
Neural feels with neural fields:
Visuo-tactile perception for in-hand manipulation

Sudharshan Suresh,1,2∗ Haozhi Qi,2,3 Tingfan Wu,2 Taosha Fan,2

Luis Pineda,2 Mike Lambeta,2 Jitendra Malik,2,3 Mrinal Kalakrishnan,2

Roberto Calandra,4,5 Michael Kaess,1 Joseph Ortiz,2 Mustafa Mukadam2

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2FAIR, Meta, 1 Hacker Way Menlo Park, CA 94025, USA

3Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA 94720, USA
4 Institute of Artificial Intelligence, Technische Universität Dresden, 01062, Dresden, Germany
5The Centre for Tactile Internet with Human-in-the-Loop (CeTI), 01062, Dresden, Germany

∗To whom correspondence should be addressed; E-mail: suddhus@gmail.com.

To achieve human-level dexterity, robots must infer spatial awareness from

multimodal sensing to reason over contact interactions. During in-hand ma-

nipulation of novel objects, such spatial awareness involves estimating the ob-

ject’s pose and shape. The status quo for in-hand perception primarily em-

ploys vision, and restricts to tracking a priori known objects. Moreover, visual

occlusion of objects in-hand is imminent during manipulation, preventing cur-

rent systems to push beyond tasks without occlusion. We combine vision and

touch sensing on a multi-fingered hand to estimate an object’s pose and shape

during in-hand manipulation. Our method, NeuralFeels encodes object geom-

etry by learning a neural field online and jointly tracks it by optimizing a pose

graph problem. We study multimodal in-hand perception in simulation and the

real-world, interacting with different objects via a proprioception-driven policy.

Our experiments show final reconstruction F-scores of 81% and average pose

1

drifts of 4.7millimeters, further reduced to 2.3millimeters with known object

models. Additionally, we observe that under heavy visual occlusion we can

achieve up to 94% improvements in tracking compared to vision-only meth-

ods. Our results demonstrate that touch, at the very least, refines and, at the

very best, disambiguates visual estimates during in-hand manipulation. We

release our evaluation dataset of 70 experiments, FeelSight, as a step towards

benchmarking in this domain. Our neural representation driven by multimodal

sensing can serve as a perception backbone towards advancing robot dexterity.

Summary

Neural perception with vision and touch yields robust tracking and reconstruction of novel ob-

jects for in-hand manipulation.

Figure 1: Visuo-tactile perception with NeuralFeels. Our method estimates pose and shape of novel objects
during in-hand manipulation (B), by learning neural field models online from a stream of vision, touch, and propri-
oception (A).

INTRODUCTION

To perceive deeply is to have sensed fully. Humans effortlessly combine their senses for everyday

interactions—we can rummage through our pockets in search of our keys, and deftly insert them

2

to unlock our front door. Currently, robots lack the cognition to replicate even a fraction of the

mundane tasks we perform, a trend summarized by Moravec’s Paradox (1). For dexterity in

unstructured environments, a robot must first understand its spatial relationship with respect to

the manipulated object. Indeed, as robots move out of instrumented labs and factories to cohabit

our spaces, there is a need for generalizable spatial perception (2).

Robots need dexterity beyond pick-and-place, although grasping a hammer or screwdriver

may be straightforward, tool use requires the ability to rotate and re-grasp in-hand. Specific

to in-hand dexterity, knowledge of object pose and geometry is crucial to policy generaliza-

tion (3–6). As opposed to end-to-end supervision (7–10), these methods require a persistent

three-dimensional (3D) representation of the object. However, the status quo for in-hand per-

ception is currently restricted to the narrow scope of tracking known objects with vision as the

dominant modality (5). Further, it is common for practitioners to sidestep the perception problem

entirely, retrofitting objects and environments with fiducials (3, 4). To further progress towards

general dexterity, a missing piece is general, robust perception.

With visual sensing, researchers tend to tolerate interaction rather than embrace it. This

is at odds with contact-rich problems where self-occlusions is imminent, like rotating (11), re-

orienting (5,10), and sliding (12,13). Additionally, vision often fails in the real-world due to poor

illumination, limited range, transparency, and specularity. Touch provides a direct window into

these dynamic interactions, and human cognitive studies have reinforced its complementarity

with vision (14).

Researchers have made advances in tactile sensing for multifinger robots (15), most promi-

nent being vision-based fingertip sensors (16–23) like the GelSight and DIGIT. Progress in sim-

ulation (24) enables practitioners to learn tactile observation models that transfer to real-world

interactions (22, 25, 26). With a fingertip form-factor, their illuminated gel deforms on contact

and the physical interaction is captured by an internal camera. When chained with robot kine-

matics, we obtain dense, situated contact that can be processed similar to natural camera images.

3

Now given multimodal sensing, how best to represent the spatial information? Coordinate-

based learning, formalized as neural fields (27), has found great success in visual computing.

With neural fields, practitioners can create high-quality 3D assets offline given noisy visual data

and pose annotation (28–30). They are continuous representations that have several advantages

over their discrete counterparts like point clouds, meshes, and voxel maps—differentiability, pre-

cise reconstructions, and memory efficiency. Although initially developed for offline training,

lightweight signed distance field (SDF) models (31–34) have made online perception possible.

The ease of imparting generative priors (35) and pre-training (36) make neural fields more adapt-

able than classical methods.

Researchers have used neural fields not just for continuous 3D quantities like SDFs and ra-

diance (28, 29, 36), but also for pose estimation (34, 37), planning (38), and latent physics (39).

Neural fields have shown promise in robot manipulation for learning policies (40), object de-

formation (41), scene dynamics (38, 42), data generation (43), and transparent object manipula-

tion (44, 45). However, online perception and optimization of multimodal data remains an open

question.

The domain of our work—an intersection of simultaneous localization and mapping (SLAM)

and manipulation—has been studied for over two decades. A first exemplar is from Moll and

Erdmann (46), who reconstruct the shape and motion of an object rolled between robot palms.

The combination of vision and touch has been explored for reconstructing the shape of fixed

objects (26, 47–52), tracking known objects (53–55), and global localization on known ob-

jects (56, 57). In full SLAM, tactile-only methods have been investigated for simple objects

via planar pushing (58, 59), and specialized rolling fingertips (60, 61). Closest to our work is the

visuo-tactile SLAM system by Zhao et al. (62), combining dense touch from a single finger with

RGB images, but it does not address the challenging case of in-hand manipulation.

NeuralFeels is an online solution to localize and reconstruct object shape via in-hand ma-

nipulation. It builds on the prior work to demonstrate full SLAM with a multifinger robot for

4

apriori unknown objects, and robust tracking of known objects. We use a dexterous hand (63)

sensorized with commercial vision-based touch sensors (20) and a fixed RGB-D camera (Fig.

1). With a proprioception-driven policy (11) we explore the object’s extents through in-hand

rotation—using the SLAM solution to guide the policy is not an explicit objective of our work.

This falls in line with prior work in SLAM for manipulation (52, 55, 57, 62), that focus on per-

ception by isolating their evaluation from the manipulation task.

In this article, we study the role that vision and touch play in interactive perception, the

effects of occlusion, and visual sensing noise. We present our robot with a novel object, and

it infers and tracks its geometry through vision, touch, and proprioception. To evaluate our

work, we collect a benchmark dataset of 70 in-hand rotation trials in both the real-world and

simulation, with ground-truth object meshes and tracking. Our results on novel objects show

average reconstruction F-scores of 81% with pose drifts of just 4.7mm, further reduced to 2.3mm

with known computer-aided design (CAD) models. Under heavy occlusion, we demonstrate up

to 94% improvements in pose tracking compared to vision-only methods. Our combination of

rich sensing and spatial perception requires minimal hardware compared to complex sensing

cages, and is easier to interpret than end-to-end perception methods. The output of the neural

SLAM pipeline—pose and geometry—can drive further research in general dexterity, broadening

the capabilities of home robots.

RESULTS

Our multi-fingered robot hand was presented with a novel object, placed randomly between its

fingertips. We rotated the object in-hand, through a proprioception-driven policy (11), which

gave rise to a stream of visual and tactile signals. We combined the visual, tactile, and propri-

oceptive sensing into our online neural field, for a persistent, evolving 3D representation of the

unknown object. The full pipeline of our NeuralFeels is illustrated in Fig. 2.

We evaluated NeuralFeels over simulated and real-world interactions, totaling up to 70 ex-

5

Figure 2: A visuo-tactile perception stack amidst interaction. An online representation of object shape and pose
is built from vision, touch, and proprioception during in-hand manipulation. Raw sensor data is first fed into the
frontend, which extracts visuo-tactile depth with our pre-trained models. Following this, the backend samples from
the depth to train a neural signed distance field (SDF), and the pose graph tracks the neural field.

periments over different object classes. First, we demonstrated SLAM results for novel objects,

and highlight some qualitative examples. Next, we demonstrated pose-tracking when we have a

priori shape of the manipulated object. Finally, we analyzed the role touch plays in improving

perception under occlusion and visual sensing noise. Movie S1 and S2 visualize representative

neural SLAM results for the bell pepper and rubber duck objects respectively. Movie S3 provides

a longer narrated summary of our results and methodology.

Metrics and baseline

Pose and shape metric

We used the symmetric average Euclidean distance (ADD-S) (64), henceforth referred to as the

pose metric, to evaluate tracking error over time. The ADD metric is commonly used in manip-

ulation (64–67) as a geometrically-interpretable distance metric for pose error. It is computed

by sub-sampling the ground-truth object mesh and averaging the Euclidean distance between the

point-set in the estimated and ground-truth object pose frames. Rather than pairwise distance,

ADD-S considers the closest point distance, which disambiguates symmetric objects (64).

6

For shape, we compared how accurate (precision) and complete (recall) the neural SDF is in

comparison to the ground-truth mesh. The F-score, an established metric in the multi-view

reconstruction community (68,69), combines these two criteria into an interpretable [0−1] value.

To compute this, henceforth referred to as the shape metric, we first sub-sampled the ground-truth

and reconstructed meshes in their object-centric frame. Given a distance threshold, in our case

τ =5mm, precision measured the percentage of reconstructed points within τ distance from the

ground-truth points. Conversely, recall measured the percentage of ground-truth points within τ

distance from the reconstructed points. The harmonic mean of these two quantities gave us the

F-score, which jointly captured surface reconstruction accuracy and shape completion. Broadly,

a higher F-score with tighter τ bounds implied better object reconstructions.

Ground-truth shape and pose

We evaluated these metrics against the ground-truth estimates of object shape and pose. For

each object, the ground-truth shape is obtained from offline scans (Fig. S1). Ground-truth object

pose was straightforward in simulation experiments, directly exposed by IsaacGym (70). In the

real-world, we estimated a pseudo ground-truth, via multi-camera pose tracking of the experi-

ment. Instrumented solutions, such as 3D motion capture, were infeasible as it both visually and

physically interfered with the experiments. We opted to install two additional cameras and ran

NeuralFeels in pose tracking mode with the ground-truth object shape. This represents the best

tracking estimates given known shape and occlusion-free vision. For further details, refer to the

“Ground-truth shape and pose” section in the Supplementary Materials.

Object initialization

In practice, the object-centric reference frame in our SLAM experiments would be picked arbi-

trarily (such as the centroid of the initial point cloud or the robot fingers). However, the ground-

truth reference frame was defined as the centroid of the complete CAD model, oriented along its

major axis. This mismatch in the reference frames was expected in a causal system, but will lead

to an incorrect calculation of the object-centric shape metric. Additionally, object tracking with a

7

known shape is quite sensitive to initial orientation of the reference frame (71). To address these

issues, we assumed the initial object pose was known and aligned to the initial ground-truth pose.

We instead focused on the subsequent tracking and shape reconstruction, which was challenging

even with good initialization. In the future, a coarse initialization can be obtained from a feature-

based frontend (72). To ensure that our evaluation did not benefit from this object initialization,

we only started computing our pose metric five seconds into each trial.

Neural SLAM: object tracking and shape estimation

Motivation and importance

As a first experiment, we evaluated NeuralFeels’ ability to track and reconstruct unknown objects

from multimodal sensing. This is important for robots deployed in unstructured environment

with apriori unknown objects, such as households. We presented the robot with a novel object,

and the robot was tasked with building an object model on-the-fly. Our SLAM method made no

assumptions about the object geometry, which was built from scratch, or manipulation actions,

which were decided at deployment. We processed visuo-tactile data sequentially without access

to future information or category-level priors. This formulation aligns with prior dexterous ma-

nipulation work (5,6,10,11), and is less restrictive than that of Zhao et al. (62), where the object

was always in contact with a single tactile sensor and the camera was unobstructed.

We evaluated over a combined 70 experiments in simulation and real-world across of 14 dif-

ferent objects. The objects were placed in-hand, after which the policy collected 30 seconds

of vision, touch, and proprioception data. As each run was non-deterministic, we averaged our

results across 5 different seeds, resulting in a total of 350 trials. The first frame of each sequence

only presented limited visual knowledge: a single side of Rubik’s cube or large dice; the under-

side of the rubber duck. Through the course of any 30 second sequence, in-hand rotation exposed

previously unseen geometries to vision and touch filled in the rest of the occluded surfaces. In

Fig. 3, we show the main set of results, where we compared the multimodal fusion schemes

against ground-truth.

