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Abstract: Let G be a finite, weighted graph, and let T be a time-scale with a fixed point to such that sup T = oco.
In this paper, we construct the heat kernel on G in time-scale T in terms of a certain convolution series involving the
heat operator acting on a parametrix, which is a fairly general function depending on the vertex set of G and the time
variable t € T. We develop some applications by choosing different parametrices and various time-scales. The results

we obtain here extend, in part, aspects of the recent articles in that the time-scale considered in this paper is arbitrary.

Key words: Heat kernel, finite graph, time-scales

1. Introduction

The heat equation characterizes the diffusion process within both discrete and continuous settings, often
governed by specified boundary conditions. Its fundamental solution, the heat kernel, underpins extensive
research within mathematical biology [5, 6, 9, 16, 27], computational mathematics [21], and stochastic processes
[12, 22]. Given the diversity of these processes, a natural inquiry arises regarding the behavior of diffusive
phenomena within hybrid systems, by which we mean systems that encompass both continuous and discrete
aspects. To formalize the description of such phenomena in hybrid systems, we turn to time-scale calculus.
Time-scales offer a unifying framework to generalize results across continuous and discrete domains, a pursuit
of increasing interest from different mathematical disciplines and applications such as finance, biology, and
physics, to name a few. This unification bridges difference equations and differential equations, thus showing
the significance of the study of hybrid systems.

In this paper, we extend the work presented in [11] and construct the heat kernel on finite graphs for
different time-scales. The extension we prove is far from being straightforward, mainly due to subtle nature of
the shift in the setting of time-scales which is used to define the graph convolution. In this context, one begins
with a parametrix which is a reasonably general approximation of the heat kernel and that depends solely on
small time asymptotic behavior. The parametrix then undergoes an iterative refinement process which yields
progressively more precise approximations of the heat kernel. Ultimately, the heat kernel is expressed as an
infinite series involving the parametrix and a convolution series derived from the parametrix. Additionally, we
will prove an extension to varying time-scales of the results from [23] which explicitly computes the heat kernel

of a subgraph of the complete graph on N > 1 vertices. Since all finite graphs, indeed, are subgraphs of some
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complete graph, this computation yields a new evaluation of the heat kernel on any finite graph associated to
any time-scale T such that sup T = co.

Let us now discuss some technical details. We begin by considering T as an arbitrary time-scale, which
is a closed subset of the real numbers R. Additionally, we assume the presence of a fixed point (the so-called
base point) to in T, conventionally set to 0 yet capable of assuming other values within T. For any ¢ € T,
let o(t) :=inf{s € T : s > ¢}. The function o(t) is called the forward operator. While the graininess function
p:T — [0,00) is defined by u(t) :=o(t) —t.

Throughout this paper, unless otherwise stated, we assume the time-scale T is such that sup(T) = oo,
and the forward operator o : T — T is continuous.

Let G be a finite, edge-weighted graph defined by its finite vertex set VG and the nonnegative weight
function w : VG x VG — [tg,00)r with w — wy, for z,y € VG. We set w,, = 0 when there is no edge
between z and y. Furthermore, we assume the symmetry that w,, = wy, for all z,y, meaning that the graph

is undirected. The graph Laplace operator Ag is defined for any bounded function f: VG — C by

Acfx)= Y (F(x) = F)way. (1.1)
yeVG
Trivially, the Laplace operator is a bounded linear operator on the space of all complex-valued functions defined
on VG with the Laplace operator determining the weighted average over the adjacent vertices y, where wg,, is
the weight value on the edge xy on the graph G. The heat kernel on a weighted graph G in time-scale T with
the base point ¢ is the bounded solution Hg : Vg X Vi X [tg, 00)r — R to the differential equation

(AG%Ul +At) HG(”l;UQ;t) = 03 (12)

subject to the initial condition, which has two possibilities.

If ¢y is right-scattered, meaning p(tp) > 0, then

1 if V1 = Vg,
Hg(vy,v9,t0) = 1.3
G( ! 2 0) {0 lf U1 7é V2. ( )
If to is right-dense, meaning pu(to) = 0, then
. 1 lf V1 = Vg,
1 H, LU, t) = 1.4
t_?tfh c(v1,v2,1) {0 if v1 # vs. (14)

If the graph G is such that the operator I — pu(t)A is invertible for every t € (—oo,tg)T, then according
to [18, Theorem 5.7] or [4, Theorem 8.24] the heat kernel on G exists and is unique (see also discussion on p.
527 of [29]). The proof of the existence and uniqueness of the heat kernel on a graph G when the time-scale
T = R can be found in [14] and [15]; see also [8] and [7] when the time-scale is T = Z. Note that if one chooses
a basis of functions f: VG — C, then I — u(t)A can be realized by a square matrix M (t) with VG rows and
columns. In this instance, the invertibility of I — p(¢)A is equivalent to the invertibility of M (t).

In this paper, we will prove the existence of Hg(v1,vs,t) associated to a fairly general graph G by
constructing it explicitly in terms of a certain convolution series; see Theorem 4.7. All graphs G considered

in this paper are finite, so that Hg(v1,v2,t) can also be expressed as a convergent series associated to the
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exponential operator e_a (t,tp). We show that for a specific choice of parametrix, namely the Dirac delta,
Theorem 4.7 yields the expansion of e_a, (t,to) as a special case; see Example 5.2.

