opening drawer of a
cabinet), OpenCabinetDoor (opening a cabinet door) and
MoveBucket (moving a bucket from ground to a platform
situated at a certain height). For the first two tasks, the
agent has a 12-d action space involving manipulation (8) and
navigation (4). The latter task is bimanual, adding 8 more
dimensions to control a second arm. For more details, we refer
the readers to the original papers [63], [67].

Baselines. Beyond PCWMs, we consider representative meth-
ods for the other three {model-based, model-free} x {RGB-
D, point cloud (PC)} settings. For model-based RGB-D, we
modify a stable PyTorch implementation of DreamerV3 [68]
to include depth reconstruction and denote this model as
RGBD-WM. For PC and RGB-D model-free policies, we
take policy architectures and representation encoders from our
corresponding model-based approaches and train them directly
from real environment experience using PPO [69] — denoting
these models as PC-PPO and RGBD-PPO respectively.

Implementation Details. In this section, we discuss several
design choices and hyperparameters of our model.

Point Cloud Encoding. Using known camera intrinsics and
extrinsics, we first transform the point clouds to world co-
ordinates. Then, we use 4 PointConv [59] layers with a
downsampling factor of 2 to encode the input point cloud
into e; € R™*? with n=64 and d=256. We aggregate (agq)
the point cloud latent using mean pooling to obtain a 256-d
representation, which we found to work well across all the
tasks. See Sec. VI for discussion of encoder choice.

Point Pruning. Similar to [25], we found it helpful to prune
distant or task-irrelevant (e.g. floor) points in the scene. This
pruning could be realized in practice by depth-based clipping,
background removal, or object segmentation-based filtering
[56]. After pruning, we apply farthest point sampling to
generate 1024 points for Pick & Place tasks and 2048 points
for Mobile Manipulation tasks. The higher point resolution for
the latter set of tasks is to ensure that key parts of the scene
such as the door or drawer handle are represented.

World Model and Policy Training. We pretrain the world
model for 1000 steps on 10 random trajectories before start-
ing policy training. For world model training, we uniformly
sample sequences of length 64 with a batch size of 8 from
the replay buffer. The deterministic state £ is 256 dimensional
and the continuous stochastic state z is 32 dimensional. The
reward and continuation prediction heads are 2 layer MLPs
with sigmoid linear unit (SiLU) [70] activation and layer
normalization [71]. We jointly train the multi-step reward and
continuation prediction losses with I = 5 and the dynamics
consistency (KL) loss with an Adam optimizer [72] with a
learning rate of 0.0001. For policy training, we rollout using
the world model for 15 timesteps from each of the 64 states of
the sampled trajectory. The actor and the value heads are also
2 layer MLPs with SiLU activation and LayerNorm trained
with Adam optimizer with a learning rate of 3e—5.

V. RESULTS

This section is divided into the following claims and sup-
porting evidence from our experimental results.

A. Point Cloud World Models (PCWMs) can be more sample
efficient learners than analogous RGB-D models.

We show reward curves over the course of training for
our six tasks in Fig. 3. In all tasks, the proposed PCWM
matches or exceeds the performance of the baseline methods
— including the model-based RGBD-WM [44]. Strikingly,
PCWMS learn considerably faster in the Pick & Place style tasks
(top row). For example, on Clutter Pick (top middle),
PCWM achieves task success in under 1 million interactions
whereas the other methods fail to do so after 2 million. This
trend is more pronounced in the StackCube task (top right).
We attribute this gain in efficiency to PCWIM’s ability to reason
with explicit 3D representations. For model free methods, we
observe that PC-PPO outperforms RGBD-PPO as well.

For OpenCabinetDoor and MoveBucket, RGBD-WM
and PCWM achieved similar performances. We hypothesize that
the model-based policy training is a dominant factor in these
cases as opposed to the input representation. The mobile ma-
nipulation tasks tend to be more complex, involving navigation



TABLE I
AVERAGE REWARD IN ORIGINAL (GREY) AND VISUALLY PERTURBED SETTINGS COMPUTED FROM 25 EPISODES IN EACH PERTURBED CONDITION (SEE
SEC. V-B) AND STANDARD DEVIATIONS ACROSS 3 RANDOM SEEDS. PCWMS ACHIEVE HIGHER REWARD AND ARE MORE ROBUST TO VISUAL CHANGES.