8

Figure 3: Summary of SLAM experiments. (A, B) Aggregated statistics for SLAM over a combined 70 exper-
iments (40 in simulation and 30 in the real-world), with each trial run over 5 different seeds. We compare across
simulation and real-world to show low pose drift and high reconstruction accuracy. Each boxplot represents the
aggregate error over all experiments, where the central line is the median, extents of the box are the upper and lower
quartiles, and the whiskers represent 1.0× the interquartile range (IQR). (C) The number of trials that our method
failed to track (and reconstruct) the object. (D) Representative examples of the final object pose and neural field ren-
derings from the experiments. Each object is textured by mapping the surface normal directions to a red-green-blue
(RGB) colormap. (E) The final 3D objects generated by marching cubes on our neural field. Here, we highlight the
role tactile played in both shape completion and shape refinement.

Object reconstructions

Fig. 3A shows the final shape metric at the end of each sequence for a fixed threshold τ . Here

we picked τ = 5mm for this evaluation, around 3% of the maximum diagonal length of the

objects. The greater the value of the shape metric, the closer the surface reconstructions were to

ground-truth. We observed large gains when incorporating touch, with surface reconstructions on

average 15.3% better in simulation (p < 0.001) and 14.6% better in the real-world (p < 0.001).

Our final reconstructions, as seen in Fig. 3E, had a median error of 2.1mm in simulation and

9

3.9mm in the real-world. Additionally, the second plot compares the final shape metrics against

a range of τ thresholds. Here we observed that multimodal fusion led to consistently better shape

metrics across all τ values in simulation and the real-world.

Object pose drift

In SLAM, there is a strong correlation between a low shape metric and high pose metric, as

often leads to the other. Fig. 3B plots the drift of the object’s estimated pose with respect to

the ground-truth, lower being more accurate. We observed better tracking with respect to the

vision-only baseline, with improvements of 21.3% in simulation (p < 0.001) and 26.6% in the

real-world (p < 0.001). Fig. 3C reports the number of failures in vision-only tracking compared

to NeuralFeels. Here, a failed experiment was defined as when the average pose drift exceeded

a threshold of 10mm. This was loosely based on Bauza et al. (73) where they considered 10mm

as a coarse initialization for tactile localization. To highlight the importance of our neural field,

Fig. S19 shows our method outperformed a baseline that relied only on iterative closest point

(ICP) frame-to-frame constraints.

Empirically, we observed a large pose drift in the first few seconds from initialization at

ground-truth, due to unknown shape. Over time, we built a better shape model, resulting in

more accurate pose tracking (Fig. S17 and S18). However, with pose regularization and the

lack of long-term loop closures (72, 74), small errors in pose would accumulate over time. This

cascading effect is common in SLAM (75), where pose errors cause a disagreement between the

reconstructed map and the physical world.

Due to this, we identified if any trials had an average shape metric that deteriorates over

time. This was done by computing the difference between the average shape metric across the

first 50% of the sequence and the last 50% of the sequences. We concluded that 25
150

(16%) of

the real-world trials had a shape estimates that deteriorated over time, as the other 125
150

(83%)

improved. In simulation, our method performed better: 9
200

(4.5%) of trials had shape estimates

that deteriorated over time as 191
200

(95%) improved.

10

Qualitative results

Fig. 3D visualizes the rendered normals of the posed neural field at the end of each experiment,

with the 3D coordinate axes superimposed. The final 3D reconstructions, generated via marching

cubes (76), are shown in Fig. 3E alongside the ground-truth meshes. Below that, we highlight

the gains with visuo-tactile integration for each of the reconstructed objects. We categorize these

into shape completion—coverage of object surfaces that were occluded from vision—and shape

refinement—touch measurements could compliment vision to better reconstruct visible surfaces.

Fig. 4 shows incremental pose tracking and reconstruction of objects across different time

slices of a few representative experiments. At each timestep, we highlight the input stream,

frontend depth and output object model. Movie S1 and S2 provide an animated version of the

experiments in Fig. 4A. In the current formulation of our problem touch-only SLAM was not

permissible. This is because the tracking (and thereby reconstruction) failed early in the sequence

due to lack of prior shape information and the field-of-view of the sensor could not rapidly give

us global geometry.

11

Figure 4: Representative SLAM results. (A) We show the input stream of RGB-D and tactile images, paired with
the posed reconstruction at timestep t for the bell pepper and rubber duck objects. In each case, we partially recon-
structed the object at the initial frame, and built the surfaces out progressively over each 30 second experiment. The
3D visualizations are generated by marching-cubes, in addition to the rendered normals of the neural field projected
onto the visual image. The rendering was textured by mapping the surface normal directions to a red-green-blue
(RGB) colormap. (B) Further representative results with the large dice (real-world) and peach (simulation) objects.

12

Object tracking given apriori known shape

Motivation and importance

These experiments studied the accuracy of pose tracking with NeuralFeels when provided with

apriori known object CAD models. Tracking known geometries is an active area of research in

manipulation (5, 71), with some work that incorporates touch as well (13, 53–55, 77). This is

applicable in environments like warehouses and manufacturing lines, where robots have intimate

knowledge of the manipulated objects (77). It is further useful in household scenarios, where the

robot has already generated an object model through interaction.

In implementation, the object’s SDF was pre-computed from a given CAD model. During

runtime, we froze the weights of the neural field, and only performed visuo-tactile tracking with

the frontend estimates. Similar to the SLAM experiments, we ran each of the 70 experiments

over 5 seeds, and report the pose metrics with respect to ground-truth.

Results from pose tracking

Fig. 5A shows some qualitative examples of tracking the pose of the Rubik’s cube and potted

meat can with vision and touch. For the given examples, the pose metric over the sequences are

plotted in Fig. 5B. We observed low, bounded pose error even with imprecise visual segmenta-

tion (Fig. S24) and sparse touch signals. In Fig. 5C we observed the role touch plays in reducing

the average pose error over all experiments to the range of 2.3mm. Given the CAD model, we

observed that incorporating touch could refine our pose estimates, with a decrease in average

pose error by 22.29% in simulation (p < 0.001) and 3.9% in the real-world (p = 0.21). We posit

the relatively high real-world p-value is because the real DIGIT elastomer was less sensitive,

leading to sparser contacts. Sparse contacts played a large role in full SLAM, by coarsely recon-

structing unseen surfaces, but they only played a refinement role when full shape was known.

In addition, the viewpoint did not have many occlusions—in the following section, we highlight

greater improvements when visual sensing was sub-optimal.

13

Figure 5: Neural pose tracking of known objects. (A) We show the input stream of RGB-D and tactile images,
paired with the pose tracking at timestep t for the Rubik’s cube and potted meat can objects. With known ground-
truth shape, we could robustly track objects with vision and touch. Each experiment was 30 seconds long, and the
object renderings were textured by mapping the surface normal directions to a red-green-blue (RGB) colormap. (B)
We observed reliable tracking performance, with average pose errors of 2mm through the sequence. (C) Aggregated
statistics for pose tracking over a combined 70 experiments (40 in simulation and 30 in the real-world), with each
trial run over 5 different seeds. Each boxplot represents the aggregate pose error in logscale, where the central line is
the median, extents of the box are the upper and lower quartiles, and the whiskers represent 0.25× the interquartile
range (IQR). With a known object model and good visibility, touch played the role of pose refinement. Additionally,
we note that touch-only tracking is error-prone and infeasible.

Figure 6: Ablations on occlusions and sensing noise. (A) Pose tracking results from 200 simulated cameras, in a
sphere of radius 0.5m, each facing towards the robot. Each camera view is colormapped based on the pose tracking
improvements from incorporating touch, when compared against vision-only. At occlusion-heavy points-of-view,
visuo-tactile fusion provided an unobstructed local perspective leading to improved tracking performance. (B) We
computed a [0−1] occlusion score for each of the 200 experiments, and plotted the pose errors against it. We
observed that touch played a larger role when vision was heavily occluded, and a refinement role when we there was
negligible occlusion. The shaded regions represent one standard deviation from the mean. (C) We simulated noise
in visual depth measurements, and plot the error distribution against the depth noise factor D as a violin plot. The
inset image shows the qualitative depth noise for each D, and the inner markers represent the median pose error. We
observed that with increase in noise, adding touch led to lower error distribution.

Perceiving under duress: occlusion and visual depth noise

Motivation and importance

In this section, we explored the broader benefits of fusing touch and vision in challenging scenar-

ios — occlusion and visual noise. The previous results were achieved through largely favorable

camera positioning and precise stereo depth tuning. Indeed, this attention to detail was necessary

for prior practitioners as well (5, 10), but could we also use touch to improve over sub-optimal

visual data? We considered two such scenarios in simulation, where we could freely control

these parameters, and evaluated on the pose tracking problem from the previous section.

15

The effects of camera-robot occlusion

In an embodied problem, third-person and egocentric cameras are both susceptible to occlusion

from robot motion and environment changes. For example, if we were to retrieve a cup off the

top shelf in the kitchen, we would rely primarily on tactile signals to complete the task. For the

perception system, this translates to the object of interest disappearing from the field of view,

while local touch sensing is still unaffected. To emulate this we considered tracking the pose of

a known Rubik’s cube. We simulated 200 different cameras in a sphere of radius 0.5m, each

facing towards the robot. As shown in Fig. 6A, each camera captured a unique vantage point

of the same in-hand sequence, with varying levels of robot-object occlusion. This served as

proxy for occlusion faced by an egocentric or fixed camera when either the hand or environment

occluded the object.

To simplify the experiment, we assumed the upper-bound performance of the vison-only

frontend by providing ground-truth object segmentation masks. We characterized the visibil-

ity in terms of an occlusion score by calculating the average segmentation mask area for each

viewpoint, and normalizing them to [0−1]. For example, scores closer to 0 corresponded to

viewpoints beneath the hand (most occluded), and those closer to 1 corresponded to cameras

placed atop (least occluded). We ran pose tracking experiments for each of the 200 cameras in

two modes: vision-only and visuo-tactile and compared between them.

In Fig. 6A we colormapped each camera view based on the pose tracking improvements

from incorporating touch. On average the improvement across all cameras was 21.2%, and it

peaked at 94.1% at heavily occluded views. Across the [0−1] range of occlusion scores, we

had p < 0.001. We inset frames from a few representative viewpoints and their corresponding

relative improvement with visuo-tactile fusion. In Fig. 6B the pose error for each modality is

further plotted versus the [0−1] occlusion score. This corroborated the idea that touch refined

perception in low-occlusion regimes and robustified it in high-occlusion regimes.

16

The effects of noisy visual depth

Depth from commodity RGB-D sensors are degraded as a function of camera-robot distance,

environment lighting, and object specularity. Even in ideal scenarios, the RealSense depth al-

gorithm has 35 hyperparameters (78) that considerably affect the frontend input to NeuralFeels.

To simulate this, we corrupted the depth maps progressively with a realistic RGB-D noise, and

observed the tracking performance for a known geometry.

As implemented by Handa et al. (79), we simulated common sources of depth-map errors

as a sequence of pixel shuffling, quantization, and high frequency noise. The depth noise factor

D determined the magnitude of these operations, with the depth-maps visualized in Fig. 6C. All

prior simulation experiments had been collected with D= 5, but here we varied the magnitude

from 0−50 in intervals of 10. At each noise level, we ran pose tracking across the 5 Rubik’s cube

experiments with 5 unique seeds, resulting in a total of 150 experiments. In Fig. 6C we plotted

error against the noise factor D, showing an expected upward trend in error with noise. However,

we saw better tracking when fusing touch, especially in high-noise regimes.

DISCUSSION

The experiments show NeuralFeels achieves robust object-centric SLAM for multimodal, mul-

tifinger manipulation. As shown in the Fig. 3A, we achieve average reconstruction F-scores of

81% across simulation and real-world experiments on novel objects. Simultaneously, we stably

track these objects amidst interaction with minimal drift, an average of 4.7mm. Although the

vision-only baseline may suffice for some scenarios, the results validate the utility of rich, multi-

modal sensing for interactive tasks. This corroborates years of research in interactive perception

from touch and vision (26, 77, 80), now applied on a dexterous manipulation platform.

Interactive perception is far from ideal, an embodiment can more often than not get in the

way of sensing. As seen in Fig. 4, in-hand manipulation suffers from challenges such as fre-

quent occlusions, limited field-of-view, noisy segmentation, and rapid object motion. Proprio-

17

ception helps focus the perception problem: we can accurately singulate the object of interest

through embodied prompting (refer to the ”Frontend” section of Materials and methods). When

combined with touch, we robustify our visual estimates by giving us a window into local in-

teractions. These are evident in simulated / real SLAM and pose tracking experiments, where

multimodal fusion leads to improvements of 15.3% / 14.6% in reconstruction and 21.3% / 26.6%

in pose tracking.

