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Abstract. Seasonal snowpack is an important predictor of
the water resources available in the following spring and
early-summer melt season. Total basin snow water equiva-
lent (SWE) estimation usually requires a form of statistical
analysis that is implicitly built upon the Gaussian framework.
However, it is important to characterize the non-Gaussian
properties of snow distribution for accurate large-scale SWE
estimation based on remotely sensed or sparse ground-based
observations. This study quantified non-Gaussianity using
sample negentropy; the Kullback—Leibler divergence from
the Gaussian distribution for field-observed snow depth data
from the North Slope, Alaska; and three representative SWE
distributions in the western USA from the Airborne Snow
Observatory (ASO). Snowdrifts around lakeshore cliffs and
deep gullies can bring moderate non-Gaussianity in the
open, lowland tundra of North Slope, Alaska, while the
ASO dataset suggests that subalpine forests may effectively
suppress the non-Gaussianity of snow distribution. Thus,
non-Gaussianity is found in areas with partial snow cover
and wind-induced snowdrifts around topographic breaks on
slopes and on other steep terrain features. The snowpacks
may be considered weakly Gaussian in coastal regions with
open tundra in Alaska and alpine and subalpine terrains in
the western USA if the land is completely covered by snow.
The wind-induced snowdrift effect can potentially be parti-

tioned from the observed snow spatial distribution guided by
its Gaussianity.

1 Introduction

Modeling of the spatial variability in snow is important for
large-scale Earth surface modeling since atmospheric cir-
culation is sensitive to the presence of snow cover (e.g.,
Aas et al., 2017; Meng, 2017; Mott et al., 2015, 2017;
Nitta et al., 2014; Younas et al., 2017). Since subgrid vari-
ability often causes appreciable bias in weather predictions
(e.g., Lalande et al., 2023; Rudisill et al., 2024), accurate
snow cover quantification can potentially improve the pre-
dictability of weather, planetary-boundary-layer evolution,
convective cloud formation, and even tropical cyclogenesis
(Santanello et al., 2018). Hence, the subgrid variability in
snow cover has been incorporated into operational regional
weather-forecasting models such as the High-Resolution
Rapid Refresh (HRRR) model (He et al., 2021).
Observations of seasonal snow storage in mountainous
areas through remote-sensing and ground-based measure-
ments are a direct and reliable indicator of the water supply
during the following spring season in downstream regions
(e.g., Fleming et al., 2023; Sengupta et al., 2022). However,
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total basin snow water equivalent (SWE) estimation usually
requires a statistical relationship such as the snow depletion
curve (SDC), which correlates with observables such as the
snow cover area fraction (SCF). Based on a study of the
observed snow distributions in the Reynolds Creek experi-
mental watershed in Idaho, Luce et al. (1999) showed that
one snow distribution can reasonably represent the SDC evo-
lution for the rest of the season. Also, Luce and Tarboton
(2004) showed a high degree of similarity in 9 years of di-
mensionless depletion curves measured in the same basin.
Shamir and Georgakakos (2007) demonstrated the consis-
tency of SDC over a season in the American River using a
distributed model. The subseasonal and interseasonal con-
sistency in SDCs suggests the possibility for subgrid snow
characterization as well as basin-wide SWE estimation from
SCF data such as the MODIS product (Hall et al., 2006).

As remote-sensing technologies advance, seasonal snow
distribution characterization becomes more approachable
with multi-sensor methods. For example, Tarricone et al.
(2023) analyzed three interferometric synthetic aperture
radar (InSAR) image pairs to assess SWE evolution using the
snow-focused multi-sensor method with uninhabited aerial
vehicle synthetic aperture radar (UAVSAR) and L-band In-
SAR data, as well as gather optical fractional snow-covered
area (SCA) information. However, to estimate the total basin
SWE in water resource management practices, statistical em-
pirical relationships are required to fill gaps in the spatial and
temporal resolutions — even when using these remote-sensing
observations (Tsang et al., 2022). For example, Meloche et
al. (2022) assumed a log-normal distribution to represent the
sub-pixel variability in remotely sensed data. Thus, uncer-
tainty and subgrid variability must be accounted for when
using statistical characterization in SWE estimation.