However, in our main theorem, Theorem 4.7, the parametrix used to construct the heat kernel is a fairly
general function which allows us to choose, as a starting point in the iterative process of construction, various
approximations to the heat kernel under consideration. For example, if our graph G is a subgraph of a graph
G for which a closed expression for the heat kernel is known, then one may use the restriction of the heat
kernel on G to G as a parametrix. In this case, our main theorem yields an exact formula for the difference
Hg(vi,va,t) — Ha(vy,v2,1).

In particular, when G = Ky, the complete graph on N vertices, we obtain the following proposition,

which is a closed expression for the heat kernel Hg(v1,v2,t) for any subgraph G of Ky .

Proposition 1.1 Let N > 1 be an integer. Assume that T is any time-scale with a fized point ty. Assume that
supT = oo and that —N is regressive in T. Let G be a subgraph of a complete graph Kyx on N vertices with
all edge weights equal to one. Define the VG x VG matriz Ug = (ua(vi,v2))|va|x|val by setting its entries
ug(v1,v2) equal to

(N*l)*dg(’l)l) if’l)l = U2,

ug(vi,v9) = ¢ —1 if v1 ~c va,

0 otherwise,
where dg(v1) is the degree of vertex vy in G, and the notation vy ~. vy denotes that vi and vy are distinct
and disconnected pair of vertices in G. Then the heat kernel Hg on G for all vi,v2 € VG and t € [tg,00)r is
given by

o0

Hg(v1,v2;t) = Hi (v1,v2;t) + Z Ug(v1, v2) E_n (1),
k=1

where Hy,, 1is the heat kernel on Ky (see equation (5.9) below) and for any k > 1, we have that

E_nk(t) = Z <£ —’k_; k) (—=N) ey (t,to),

=0
where hi(t,to) are the basic monomials associated to T, as described in Definition 2.3.

Proposition 1.1 highlights one of the significant features of Theorem 4.7, which we will now discuss a bit
further. In general, one can view G as a subgraph of G and use the heat kernel on G as a parametrix for
the heat kernel on G. In doing so, one obtains an explicit formula for the heat kernel on G. One instance is
obtained by taking G to be a complete graph, since in that case the heat kernel on a complete graph is explicit.
This instance is the contents of Proposition 1.1. In any event, even in the case when the heat kernel on G is
not explicitly known, Theorem 4.7 yields a formula for the difference between the heat kernels on G and on G
see Example 5.3.

In the setting of Riemannian geometry, there are many studies which investigate comparison theorems for
heat kernels, including when one domain is isometrically embedded in another; see for example [10]. We view
Example 5.3, as giving the graph and time-scale analogue of the aforementioned comparison theorems since one

has an explicit formula for the difference of heat kernels. Also, when the operator I — p(t)A is invertible, then
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by taking different functions as a parametrix, one can use the uniqueness of the heat kernel to deduce identities
between different convolution series. An example of such an identity is equation (5.7) from Example 5.4 below.

The organization of this paper is as follows: In Section 2, we introduce the necessary analytic tools for our
study. Section 3 establishes the foundational results required for constructing a parametrix. In Section 4, we
present the parametrix construction of the heat kernel. Finally, Section 5 gives some applications and illustrative
examples of the parametrix and construction of the heat kernel, thus offering insight into the behavior of the

heat kernel on finite graphs in various time-scales.

2. Preliminaries

In this section, we recall some results regarding time-scale calculus. Let T be a time-scale with sup(T) = oo, and
let to € T be a fixed base point. We refer to [4] for definitions of the delta derivative and integral. The notations
for delta derivative, f2¢(t) and A;f(t), are used interchangeably in this paper. We also set [to, t]t = [to,t] 0T,

(to,t)T = (to,t) NT and similarly for all other variants of subintervals of T.

2.1. Time-scale calculus

For the sake of completeness, we recall from [4] the following two theorems. As stated, for our purposes, we
assume that sup T = oo, so then T* = T. More generally, when sup T < oo, we refer to pages 2 of [4] for the
definition of T*, which is a subset of T. Though we are interested in those T for which sup T = oo, we will

state the theorems in greater generality.

Theorem 2.1 ([4, Theorem 1.117]) Let to € T" and assume f : T x T" — R is continuous at (t,t) for
t € T" with t > tg. Assume further the following properties.

(i) The function f is A-differentiable as a function of the first variable t, and f2(t,.) when viewed as a

function of the second variable is rd-continuous (right-dense continuous) on [to,o(t)].

(ii) For every ¢ > 0, there exists a neighborhood U of t independent of T € [to,o(t)] such that
[f(o(t),m) = fs,7) = fA(ET)(0(t) = 5)| < elo(t) — s

forall seU.

Then

A, (/t:f(t,T)AT) - /tt AL T)AT + F(o(8),1). (2.1)

Theorem 2.2 ([4, Theorem 1.74]) Every rd-continuous function has an antiderivative. In particular if
to € T, then F defined by

t
F(t) := / f()AT forallteT
to
is an antiderivative of f.
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2.2. Class &%

We will introduce the basic monomials hy(t, s) which appear in the Taylor series expansion of delta-differentiable

functions and then use those to define a class of functions.

Definition 2.3 [/ Let T be any time-scale. The basic monomials are functions hy : T x T — R, defined

recursively as follows. The first monomial ho(t,s) =1 for all s,t € T. For the remaining terms,

t

hit1(t,s) == /hk(T, S)AT.

S
It is proved in [3] that the basic monomials possess the following properties.