Qualitatively, we see touch performs two key functions: disambiguating noisy frontend es-

timates, and providing context in the presence of occlusion. The former alleviates the effect of

noisy visual segmentation and depth with co-located local information for mapping and local-

ization. The latter provides important context hidden from visual sensing, like the occluded face

of the large dice or back of the rubber duck. The final reconstructions in Fig. 3E support these

findings, with improved shape completion and refinement.

With known shape (”Object tracking given apriori known shape” section of Results), touch

plays a refinement role (Fig. 5) when there aren’t many visual occlusions. The largest gains from

incorporating touch, unsurprisingly, are in heavy-occlusion regimes (Fig. 6A and B), where we

observe up to 94.1% improvements at certain camera viewpoints. To our knowledge, a detailed

study on how object visibility affects perception has not been explored in prior manipulation

work. This doesn’t just demonstrate the complementary nature of the modalities, but further, the

ideal configurations for occlusion-free manipulation. Finally, our results in tactile-only tracking

(Fig. 5C) support the findings of Smith et al. (49) that learning exclusively from touch leads to

poor performance as it lacks any global context.

As opposed to an end-to-end perception, our modular stack marries pre-training with online

learning. This allows us to combine foundation models trained on large-scale image and tactile

data (frontend), with SLAM as online learning (backend). Furthermore, our backend is a com-

bination of state-of-the-art neural models (29) with classical least-square optimization (81) that

have found success in SLAM (82).

18

This modular design has benefits for future generalization of our system: other models of

tactile sensors (16,19,22) can be easily integrated as long as they can be accurately simulated; al-

ternate scene representations (83,84) can supplant our neural field model; additional state knowl-

edge can be integrated as factor graph costs like tactile odometry (62) and force-constraints (59);

any combination of tactile and visual sensors can be fused given appropriate calibration and

kinematics.

NeuralFeels is relevant to researchers who require spatial perception with a single camera and

affordable tactile sensing. It can be extended to not just in-hand rotation, but also object-centric

tasks like reorientation (10), pick-and-place (77), insertion (61), nonprehensile sliding (85), and

planar pushing (59). Although not explored in this work, the benefit of an online SDF is the

ability to seamlessly plan for dexterous interactions. Recent works demonstrate the benefit of

apriori-known object point-clouds (6) and SDFs (86) for goal-conditioned planning, and running

our perception stack in-the-loop is the next natural step.

System limitations

Our findings indicate that the benefits of multimodal fusion are less pronounced in real-world de-

ployment when compared to simulation. This is a common problem in sim-to-realmanipulation—

prior work has encountered similar disparities in object pose estimation (3, 5). Additionally, we

identify that: the DIGIT elastomer is less sensitive in real-world deployment, leading to sparser

contacts (Fig. 4); our reinforcement learning (RL) policy is less reliable in the real-world, often

requiring human intervention and causing large jumps in object motion (Fig. S21). To tackle

these shortcomings we can focus on real-world fine tuning of our simulator (87) and explicitly

modeling sensor deformation and stress (88). Through multimodal RL (6, 10), we can deliver

more robust policies than those driven “blindly” by proprioception.

We are currently restricted to a fixed-camera setup, with an online hand-eye calibration or ego-

centric vision; this can be relaxed. Depth uncertainty (89) is valuable information for our neural

model to handle visually-adversarial objects like glass and metal. We use vision-based touch (20)

19

over tactile-arrays (90) or binary sensing (7), but future work can consider the merits of each.

In the section titled “The role of touch” found in the Supplementary materials, we present ab-

lations on the benefits of higher resolution and a comparison against binary sensing. In our

SLAM experiments, each pose graph iteration takes 0.79 ± 0.36 secs (20 iterations of Leven-

berg–Marquardt (75)), and the shape optimization takes 0.06 ± 0.09 secs (one iteration of gra-

dient descent). For execution in a real-time loop, we can speed-up Segment Anything (SAM)

inference time (91), reduce SDF samples and downsample feature grid resolution, substitute the

pose graph with an incremental optimizer (92). Finally, we can increase tracking robustness

through feature-based methods (93) and loop-closure detection (72).

Future directions

Our method learns a 3D geometry of a novel object from scratch, and thus the pose tracker has

a higher chance of failure in the initial seconds, when the SDF is unknown. Additionally, our

rotation policy might not completely explore the object in the real-world, resulting in a lower

average final F-Score of 81%. Given an initial occluded view, integration of large reconstruction

models (36, 94, 95) can yield a good initial-guess SDF. In manipulation, Wang et al. (48) have

seen promising results in using shape priors for visuo-tactile reconstruction of fixed objects.

Geometry is just a starting point for neural models: interaction reveals latent properties like tex-

ture (85), friction (39), and object dynamics (96). With neural fields, we can embed these latents

as auxiliary optimization variables to benefit tasks that go beyond just spatial quantities. Appli-

cations can range from learning to manipulate inertially-challenging objects (like a hammer), to

identifying a grasp point from local texture (like a saucepan handle).

In summary, NeuralFeels leverages vision, touch, and robot proprioception to reconstruct and

track novel objects with high precision. The system is simpler than complex fiducial tracking,

uses affordable touch sensing, and provides more interpretable output than end-to-end percep-

tion. Our approach combines ideas from SLAM, neural rendering and tactile simulation, and

serves as an important step towards advancing robot dexterity.

20

MATERIALS AND METHODS

Similar to classical SLAM frameworks, NeuralFeels first has a frontend, which converted the the

vision (RGB-D) and touch (RGB) input stream into a format suitable for estimation (segmented

depth). Thereafter, the backend fused this data into an optimization structure that inferred the ob-

ject model: an evolving posed object SDF. An illustration of the entire pipeline is found in Fig. 2,

which we refer the reader back to throughout this section. Additionally, a narrated summary of

our method can be found in Movie S3.

Task definition

NeuralFeels incrementally built an object model, simultaneously optimizing for the object SDF

network’s weights θ and its corresponding pose xt at timestep t. For object exploration, we used

a proprioception-driven policy πt that executed the optimal action to achieve stable rotation.

The input stream (Fig. 2) of all sensors S consisted of the following: RGB-D vision—image Ict

and depth Dc
t from calibrated camera c ∈ S; RGB touch—images Ist from four DIGITs (20);

s ∈ {dindex, dmiddle, dring, dthumb} ∈ S; and proprioception—joint-angles qt from robot encoders.

Robot hardware and simulation

The Allegro hand (63) was retrofit with four DIGIT vision-based tactile sensors (20), at each

of the distal ends. The DIGIT produced a 240×320 RGB image of the physical interaction at

30Hz. The Allegro published 16D joint-angles so as to situate the tactile sensors with respect to

the base frame. The hand was rigidly mounted on a Franka Panda arm, with an Intel Realsense

D435 RGB-D camera placed at approximately 27 cm from its palm. The camera extrinsics were

computed with respect to the base frame of the Allegro through ArUco (97) hand-eye calibra-

tion. For our vision pseudo-ground-truth we used three such cameras in the workspace (Fig. 7),

jointly calibrated via Kalibr (98), to achieve approximately 1 px reprojection error. Our simulator

replicated the real-world setup: a combination of the IsaacGym physics simulator (70) with the

21

Figure 7: Experiment setup in the real-world and simulation. (A) Still frames of the Allegro robot manipulating
objects from the FeelSight dataset with our in-hand rotation policy. These visuo-tactile interactions are captured
across the real-world and physics simulation. (B) The robot cell was made up of three realsense RGB-D cameras,
an Allegro robot hand mounted on a Franka Panda, and four DIGIT tactile sensors. All real-world results used the
primary camera and DIGIT sensing, and the additional cameras were fused for our ground-truth pose tracking. In
simulation, we simulated an identical primary camera in IsaacGym with simulated touch from the TACTO simulator.

TACTO touch renderer (24). In this case, we recorded and store the true ground-truth object pose

directly from IsaacGym.

FeelSight: a visuo-tactile perception dataset

Visuo-tactile perception lacks a dataset that has driven progress in adjacent fields like visual

tracking (99), SLAM (100), and reinforcement learning (101). Towards this, we collected our

FeelSight dataset for visuo-tactile manipulation. We used an in-hand rotation policy to collect

vision, touch, and proprioception for 30 seconds per trial.

Reinforcement learning for object rotation

When we encounter a novel object, we tend to twirl it in our hand to get a better look from differ-

ent views, and regrasp it from different angles. The equivalent for a multi-fingered hand, in-hand

22

rotation, is an ideal choice for the interactive perception problem. We adopted the method of Qi et

al. (11) where they trained a proprioception-based policy in simulation, and directly transferred

it to the real-world. The policy training and deployment, reward function, and performance are

discussed in the “In-hand rotation policy” section of the Supplementary Materials. In all our

experiments, a single policy πt updated at 20Hz (300Hz low-level PD control) via the Robot

Operating System (ROS) Allegro package.

This achieved multifingered rotation of novel objects and interesting visuo-tactile stimuli.

The dataset has five rotation trials each of six objects in the real-world and eight objects in

simulation; a total 35 minutes of interaction. As explained in Fig. 7, we recorded a pseudo-

ground-truth in the real-world, and exact ground-truth poses in simulation. The policy resulted

in a translation / rotation of 25mm/sec / 32.6◦/sec in simulation and 20mm/sec / 9.9◦/sec in the

real-world.

The selected objects varied in geometry and size from 6-18 cm in diagonal length. Empiri-

cally, objects with irregular aspect ratios were harder to manipulate with the hand morphology;

our choice of objects was based on the ability of our RL policy rather than the SLAM solution.

Deformable object manipulation was deemed out-of-scope as we relied on IsaacGym (70) and

TACTO (24), which assumed rigid body simulation. Ground-truth real-world meshes were cre-

ated with the Revopoint 3D scanner (102), and the simulated objects used ground-truth meshes

from the Yale-CMU-Berkeley (YCB) (103) and ContactDB (104) datasets.

For objects like the Rubik’s cube, we assisted the policy through human intervention in case

of slip events (Fig. S21). In the real-world, we found that with this robot hand morphology it was

difficult to achieve gaits for stable cube rotation. This was because, unlike prior work that pivots

the object atop the fingers using gravity (11), we relied on frictional contact to get tactile signals

on our lateral-facing DIGITs. Thus we opted for this strategy of de-risking our experiments with

a human-in-the-loop. These interventions enabled us to collect a large set of experiments, but

they were adversarial to perception as they led to additional occlusions and sudden jumps in

23

object pose.

Method overview

We represented the object SDF as a neural network with weights θ, whose output was trans-

formed by the current object pose xt. This continuous function F θ
xt
(p) : R3 → R mapped a

3D coordinate p to a scalar signed-distance from the object’s closest surface. Online updates

were decomposed into alternating steps between refining the weights of the neural SDF θ, and

optimizing the object pose xt. Our bespoke object model represents both the pose and object

geometry over time. This is further described in the “Object model” section of Materials and

Methods.

Given RGB-D vision, RGB touch, and proprioception inputs, our frontend returned seg-

mented depth measurements compatible with our backend optimizer. These modules were pre-

trained with a large corpus of data. The shape optimizer used the frontend output and optimized

for θ at fixed object pose x̄t via gradient descent (29). Each shape iteration resulted in improved

object SDF F θ
x̄t

. Finally, the pose optimizer built and solved an object pose-graph (81) for xt

given fixed network weights θ̄. Every pose iteration spatially aligned the evolving object SDF

with the current set of frontend output. This is further described in the ”Frontend” and ”Backend:

shape and pose optimizer” sections of Materials and Methods.

Key insights

NeuralFeels is a posed neural field

The object model F θ
xt

is estimated by an alternating optimization of both the neural field weights

θ, and the object pose xt. Prior work estimated the pose of a sensor in a trained neural field by

”inverting” this optimization—iNeRF (37) is a key example of this idea. Other works looked

at jointly-optimizing the weights of the neural field and pose (32, 33, 105). In our case, robot

kinematics gave us the pose of the touch sensors, and extrinsics gave us the pose of the camera.

So, we instead flipped this paradigm to estimate the pose of the neural field with respect to

24

known-pose sensors.

Touch is vision, albeit local

Another insight is that vision-based touch could be approximated as a perspective camera model

in tactile simulators like TACTO (24). There were, however, differences that must be accounted

for in image formation. First, vision-based tactile sensor imposed their own color and illumina-

tion to the scene, which made it hard to get reliable visual cues. Second, a tactile image stream

had considerably smaller metric field-of-view and depth-range was usually in centimeters rather

than meters. Third, tactile images had depth discontinuities along all non-contact regions, as op-

posed to natural images which only had them along occlusion boundaries. Our method addressed

these challenges as it consistently used depth rather than color for optimization, sampled at dif-

ferent scales (centimeter v.s. meter) based on sensing source, and sampled only surface points

for touch, but both free-space and surface points for vision. More details are in the “Backend:

shape and pose optimizer” section of Materials and Methods.