The most popular choice for the probability density func-
tion (PDF) of snow is the log-normal distribution, which
inherently eliminates negative snow depth (Donald et al.,
1995; Liston, 2004; and many others). Brubaker and Me-
noes (2001) chose a beta distribution, while Kolberg and
Gottschalk (2006) selected a two-parameter y distribution.
Although these common distributions are in the exponential
family, they were primarily chosen for convenience. Indeed,
the representativeness of these parametric probability dis-
tributions remains questionable for different landscapes and
snowpack ages (e.g., Skaugen and Randen, 2013; Egli and
Jonas, 2009; He et al., 2019). Moreover, these approaches
for bounded distributions may not work for evolving snow-
packs with partial SCA where values of zero are present in
the probability domain.

In theory, without microtopography and meteorological
effects and since the landing location of each snow parti-
cle fallen from the atmosphere is considered an independent
and identically distributed (IID) random variable, the result-
ing snow depth or SWE distribution should asymptotically
approach a Gaussian distribution due to the central limit the-
orem. He et al. (2019) reported non-Gaussian snow distribu-
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tions in open areas as well as Gaussian snow distributions in
the fully snow-covered forested areas during the peak snow
season using airborne light detection and ranging (lidar) ob-
servations at Snowy Range, Wyoming. This implies the pres-
ence of both systematic (non-Gaussian) and random (Gaus-
sian) mechanisms in snow accumulation and ablation pro-
cesses. Therefore, it is possible to identify the potential fac-
tors as signals that make the snow distribution deviate from
a Gaussian distribution by analyzing the resultant snow dis-
tributions.

This study applies negentropy to analyze the non-
Gaussianity of snow distributions in the Arctic tundra, as
well as in alpine and subalpine landscapes in North Amer-
ica. Negentropy measures the departure in entropy between
a sampled distribution and a Gaussian distribution of iden-
tical variance and mean. Signals of interest (e.g., system-
atic snowdrift patterns) can be extracted as non-Gaussian
components because pure random noise asymptotically be-
comes Gaussian in theory. This is the main idea of inde-
pendent component analysis (ICA; Hyvirinen et al., 2001).
This work presents the quantified non-Gaussianity of the ob-
served snow distributions through a variety of snow distribu-
tion data, including intense, direct hand measurements within
30m grids using a probe, and indirect measurements us-
ing snow-machine-attached ground-penetrating radar (GPR),
UAV-based photogrammetry, and the Airborne Snow Obser-
vatory (ASO) SWE products.

2  Methods
2.1 Negentropy

To measure the non-Gaussianity of any data, we implement
the information theory metric of negentropy as the objective
function since negentropy is equal to the Kullback-Leibler
divergence between p, and a Gaussian distribution with the
same mean and variance as p,. There is a well-known propo-
sition that Gaussian density has the largest information en-
tropy among all unbounded distributions, with the same first-
and second-order statistics. As such, the non-Gaussianity of
an observed distribution can be quantified by negentropy J,
which is defined as follows (Hyvirinen et al., 2001):

J(X)=S(Xgauss)_S(X)s (D

where S is the information entropy of X. The information en-
tropy can assume a diversity of metrics ranging from the most
general, capturing microphysical event-scale codependence
in nonlinear statistical mechanics (Perdigao, 2018), to a sim-
ple assumption of basic event-scale independence in classi-
cal information theory (Shannon, 1984, statistical entropy).
For the purpose of this study, we take the latter simple form,
which is defined as

S(X) = —/Px(n)log[px(ﬁ)]dn, 2)
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where p, is the PDF of X, and n is a dummy variable for
the integration. The Edgeworth expansion (Edgeworth, 1905)
can provide an approximation for a PDF of X as follows:

pe(X) =
o[, s 3 3)
- |:1+ 6H3(U)+24H4(U)+72H6(U)+“':|’

where U is the standardized random variable of X, H(U)
are Chebyshev—Hermite polynomials, ¢ (U) is the standard
normal density, and ky is the kth-order cumulant of U.
Substituting the Edgeworth series into the negentropy def-
inition, Comon (1994) obtained the analytical expression

1 2 7 4 1 2 -2
&/Q‘ + &1@ - §K3 K4+ O(n™ 7). @
This is the estimator of negentropy at the fourth-order cumu-
lant. In practice, a more intuitive approximation is commonly
used:

1 2
.](X): EK3 +

J(X) = %skew(U)z + %kurt(U)z, 5)

where skew and kurt are the skewness and kurtosis of the
standardized variable, U, respectively.

The sample estimation of the higher-order moment and
cumulant (e.g., skew and kurtosis coefficients) is known to
be sensitive to the presence of outliers. In this study, the in-
terquartile range (IQR) method was adopted for outlier re-
moval, with a minimum removal that lies outside the range
of 3 times the IQR.