(i) Forall t,s € T and k € Ny,

ity (t,5) = hi(t, s) and hit, (t,s) = —hu(t, 0(s)). (2.2)

(ii) For all k,m € Ny,

t

/hk(t,U(s))hm(S,to)AS = hk+m+1(t, t()). (23)

S

(iii) For all k € N and ¢,s € T with ¢ > s,

(t—s)"
I

0 < ha(t,s) < (2.4)

Definition 2.4 [2] Let T be any time-scale with sup(T) = oo, and let to € T be a fizred base point. Let
f i [to,00)r = C be a function. We say f is a function in the class F if it possesses a series representation
of the form

F() = arh(t,to) for all t € (to, o0, (2.5)
k=0

where each coefficient ay in the series is a constant that satisfies the bound
lar] < MRF for ke Ny (2.6)
for some constants M >0 and R > 0 which are independent of k.

When combining (2.6) with (2.4), it is immediate that the series in (2.5) converges absolutely and
uniformly on any compact interval [to, L]T C [tg,00)r for any L € T with L > tg.

Some well-known functions in the class .Z are e,(t,tg), cosh,(t,to),sinh,(,t0), cos,(t,to) and sin,(t,to)
for any z € C; see [2]. Another example of functions in the class .%# which will be useful in the parametrix
construction of the heat kernel in a time-scale T is the I-Bessel function centered at ty, which is defined as

follows.

844



CHEN et al./Turk J Math

Example 2.5 For n,k €Ny, ceC and t €T, let
. N (n+ 2K\ [ey\nt2k
H =3 (") (5) hmemnteto) (2.7

We claim that the function IS(t) belongs to the class % . To prove this assertion, it suffices to show that the

coefficients in the series expansion satisfies the bound (2.6). Indeed,

n+ 2k (f) n+2k
k 2
Therefore, the bound (2.6) holds for all k € Ng, with M = |¢|™ and R = |c|.
When T = Z and to = 0, we see that I.(t) coincides with the discrete I-Bessel function introduced

(2‘c|)”+2k

S 2n+2k:

= |c[**?* for all k€ No.

by Slavik in [28], equation (2.2). Specifically, in this case, hyyor(t,tg) = (n_f%), which equals zero unless
k< |(t—mn)/2]. Hence,

L(t—n)/2] L(t—n)/2]
n + 2k t c\ nt2k t! c\ nt2k
I°(t) = < = < . 2.
n(?) kz:% ( k )<n+2k> (2) kZ:o kl(n+ k)I(t — 2k — n)! (2) (2.8)

According to [8, Proposition 3.2], (2.8) equals the discrete I-Bessel function IS(t); see [28, equation (2.2)] as
well as [1] for the case ¢ =1.

We note that the function IS(t) is closely related to the J-Bessel function J.(t,s,&, a,v;T) with s =t
E=c,v=1 and a =0 defined on p. 101 of [13].

We now extend the definition of the class % of functions defined on [tg,00)r to the class Z(G) of

functions defined on VG x VG x [tg,00)r as follows.

Definition 2.6 Let T be any time-scale such that the sup(T) = oo, and let to € T be a fized base point. Let
G be any finite, undirected weighted graph. A function f: VG x VG X [tg,00)r — C is said to be in the class

F (G) if it possesses a representation of the form

oo
fvr,vg5t) = Zak(vl,vg)hk(t,to) for all ¢t € (tp,00]r and wv1,v2 € VG, (2.9)
k=0

where the coefficient ay(v1,v2) is constant in T that satisfies the bound
lag(v1,v2)| < MR* for k€N (2.10)

for some constants M >0 and R > 0 which are independent of k and vi,v2 € VG.

2.2.1. Time-scale convolution

In this section, we will recall the definition of the time-scale convolution in [2]. In order to do so, we will first
recall the definition of the shift of a function, which is, in full generality, defined as a solution to a certain

shifting problem.
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Definition 2.7 [2] For a given f : [to,00)r — C, consider the shifting problem
utt(t,0(s)) = —u?:(t,s), for any t € T, with ¢ > s> tg,

u(t, to) = f(t), whenever ¢ > tg.

We let f denote a solution to the above differential equation, and we call f the shift of f .

Lemma 2.8 ([2, Lemma 2.4, Theorem 5.1.]) With the notation as above, the following two statements
hold true:

(i) If f is the shift of f, then f(t,t) = f(to) for all t € T.
(ii) Any function f € F has a unique shift in F which is given by

f(t.s) = aphi(t,s), t € (to,xr, s € [to, U
k=0

We now recall the definition of the time-scale convolution of two functions.

Definition 2.9 [2] Let f,g : T — R be functions such that f possesses the shift f and the function

f(t,0(s))g(s) is delta integrable on any interval [to,t]r for t € T with t > ty. Then the time-scale convolution
is defined as

(fx9)t) = ) f(t,0(s))g(s)As.

The time-scale convolution is not commutative in general. However, according to [2, Theorem 2.7], it is an

associative operation. The distributive property follows immediately from the linearity of the delta integral.

3. Graph convolution

Let T be any arbitrary time-scale with continuous shift operator. Assume sup(T) = oo, and let ¢, € T be a
fixed base point. Let G be a finite and weighted graph. Let VG be the vertex set of graph G with cardinality
[VG|. Let F1,Fy : VG x VG x [tg,00)r — R be functions such that the product E(vi,v,t,0(s))Fy(v,va;s)
when viewed as function of variable s € T is integrable on every interval [to,t]yr C T with ¢ > s > to and any
v1, 02,0 € VG.