Object model

In general, a neural SDF (29, 31, 106) represents 3D surfaces as the zero level-set of a learnable

function F (p) : R3 → R. The scalar field’s sign indicates if any query point p in the volume is

inside (negative), outside (positive) or on (≈ 0) the reconstructed surface. p is first positionally-

encoded (107) into a higher-dimensional space, which helped the network better approximate

high-frequency surfaces. This is followed by a multi-layer perceptron (MLP) that fit the encoding

to a scalar field. Typically, this network is optimized with depth samples from a camera of known

intrinsics, and annotated poses from structure-from-motion (108).

A neural SDF is more compact than the more popular neural radiance fields (28), as they

do not model color and appearance properties. This was sufficient for manipulation, as we

cared more about estimating geometry than generating novel-views. Recently, Instant-NGP (29)

demonstrated a learnable multiresolution hash table as a positional encoding that greatly accel-

erates SDF optimization with small MLP backbones. This had been successfully leveraged for

25

real-time SLAM in indoor scene (105). In our work, F θ
xt

represented the neural SDF of the object

at a given pose xt. x0 was initialized to be at the object ground-truth, and θ was randomly initial-

ized. Both shape and pose were estimated via alternating optimization, emulating the paradigm

of tracking and mapping that had achieved success in robot vision (82).

Frontend

The frontend, shown in the center column of Fig. 2, extracted depth measurements from raw

vision and touch sensing. Depth was available as-is in an RGB-D camera, but the challenge was

to robustly segment out object depth pixels in occluded interactions. Towards this, we introduced

a kinematics-aware segmentation strategy using powerful vision foundation models (109). For

vision-based touch, estimating depth from images was an open research problem (22, 25, 26, 66,

110). Towards this, we presented a transformer architecture that accurately predicted DIGIT

contact patches from inputs images. Both of the frontend networks were pre-trained from a large

corpus of data. The output of our frontend was a segmented depth image D̂s
t for each sensor

s ∈ S .

Segmented visual depth

Robust segmentation of the image stream Ict had successfully been demonstrated by image foun-

dation models, like the Segment Anything Model (SAM) (109). Trained with a vision trans-

former (ViT) in the data-rich natural image domain, SAM generalized to novel scenes for state-

of-the-art, zero-shot instance segmentation. For any input RGB image, SAM outputs an embed-

ding that must be queried by user prompts (such as point, binary mask, bounding-box, or natural

language prompts). At timestep t, we fed the model both positive and negative point prompts

alongside the mask prediction from timestep t− 1.

Through robot proprioception (refer Fig. 2), we obtained the four fingertip positions pf and

the computed the centroid pc = p̄f. Given our camera c with known projection operation Πc,

we could obtain any such 3D point p as a pixel (u, v) = Πc (p) on the image Ict . Assuming the

object exists in-hand, the centroid pixel Πc (pc) served as a useful positive prompt.

26

Figure 8: Frontend and backend. (A) Through reasoning about finger occlusion and object pose with respect to the
fingers, we can accurately prompt Segment-Anything (109) for robust output masks. (B) Representative examples
of the sim-to-real performance of the tactile transformer. Each RGB image is fed through the network to output a
predicted depth, along with a contact mask. (C) Our sliding window nonlinear least squares optimizer estimates
the object pose xt from the outputs of the frontend. Each object pose xt is constrained by the signed distance field
(SDF) loss, frame-to-frame iterative closest point (ICP), and pose regularization to ensure tracking remains stable.

In practice, this prompt alone did not suffice—the robot hand frequently appeared in seg-

mentation causing large errors in backend optimization. To address this, we first rendered the

current object model F θ
xt

onto camera c to check if it occluded any fingertip pixels Πc (pf). Each

unoccluded fingertip pixel Πc (pf) was used as a negative prompt.

27

In Fig. 8A we visualized the segmentation on real-world images, alongside the SAM prompts.

In our experiments we used the Vision Transformer Large (ViT-L) model with 308M parameters.

This achieved a speed of around 4Hz, but in practice we could use efficient segmentation mod-

els (91) for speeds up to 40Hz. The “Additional implementation details” section of the Supple-

mentary Materials highlights steps we took for robust visual segmentation.

Tactile transformer

In contrast, vision-based touch images were out-of-distribution from images SAM was trained

on, and did not directly provide depth either. The embedded camera perceives an illuminated

gelpad, and contact depth is either obtained via photometric stereo (16), or supervised learn-

ing (22,25,26,66,110). Existing touch-to-depth relies on convolution, however recent work had

shown the benefit of a ViT for dense depth prediction (111) in natural images. We trained a tactile

transformer for predicting contact depth from vision-based touch to generalize across multiple

real-world DIGIT sensors.

The architecture was trained entirely in tactile simulation, using weights initialized from a

pre-trained image-to-depth model (111). The tactile transformer represented the inverse sensor

model Ω : Ist 7→ D̂s
t where s ∈ {dindex, dmiddle, dring, dthumb} ∈ S . This architecture was based

on the dense vision transformer (111) and was lightweight (21.7M parameters) compared to its

fully-convolutional counterparts (13).

Similar to prior work (13, 26), we generated a large corpus of tactile images and paired

ground-truth depthmaps in the optical touch simulator TACTO (24). We collected 10K random

tactile interactions each on the surface of 40 unique YCB objects (103). For sim-to-real transfer

we augmented the data with randomization in sensor light-emitting diodes (LEDs), indentation

depth, and pixel noise. In TACTO, image realism was achieved by compositing with template

non-contact images from real-world DIGITs. For more details on the training and data, refer to

the “Tactile transformer: data and training” section of the Supplementary Materials.

These augmentations enabled generalized performance across our multi-finger platform, where

28

each sensor had differing image characteristics. Our tactile transformer was supervised on mean-

square depth reconstruction loss against the ground-truth depthmaps from simulation. Based

on the predicted depthmaps, the output was thresholded to mask out non-contact regions. We

demonstrated an average prediction error of 0.042mm on simulated test set, and Fig. 8B shows

sim-to-real performance on real-world images.

Backend: shape and pose optimizer

The backend took depth and sensor poses from the frontend to build our object model online.

This alternated between shape and pose optimization steps using samples from the visuo-tactile

depth stream. Similar to other neural SLAM methods (31), the modules maintained a bank

of keyframes over time, similar to the strategies of Ortiz et al. (31) and Sucar et al. (32), to

generate these samples. More details of the backend and keyframing are found in the “Additional

implementation details” section of the Supplementary Materials.

Shape optimizer

For online estimation it was intractable to optimize F θ
x̄t

using all input frames as in neural ra-

diance fields (28). We opted for an online learning approach (31, 32), which built a subset of

keyframes K on-the-fly to optimize over. The backend would both accept new keyframes based

on a criteria, and replay old keyframes in the optimization to prevent catastrophic forgetting (32).

Each iteration of the shape optimizer replayed a batch kt ∈ K of size 10 per sensor to optimize

our network. This included the latest two frames, and a weighted random sampling of past

keyframes based on average rendering loss. The initial visuo-tactile frame was automatically

added as a keyframe:

K0 = {D̂s
0 | s ∈ S} (1)

and every subsequent keyframe Kt was accepted using an information gain metric (32). For this,

the average rendering loss was computed from the frozen network F θ
x̄t

using the given keyframe

pose and compared against a threshold dthresh = 0.01m. Finally, if we had not added a keyframe

29

for an interval tmax = 0.2 secs, we forced one to be added.

Sampling and SDF loss

At each iteration, we sampled coordinates in the neural volume from kt to optimize the neural

weights θ. The first step was to sample a batch of pixels ukt from kt—a mix of surface and

free-space pixels. The surface pixels directly supervised the SDF zero level-set, and free-space

pixels carved out the neural volume. In our implementation, we sampled 50% of camera pixels

in free-space, although we only sampled surface pixels for touch. Through each pixel u ∈ ukt

given their corresponding sensor pose, we projected a ray into the neural volume. Similar to

Ortiz et al. (31), we sampled Pu points per ray, a mix of stratified and surface points.

With these samples, we computed an SDF prediction d̂u for each D̂t ∈ kt, as the batch

distance bound (31). For each ray, we split the samples into P f
u and P tr

u based on if d̂u was within

the truncation distance dtr=5mm from the surface. Our shape loss resembled the truncated SDF

loss of Azinović et al. (106):

Lshape = Lf + wtrLtr, with wtr = 10 (2)

where the free-space and truncated losses were as follows:

Lf =
1

|ukt |
∑
u∈ukt

1

|P f
u|
|F θ

x̄t
(P f

u)− dtr| and Ltr =
1

|ukt |
∑
u∈ukt

1

|P tr
u |
|F θ

x̄t
(P tr

u)− d̂u| (3)

Pose optimizer

Before each shape iteration, we used a pose graph (75) to refine the object pose xt with

respect to the frozen neural field F θ̄
xt

. We achieved this by inverting the problem to instead

optimize for the 6 degrees of freedom (DoF) poses in a sliding window of size n. At timestep t,

if we had accumulated N keyframes, this represented poses Xt=(xi)N−n≤i≤N and measurements

Mt =
(
D̂s

i | s∈S
)
N−n≤i≤N

. Similar to pose updates in visual SLAM (32, 33, 37), the network

weights θ̄ were frozen and we estimated the SE(3) poses Xt instead.

We formulated the problem as a nonlinear least squares optimization with custom measure-

ment factors in Theseus (81). Although prior work used gradient descent (37), we instead used a

30

second-order Levenberg–Marquardt (LM) solver, which provided faster convergence (75). The

pose graph, illustrated in Fig. 8C, solved for the following factors:

X̂t = argmin
Xt

Lpose(Xt | Mt, θ̄) where Lpose = wsdfLsdf + wregLreg + wicpLicp (4)

Our SDF loss Lsdf factor used the previously-defined shape loss Lshape, modified such that we

sample only about surface points of each ray. This worked well for both visual and tactile sensing

as we have higher confidence in SDFs about the surface of the object than in free-space. For each

depth measurement in Mt, we sampled surface points over M rays, and averaged the SDF loss

along each ray. This resulted in an M×n SDF loss, which we used to update the se(3) lie algebra

of Xt. We implemented a custom Jacobian for this cost function, which was up to 4× more

efficient than PyTorch automatic differentiation.

The pose regularizer Lreg factor applied a weak regularizer between consecutive keyframe poses

in Xt to ensure the relative pose updates stayed well-behaved. This was important for robustness

to noisy frontend depth and incorrect segmentations. We further added an ICP loss Licp factor

that applied iterative closest point (ICP) between the current visuo-tactile pointcloud Π−1(Mt)

and previous pointcloud Π−1(Mt−1). This gave us frame-to-frame constraints in addition to the

frame-to-model Lsdf.

Statistical analysis

All p-values presented in the paper were computed via the paired samples T-Test (112) and

reported as (p ≤ ·). Aggregated statistics in Fig. 3A, B and Fig. 5C were computed over a

combined 70 trials (40 in simulation and 30 in the real-world), with each trial run over five

different seeds. The boxplots Fig. 3A and B have whiskers that span 1.0× the interquartile range

(IQR), whereas the log-scale plot in Fig. 5C spans 0.25× IQR. Finally, the line plot in Fig. 6B is

shaded to represent one standard deviation from mean.

Supplementary Materials and Methods

Seven supplementary sections

31

Fig. S1 to S24

Table S1 to S4

Movie S1 to S3

32

References

1. H. Moravec, Mind children: The future of robot and human intelligence (Harvard Univer-

sity Press, 1988).

2. A. J. Davison, FutureMapping: The computational structure of spatial AI systems, arXiv

preprint arXiv:1803.11288 (2018).

3. OpenAI, et al., Learning dexterous in-hand manipulation, Intl. J. of Robotics Research

(IJRR) 39, 3 (2020).

4. OpenAI, et al., Solving Rubik’s Cube with a robot hand, arXiv preprint arXiv:1910.07113

(2019).

5. A. Handa, et al., DeXtreme: Transfer of agile in-hand manipulation from simulation to

reality, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (2023), pp. 5977–5984.

6. H. Qi, et al., General In-Hand Object Rotation with Vision and Touch, Proc. Conf. on Robot

Learning (CoRL) (PMLR, 2023), pp. 1722–1732.

7. Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, X. Wang, Rotating without Seeing: Towards In-hand

Dexterity through Touch, Proc. Robotics: Science and Systems (RSS) (2023).

8. I. Guzey, B. Evans, S. Chintala, L. Pinto, Dexterity from Touch: Self-Supervised Pre-

Training of Tactile Representations with Robotic Play, Proc. Conf. on Robot Learning

(CoRL) (2023).

9. I. Guzey, Y. Dai, B. Evans, S. Chintala, L. Pinto, See to touch: Learning tactile dexterity

through visual incentives, arXiv preprint arXiv:2309.12300 (2023).

10. T. Chen, et al., Visual dexterity: In-hand reorientation of novel and complex object shapes,

Science Robotics 8 (2023).

33

11. H. Qi, A. Kumar, R. Calandra, Y. Ma, J. Malik, In-hand object rotation via rapid motor

adaptation, Proc. Conf. on Robot Learning (CoRL) (PMLR, 2022), pp. 1722–1732.

12. Y. She, et al., Cable manipulation with a tactile-reactive gripper, Intl. J. of Robotics Re-

search (IJRR) 40, 1385 (2021).