PCWM (Ours) RGBD-WM
Task Original Viewpoint Field of View Lighting Original Viewpoint Field of View Lighting
Lift Cube 325 £ 20 280 £ 50 257 £+ 33 259 £+ 31 305 £ 13 73 £ 98 112 £+ 137 126 + 11
Clutter Pick 358 £ 29 286 + 71 246 £ 64 349 £ 27 329 & 47 85 + 39 30 £ 13 242 + 98
Stack Cube 1721 4+ 283 1269 + 412 1006 £ 343 1465 + 143 251 £ 12 193 £+ 59 202 £+ 23 213 £ 29
Open Cabinet Drawer ~ -500 + 32 -647 £ 59 -631 £ 48 -549 £43  -1410 £29 -2460 4 132 -1782 + 238  -1638 + 126
Open Cabinet Door -1726 £ 48  -1972 £ 177 -1983 £56  -1794 £ 53  -1925 £ 17 -2303 £ 396 -2120 £ 194 -2120 £ 194
Move Bucket -3632 £85 -3901 £ 135 -3881 £47  -3681 =29 -4168 £ 89  -4572 £ 21 -4419 £ 39 -4276 £ 55

to the target object in all three and bimanual coordination
for MoveBucket. While all models achieve > 75% success
rates for OpenCabinetDrawer, we find they struggle on
OpenCabinetDoor and MoveBucket, indicating the need
for more interaction to achieve task success.

B. Point cloud-based policies are more robust to changes in
visual conditions than analogous RGB-D policies.

The models in the previous discussion were all trained in
single, fixed imaging conditions — i.e. with a fixed camera
viewpoint, field of view, and scene lighting. Here, we examine
their performance when these conditions are systematically
varied. Note this set of experiments does not involve any
further policy training. Below we describe these variations:

o Viewpoint. We alter either camera pitch or yaw by 0.05
radian increments through ranges that keep the task objects
and manipulators in frame. We select -0.9 to 0.4 radians for
yaw and -0.65 to 0.35 for pitch for a total of 42 conditions.

o Field of View. We vary the field of view of the camera at
three discrete levels {7, T, T} yielding 3 conditions.

o Lighting. We consider 6 lighting conditions — varying am-
bient illumination through 5 stages from bright to dark and
adding a yellow spotlight focused on the table.

These conditions are visualized in Fig. 4 for the Clutter
Pick task and average rewards across these conditions for
all tasks are shown in Tab. I for PCWM and RGBD-WM. We
take the model with best return to compute the results across
3 different seeds. Given their lower overall performance, we
do not include the model-free methods in this comparison.

Across settings, we find PCWM policies achieve significantly
better performance than those from RGBD-WM. However, in
many tasks this difference in performance was also evident
in the original unperturbed setting due to PCWM’s increased
sample efficiency. Focusing on the LiftCube setting where
both methods achieve similar task performance in the original
environment, we still observe significant differences in perfor-
mance in perturbed conditions. For example, PCWM achieves
only 6% less average reward across viewpoint changes com-
pared to a 76% reduction for RGBD-WM.

Finer-grained Analysis. The above analysis aggregates over
a range of conditions to provide a general sense of policy
robustness. To examine this more closely, we take Clutter
Pick as an exemplar task and examine policy robustness in
each condition separately. Further, we extend the analysis to

the model-free methods — PC-PPO and RGBD-PPO. To ensure
all models have similar baseline competency in the original
setting, we continue to train all methods beyond the steps
shown in Fig. 3 until convergence. All achieve >90% task
success rate. We also consider including additional distraction
objects as another perturbation. Results are shown in Fig. 4.
We denote point cloud methods in red and RGB-D in blue.

For viewpoint changes, we see that both RGB-D policies
(RGBD-WM and RGBD-PPO) rapidly drop in success rate for
minor changes. This effect results in 0% success rate when
pitch or yaw change by more than £0.1 radians (or about
5.7°). In contrast, the point cloud-based models are robust
even to extreme changes, provided the arm remains clearly in
view. Changes in viewpoint do not distort object shapes or
relative distance between points. We hypothesize point cloud-
based policies remain performant in these instances as they
learn to rely on these features rather than absolute positions
or object scales.

For field of view (FoV) changes, we observe that point cloud
policies suffer a minor penalty under different conditions, yet
RGBD policies achieve a 0% success rate for all perturbed
settings. Changes to the FoV greatly affect the captured image
— dramatically scaling the image contents as in the example
frames. For RGB-D models, this results in significantly out-
of-distribution inputs. For point clouds, the geometric relation-
ships between points and their positions relative to the camera
do not shift with the FoV changes.