Definition 3.1 The graph convolution of functions Fy and Fs is defined as

t
(Fy %¢ Fy)(v1,v2;t) ::/ > Fi(v1,vit,0(s))Fa(v, v 5)As. (3.1)
to veVG
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One can view Fy and Fy as operators on L?(VG). If one chooses a basis of L?(VG), then F; and Fy

can be represented as matrices, in which case, one can write
t
(Fy *c Fo)(t) = /Fl(t, o(s)) - Fa(s)As,
to

where - signifies matrix multiplication. Also, we can view graph convolution as a sum of time convolutions
over the vertex set VG. In general, graph convolution is not a commutative operation, but it does inherit the
associative and distributive properties from time-scale convolution. Specifically, for F;(vq,ve;t),s = 1,2,3, F; :
VG x VG x T — R, we have the following identities:

[(F1 xg F2) *¢ F3](vi,v2;t) = [F1 *¢ (Fy *q F3)](vi, va;t),
[F1 *¢ (Fy + F3))(vi,v2;t) = (F1 x¢ Fa)(v1, va;t) + (F1 *¢ Fs)(v1,v23t),

[(Fl + FQ) *G Fg)](vl,vg;t) = (F1 *Q Fg)(Ul,’UQ;t) + (FQ *q Fg)(vl,’l}g; t)

For these formulas, we assume that each function in question has a shift, and the necessary conditions on
integrability are true.

Going further, we have the following lemmas.

Lemma 3.2 Let F1,Fy : VGXVG X [tg,00)r — R be as above. Assume further there exist constants Cq,Co > 0

and integers k,m > 0 such that for all t,s € [tg,00)r with t > s >ty and vi,v2 € VG, we have the bounds
that

|Fy (v1, 05ty 8)| < Crhi(t,s) and |Fa(v,v9;t)| < Cohun(t,to).

Then, for all vi,vs € VG,
|(F1 x F2)(vi,v23t)| < CLC2|VGlhgeqm1 (2, to).

Proof The proof follows from the definition of graph convolution and an application of the basic monomial
formula (2.3). O

Lemma 3.3 Assume f: VG x VG X [tg,00)T — R is such that f exists. For each integer £ > 0, assume that
the £-fold graph convolution of [ exists on the interval [to,t]r. Furthermore, consider three possible additional

assumptions on f.
(i) There exist some constants C,C >0 such that
|f(v1,02:8)] < C and |f(vy,v23t,8)| < C
for all vi,vo € VG, t,s € T ,witht > s > ty.
(i) There exist some constants 01,0276'1702, and integers k,m >0 such that
|f(v1,02: )] < C1 4 Cohi(t,to) and | f(vy,va;t, 5)| < Cy + Cohum(t, s)

for all vi,vo € VG, t,s € T ,witht > s > t.
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(i@i) For all vi,vy € VG, the functions f(vi,vq;t) and f(vl,vg;t,s) are continuous for any t,s € [tg,00)r
with t > s > 1g.

If any of the assumptions (i), (ii) or (iii) hold, then the series
D (=D () (o1, 095) (3.2)
=1
converges absolutely and uniformly on every compact subset of VG x VG X [tg,00)r. In addition, we have that
(f e Z(l)e(f)*cé> (v, 095 8) = > (=1 (f)¢ D (01, va31). (3.3)
=1 =1

Proof Let us begin with assumption (¢). With the given assumptions, we apply Lemma 3.2 to get that
(f *G f) (v, va5t) < CCVGho(t, to).
Then by induction on ¢ > 1, by applying properties (2.3) and (2.4) of the basic monomials, we obtain that

(T — to) !

PYelA A—1 -1
|(f) ¢ (U13U27t)| < cc |VG| (f— 1)|

With the given bound, our series converges by the Weierstrass criterion. For a fixed ¢ > 0, by the approach

above, the series on the right-hand side converges absolutely. Then, by integrating term-wise, we have

(f G Z(—lﬂf)m@) (vr,v58) = Y (~1)f / > (Forvit, o)) (v,039)) As,
=1 =1 i, vevad
thus establishing (3.3).

Under the assumption of (i7), for a fixed compact subset A C VG x VG X [tg,00)r, assumption (ii)
combined with inequality (2.4) yields that

|f(vr,09;8)| < C(T = to)* and  |f(vy,va5t,8)| < C(T — to)™,

for some constants C,C' > 0, and for all (v1,vg,t) € A with ¢ > s > tg. For assumption (#ii), the boundedness

of f(vy,v9,t) and f(vl, vg;t, s) then follows from continuity. In both cases, the proof of the assertion follows
by arguing as in the proof under condition (7).

O

Remark 3.4 Every function f € F(G) is continuous when viewed as a function of t € [tg,00)r, as an

absolutely and uniformly convergent series of continuous functions. Moreover, for f € #(G) such that

f(’l)l, V25 t) = Z ak(vh ’Ug)hk(t, t0)7

k=0
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we have

oo

For,vait,s) = ar(vr, va)h(t, s),

k=0

which is also a continuous function for all vi,vy € VG,t,s € (tg,00] with t > s > tg. Therefore, Lemma 3.3
holds true for every f € F(QG).

4. The parametrix construction of the heat kernel

In this section, we will give a series representation of the heat kernel of an undirected, weighted and finite graph
G in Time-scale T with sup(T) = oo and tg € T is a fixed base point. We start by introducing the heat

operator.