13. S. Suresh, Z. Si, S. Anderson, M. Kaess, M. Mukadam, MidasTouch: Monte-Carlo infer-

ence over distributions across sliding touch, Proc. Conf. on Robot Learning (CoRL) (2022).

14. H. B. Helbig, M. O. Ernst, Optimal integration of shape information from vision and touch,

Experimental brain research 179, 595 (2007).

15. Z. Kappassov, J.-A. Corrales, V. Perdereau, Tactile sensing in dexterous robot hands,

Robotics and Autonomous Systems 74, 195 (2015).

16. W. Yuan, S. Dong, E. H. Adelson, GelSight: High-resolution robot tactile sensors for esti-

mating geometry and force, Sensors 17, 2762 (2017).

17. E. Donlon, et al., GelSlim: A high-resolution, compact, robust, and calibrated tactile-

sensing finger, Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (IEEE,

2018), pp. 1927–1934.

18. B. Ward-Cherrier, et al., The TacTip family: Soft optical tactile sensors with 3D-printed

biomimetic morphologies, Soft robotics 5, 216 (2018).

19. A. Alspach, K. Hashimoto, N. Kuppuswamy, R. Tedrake, Soft-bubble: A highly compli-

ant dense geometry tactile sensor for robot manipulation, Proc. IEEE Intl. Conf. on Soft

Robotics (RoboSoft) (IEEE, 2019), pp. 597–604.

20. M. Lambeta, et al., DIGIT: A novel design for a low-cost compact high-resolution tactile

sensor with application to in-hand manipulation, IEEE Robotics and Automation Letters

(RA-L) 5, 3838 (2020).

34

21. A. Padmanabha, et al., OmniTact: A multi-directional high-resolution touch sensor, Proc.

IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2020), pp. 618–624.

22. S. Wang, Y. She, B. Romero, E. Adelson, GelSight Wedge: Measuring High-Resolution

3D Contact Geometry with a Compact Robot Finger, Proc. IEEE Intl. Conf. on Robotics

and Automation (ICRA) (IEEE, 2021).

23. W. K. Do, M. Kennedy, Densetact: Optical tactile sensor for dense shape reconstruction,

Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2022), pp. 6188–6194.

24. S. Wang, M. M. Lambeta, P.-W. Chou, R. Calandra, TACTO: A Fast, Flexible, and Open-

source Simulator for High-resolution Vision-based Tactile Sensors, IEEE Robotics and Au-

tomation Letters (RA-L) (2022).

25. P. Sodhi, M. Kaess, M. Mukadam, S. Anderson, PatchGraph: In-hand tactile tracking

with learned surface normals, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA)

(2022).

26. S. Suresh, Z. Si, J. G. Mangelson, W. Yuan, M. Kaess, ShapeMap 3-D: Efficient shape map-

ping through dense touch and vision, Proc. IEEE Intl. Conf. on Robotics and Automation

(ICRA) (Philadelphia, PA, USA, 2022).

27. Y. Xie, et al., Neural fields in visual computing and beyond, Computer Graphics Forum

(Wiley Online Library, 2022), vol. 41, pp. 641–676.

28. B. Mildenhall, et al., NeRF: Representing scenes as neural radiance fields for view synthe-

sis, Communications of the ACM 65, 99 (2021).

29. T. Müller, A. Evans, C. Schied, A. Keller, Instant neural graphics primitives with a mul-

tiresolution hash encoding, ACM Transactions on Graphics (ToG) 41, 1 (2022).

35

30. Z. Li, et al., Neuralangelo: High-Fidelity Neural Surface Reconstruction, Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR) (2023), pp. 8456–8465.

31. J. Ortiz, et al., iSDF: Real-Time Neural Signed Distance Fields for Robot Perception, Proc.

Robotics: Science and Systems (RSS) (2022).

32. E. Sucar, S. Liu, J. Ortiz, A. J. Davison, iMAP: Implicit mapping and positioning in real-

time, Proc. Intl. Conf. on Computer Vision (ICCV) (2021), pp. 6229–6238.

33. Z. Zhu, et al., NICE-SLAM: Neural implicit scalable encoding for SLAM, Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR) (2022), pp. 12786–12796.

34. B. Wen, et al., BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown

Objects, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2023),

pp. 606–617.

35. A. Yu, V. Ye, M. Tancik, A. Kanazawa, PixelNeRF: Neural radiance fields from one or few

images, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2021),

pp. 4578–4587.

36. J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, DeepSDF: Learning con-

tinuous signed distance functions for shape representation, Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR) (2019), pp. 165–174.

37. L. Yen-Chen, et al., iNeRF: Inverting neural radiance fields for pose estimation, Proc.

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (IEEE, 2021), pp. 1323–

1330.

38. P. Grote, J. Ortiz-Haro, M. Toussaint, O. S. Oguz, Neural Field Representations of Articu-

lated Objects for Robotic Manipulation Planning, arXiv preprint arXiv:2309.07620 (2023).

36

39. S. Le Cleac’h, et al., Differentiable physics simulation of dynamics-augmented neural ob-

jects, IEEE Robotics and Automation Letters 8, 2780 (2023).

40. D. Driess, I. Schubert, P. Florence, Y. Li, M. Toussaint, Reinforcement learning with neural

radiance fields, Advances in Neural Information Processing Systems 35, 16931 (2022).

41. Y. Wi, A. Zeng, P. Florence, N. Fazeli, VIRDO++: Real-World, Visuo-tactile Dynamics

and Perception of Deformable Objects, Proc. Conf. on Robot Learning (CoRL) (PMLR,

2023), pp. 1806–1816.

42. Y. Li, S. Li, V. Sitzmann, P. Agrawal, A. Torralba, 3D neural scene representations for

visuomotor control, Proc. Conf. on Robot Learning (CoRL) (PMLR, 2022), pp. 112–123.

43. S. Zhong, A. Albini, O. P. Jones, P. Maiolino, I. Posner, Touching a NeRF: Leveraging Neu-

ral Radiance Fields for Tactile Sensory Data Generation, Proc. Conf. on Robot Learning

(CoRL) (2022).

44. J. Ichnowski, Y. Avigal, J. Kerr, K. Goldberg, Dex-NeRF: Using a neural radiance field to

grasp transparent objects, Proc. Conf. on Robot Learning (CoRL) (2022).

45. J. Kerr, et al., Evo-NeRF: Evolving NeRF for sequential robot grasping of transparent

objects, Proc. Conf. on Robot Learning (CoRL) (2022).

46. M. Moll, M. A. Erdmann, Reconstructing the shape and motion of unknown objects with

active tactile sensors, Algorithmic Foundations of Robotics V (Springer, 2004), pp. 293–

309.

47. J. Ilonen, J. Bohg, V. Kyrki, Fusing visual and tactile sensing for 3-D object reconstruction

while grasping, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2013),

pp. 3547–3554.

37

48. S. Wang, et al., 3D shape perception from monocular vision, touch, and shape priors, Proc.

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (IEEE, 2018), pp. 1606–

1613.

49. E. J. Smith, et al., 3D shape reconstruction from vision and touch, Proc. Conf. on Neural

Information Processing Systems (NeurIPS) (2020).

50. W. Xu, et al., Visual-tactile sensing for in-hand object reconstruction, Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) (2023), pp. 8803–8812.

51. Y. Chen, A. E. Tekden, M. P. Deisenroth, Y. Bekiroglu, Sliding touch-based exploration for

modeling unknown object shape with multi-fingered hands, Proc. IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS) (IEEE, 2023), pp. 8943–8950.

52. M. Comi, et al., TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction using

Vision-Based Tactile Sensing, arXiv preprint arXiv:2311.12602 (2023).

53. K.-T. Yu, A. Rodriguez, Realtime state estimation with tactile and visual sensing: appli-

cation to planar manipulation, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA)

(IEEE, 2018), pp. 7778–7785.

54. A. S. Lambert, et al., Joint inference of kinematic and force trajectories with visuo-tactile

sensing, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2019), pp.

3165–3171.

55. P. Sodhi, M. Kaess, M. Mukadam, S. Anderson, Learning tactile models for factor graph-

based estimation, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2021),

pp. 13686–13692.

56. A. Petrovskaya, O. Khatib, Global localization of objects via touch, IEEE Trans. on

Robotics (TRO) 27, 569 (2011).

38

57. G. M. Caddeo, N. A. Piga, F. Bottarel, L. Natale, Collision-aware in-hand 6d object pose

estimation using multiple vision-based tactile sensors, Proc. IEEE Intl. Conf. on Robotics

and Automation (ICRA) (IEEE, 2023), pp. 719–725.

58. K.-T. Yu, J. Leonard, A. Rodriguez, Shape and pose recovery from planar pushing, Proc.

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 1208–

1215.

59. S. Suresh, et al., Tactile SLAM: Real-time inference of shape and pose from planar pushing,

Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (2021).

60. C. Strub, F. Wörgötter, H. Ritter, Y. Sandamirskaya, Correcting pose estimates during tac-

tile exploration of object shape: a neuro-robotic study, 4th International Conference on

Development and Learning and on Epigenetic Robotics (IEEE, 2014), pp. 26–33.

61. M. Lepert, C. Pan, S. Yuan, R. Antonova, J. Bohg, In-Hand Manipulation of Unknown

Objects with Tactile Sensing for Insertion, Embracing Contacts-Workshop at ICRA 2023

(2023).

62. J. Zhao, M. Bauza, E. H. Adelson, FingerSLAM: Closed-loop Unknown Object Localiza-

tion and Reconstruction from Visuo-tactile Feedback, Proc. IEEE Intl. Conf. on Robotics

and Automation (ICRA) (IEEE, 2023), pp. 8033–8039.

63. Wonik Robotics, Allegro Hand (2023).

64. J. Tremblay, et al., Diff-DOPE: Differentiable Deep Object Pose Estimation, arXiv preprint

arXiv:2310.00463 (2023).

65. Y. Xiang, T. Schmidt, V. Narayanan, D. Fox, PoseCNN: A convolutional neural network

for 6D object pose estimation in cluttered scenes, Proc. Robotics: Science and Systems

(RSS) (2018).

39

66. M. Bauza, O. Canal, A. Rodriguez, Tactile mapping and localization from high-resolution

tactile imprints, Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) (IEEE, 2019),

pp. 3811–3817.

67. J. Tremblay, et al., Deep object pose estimation for semantic robotic grasping of household

objects, Proc. Conf. on Robot Learning (CoRL) (2018).

68. A. Knapitsch, J. Park, Q.-Y. Zhou, V. Koltun, Tanks and temples: Benchmarking large-

scale scene reconstruction, ACM Transactions on Graphics (ToG) 36, 1 (2017).

69. M. Tatarchenko, et al., What do single-view 3D reconstruction networks learn?, Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 3405–3414.

70. V. Makoviychuk, et al., Isaac Gym: High performance GPU-based physics simulation for

robot learning, arXiv preprint arXiv:2108.10470 (2021).

71. Y. Labbé, et al., Megapose: 6D pose estimation of novel objects via render & compare,

Proc. Conf. on Robot Learning (CoRL) (2023).

72. J. Sun, Z. Shen, Y. Wang, H. Bao, X. Zhou, LoFTR: Detector-free local feature matching

with transformers, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

(2021), pp. 8922–8931.

73. M. Bauza, A. Bronars, A. Rodriguez, Tac2Pose: Tactile Object Pose Estimation from the

First Touch, arXiv preprint arXiv:2204.11701 (2022).

74. P.-E. Sarlin, D. DeTone, T. Malisiewicz, A. Rabinovich, Superglue: Learning feature

matching with graph neural networks, Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR) (2020), pp. 4938–4947.

75. F. Dellaert, M. Kaess, Factor Graphs for Robot Perception, Foundations and Trends in

Robotics 6, 1 (2017).

40

76. W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface construction

algorithm, Seminal graphics: pioneering efforts that shaped the field (1998), pp. 347–353.

77. M. Bauza, et al., simPLE: a visuotactile method learned in simulation to precisely pick,

localize, regrasp, and place objects, arXiv preprint arXiv:2307.13133 (2023).

78. L. Keselman, K. Shih, M. Hebert, A. Steinfeld, Optimizing Algorithms From Pairwise User

Preferences, Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2023).

79. A. Handa, T. Whelan, J. McDonald, A. J. Davison, A benchmark for RGB-D visual odom-

etry, 3D reconstruction and SLAM, Proc. IEEE Intl. Conf. on Robotics and Automation

(ICRA) (IEEE, 2014), pp. 1524–1531.

80. E. J. Smith, et al., Active 3D Shape Reconstruction from Vision and Touch, Proc. Conf. on

Neural Information Processing Systems (NeurIPS) (2021).

81. L. Pineda, et al., Theseus: A Library for Differentiable Nonlinear Optimization, Advances

in Neural Information Processing Systems (2022).

82. C. Cadena, et al., Past, present, and future of Simultaneous Localization and Mapping:

Toward the robust-perception age, IEEE Trans. on Robotics (TRO) 32, 1309 (2016).