While negentropy metrics and the corresponding Edge-
worth approximations have previously been explored and
further developed in atmospheric sciences and in physics,
including derivations and implementations to higher-order
distributions and elaborate numerical and analytical estima-
tors (Pires and Perdigdo, 2007; Perdigdo, 2010, 2017), the
present study brings a simplified treatment not yet explored
in hydrology that is made for swift and seamless integra-
tion within hydrological and water resource system investi-
gations.

2.2 Data collection

We analyzed four types of data with different collection
methodologies at various scales in this study, as listed in
Table 1. The first is manual snow depth surveys using a
GPS-aided snow probe (Magnaprobe; Sturm and Holmgren,
2018), the second is snow depth transects using a snow-
machine-attached GPR, the third is snow depth maps using
UAV-based photogrammetry, and the last is the SWE product
of the ASO. The first three datasets are for the open tundra
in the Arctic Coastal Plain (ACP) of Alaska, while the ASO
data are for the alpine and subalpine regions of the continen-
tal USA. Detailed data specifications associated with the col-
lection methodologies will be presented in the Results sec-
tion below. Figure 1 displays the map of the snow depth sur-
veys in North Slope, Alaska, USA.

https://doi.org/10.5194/tc-18-5139-2024

3 Results

3.1 Manual snow surveys at Teshekpuk, North Slope,
Alaska (May 2022)

Snow depth data were collected using a Magnaprobe (Sturm
and Holmgren, 2018) in five 30 m x 30m grids with 1 m grid
spacing north of Teshekpuk Lake, North Slope, AK, in May
2022. The GPS location of each measurement was automati-
cally recorded. Figure 2 presents the interpolated snow depth
distributions and corresponding histograms (right columns)
in five areas near Teshekpuk. The observer measured the
point scale snow depth at approximately every 1 m along a
line toward flags placed 1 m apart on the surface. Since the
data points were selected from undisturbed snow, the loca-
tions are unevenly distributed despite the snowpacks gener-
ally being highly hardened by wind. The relative spatial loca-
tions are considered accurate since the operator stood on the
same side of the probe and followed pre-marked lines based
on the tape measure; however, the absolute plotted coordi-
nates in the figures may not be trustworthy due to the GPS
horizontal accuracy of < 3 m. The topography of these grids
in the ACP is very flat, with elevation variation of less than
1 m, while accurate absolute elevation data are hard to com-
pare due to the spatial inaccuracy of the Magnaprobe.

The graphics in the left column of Fig. 2 present the point
depth observation locations and interpolated snow depth dis-
tributions using the nearest-distance method. The number
of data points denoted by the black dots is n =951 (TL1-
1), n =925 (TL2-1), n =904 (TL3-1), n = 927 (Wade Piper
Pond), and n = 960 (Wade Piper Basin).

The corresponding snow depth histograms and three fitted
distributions are displayed in the right column. The statistical
mean, standard deviation, skew coefficient, and negentropy
(J) are reported at the top of each graph. In general, the snow
depth distributions in these areas are almost Gaussian distri-
butions since the computed negentropy is small. However,
the negentropy of the snow distribution affected by wind-
induced snowdrift (sastrugi) on frozen lakes is larger than the
tundra covered by sedge and herbaceous vegetation. In prac-
tice, the non-Gaussianity of seasonal snow depth may have
been negligible in the coastal open tundra (including frozen
open waters) in the Teshekpuk study area in May 2022.

3.2 Snow depth surveys using GPR along multiple
transects in Inigok, North Slope, AK (April 2019)

The Inigok area of North Slope, Alaska (70.001°N,
153.068° W) is characterized by paleo-sand dunes (Carter,
1981), hydro-geomorphological processes, and permafrost
landforms such as thermokarst lake formation and drainage.
The landscape is characterized by relatively steep terrain and
substantial wind-induced snowdrifts (deeper than 5 m), espe-
cially around lake shores and drainage channels (e.g., Rangel
et al., 2023a).

The Cryosphere, 18, 5139-5152, 2024
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Table 1. List of snow datasets.