Definition 4.1 Let f: VG x VG X [tg,00)r — C be a differentiable function in variable t for any choice of the
space variables from VG. The heat operator Ly, is a linear operator defined on the space L*(VG xV G x [tg, o0)T)

of complez-valued functions by its action on function f(vi,ve;t) in the first variable vy, given by
(Lo, f) (v1,v258) := ((Ag o, + A)f) (v1, 025 ). (4.1)

We now define a parametrix for the heat kernel, which is a function satisfying reasonably general

conditions, as now specified.

Definition 4.2 A parametrix for the heat operator on a graph G in time-scale T is any function f :

VG x VG X [tg,00)T = R, which satisifes the following conditions.

1. For all vi,v9 € VG, the function f(vi,ve,t) is continuous in variable t on [tg,00)r and continuously
differentiable in variable t on (tp,00)r such that f2t(vi,vs,t) extends to a continuous function on

[t07 OO)T.

2. Let v1,v5 € VG.

(i) The function f(vl,vg,t,s) is continuous at any ordered pair (t,s) for t > s > to; f(vl,vg,t,s) 18
continuously differentiable in variables t and s for t > s > tyg. Moreover, fA* (v1,v2,t,8) extends to

a continuous function on [tg,00)T, and fAs (v1,v2,t,8) extends to a continuous function on [to,t]T.
(i) The functions fAf(vl,v%t,s) and fAS(Ul,UQ,t,S) are Ay and A, differentiable respectively, for
t > s >ty. The mized second partial derivatives f™t2s (v1,v2,t,8) and fAsA (v1,v2,t,8) possess
continuous extensions to the boundary points of the intervals of definition, and fAtAS (v1,va,t,8) =

fAsA (v1,va,t,8) forall t > s>tg.

3. (Dirac delta condition) If to is right-scattered, then

1 if’Ul = V2,

f(UthatO): {O if?]1§é1}2
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whereas if ty is right-dense then

lim f(vy,v9,t) = {1 Z.fvl - (4.3)
t—tot 0 if vy # vo.

Example 4.3 The properties of a parametriz, when viewed as a function of the time variable t € T, are stated
in the first two conditions of Definition /.2 and are fulfilled by any function f € F(G). As a result, we may
consider those conditions to be reasonably general. Namely, for any vi,ve € VG, the function f(v1,ve;t) € F
1s defined as an absolutely and uniformly convergent series involving the basic monomials, so then according to
Lemma 2.8 so is f(v1,v2;t,8). By applying properties (2.2) and (2.3) of the basic monomials, it is straightforward
to conclude that conditions 1 and 2 of Definition 4.2 are satisfied.

Proposition 4.4 Let f : VG x VG X [tg,00)r — R be a parametriz for the heat operator on a graph G in
time-scale T. Let g: VG x VG X [tg,00)r — R be any continuous function on VG x VG X [tg,00)r. Then

(f *c 9)2 (vi,v25t) = (f2 ¢ g)(v1,v25t) + g(v1, va5 ).

Proof
The assumptions on the parametrix f, together with the continuity of the shift operator yield that
assumptions of Theorem 2.1 are all met. By applying Theorem 2.1 (ii) and Lemma 2.8 (i), we deduce that

(f *a 9)2 (v1, va5t Z Ay </ flor,v5t,0(s))g (U,’L}Q;S)A.S)

veVG

> [ [ (fonvit ot 0)) 85+ Flon 30,00

veVG

{/t: Ay (f(vhU§t70(3))9(v702;8)> As + f(m,v;to)g(v,vz;t)} )

veVG

Condition (ii) of the parametrix f ensures the equality of mixed partial delta derivatives of f in s and t,

which, in turn yields that fAt = fA\t. Therefore,

(a0t = 3 | [ 750t 0(6)ate, o988 + Fonvitola(v,vait)|.

veVG

From the Dirac delta condition fulfilled by the parametrix f, we have that

(F %6 ) (0r, 001 1) = [ / 75 o1, 051, (s >>g<v,v2;s>As} T g(on,v5i1)

veVG
= (fAt el g) +g<’U1,’U2;t>,

which completes the proof. O

Proposition 4.5 Let f : VG x VG X [tg,00)r — R be a parametriz for the heat operator on a graph G in
time-scale T. Let g: VG X VG X [tg,00)r = R be any continuous function on VG x VG X [tg,00)r. Then

AG,’Ul (f *G g)(vl,UQ;t) = (AG,’Ulf *@ g)(vlan;t)‘
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Proof By the definition of the Laplace operator and graph convolution, we have that

DG, (f #6 9)(01,028) = D ((f %6 9)(v1,023) = (f %6 9)(y, V23 1)) woyy
yeVvGaG

Z / Z U1,U;t,a(s) - f(y,v;t,a(s)) Wa,yg(v, v2; 5)As

veva Yt yeva

Z AG vlf v1,0;t,0(8))g(v, va; ) As.

veVG

Note that the shift of a linear combination of functions is equal to the linear combination of shifts. Hence,

t

AG,’Ul (f *q g)(UDUZ;t) - Z A/G,'u\lf(vlvU;tva(s))g(vva;s)AS
vevaito

= (AG,U1f *G g)(U17U2;t>.

O

Lemma 4.6 Let f: VG X VG X [tg,00)r — R be a parametriz for the heat operator on a graph G in time-scale
T. Let g: VG X VG X [tg,00)T = R be any continuous function on VG x VG X [tg,00)r. Then

Ly, (f *a g)(v1,v25t) = (Ly, f *a 9)(v1,v2;t) + g(v1,v2;1).