For lighting changes, we find RGB-D methods to be im-
pacted by irregular lighting (spotlight) or darker scenes, but
respond similarly to point cloud models for other conditions.
RGB networks are known to be somewhat robust to lighting
changes [73], but point cloud models meet or exceed them. For
additional distractor objects, we see no significant difference
between point cloud and RGB-D models — suggesting the
robustness exhibited by point clouds may not extend to settings
where changes require that the policy performs higher-order
relational reasoning with an increased number of objects.

C. PCWM adapt more quickly than RGB-D counterparts when
trained further in viewpoint perturbed environments.

In case of task failures on novel settings, it is desirable to
have a model that can be fine-tuned as quickly as possible
and not have to learn about the task from scratch. To test
if PCWM can adapt well in such situations, we select 2
conditions from viewpoint (Rel. Pitch (0.4) and Rel. Yaw (-
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Fig. 4. Fine-grained robustness analysis for the Clutter Pick task. Example frames from each condition are shown above policy performance plots. Grey
shaded backgrounds indicate the original training environment. We find RGB-D models generalize poorly to new viewpoints or FoV in this setting.

0.6) in Figure 4) and one from lighting (Medium in Figure 4)
where both PCWM and RGBD-WM performed nearly equally.
Starting from the pretrained models, we trained in the new
environments until convergence. For viewpoint changes, we
observed a significant difference in sample efficiency with
PCWM requiring 32 and 25 episodic interactions compared to
94 and 70 for RGB-D models (each episode consists of 200
timesteps. However, for the lighting perturbation, we found
both RGBD-WM and PCWM took about 100 episodes to reach
100% task success — suggesting that PCWM adapts quickly in
geometrically perturbed situations such as viewpoint.

VI. DISCUSSION & LIMITATIONS

Our initial experiments suggest the choice of point cloud
encoder is important. Fig. 5 shows a comparison between
model-free point cloud-based methods (i.e. PC-PPO variants)
using encoders based on PointNet [74] and PointConv [59]
on two tasks. We find significant gains using PointConv —
attributed to PointConv’s ability to reason about local points
for feature extraction that PointNet lacks.

While we have shown that PCWM can be more sample-
efficient and robust to visual perturbations, they can be slow
to train (wall clock time) when compared to their RGB-D
counterparts owing to the point cloud processing. We find
PCWM to be ~2-3.5x slower depending on the number of points
in the input. Additionally, we note that the pruning of points
needs to be performed on the novel static viewpoint and our
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Fig. 5. Comparison of point cloud encoders: PointConv [59] consistently
shows greater sample efficiency as compared to PointNet [74] in the
StackCube and OpenCabinetDoor tasks.

system would likely fail with a moving camera. We hope that
the community furthers the research on point cloud models
for policy learning and mitigates these limitations.

VII. CONCLUSION

In this work, we presented a novel model-based RL method
for partial point cloud observations PCWM. We demonstrated
that this model can result in dramatic sample efficiency on
certain tasks, and significant robustness gains over analogous
RGB-D models in settings such as viewpoint, field of view
and lighting changes. We also showed that the choice of the
point cloud network significantly impacts sample efficiency.
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IX. APPENDIX
A. Hyperparameters

We provide the hyper parameters for the (a) world model,
(b) policy and (c) general components of PCWM.

TABLE 11
PCWM HYPER PARAMETERS. WE USE THE SAME VALUES FOR ALL THE
TASKS EXCEPT FOR THE THE NUMBER OF INPUT POINT CLOUD POINTS
(N). WE VARY N DEPENDING ON THE TASK AS REPORTED IN III.

Description Symbol Value

General

Number of environments 1

Number of points (in input point cloud) N {1024, 2048, 4096}
Training Batch size B 8
Training sequence length T 64
Multi-step rollout length H 5
World Model
Deterministic State ht 256
Stochastic State 2t 32
Learning rate - 10~4
Adam epsilon - 108
Gradient Clipping - 1000
Actor Critic
Imagination Horizon H 15
Discount factor o' 0.997
Return lambda A 0.95
Actor Entropy scale - 3x 1074
Learning rate - 3x 1075
Adam epsilon - 10—°
Gradient Clipping - 100

B. Environment Details

Here we provide the action space for each of the manipu-
lation and the corresponding number of points chosen for the
training of PCWM.

TABLE III
WE VARY THE NUMBER OF INPUT POINTS DEPENDING ON THE TASK SO AS
TO INCLUDE MAXIMUM POSSIBLE INFORMATION IN THE OBSERVATION
FOR THE AGENT

Environment Action dim Num. Points
Lift Cube 8 1024
Clutter Pick 8 1024
Stack Cube 8 1024
Open Cabinet Door 12 2084
Open Cabinet Drawer 12 2084

Move Bucket 20 4096