83. J. T. Barron, et al., Mip-NeRF: A multiscale representation for anti-aliasing neural radiance

fields, Proc. Intl. Conf. on Computer Vision (ICCV) (2021), pp. 5855–5864.

84. B. Kerbl, G. Kopanas, T. Leimkühler, G. Drettakis, 3D Gaussian splatting for real-time

radiance field rendering, ACM Transactions on Graphics (ToG) 42, 1 (2023).

85. J. Kerr, et al., Self-Supervised Visuo-Tactile Pretraining to Locate and Follow Garment

Features, Proc. Robotics: Science and Systems (RSS) (2023).

41

86. D. Driess, J.-S. Ha, M. Toussaint, R. Tedrake, Learning models as functionals of signed-

distance fields for manipulation planning, Proc. Conf. on Robot Learning (CoRL) (PMLR,

2022), pp. 245–255.

87. C. Higuera, B. Boots, M. Mukadam, Learning to Read Braille: Bridging the Tactile Reality

Gap with Diffusion Models, arXiv preprint arXiv:2304.01182 (2023).

88. Z. Si, et al., DiffTactile: A Physics-based Differentiable Tactile Simulator for Contact-rich

Robotic Manipulation, The Twelfth International Conference on Learning Representations

(2024).

89. E. Dexheimer, A. J. Davison, Learning a Depth Covariance Function, Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) (2023), pp. 13122–13131.

90. J. A. Fishel, G. E. Loeb, Sensing tactile microvibrations with the BioTac—Comparison

with human sensitivity, 2012 4th IEEE RAS & EMBS International Conference on Biomed-

ical Robotics and Biomechatronics (BioRob) (IEEE, 2012), pp. 1122–1127.

91. C. Zhang, et al., Faster Segment Anything: Towards Lightweight SAM for Mobile Appli-

cations, arXiv preprint arXiv:2306.14289 (2023).

92. M. Kaess, et al., iSAM2: Incremental smoothing and mapping using the Bayes tree, Intl. J.

of Robotics Research (IJRR) 31, 216 (2012).

93. D. DeTone, T. Malisiewicz, A. Rabinovich, Superpoint: Self-supervised interest point de-

tection and description, Proceedings of the IEEE conference on computer vision and pat-

tern recognition workshops (2018), pp. 224–236.

94. C.-Y. Wu, J. Johnson, J. Malik, C. Feichtenhofer, G. Gkioxari, Multiview Compressive

Coding for 3D Reconstruction, Proc. IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR) (2023).

42

95. Y. Hong, et al., LRM: Large Reconstruction Model for Single Image to 3D, arXiv preprint

arXiv:2311.04400 (2023).

96. B. Sundaralingam, T. Hermans, In-hand object-dynamics inference using tactile fingertips,

IEEE Transactions on Robotics 37, 1115 (2021).

97. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, M. J. Marı́n-Jiménez, Auto-

matic generation and detection of highly reliable fiducial markers under occlusion, Pattern

Recognition 47, 2280 (2014).

98. P. Furgale, J. Rehder, R. Siegwart, Unified temporal and spatial calibration for multi-sensor

systems, Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (IEEE,

2013), pp. 1280–1286.

99. T. Hodan, et al., BOP: Benchmark for 6D object pose estimation, Proc. Eur. Conf. on

Computer Vision (ECCV) (2018), pp. 19–34.

100. A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: The KITTI dataset, Intl.

J. of Robotics Research (IJRR) 32, 1231 (2013).

101. S. James, Z. Ma, D. R. Arrojo, A. J. Davison, RLbench: The robot learning benchmark and

learning environment, IEEE Robotics and Automation Letters (RA-L) 5, 3019 (2020).

102. Revopoint, Revopoint POP 3 3D Scanner (2023).

103. B. Calli, et al., Yale-CMU-Berkeley dataset for robotic manipulation research, Intl. J. of

Robotics Research (IJRR) 36, 261 (2017).

104. S. Brahmbhatt, A. Handa, J. Hays, D. Fox, ContactGrasp: Functional multi-finger grasp

synthesis from contact, Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS) (IEEE, 2019), pp. 2386–2393.

43

105. A. Rosinol, J. J. Leonard, L. Carlone, NeRF-SLAM: Real-time dense monocular SLAM

with neural radiance fields, Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS) (2023).

106. D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner, J. Thies, Neural RGB-D sur-

face reconstruction, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

(2022), pp. 6290–6301.

107. M. Tancik, et al., Fourier features let networks learn high frequency functions in low di-

mensional domains, Advances in Neural Information Processing Systems 33, 7537 (2020).

108. J. L. Schonberger, J.-M. Frahm, Structure-from-Motion revisited, Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) (2016), pp. 4104–4113.

109. A. Kirillov, et al., Segment anything, Proc. Intl. Conf. on Computer Vision (ICCV) (2023),

pp. 4015–4026.

110. R. Ambrus, et al., Monocular Depth Estimation for Soft Visuotactile Sensors, Proc. IEEE

Intl. Conf. on Soft Robotics (RoboSoft) (2021).

111. R. Ranftl, A. Bochkovskiy, V. Koltun, Vision transformers for dense prediction, Proc. Intl.

Conf. on Computer Vision (ICCV) (2021), pp. 12179–12188.

112. A. Ross, V. L. Willson, A. Ross, V. L. Willson, Paired samples T-test, Basic and Ad-

vanced Statistical Tests: Writing Results Sections and Creating Tables and Figures pp.

17–19 (2017).

113. A. Dosovitskiy, et al., An image is worth 16x16 words: Transformers for image recognition

at scale, International Conference on Learning Representations (2021).

114. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, International Confer-

ence on Learning Representations (ICLR) (2015).

44

115. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization

algorithms, arXiv preprint arXiv:1707.06347 (2017).

45

Acknowledgments: We thank Dhruv Batra, Theophile Gervet, Akshara Rai for feedback on

the writing, and Wei Dong, Tess Hellebrekers, Carolina Higuera, Patrick Lancaster, Franziska

Meier, Alberto Rodriguez, Akash Sharma, Jessica Yin for helpful discussions on the research.

Funding: S. S. and H. Q. acknowledge funding from Meta, and their work was partially con-

ducted while at FAIR, Meta. S. S. was further partially supported by NSF grant IIS-2008279

while at CMU. R. C. acknowledge support from the German Research Foundation (DFG, Deutsche

Forschungsgemeinschaft) as part of Germany’s Excellence Strategy – EXC 2050/1 – Project ID

390696704 – Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)

of Technische Universität Dresden, and from Bundesministerium für Bildung und Forschung

(BMBF) and German Academic Exchange Service (DAAD) in project 57616814 (School of Em-

bedded and Composite AI). Author contributions: S. S. developed and implemented the core

approach including tactile transformer, visual depth segmentation, neural SDF reconstruction,

pose-graph optimization, performed full-stack tuning, worked on Allegro and DIGIT integra-

tion, TACTO and IsaacGym integration, camera and robot calibration, data collection, ground

truth object scans, and live visualizations, conducted evaluations, made visuals, and wrote the

paper. H. Q. designed and implemented in-hand object rotation policies and sim-to-real policy

transfer, helped with Allegro and DIGIT integration, TACTO and IsaacGym integration, data col-

lection, did code reviews and bug fixes, and helped edit the paper. T. W. coordinated hardware

and software systems integration, performed profiling of software stack, helped with Allegro

and DIGIT integration, camera and robot calibration, ground truth object scans, and advised

on evaluations. T. F. designed and implemented forward kinematics, helped implement visual

depth segmentation, pose-graph cost functions and optimization, software systems integration,

and advised on evaluations. L. P. implemented workflow for cluster deployment, streamlined de-

velopment workflow, helped with modules that use Theseus, did code reviews and bug fixes, and

advised on evaluations. M. L. helped with Allegro and DIGIT integration, TACTO and Isaac-

Gym integration, and hardware systems integrations. J. M. advised on the project, gave feedback

46

on approach, evaluations, and the paper. Mr. K. advised on the project, managed and supported

researchers, gave feedback on approach, evaluations, and the paper. R. C. advised on the project,

helped with Allegro and DIGIT integration, TACTO and IsaacGym integration, gave feedback

on approach, evaluations, and the paper. Mi. K. advised on the project, helped design pose-

graph optimization, gave feedback on approach, evaluations, and the paper. J. O. advised on the

project, co-developed the core approach, implemented volumetric ray sampling, SDF cost func-

tion, and 2D live visualizations, helped implement workflow for cluster deployment, streamlined

development workflow, did code reviews and bug fixes, gave feedback on evaluations, designed

visuals, and edited the paper. M. M. set the vision and research direction, steered and aligned

the team, provided guidance on all aspects of the project including core approach, systems, and

evaluations, designed visuals, and edited the paper. Competing interests: The authors declare

that they have no competing interests. Data and materials availability: All the data to validate

the paper is available in the main body and supplementary materials. For multimedia, code, and

data we refer the readers to the project webpage https://suddhu.github.io/neural-feels. You may

also access the code and data through https://doi.org/10.5061/dryad.b2rbnzsqr.

47

Supplementary Materials for

Neural feels with neural fields:
Visuo-tactile perception for in-hand manipulation

Sudharshan Suresh,1,2∗ Haozhi Qi,2,3 Tingfan Wu,2 Taosha Fan,2

Luis Pineda,2 Mike Lambeta,2 Jitendra Malik,2,3 Mrinal Kalakrishnan,2

Roberto Calandra,4,5 Michael Kaess,1 Joseph Ortiz,2 Mustafa Mukadam2

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2FAIR, Meta, 1 Hacker Way Menlo Park, CA 94025, USA

3Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA 94720, USA
4 Institute of Artificial Intelligence, Technische Universität Dresden, 01062, Dresden, Germany
5The Centre for Tactile Internet with Human-in-the-Loop (CeTI), 01062, Dresden, Germany

∗To whom correspondence should be addressed; E-mail: suddhus@gmail.com.

This PDF includes

Seven supplementary sections

Fig. S1 to S24

Table S1 to S4

Movie S1 to S3

Ground-truth shape and pose

Ground-truth object scans

To compute our results we require ground-truth object shape to compare against. For this, we

use a commercial dual-camera infrared scanner, the Revopoint POP 3 (102). The hardware can

scan objects from a close range with a minimum precision of 0.05mm. Each real-world object

is placed on a turntable and scanned while rotating about its axis (Fig. S1 (a)). For object’s that

lack texture, an artificial dot pattern is tracked by adding stickers. After generating the scans, we

perform hole-filling for unseen regions of the object, like the bottom. Fig. S1 (b) shows all the

scanned meshes—some meshes are directly sourced from the YCB (103) and ContactDB (104)

48

object sets.

Pseudo ground-truth pose

In the real-world, we pass three RGB-D cameras as input into our pose tracking pipeline to use as

a pseudo ground-truth estimate. This consists of three unique cameras (front left, back right, top

down) with complementary but overlapping fields-of-view (Fig. S2 and Fig. S3 (b)). With this

broad perspective of the scene, known shape from ground-truth scans, and the tracker running

at 0.5Hz, we can obtain accurate tracking of object pose at each timestep. For the tracker to

perform well, the initial orientation of the object is chosen through manual 3D annotation.

Tactile transformer: data and training

Model architecture

Our model architecture is based on a monocular depth network, the dense prediction transformer

(DPT) (111). It comprises of a vision transformer (ViT) backbone that outputs bag-of-words

features at different resolutions, finally combined into a dense prediction via a convolutional

decoder. Compared to fully-convolutional methods, DPT has a global receptive field and the

resulting embedding does not explicitly down-sample the image.

Training and loss metric

Our image-to-depth training dataset comprises of 10K simulated tactile interactions each on the

surface of 40 YCB objects. We illustrate examples of the interactions in Fig. S4 (b). We use

the ADAM optimizer with momentum and a batch size of 100, trained with mean-square depth

reconstruction loss (Fig. S4 (a)). We start with a pre-trained small ViT (113), with an embedding

dimension of 384 patch size of 16. The dataloader splits the train, test, and validation data

into 60%, 20%, and 20% respectively. To supplement our results in the “Frontend” section of

Materials and Methods of the main text, we visualize more simulation results in Fig. S5.

Data augmentation

An important aspect of generalization and sim-to-real transfer is the augmentation applied during

49

data collection and training. These include composing simulated renderings with real-world

background images, collected from 25 different DIGIT sensors. These are shown in Fig. S4 (c).

Before rendering a sensor pose, we add pose variations by applying noise in rotation/translation

and sensing normal direction. Additionally, we randomly vary the distance of penetration into the

object surface. We create lighting augmentations by randomizing position, direction and intensity

of the three DIGIT LEDs. We add Gaussian noise to RGB data, with a standard deviation of 7px.

Finally, we use randomized horizontal flipping, cropping, and rotations of the tactile images.

Segmented visual depth

In our experiments, SAM would often over-segment objects with distinct parts (like different

faces of the Rubik’s cube). In case of these ambiguities, SAM outputs candidate masks at differ-

ent spatial scales. We apply a pruning step to select the mask prediction closest to the average

mask area we typically observe in simulation experiments. Finally, for the RGB image at t = 0

we will not have an accurate object model to check fingertip occlusion against. In this case, we

apply a distance-based heuristic to verify if the fingertips are in front or behind the object. Fig.