Proof The proof follows from the definition of the operator L,, together with Propositions 4.4 and 4.5. O

Theorem 4.7 Let f : VG x VG X [tg,o0)r — R be a parametriz for the heat operator on a graph G in
time-scale T. For all vi,v3 € VG and t € [ty,00)r, define

oo

F(vy,v9;t Z Y (Lo, £) ¢ (01, v2; t). (4.4)

=1

Then F is a continuous function on VG x VG X [ty,00)r and

Hg(vi,va5t) = f(vr,v25t) + (f *q F)(v1,v2;t) (4.5)

is the heat kernel on G in time-scale T.

Proof Recall that assumptions 1. and 2. from Definition 4.2 imply that (f)2¢ = f/A\t and A/GZ]" = AG’vlf,

and these functions are continuous. Therefore, the function L/Ul\f is continuous, which, when combined with
the continuity of L,, f and Theorem 2.2 yield that the 2—fold graph convolution (L., f *g Ly, f)(v1,v2;t) is
a differentiable function of time variable ¢, hence continuous. By induction on ¢, the same holds true for
(Ly, f)*¢*. Lemma 3.3 part (iii) ensures uniform convergence of the series on the right-hand side of (4.4) on
any compact subsets of VG x VG X [tg,00)T, hence the function F' as defined in 4.4 is a continuous function.

We will now show the function Heg(v1,va;t) satisfies the Dirac delta condition. When ¢ is right-scattered,
then (f xg F)(v1,ve;t0) = 0, so then

Heg(vi,va5t0) = f(v1,v25t0) + (f xa F)(vi,ve5t0) = f(v1,v2;5t0)-
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When ¢, is right-dense, the continuity of f and F implies that limy . + (f *q F)(v1,v2;t) = 0. Hence, when
passing to the limit ¢ — to* in the definition (4.5) of H¢g, we deduce that

lim Hg(vi,ve,t) = lim  f(v1,v9,1).
t—tot t—tot

It remains to show L,, Hg(v1,v2;t) = 0 for all vy,v9 € VG and t € [ty,00)r. By Lemma 4.6, we have
that

LUlHG(UlvUQ;t) = Lvlf(Uh’UQ;t) + L'Ul (f *a F)(Ulvaat)

= Ly, f(v1,v2;t) + (Lo, f *c F)(v1,v2;t) + F(vy,v2;1).

By applying equation (3.3) of Lemma 3.3 and using the absolute convergence of the two series, we deduce that

Ly, Ha(v1,09;t) = L, f(v1,02;8) + 3 (1) (Lo, )" (01, 09;1)
=1
+Z Lvlf Ge(’l}th,t) =0.
=1
With all this, the proof of the theorem is complete. O

5. Applications
Let us now illustrate the applicability of our results. We will present a few examples of a parametrix and show

how to deduce heat kernels associated to these choices. First, we discuss applications for general graphs and

then we specialize our results to the setting of a complete graph on N vertices.

5.1. Choosing a parametrix from .7 (G)

The following general result shows that if one can construct the heat kernel on G by starting with a parametrix
from .#(G), then the heat kernel will also belong to .#(G).

Proposition 5.1 With the notation as above, let f be a parametrixz for the heat kernel Hg on a finite,
undirected, weighted graph G in time-scale T, with the fized base point to. If f € F(G), then Hg € F(Q).

Proof From [2, Theorem 5.3], we have that for any two functions in .%(G), their convolution belongs to
Z (@) . Hence, in order to prove the proposition, it suffices to show that the function F' defined by (4.4) belongs
to .Z#(G). Let

o0

for,093t) = ar(vr, v2)hi(t, to)

k=0

with |ax(v1,v2)] < MR*, for some constants M, R and all vy,vs € VG, k € Ng. Since Ashi(t, to) = hp_1(t,to)
for k> 1, we have that

g(v1,v9;t) := Ly, f(v1,v9;t) = Z (Z (ar(v1,v2) — ag (v, v2)) Wy, p + ak+1(’Ul,U2)) hi(t, to).

k=0
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Therefore,
g(vr,va3t) =Y bi(v1,v2)hi(t, to)
k=0
with
b (v1,v2)| < C(G)RMY for all vi,vs € VG and k € Ny. (5.1)

The constant C(G) in 5.1 depends solely on f and G. By combining [2, Theorem 5.3] with the definition of

the graph convolution, we get that
o0
(9% g)(v1,v23t Zb (v1,v2)hi(t, to),
k=1

where

b( ) 1)1,1)2 Z Zb Ul7 bk 1— j(v ’02)

veVG j=0

From (5.1), it follows that
16 (01, v2)] < [VG|C(G)?ERFY, for all v,v, € VG and k € Ny, (5.2)

By applying [2, Theorem 5.3] combined with (5.1), (5.2) and the definition of the graph convolution, we deduce
that

g% (9+c 9)(wi,v2t) = 3 b (01, v2) (1, o),
k=2

where

b (01, 02)] < |va|20<a>3(§> R for all vy, 03 € VG, k € No.