N. Ohara et al.: Characterization of non-Gaussianity in the snow distributions of various landscapes

Site name Location Lat/long Spatial Elevation range  Data collection Date Sample size  Landscape and land
resolution method cover
TLI-1 Teshekpuk, 70.738°N, ~1m 0.91-1.20ma.m.s.l. Magnaprobe 24 April 951  Open tundra, sedge,
AK 153.970° W 2022 and herbaceous
plants
TL2-1 Teshekpuk, 70.740° N, ~1m 2.35-2.54mam.s]. Magnaprobe 25 April 925  Open tundra, sedge,
AK 153.956°W 2022 and herbaceous
plants
TL3-1 Teshekpuk, 70.739°N, ~1m 1.86-2.18 ma.m.s.l.  Magnaprobe 25 April 904  Open tundra, sedge,
AK 153.928° W 2022 and herbaceous
plants
Wade Piper ~ Teshekpuk, 70.751°N, ~1m 2.18-2.50ma.m.s.l. Magnaprobe 27 April 927  Open tundra, sedge,
Pond AK 153.870°W 2022 and herbaceous
plants
Wade Piper ~ Teshekpuk, 70.746° N, ~1m 3.68-3.88ma.m.sl. Magnaprobe 29 April 960  Open tundra, sedge,
Basin AK 153.854°W 2022 and herbaceous
plants
Inigok Inigok, 70.001°N, ~0.5m 37.8-59.1ma.m.sl. GPR May 16655  Open tundra, sedge,
AK 153.068° W 2019 and herbaceous
plants
CALM Utqiagvik, 71.3026°N, 0.25m —1.93-3.8ma.m.s.l. UAV May 2928240 Open tundra, sedge,
AK 156.6008° W photogrammetry 2019 and herbaceous
plants
Upper California 37.461°N, 50m 1142-3965ma.m.sl. ASO SWE 3 April 470213  Steep, rocky alpine
Tuolumne 119.494°W product 2013 terrain, partially
River forested
East River Colorado 39.037°N 50m 2343-3901 ma.m.s.l.  ASO SWE 31 March 667883  Alpine and
106.978° W product 2018 subalpine forest
Olympic Washington ~ 47.792°N 50m 0-2432ma.m.sl. ASO SWE 29 March 2066907 Dense forest and
Mountains 123.650°W product 2016 high peaks
%
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Figure 1. Map of the snow survey locations in Alaska, USA, and the selected ASO sites.

Snow depth surveys using a GPR are particularly ef-
fective for deep-snow areas since the Magnaprobe is
only 1.5m long. Considering the lower limit of the se-
lected GPR antenna, we collected several GPR transects
(Mala ProEx, 800 MHz, GuidelineGeo, Sundbyberg, Swe-
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den) around Inigok, where the snowpack was deeper than in
the coastal area. The antenna was placed on a sled towed
by a snow machine traveling <5kmh™!. The effect of
compaction by the snow machine was considered negligi-
ble because the snow was highly wind-packed and therefore
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Figure 2. Manual snow distributions in the Teshekpuk Lake area, North Slope, Alaska (May 2022), and corresponding histograms with fitted
probability density functions (PDFs). J denotes the computed negentropy. Snow depth histograms in open tundra in 30m x 30 m squares
are generally categorized as weakly non-Gaussian. The approximated center coordinates of the grids are 70.738° N, 153.970° W (TL1-1);
70.740° N, 153.956° W (TL2-1); 70.739° N, 153.928° W (TL3-1); 70.751°N, 153.870° W (Wade Piper Pond); and 70.746° N, 153.854° W
(Wade Piper Basin).
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was not affected by the weight of the snow machine dur-
ing data collection. The GPR data were processed in Re-
flexW (Sandmeier Software, Karlsruhe, Germany) using a
low-frequency-noise removal (dewow) and a linear gain with
topographic correction adapted from the ArcticDEM (Rangel
et al., 2023b). Maps of snow depth estimated from the GPR
transects are shown in Fig. 3. The line color denotes the ob-
served snow depth (the darker, the deeper). A substantial
snowdrift developed near the lakeshore’s banks due to its
steep topography.

Figure 4 displays the histograms of GPR snow depth data
in Inigok, North Slope, Alaska, in May 2019 when using
(panel a) all transect data and (panel b) the frozen lake sec-
tions only. The snow depth histogram of all transects shows
strong non-Gaussianity due to a mix of steep and flat terrain.
However, the histogram of the partial dataset for only the
frozen lakes shows much weaker non-Gaussianity. In fact,
snow distribution after removing the deep-snow parts can be
reasonably approximated by the Gaussian distribution with a
negentropy of 0.037, which is the same level as Wade Piper
Pond (Fig. 2) in the previous section (J = 0.040). There-
fore, the snowdrift due to steep terrain is considered a major
source of non-Gaussianity in snow depth in open tundra.