S6 compares the benefit of using our prompting scheme versus a simple positive prompt on the

object. With information on robot finger pixels, SAM can better singulate the object without

false positives.

Shape optimizer

The neural field is optimized via Adam (114) with learning rate of 2e-4 and weight decay of

1e-6. Instant-NGP uses a hash table of size 219 for positional encoding, followed by a 3-layer

MLP with 64 dimensional width. We use a uniform random weights θinit and initialize the SDF

by running 500 shape iterations using the first keyframe K0.

For evaluating the neural field we freeze the network and query a 2003 feature grid. The

feature grid’s extents are defined as a bounding box of 150mm side, centered at the object’s initial

pose x0. When training, we apply a series of bounding-box checks post hoc, to eliminate any

50

ray samples Pu found outside this bounding box. Mesh visualizations (Fig. 4) are periodically

generated via marching-cubes on the feature grid. We add color to the output mesh by averaging

the colored object pointcloud with a Gaussian kernel.

Pose optimizer

We use the vectorized SE(3) pose graph optimizer in Theseus (81), with 20 LM iterations of step

size 1.0. The keyframe window size n=3 and we run 2 pose iterations for each shape iteration.

The weighting factors for each loss are wsdf=0.01, wreg=0.01, and wicp=1.0.

Keyframing

The frontend output from each timestep t is considered for keyframing, as illustrated in the

flowchart Fig. S7. Two checks are performed to determine if the current frame will be added to

the set. This is based on prior work in continual learning, such as iSDF (31) and iMAP (32).

An Information Gain Check verifies if the average rendering loss of the object SDF with respect

to the frontend depth is greater than a defined threshold dthresh. If true, this set of visuo-tactile

frames is directly added to the keyframe set K. This ensures that any new depth information,

such as a new face of a cube, is directly considered a keyframe. An Image Time Check verifies

if the time since the last keyframe was added is greater than the maximum time threshold tmax.

This will force the visuo-tactile frames to be added to K, which ensures there is a steady temporal

stream of keyframes for the optimizer.

If neither check is passed, the visuo-tactile frames are added to backend optimizer at the

current timestep t and then immediately discarded. This ensures that we always use the most

recent information in the backend, but don’t add redundant frames. In our experiments dthresh =

0.01m and tmax = 0.2 secs.

Compute and timings

All statistics in the ”Results” section of the main text are generated from playing-back the trials

at a publishing rate of 1Hz. Experimentally, however, we can run the pose optimizer at 10Hz

51

and full backend at 5 Hz. Fig. S3 (a) has a minimal robot setup of an online SLAM system with

rotation policy in-the-loop. The policy runs at 2Hz, so the pose optimizer does not deal with

large object motions. Experiments are run on an Nvidia GeForce RTX 4090, while the aggregate

results are evaluated on a cluster with Nvidia Tesla V100s.

In-hand rotation policy

Policy training

We first train a policy in simulation with access to an embedding of physical properties such as

object position, size, mass, friction, and center-of-mass (denoted as zt). From the joint-angles

qt and this embedding zt, the policy outputs a proportional-derivative (PD) controller target

at ∈ R16. The policy is trained in parallel simulated environments (70) using proximal policy

optimization (115). The reward function is a weighted combination of a rotational reward, joint-

angle regularizer, torque penalty, and object velocity penalty. The resulting policy can adaptively

rotate objects in-hand according to different physical properties.

During deployment, however, the policy does not have access to these physical properties.

The estimator is instead trained to infer zt from a history of proprioceptive states, which is in

turn fed into the policy πt. A crucial change compared to Qi et al. (11) is that we train the policy

to rotate objects with DIGIT sensors on the distal ends (Fig. 1). This results in different gaits, as

it relies on finger-object friction instead of gravity, and learns to maintain contact with the DIGIT

elastomer.

The objective (reward) used to train the policy contains the rotation reward and several penal-

ties to encourage the smoothness and energy efficiency. Specifically, if we define ω as the angu-

lar velocity of the object, k̂ as the desired rotation axis, q as the robot’s joint positions, τ as the

commanded torque for the robot, and v for the object’s linear velocity, we have the rewards:

r
.
= rrot + λpose rpose + λlinvel rlinvel + λwork rwork + λtorque rtorque

where rrot
.
= max(min(ω · k̂, rmax), rmin) is the rotation reward, rpose

.
= −∥q − qinit∥22 is the

52

hand pose deviation penalty, rtorque
.
= −∥τ∥22 is the torque penalty, rwork

.
= −τ T q̇ is the energy

consumption penalty, and rlinvel
.
= −∥v∥22 is the object linear velocity penalty.

Our policy generalizes to objects seen outside training provided they have similar aspect

ratios. It is trained in large-scale simulation with primitive shapes: spheres and cylinders of

different sizes, with aspect ratio 1 about the z-axis. Concretely, the length:diameter aspect ratios

for the cylinders are: (0.8 : 1, 0.85 : 1, 0.9 : 1, 1 : 1, 1 : 1.05, 1 : 1.1, 1 : 1.15, 1 : 1.2) These work

best in the real-world given the morphology of the hand and sensor positioning. More irregular

aspect ratios are harder to manipulate, but we do show it to work with some objects in simulation

like the rubber duck and elephant.

Policy success rate

We use time-to-fall (seconds before objects fall down) to measure the success of our policy.

This is widely used in the in-hand manipulation community (10, 11). We define the trial to

be successful if the time-to-fall for an object is greater than 20 seconds (episode length). We

measure this metric in simulation across 8 objects in the FeelSight dataset. For each object, we

run 5000 trials and each trial is with randomized physical parameters (mass, center of mass,

coefficient of friction, and controller gains) and initial grasp configurations. We see an average

success rate is 73.87 ± 17.48% across all objects and detailed statistics are in Table S1.

Although it is hard to quantify the success rate in the real-world deployment, we qualitatively

note that the objects such as the bell pepper, peach, pear, and pepper grinder, can be rotated with

a high success rate. As previously stated, the policy finds it harder to rotate cubes—the Rubik’s

cube and large dice—due to the hand morphology. This is an interesting failure in sim-to-real

transfer, as these objects have the highest simulation success rates (92.78% and 84.32%).

Resulting tactile signal in the real-world

In the “Discussion” section of the main text, we highlight the sim-to-real gap in the contact

patches, which are much sparser on the real robot. The policy rate (20Hz) and low-level PD

53

control gain can affect the forces applied, and thus the indentation of the Digit. With a more

aggressive policy (and larger PD gains), it is possible that the contact may be more pronounced.

But from our experiments, this negatively affects the stability of rotation. We empirically tune

these so as to get best performance in terms of rotation stability (time-to-fall). Another option

would be to consider a more elastic tactile sensor, that deforms easier, such as the GelSight (16).

However, they are susceptible to more wear and tear through the experiments, and may not give

consistent results.

The role of touch

Sensor coverage in SLAM

To illustrate the complementary nature of touch and vision, we color the reconstructed mesh

regions based on their dominant sensing modality in Fig. S8. After running the experiments

in the “Neural SLAM: object tracking and shape estimation” section of the Results in the main

text , we first run marching-cubes on the final neural SDF. In the resultant mesh, we assign each

vertices color based on if vision or touch is the nearest pointcloud measurement to it. In the case

where there is no vision or touch pointcloud within a 5mm radius, it is assigned as a hallucinated

vertex. This is a demonstrable advantage of neural SDFs, where the network can extrapolate well

based on information in the neighborhood of the query point. From the meshes in Fig. S8 we see

that while vision gets broad coverage of each object, there is considerable tactile signal from the

interaction utilized for shape estimation.

In Fig. S9 and S10, we plot the shape completion (recall) and accuracy (precision) percent-

ages for touch and vision. These are averaged over 5 trials of a Rubik’s cube experiment in

simulation and the real-world. We obtain more complete shape reconstructions much quicker

when incorporating touch (Fig. S9). This is important as a more complete model will leads to

better pose tracking, as shown in Fig. 3. We observe a similar trend in shape accuracy, or preci-

sion. While the % starts out similarly, the optimization of tactile depth lets us get a more accurate

reconstructions in both simulation and the real-world.

54

Touch aligns local geometries with predicted depth

As described in the ”Backend: shape and pose optimizer” section of Materials and Methods

in the main text, the pose optimizer inverts the neural field to back-propagate a loss in pose

space (32, 33, 37). This has been illustrated in work such as iNeRF (37), where the rendered

neural field attempts to match the image measurements via updates to the se(3) Lie algebra of

the camera pose. As our framework leverages the idea that vision-based touch is just another

perspective camera, we show how the rendered neural field matches with tactile depth features

in Fig. S11.

Each RGB image is first passed through the tactile transformer (Section “Frontend” of Ma-

terials and Methods in the main text) to output a predicted tactile depthmap. Our pose optimizer

aligns the neural rendering of the surface with the measured depthmap, based on 3D samples

from the measured depthmap. Thus we can see that both in simulation (Fig. S11 (a)) and the

real-world (Fig. S11 (b)), the edge and patch features predicted match well with the rendered

object.

Vision-based touch versus binary sensing

We would like to understand how vision-based touch contributes in our solution, when compared

to standard binary touch sensing. We approximate binary contact by empirically thresholding

the tactile images from the existing dataset. We compute the pixelwise difference between an

input tactile image and its non-contact background. This is then converted to grayscale, and

we calculate the number of pixels that exceed a set threshold of 10 pixels. If the number of

such pixels exceeds 1000 (¿ 1% of the image size), we consider it to be a contact event. We

then downsample the image to 2 × 2 (our SDF sampling method prevents us from using point

contacts that are 1 × 1) and set all depth values in the downsampled image to the maximum

detected depth. In Fig. S12 we compare the contact output of our tactile transformer and the

binary approximation.

We consider 5 trials from a subset of SLAM experiments in simulation and real-world (Ru-

55

bik’s cube and bell pepper). The average pose and shape error are shown in Table S2 and S3—we

see that with the DIGIT sensor we can obtain a lower pose error (p < 0.001) and higher shape

metric (p < 0.001). We posit that, since shape estimation is crucial to the SLAM problem, a

larger field-of-view is important for the tactile sensor. In addition, this can validate the benefit of

our tactile transformer network in detecting contact patches and masks.

Benefits of high-resolution touch

Although our method does not explicitly rely on the high-resolution of the vision-based touch

sensor, we conduct an ablation to measure the benefits of more pixels. Specifically, we perform

nearest-neighbor interpolation of the input image/depth images to downsample them by factors

of 2×, 4×, 8×. This results in images with resolutions 240×320, 120×160, 60×80, and 30×40

respectively (Fig. S13 (a)). This simulates lower resolution vision-based touch, and is also a

coarse approximation of tactile-array based sensing (90).

With these different resolutions, we run 5 visuo-tactile SLAM trials of the real-world bell

pepper (from Table S2 and S3). Our final comparison point is against the previous binary contact

approximation. These results are shown in Fig. S13 (b). We see a gradual deterioration of

shape/pose metrics with lower resolution, ending with a sharp drop for the binary contact. These

results show that our pixel-sampling based loss works well for a range of image resolutions,

but prefers higher resolutions. This is of greater importance when performing fine-manipulation

such as tactile insertion (61) which is out-of-scope in this work.

Additional results

Shape and pose metrics over time

In Fig. S14, we plot these metrics for each of the experiments in Fig. 4, instead against 0−30 sec

timesteps. For shape, we observe gradual convergence to an asymptote close to 1.0, indicating

evolution of both shape completion and refinement over time. Also visualized here is the pre-

cision and recall metrics over time, whose harmonic mean represents the F-score. For pose, we

56

observe stable drift over time, indicating the estimated object pose lies close to the ground-truth

estimate.

Effect of camera viewpoint in the real-world

In the results section titled “Perceiving under duress: occlusion and visual depth noise” of the

main text, we establish the relationship between occlusion/sensing noise and pose error. Here, we

run additional experiments, on a limited set of viewpoints in the real-world. Fig. S3 (b) shows the

RGB-D data from three cameras: front left, back right, top down, at distances of 27 cm, 28 cm,

and 49 cm respectively from the robot. We run our vision-only pose tracker with known shape

using each of three cameras over all 5 Rubik’s cube rotation experiments and plot the average

metrics in Fig. S3 (c). We observe that the front left and back right viewpoints result in lowest

average pose error due to their closer proximity. The top down camera gives less reliable depth

measurements and segmentation output, leading to almost 2x greater pose error.

Class-specific metrics

In Fig. S15, we present additional metrics for the “Neural SLAM: object tracking and shape

estimation” section of the Results in the main text, dividing based on object class. This helps

us make some assessments on how object geometry and scale can affect our results. We first

see that objects with symmetries about their rotation axis are challenging for our depth-based

estimator. This leads to higher pose errors for the peach and pear, for example. Additionally,

partial visibility of the large objects, such as the pepper grinder, affect the completeness of the

reconstructions. Touch in this case is not advantageous since the finger gait does not span the

length of the object to provide coverage. Finally, smaller-sized objects, such as the peach, may

demonstrate better shape metrics as their scale is closer to the F-score threshold of 5mm.