Proceeding by induction on ¢, one now easily deduces that
(9)" ¢ (v1,v23 1) = Z b (v1, v2) b (1, o)
k=¢

where

k
6 (v1, v2)| < [VGIFC(G) (e) RM for all vy, vy € VG and k € Ny. (5.3)

Notice that for fixed n € N the basic monomial h,, appears in the series expansion of (g)*¢*(vy,vq;t) only for

¢ < n. Therefore, we can write that

F(ug,va5t) = Y (=1 (9)* (01, v2;t) = Y Ag(v1,v2)li(t, to),

=1 k=1

where

k
Ul;UZ E vlaUQ)'
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From (5.3), we have that
a k
[Ak(vr,02)| < IVGIFC(@) (€> RM1 < C(G)RIR(1 + |VG|C(G))]*
(=1

for all v1,v9 € VG and k € Ny. This proves that F' defined by (4.4) belongs to .% (G) and completes the proof
of the proposition. O

5.2. Dirac delta as a parametrix

In a sense, the simplest parametrix is the Dirac delta function. As it turns out, the parametrix construction of
the heat kernel starting with the Dirac delta function as a parametrix yields the classical expression e_a (¢,t0)
for the heat kernel.

Example 5.2 The Dirac delta function is defined as

1 if vy = v,

llte [ty . 5.4
0 ifvy # vy, for a lto, o0)r (5:4)

f(vla'UQ;t) = 51)1:1)2 - {
Obviously, f(v1,ve;t) satisfies all three conditions in the definition of the parametrix. Furthermore, the shift of
f(v1,va5t) is precisely 8y, —v, . Therefore,
Ly, f(v1,v2;) = Z (f(v1,v25t) = f(v,02:8)) w0, 0 + A¢fv1,02;8)

vV

= Z ((S’UII’U2 - 5UZU2)wv1,v
vV
d(v1) if v1 = va,
= Wy, Zf V1 ~ V2,

0 otherwise,

where d(vi) = Y, ., Wyy, is the degree of the vertex vi. Clearly, Ly, f(vi,v2;t) is a constant function in t.

By induction on £, we get that

(f #G (Loy )™ ) (v1, 095 8) = AL (v1, v2)he(t, o),

where Aeg(’Ul,’Ug) is the vi,vy entry of £t"

that

exponentiation of graph Lapacian. By envoking Theorem /.7 we get
o0

He(vr,v23t) = f(v1,023) + > (1) (f #6 (Lo, £)*) (01,023 8)
=1

=y + (-1 > /51,1,1, A (v,v2)he(t, o) As
(=1

'UEVGtO

= (51)1_1,2 —+ Z AG Ul,UQ)he(t to)
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By definition, set A% to be the identity matrixz. Then, we can write the heat kernel as

oo

He(vr,va5t) = > (1) AG(v1,v2)he(t, to) = e_ag (., to): (5.5)
{=0

see [29], equation (2.3) with A= —Ag.
It is immediate from (5.5) that the heat kernel Hg is an element of F(G).

5.3. Comparing heat kernels on a graph and from a subgraph

In a sense, the result in the above example was obtained by using the most elementary choice for a parametrix. Of
course, there are many other possible choices depending on the setup, which may provide a better approximation
to the heat kernel, at least in time variable, than the Dirac delta. In the computations below, we consider the
setting when one has the structure of a graph G which is a subgraph of G, and we obtain a precise formula for
the difference of heat kernels Hg — Hs.

Example 5.3 As stated, assume that the graph G is a subgraph of some graph G. If the heat kernel Hg on

G is, in a sense, known, then its restriction to G may serve as a parametriz for construction of the heat kernel
on G. Proposition 5.1 implies that Hz , when viewed as a function on VG x VG X [tg, 00)T belongs to the class
F (G), hence satisfies the first two conditions in the definition of the parametriz. The third condition is fulfilled

because Hg is the heat kernel on G. Referring to Theorem 4.7, let us take f to be the restriction of Hs to
VG x VG X [tg,00)r. When doing so, we obtain the following formula

Hg(vi,v25t) — Ha(vy,v2:t) = (Hg g F)(v1, 023 1), (5.6)

where

F(vlan;t) = Z( ) (Lle ) (1)171)27t)
=1

Observe that (5.6) is a precise relation for the difference of the heat kernels Hg and Hz , when restricted to G .

The flexibility to choose a rather general function as a parametrix allows us to deduce many identities,
which stem from the uniqueness property of the heat kernel under an additional assumption that the operator
I—u(t)Ag is invertible. Specifically, by starting with two different choices of parametrix, we obtain two different
expressions for the heat kernel, and these two expressions must be equal to each other due to uniqueness of the
heat kernel. In the case of the real time-scale, such considerations yield a proof of the classical theta inversion
formula and Poisson summation; see [22]. It remains to be seen what additional identities arise from considering

other time-scales.
In the example below, we discuss a choice for the parametrix different from the Dirac delta, in the case

when G is finite, weighted, and connected graph.

Example 5.4 Assume that G is finite, weighted, and connected graph with no loops, meaning that wy, =0 for
all ve VG. Let dg denotes the combinatorial graph distance which is defined as follows. For any two vertices

v1,v9 € VG, set dg(v1,v2) be the minimal number of edges in a path connecting v1 and ve. Such a path must
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exist because G is connected. Let IS denote the I-Bessel function in time-scale defined by (2.7). Then for any
c € C, the function
for,v238) := 15 () 00) (1), V1,02 € VG, € [to, 00)r,

is a parametriz for the heat kernel on G. This function belongs to the class F(G), hence fulfills the first two
conditions for the parametriz. Moreover, for t =ty in the case when to is right-scattered we have h;(t,to) =0
unless j = 0 in which case h;(to,to) = ho(to,to) = 1. Analogously, in the case when ty is right-dense, we
have 1imtﬁt§ hj(t,to) =0 unless j =0, in which case hmtﬁt;r ho(t,to) = 1. Therefore, f(v1,va;t0) =0 unless
de(v1,v2) =0, in which case one must have vi = vy and f(v1,va;te) = f(vy,v1;t0) = 1.