3.3 Snow depth distribution based on UAV footage of a
drained lake basin within the CALM 1 km grid
near Utqiagvik, AK (May 2019)

Figure 5 (left panel) presents the observed snow distribu-
tion of a drained thermokarst lake basin referred to as Cen-
tral Marsh, part of the Circumpolar Active Layer Monitor-
ing (CALM) network located east of Utqiagvik, Alaska. The
snow depth was estimated by differentiating the snow surface
elevation and the snow-free ground elevation using UAV sur-
veys with the photogrammetry technique. The images were
collected on 4 August 2019 (snow-free) and 15 April 2019
(snow-covered), using a Phantom 4 UAV (P4RTK). Images
were post-processed/georeferenced to NADS83 zone 4 north
in ellipsoid heights using a propeller AeroPoint and Pix4D
(version 4.3.33 for the April survey, 4.4.12 for the August
survey) at a 0.25 m spatial resolution (Nichols, 2020). The
vertical accuracies of these measurements are 18 and 10 cm
for the April and August surveys, respectively. The horizon-
tal resolution for the snow depth is 1 m.

The CALM site is situated in the ACP in northern Alaska,
which has typical complex terrain due to the recently drained
thermokarst lake with sparse or negligible vegetation and
well-developed polygons. There is an obvious smoothed
bluff in the center of the domain, and the west side of this
bluff tapers into the drained lake basin. The incised drainage
channels cause steep land features that capture sizable snow-
drifts in the southern part. In the southern portion of the area,
the polygons are formed by ground-surface cracks with ice
wedge development beneath found in the lower and higher
center parts in the left panel of Fig. 5.

The Cryosphere, 18, 5139-5152, 2024

The negentropy distribution in the moving window may
be obtained from these gridded snow data at a very high spa-
tial resolution. The right panel of Fig. 5 presents the com-
puted negentropy map in the CALM area with a 30 m mov-
ing window. Overall, non-Gaussianity at the CALM site was
found to be weak — even with the smoothed bluff and despite
high snow depth. However, as whiter parts in right panel of
Fig. 5 are found along the drainage channels, topographic
discontinuity around the incised gully seems to cause signif-
icant non-Gaussianity. Additionally, vegetation patches may
cause spotty non-Gaussianity in the northern part of the area.
Conversely, since the southern parts covered by the polygons
show a darker color (J < 0.025), except the drainage chan-
nels, the ground-surface polygon does not make snow distri-
bution non-Gaussian. Overall, snowpack in the coastal parts
of the ACP can be reasonably approximated by a Gaussian
distribution since most of the CALM area showed low ne-
gentropy of less than 0.2.

Figure 6 presents the snow depth histogram, which looks
like a Gaussian distribution with a long tail due to snowdrift
around the gullies in the CALM grid. In fact, when the deep
snowdrifts of the gully and the bluff are removed from the
samples, the histogram more closely resembles a Gaussian
distribution (see the right panel in Fig. 6).

3.4 SWE products based on ASO data for the selected
watersheds

SWE is a stable and direct indicator of snow/water distri-
bution in landscapes. As such, the SWE products from the
Airborne Snow Observatory (ASO) were selected (Painter et
al., 2016) to examine the Gaussianity of snow distributions
in different climate zones and landscapes with alpine-to-
subalpine snowpack. The snow depth and SWE distributions
were estimated from the coupled imaging spectrometer and
scanning lidar, then combined with distributed snow mod-
eling (including snow density simulation). The ASO snow
products are considered some of the most comprehensive in-
stantaneous snow distribution estimations at a fine resolution
(50m). We used the processed snow product to character-
ize the medium-scale snow distribution with the same outlier
treatment (IQR method) as described above.

The analysis of three representative SWE datasets in
the western USA is presented. These include the upper
Tuolumne River watershed in California (USCATB, 3 April
2013), the East River watershed above Gunnison, Colorado
(USCOGE, 31 March 2018), and the Olympic Mountains in
Washington (USWAOL, 29 March 2016).

3.4.1 Tuolumne River watershed, California
Figure 7 presents the composite graphics of the data and the
analysis results for the upper Tuolumne River watershed on

3 April 2013. Panel (a) shows the SWE distribution estimated
by the ASO, while panel (b) visualizes the normalized SWE

https://doi.org/10.5194/tc-18-5139-2024
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(b) sections on frozen lakes only. Snow distributions in the Inigok area are highly non-Gaussian, while the frozen lake subset shows weak

non-Gaussianity.