Better shape leads to better tracking

To highlight the importance of a good shape estimate in object tracking, we perform an ablation

over the ground-truth mesh quality. For the Rubik’s cube tracking experiment (from the “Neural

57

SLAM: object tracking and shape estimation” section of the Results in the main text), we voxelize

the ground-truth mesh at different resolutions and feed the resulting SDF to our tracker. These

resolutions vary from our standard 0.5mm all the way to 10mm, and their renderings are shown

with the graph. Our SDF-based tracker yields acceptable results at even coarse voxelization, but

the expected trend is corroborated. This serves to motivate the need for good object priors when

the object shape is unknown.

Object pose drift

Fig. S17 and S18 supplement the results on object pose drift in results section titled “Neural

SLAM: object tracking and shape estimation” of the main text. Empirically, we observe a large

pose drift in the first few seconds from initialization at ground-truth, due to unknown shape. Over

time, we build a better shape model, resulting in more accurate pose tracking. However, in the

absence of long-term loop closures (72, 74), small errors in pose will accumulate over time. We

visualize two experiments and their corresponding errors in Fig. S18—we see that that the poor

visibility of the object is reflected in final pose metric.

Importance of the neural SDF loss

We compare a version of our SLAM system with ICP and the pose regularizer, lacking our

frame-to-model neural SDF loss. Without this module, the pose regularizer ensures the object’s

motion is smooth while the ICP factor provides updates at each timestep based on the visuo-

tactile keyframes. We run this on 5 trials of the real-world Rubik’s cube SLAM experiment,

averaging the shape and pose statistics in Table S4 (p < 0.001)

We see that ICP method fails in our comparison, accruing large pose errors and deteriorating

final shape metric. A side-by-side comparison of the visuo-tactile SLAM results are shown

in Fig. S19. This is expected due to the lack of any frame-to-model constraints that allow us

to match against the shape model we are building. Additionally, ICP performs poorly when

there is little overlap between the keyframes (such as two different sides of the cube), is highly

58

susceptible to local minima, and requires careful tuning.

Additional visualizations

All experiments from the FeelSight dataset

In Fig. S20 we illustrate all of the 70 visuo-tactile experiments that comprise our dataset, further

shown as individual sequences in Fig. S21. While both simulation and real data collection use

the proprioception-driven policy (11), the policy generalizes better in simulation across the class

of objects. Some objects in the real require a human-in-the-loop to assist with in-hand rotation;

like supporting cube-shaped objects from the bottom occasionally to prevent it from falling out

of hand.

Additional neural tracking visualizations

Fig. S22 shows rendering results along with the pose axes from the “Neural SLAM: object

tracking and shape estimation” section of the Results in the main text. We see good alignment of

the renderings when overlaid on the RGB camera frame.

Further visual segmentation results

Fig. S23A and B shows additional qualitative results of visual segmentation for real-world and

simulated rotations sequences. Failure modes of the segmentation are captured in Fig. S24.

These include partial segmentation of complex objects (potted meat can, rubber duck), partial

segmentation objects that cannot be distinguished from the robot hand (pepper grinder), and

oversegmentation of the faces of the Rubik’s cube.

Supplementary movies

Movie S1 shows online neural SLAM over a real-world experiment with the bell pepper object.

It shows the input stream of RGB-D and tactile images, paired with the posed reconstruction. We

partially reconstructed the object at the initial frame, and built the surfaces out progressively over

each 30 second experiment. The 3D visualizations are generated by marching-cubes, in addition

59

to the rendered normals of the neural field projected onto the visual image. The rendering was

textured by mapping the surface normal directions to a red-green-blue (RGB) colormap.

Movie S2 shows online neural SLAM over a simulated experiment with the rubber duck object.

It shows the input stream of RGB-D and tactile images, paired with the posed reconstruction. We

partially reconstructed the object at the initial frame, and built the surfaces out progressively over

each 30 second experiment. The 3D visualizations are generated by marching-cubes, in addition

to the rendered normals of the neural field projected onto the visual image. The rendering was

textured by mapping the surface normal directions to a red-green-blue (RGB) colormap.

Movie S3 is an 11-minute long explanation of our work with narration. It summarizes the key

results, discusses motivation and prior work, and goes through the methodology.

Figure S1: Object ground-truth with dual-camera infrared scanner. (A) Objects are placed on a turntable and
scanned, followed by post-processing to ensure complete, accurate meshes. (B) Meshes visualized for the real and
simulated FeelSight objects.

60

Figure S2: Robot cell for pseudo-ground-truth tracking. Each of the three camera’s captures a different field-
of-view of the interaction. For a pseudo-ground-truth, we pass the RGB-D stream from all three cameras into
our pipeline, with known shape obtained from scanning. The output pose tracking represents the ground-truth we
compare to in the real-world results.

Figure S3: (A) As proof-of-concept, we assembled a minimal robot cell for demonstrating our method with one
RGB-D camera and the policy deployed at 2Hz. (B) The three different RGB-D viewpoints in our full robot cell
used to collect FeelSight evaluation dataset. (C) Average pose error for known shape experiments based on camera
viewpoint. In each boxplot, the central line is the median, extents of the box are the upper and lower quartiles, and
the whiskers represent 1.0× the interquartile range (IQR). We see that the front (27cm) and back (28cm) cameras
perform comparably, and there are larger errors in the top-down (49cm) camera as it is further away.

61

Figure S4: Our tactile transformer is trained in simulation with real-world augmentation. (A) The tactile
transformer is supervised from paired RGB-depth images rendered in TACTO (24). (B) Each of these samples are
generated from dense, random interactions with 40 different YCB objects. (C) In our training, we augment the data
with background images collected from 25 unique DIGIT sensors (20).

Figure S5: Image to depth predictions by the tactile transformer on simulated contacts. Our tactile transformer
shows good performance in simulated interactions, capturing both large contact patches, as well as smaller edge
features. These objects are unseen during training, but we demonstrate an average prediction error of 0.042mm on
simulated test images (refer to the “Frontend” section of Materials and Methods in the main text).

62

Figure S6: SAM prompts for object segmentation. With our segmentation method in Fig. 8 (A), we can robustly
singulate the object in-hand from positive and negative prompts. Without knowledge of robot finger pixels, the
output often contains false positives. By rendering our shape estimate in the camera frame, we can discard any
negative prompts that are occluded by the object.

Figure S7: Keyframing schema. Based on prior work (31, 32) our keyframing strategy has two different checks
for an input set of visuo-tactile frames. The first determines if the SDF rendering loss with respect to the current
depth frame is high. If not, we verify if there has been a keyframe added in the last tmax seconds, else we force a
new keyframe. The keyframe set K is then used by the shape and pose optimizers (refer to the “Backend: shape and
pose optimizer” section of Materials and Methods in the main text)

Figure S8: Sensor coverage illustrated in final mesh reconstructions of select objects—indicating vision, touch, and
hallucinated regions.

63

Figure S9: Shape completion with vision and touch, av-
erage over five Rubik’s cube trials. The shaded regions
represent one standard deviation from the mean recall.
We see that incorporating touch gives a more complete
shape model quicker, which is better for pose tracking.

Figure S10: Shape accuracy with vision and touch,
over five Rubik’s cube trials. The shaded regions rep-
resent one standard deviation from the mean precision.
Although vision and touch start the same, we get more
accurate over time through optimization of tactile depth.

Figure S11: Six examples of tactile images compared against the neural field. We see that our tactile pose optimizer
matches the predicted local geometry with the neural surface rendering. Thus, patches and edges predicted by touch
appear in the rendering as well.

64

Figure S12: Vision-based touch versus binary contact. We use image thresholding for an approximate binary
contact, which we use to compare against our tactile transformer output in SLAM experiments. Our SDF sampling
method prevents us from using point contacts (1× 1), so instead upsample them by a factor for 2× 2 grids, with all
depth values set to the maximum detected depth.

Figure S13: Benefits of high-resolution touch. (A) We downsample the input tactile images, and their corre-
sponding depth, by factors of 2×, 4×, 8×, and binary contact from Fig. S12. (B) We compute and plot the pose
and shape metrics across 5 visuo-tactile SLAM trials of real-world bell pepper rotation (Fig. 4). The shaded regions
represent one standard deviation from the mean error. We see a gradual deterioration of shape/pose metrics with
lower resolution, ending with a sharp drop for the binary contact.

65

Figure S14: Shape and pose metrics over time for in-hand SLAM. Here, we plot the time-varying metrics for
experiments visualized in Fig. 4. First, we note the gradual increase in F-score over time with further coverage.
Additionally, we have bounded pose drift over time—for each experiment we omit the first five seconds as the metric
is ill-defined then.

Figure S15: Pose and shape metrics from visuo-tactile SLAM of each object class in Fig. 3, sorted from best-to-
worst performance. In the boxplots, the central line is the median error, extents of the box are the upper and lower
quartiles, and whiskers represent 1.0× the interquartile range (IQR)

66

Figure S16: (A) We plot the average pose error from 5 trials of the Rubik’s cube SLAM experiment in the real-
world. In each boxplot, the central line is the median, extents of the box are the upper and lower quartiles, and the
whiskers represent 1.0× the interquartile range (IQR). The front (27cm) camera is generally occluded by the fingers
more than the back (28cm), the top-down camera is further away (49cm). (B) Shape quality versus pose drift: We
vary the quality of our SDF by voxelizing the ground-truth mesh at different resolutions. This ranges from 0.5mm
to 10mm, with deteriorating tracking results. The shaded region represents one standard deviation from the median
pose drift.

Figure S17: Average object drift drift over time. This is computed across all simulation and real-world SLAM
experiments from the main text. The shaded regions represent one standard deviation from the mean pose drift.

67

Figure S18: Visualization of pose drift. We illustrate the pose drift in two separate bell pepper experiments, with
final pose metrics of 5.8mm and 8.24mm respectively. In the second experiment, the object is upside down with
poor visibility, and this is reflected in the growing pose drift.

Figure S19: Importance of neural SDF loss. Example visualization of ours v.s. ICP SLAM (Table S4) for in-hand
rotation of the Rubik’s cube. Without the frame-to-model constraint such as the neural SDF loss, we accrue large
pose errors and deteriorating shape over time.

68

Figure S20: A collage depicting the entirety of the FeelSight dataset. We collect five sequences each in the
real-world across six different objects, and five sequences each in simulation across eight different objects. In this
collage each column is a unique object, and each row is a unique sequence.

69

Figure S21: Sequences in the FeelSight dataset. Zoomed-in viewpoint of sequences from the collage in Fig. S20,
in the real-world and simulation.

70

Figure S22: Further visualizations of neural tracking experiments. These complement the qualitative results
from the main text for both (a) simulated and (b) real-world experiments.

Figure S23: Additional results on visual segmentation. Our segmentation module can accurately singulate the
in-hand object in both (a) real-world and (b) simulated image sequences.

Figure S24: Imprecise segmentation of objects. We highlight some frames where the visual segmentation fails.
We composite each Realsense RGB image with the segmented depth map.

71

Table S1: Statistics for our in-hand exploration policy. We show the episode length (in seconds), object rotation
done in one episode (in radians), and success rate of the policy.

Object name Episode length (s) ↑ Rotation (rad) ↑ Success rate (%) ↑

Large dice 18.13 12.79 84.32
Rubber duck 18.33 9.39 86.34

Elephant 15.93 5.56 63.14
Rubik’s cube 19.09 13.12 92.78

Pear 12.45 7.35 42.42
Potted meat can 14.78 3.66 53.68

Lego block 17.32 9.89 77.14
Peach 18.73 14.37 91.16

Overall 16.85 9.52 73.87

Table S2: Binary contact ablation for pose. Avg. pose metric (↓) over 5 visuo-tactile SLAM experiments show
DIGIT sensing outperforms binary contact in both sim/real (p < 0.001)

Sensing Avg. pose error ± SD (mm)

Simulation (Rubik’s
cube)

Real-world (Bell
pepper)

Binary approx. 4.46 ± 1.66 6.05 ± 0.97
Digit sensor 3.07 ± 0.61 4.71 ± 0.68

Table S3: Binary contact ablation for shape. Avg. shape metric (↑) over 5 visuo-tactile SLAM experiments show
DIGIT sensing outperforms binary contact in both sim/real (p < 0.001)

Sensing Avg. F-Score ± SD

Simulation (Rubik’s
cube)

Real-world (Bell
pepper)

Binary approx. 0.67 ± 0.01 0.55 ± 0.06
Digit sensor 0.98 ± 0.00 0.76 ± 0.02

Table S4: Ours v.s. iterative closest point (ICP) SLAM (p < 0.001) for five trials of the real-world Rubik’s cube
experiment from the results section titled “Neural SLAM: object tracking and shape estimation” of the main text.

Modality Pose metric (mm) (↓) Shape metric (F-Score) (↑)

Ours 5.862 0.883
ICP SLAM 13.486 0.545

72