Assume further that the operator I — p(t)Ag is invertible. Then we may use the uniqueness of the heat
kernel to deduce that

D (1) AG (01, v2)he(t to) = fvr,v2:8) + Y (=1 (f *c (Lo, £)79°) (01, v25), (5.7)
=0 =1

which is valid for all vi,v9 € VG, t € [ty,00)r. Equation (5.7) gives an interesting relation between time-scale

I-Bessel function (2.7) and the basic monomials from Definition 2.3.

5.4. Specialization to the complete graph on N vertices

Let us further specialize our results by taking G = K, the complete graph with N vertices and N(N —1)/2
edges, with each edge having the weight equal to one. We will give an illustration of the parametrix construction
by taking the heat kernel on Ky as a parametrix to compute the heat kernel on its subgraph G. The additional
restriction posed on T is the assumption that the constant —N is regressive in T, meaning that 1 — Npu(t) # 0

for all t € T".
For any integer £ > 0, the entries for the /-th power of the graph Laplacian on Ky are

Nz_l(N— 1) if v1 = vg,

5.8
—Nt-L if v1 # vs. (5.8)

AZ(’Ul,’Ug) = {

Let us employ the notation of exponential function from [2]. By (5.8) and (5.5), a straightforward computation

obtains an explicit expression for the heat kernel on K in time-scale T, namely that

. N +( me-n(tto) if vr =,
HKN(Ulvavt) = {Jb 1 (t ) if vy # v (59)

We find it interesting to see the evaluations of (5.9) in different time-scales. Reference [4] gave several
examples of exponential functions for various time-scales which can now be used.
When T =R and base point g = 0, we have that
1 1y,—Nt
<+ (1-=%)e if v1 = v9,
Hpy (v1,v2;t) = ]f—i_(l ,NNt) L
¥~ weé if v1 # vg,

which coincides with the formula from [23].
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When T = hZ for h > 0 and ty = 0,, we get that

+ (1= %)L = NhY" if vy = vy,

1
Hg, (v1,095t) = ¢ & :
n ) {]{[1{/(1 Nh)t/" if v1 # va.

Thus, we have an explicit formula for the heat kernel of Ky in the time-scale hZ.

Let H, be the so-called harmonic numbers, namely

for n € N.

T =

Hy=0and H, = Z
k=1

Consider the time-scale T = {H,, : n € No} and set to = 0. Then the exponential function e_y(H,,0) = (

Hence, the heat kernel of Ky is given by

HKN (vva;t) = {

— %(”;N) if v1 # vs.
Let T = ¢"o with ¢ > 1 be the quantum time-scale. Let tq = 1. Then

y+0=%) II (Q=N(g—1)s) ifvy =0y,
seTN(0,t)

+—=% Il (1—N(g—1)s) if vy # vy.
seTN(0,t)

Hg (v1,v9;t) =

5.5. Proof of Proposition 1.1

Proof We begin by reasoning analogously as in [11, Section 6], to deduce that

(N*l)*dc(’l)l), if’l)l = V2,

L Hiy (v1,v2:t) = —e_n(t, to) . —1, if v1 ~ove; p = —e_N(t, to)ug(vr,ve2).

0, otherwise

From the expression (5.9) for the heat kernel, we get that

(Hrex *6 Lo Hiy ) (01, 0238) = —UG(Ul,vz)/ (]17 +(1- ]:\l[)eN(t,O'(S))) e_n(s,to)As
t . X
- vEV;;ﬁyl UG(,U’ ,UQ)Z <N - N@,N(t U(S))> €,N(3, tO)AS.

From the definition of ug(v,v2) it is immediate that ) .y o ua(v,v2) = 0; hence,

t
(Hiy *G¢ Law Hi ) (v1,v2;t) = —ug(v1, v2) /e,N(t,o(s))e,N(s,to)As

to

= —ug(v,va)(e—n *xe_n)(t).

")
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By applying [2, Theorem 5.3], we deduce that
o0
(HKN *G LG,leKN)(UhU%t) = —ug 1)1,1)2 Z f —+ ]. hg+1(t,t0).
=0
Next by reasoning analogously, we can compute ((Hg, *¢ Law Hiy) *¢ Law, Hry)(v1,v2;t) to get that

t o0
(Hrx *G (Law, Hicy ) %) (01,095 t) = U (01,09 /Z N)hega(t,0(s))e—n (s, to)As
=

o

= U(v1,02) Y <£ ; 2) (=N heya(t, to),

£=0

where Ué (v1,v2) denotes the v1,vo entry of the matrix UC%. It is now trivial to deduce for any k > 1 that

(Hicy 6 (Lo Hicn ) ) (01, 03:1) = (1) Uk (0r,0) 3 (e * k) (=N Y hesn(t, ).

£=0 k
When employing Theorem 4.7 with f taken to be Hg, , the proof of Proposition 1.1 is completed. O
Remark 5.5 When T =R and tg =0, then
(04 k)! , tE N 1R

E‘N’k(t)zzzo m N e

In other words, the statement of Proposition 1.1 reduces to the main result of [11, Section 6] with B = Ug .
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