histogram or PDF within the entire domain with the fitted
theoretical distributions. Panels (c) and (d) are the negen-
tropy distributions of the SWE within 1500 m moving win-
dows with and without partially snow-covered cells. Panel (e)
shows the National Land Cover Database (NLCD) 2011
land cover map for reference. The watershed (1175 km?) is
one of the drainages to California’s Central Valley through
the Hetch Hetchy Reservoir in the southern Sierra Nevada
mountain range. The boundary of the catchment is mostly
comprised of steep, rocky, alpine terrain (which contributes
to the attractive land features of Yosemite National Park),
whereas the bottom of the valley is relatively flat due to past
glacial processes. The snow distribution (panel a) shows a
clear relationship with elevation, while the SWE barely ex-
ceeded 1 m during the observation period in peak snow sea-
son. The overall SWE histogram (panel b) illustrates strong
non-Gaussianity because of snow-free and shallow accumu-
lation areas in the watershed (bounded distribution effect).
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However, the local negentropy map with moving win-
dows (panel c) shows low non-Gaussianity except in the low-
elevation areas. In fact, the majority of high non-Gaussianity
cells are from partially snow-covered cells. When the par-
tially snow-covered cells are removed in panel (d), the local
negentropy falls by less than 0.15 in most of the watershed.
Therefore, the bounded distribution effect in the probability
domain from the partially snow-covered cells brings substan-
tial non-Gaussianity into the snow distribution.

Additionally, the spatial resolution of 50 m may be too
coarse to capture the local snowdrift effect discussed in
Sect. 3.2 and 3.3 using the very-fine-resolution data since
snowdrift extent around steep cliff is often smaller than the
resolution of medium-to-large-scale snow products. There-
fore, even with fully snow-covered areas, fine-resolution data
are required for snowdrift characterization, which is po-
tentially important for more accurate snow storage estima-
tion. However, further study is recommended using finer-
resolution snow data, although the combined effect of steep
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Figure 5. The snow depth distribution based on UAV photogrammetry and the computed negentropy distribution of 30 m moving windows
in a drained lake basin in the CALM 1 km grid (71.3026° N, 156.6008° W) near Utgiagvik, Alaska.
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Figure 6. Snow depth histograms based on the UAV photogrammetry of a drained lake basin in the CALM 1 km grid near Utqiagvik, Alaska.
Removing the deep snow caused by wind-induced snowdrift results in a near-perfect fit by a Gaussian distribution.

terrain and vegetation on snowdrift is highly complicated and
hard to characterize even with modern remote-sensing tech-
nology.

3.4.2 East River, Colorado

The ASO dataset of the East River above Gunnison, Col-
orado (USCOGE), was selected as a representative basin in
the Rocky Mountain region. This dataset includes the US De-
partment of Energy (DOE) East River community observa-
tory, where comprehensive field data have recently been col-
lected (Kakalia et al., 2021). The data domain, which does
not agree with the watershed boundary, is approximately
1670 km?, with the elevation ranging from 2343 m (Gunni-
son) to 3901 m. Figure 8§ displays the corresponding analysis
results of the East River area on 31 March 2018.

Besides the obvious bounded distribution effect of par-
tially snow-covered cells, this case study illustrates the

The Cryosphere, 18, 5139-5152, 2024

non-Gaussianity induced by the steep topographic features
around the high peaks in the Rocky Mountains. However,
it is interesting that the range of negentropy remains less
than 0.5 in the fully snow-covered areas in panel (d) despite
the very steep topography in the East River watershed. At
Inigok, for example, the landscape is flat with low-rolling
hills punctuated by very abrupt, very steep bluffs that cause
the large drifts. In contrast, while East River certainly has
much greater total topographic relief, it does not have the
same long, flat fetch area where the wind can build unim-
peded nor does it have similar abrupt erosional bluffs. Also,
since the lower negentropy (darker colored) parts in panel
d generally agree with the evergreen and deciduous forest
cover extent in the NLCD land cover map in panel (e), the
subalpine forest may reduce non-Gaussianity in snow dis-
tribution. However, the general characteristics of the sam-
ple’s negentropy distribution in northern Colorado are con-
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Figure 7. (a) SWE distribution based on ASO data from the upper Tuolumne River basin, California, USA, from 3 April 2013 (USCATB;
37.461°N, 119.494° W); (b) normalized SWE histogram; (c) negentropy map of the SWE within 1500 m moving windows; (d) negentropy
map of only fully snow-covered cells; and (e) NLCD 2011 land cover map.

sistent with the upper Tuolumne River watershed in the
Sierra Nevada mountain range.

3.4.3 Olympic Mountains, Washington

The last example of snow non-Gaussianity quantification is
the Olympic Mountains in Washington, USA, which repre-
sent the northern Pacific Coast Range under a strong oceanic
influence. The elevation ranges from sea level to 2430 m. The
Olympic Mountains consist of a cluster of steep-sided peaks,
heavily forested foothills, and incised deep valleys. The ASO
data have a large spatial coverage (5330km?) when com-
pared to the other two ASO datasets presented here.

https://doi.org/10.5194/tc-18-5139-2024

The black areas in the high-elevation range in panel (a)
are the approximate glacier extent excluded from the anal-
ysis (Painter and Lettenmaier, 2018). A large fraction of
partially snow-covered cells also introduces non-Gaussianity
in SWE in this region. Meanwhile, dense evergreen forests
in the Olympic Mountains seem to effectively reduce the
non-Gaussianity of SWE above the snow line during the
ASO scanning period. Overall the non-Gaussianity of the
snowpack may be considered low when compared to the
other two examples, which is likely due to denser forest
cover. Presumably, the vegetation cover minimizes the wind-
induced snow redistribution process and makes the snow dis-
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Figure 8. (a) SWE distribution based on ASO data for the East River watershed above Gunnison, Colorado, USA, from 31 March 2018

(USCOGE; 39.037°N

106.978° W); (b) normalized SWE histogram; (c) negentropy map of the SWE within 1500 m moving windows;

(d) negentropy map of only fully snow-covered cells; and (e) NLCD 2011 land cover map.

tribution more Gaussian. These characteristics — i.e., non-
Gaussianity in partially snow-covered areas and high Gaus-
sianity in forested areas — are common features of the SWE
distributions throughout the western USA.

4 Discussion
The sample negentropy values presented here are generally
consistent with each other despite the variety of data collec-

tion methods used at different scales. The level of random
noise in the datasets depends on the data collection methods.

The Cryosphere, 18, 5139-5152, 2024

Among the datasets discussed here, one may anticipate that
the ASO data have the largest Gaussian bias due to multiple
remote sensing, resampling, assimilating, and modeling pro-
cedures covering remarkable spatial coverage with uniform
data quality. The UAV-based lidar data at the North Slope
CALM site are expected to have a noticeable random bias
with a vertical accuracy of approximately 12 cm. The GPR
snow depth observations should have a smaller but apprecia-
ble Gaussian bias due to snow quality variation and non-flat
snow surface elevation (antenna angle vibration), although
the continuous measurement minimizes the random relative

https://doi.org/10.5194/tc-18-5139-2024
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Figure 9. (a) SWE distribution based on ASO data for the Olympic Mountains, Washington, USA, from 29 March 2016 (USWAOL;
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error in the snow depth estimation. The hand-measured snow
depth data using a probe may include the least Gaussian bias,
while the sampling spacing was not uniform due to relatively
poor spatial positioning control with the Magnaprobe’s on-
board GPS unit. Despite these differences, it is encouraging
that the quantified Gaussian levels were comparable and con-
sistent since they share common features.

The stability of the sample estimator of negentropy may be
a potential issue, especially when the sample size is small.
Additionally, since the higher-order statistical moments are
sensitive to the presence of outliers in the sample, an out-
lier removal filter is recommended for large samples. The
IQR method with a threshold of 3 IQR above the third quar-
ter (Q3), which is stricter than the usual threshold (typi-
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cally 1.5 IQR), has been applied to the UAV photogrammetry
data and the ASO datasets for computational stability. Even
with the large threshold (small outlier removal), the proposed
method using negentropy appears to be effective in character-
izing the Gaussianity of snow distribution, which is a com-
mon implicit assumption for existing gridded data and mod-
els. This study visualized the limitations of such a common
distribution assumption for snow distribution, specifically for
areas with partial snow cover.

To summarize the analyses presented here, five categories
of Gaussianity were defined and associated with a magnitude
of a sample statistic value (see Table 2). Most of the fully
snow-covered areas fell into the category of almost Gaussian,
with negentropy less than 0.03. Notably, negentropy less than

The Cryosphere, 18, 5139-5152, 2024
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Table 2. Summary of the analysis using the sample negentropy.

Class Negentropy Landscape and land cover type Examples

Strongly non-Gaussian 0.2 < J Partially snow-covered areas, mixture of CALM, Inigok, upper Tuolumne River, East
landscapes (steep—flat) River, Olympic Mountains

Non-Gaussian 01<J<02 Snowdrift around steep terrain CALM

Weakly non-Gaussian ~ 0.03 < J <0.1 Snowdrift on a frozen lake, vegetation Teshekpuk, Inigok, CALM
cluster

Nearly Gaussian 0.01 <J <0.03 Most of the uniform terrain in open Teshekpuk, CALM, upper Tuolumne River,
tundra and alpine forests East River, Olympic Mountains

Gaussian J <0.01 Open tundra (sedge, polygons), most Teshekpuk, upper Tuolumne River, East River,

forested areas

Olympic Mountains

0.01 is considered nearly perfectly Gaussian, as can be seen
in the previous sections.

The Gaussianity characterization of snow distribution ap-
pears to be useful in distinguishing the snowdrift-affected ar-
eas using the sample negentropy. Simultaneously, this finding
can justify the implicit Gaussian assumption for snow dis-
tribution for overall SWE estimation, particularly for snow-
pack characterization from remotely sensed information. For
instance, the effect of higher-order statistical moments can
be negligible in most fully snow-covered areas. Conversely,
some additional statistical treatment for higher-order statis-
tics may be required for the areas with the non-Gaussian ef-
fects around snow lines, open wind-swept areas, and sharp
terrain. Additionally, since a consistent pattern in the skew
coefficient was not identified from the snow datasets, the
commonly used log-normal distribution may not be suitable
for those areas.

It is encouraging that snow depth and SWE distributions
are generally approximated well by the Gaussian or weakly
non-Gaussian distribution, which is a fundamental assump-
tion for statistical characterization of the subgrid variability
used in snowpack estimation by remote sensing. The non-
Gaussianity found in the partially snow-covered areas can
also be modeled by a truncated normal distribution, although
it must be tested further. Moreover, the weakly non-Gaussian
distribution would enable the Edgeworth expansion method
proposed by Pires and Perdigdo (2007). For instance, the
non-Gaussian asymptotic method or information metric can
effectively determine the saddle point approximation of the
joint probability density functions (PDFs) through maximiz-
ing the Shannon entropy between the remotely sensed signal
and the SWE. Thus, the quantification of non-Gaussianity
in snow depth/SWE distributions would be an important
milestone toward accurate snow water quantification using
remote-sensing techniques as well as grid-based snow and
Earth surface models.

The Cryosphere, 18, 5139-5152, 2024

5 Conclusions

A Gaussian snow distribution is a common underlying as-
sumption for finite-scale models or gridded datasets. The
present study tested this assumption using the sample ne-
gentropy of various snow data. We found two main sources
of non-Gaussianity: (1) a partial snow cover effect (bounded
distribution) and (2) a wind-induced snowdrift effect around
steep terrain features. The second effect may amplify the
first one in wind-swept alpine areas since snow erosion re-
mains shallow on rocky ridges and peaks. Snowdrift around
lakeshore cliffs and deep gullies can bring moderate non-
Gaussianity on the open tundra of North Slope, Alaska. How-
ever, the wind-packed snow in the coastal plain region of the
North Slope may generally be categorized as weakly Gaus-
sian during mid-to-late winter due to the continuous snow
cover. This implies that the non-Gaussianity of the snow-
pack should not be neglected during the snow accumulation
season and late-spring season. Interestingly, small ground-
surface features (e.g., low-centered and high-centered ice
wedge polygons) make snow distribution more Gaussian,
while snowdrifts (snow dunes) on a flat frozen lake seem to
be less Gaussian than on tundra or in a drained lake basin.

Our analyses of the ASO SWE products reinforced the
findings for snowpacks on the tundra. Although SWE data
were chosen instead of snow depth for practical reasons, the
common features of non-Gaussianity remain valid. Addition-
ally, the snow diffuser effect of forests was illustrated in three
representative areas in the western USA. This effect was re-
ported by He et al. (2019) based on airborne lidar snow depth
measurements at Snowy Range, Wyoming, USA. Hence, it
is likely that vegetation cover generally makes the snow dis-
tribution more Gaussian during the snow accumulation pro-
cess; however, further verification of this relationship is rec-
ommended.

Overall, a Gaussian distribution is a suitable approxima-
tion for snow spatial distribution when the ground is com-
pletely covered by snow. Higher-order statistics associated
with landscape type may potentially improve the SWE esti-

https://doi.org/10.5194/tc-18-5139-2024



N. Ohara et al.: Characterization of non-Gaussianity in the snow distributions of various landscapes

mation in windswept open terrain and near snow lines. The
level of non-Gaussianity will determine the choice of statis-
tical tool to correct the systematic bias in the snow measure-
ments. Meanwhile, this study suggests the possibility of par-
titioning the extent of wind-induced snowdrifts by means of
independent component analysis (Comon and Jutten, 2010).
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