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presence of extracellular polymeric substances (EPS) in bacterial 
surface interacting with the environment. 

The findings of this study stated the considerable potential of these 
BioFibers to produce crystalline calcium carbonate as a self-healing end- 
product. The results indicated that the formation of calcium carbonate 
polymorphs are influenced by reaction kinetics and environmental fac
tors, such as pH and bacterial species. The results of self-healing kinetics 
can be further employed for predictive model development for numer
ical analysis. The next step of the current research is to focus on the crack 
growth control and self-activation functionalities through the incorpo
ration of BioFibers in quasi-brittle matrix, mainly cementitious com
posites. In addition, our future studies will involve evaluation of 
BioFiber/matrix interfacial properties, BioFiber breakage mechanism, 
and crack-healing efficiency, mechanical/fracture properties of BioFRC 
before MICP activation, and fracture properties enhancement of healed 
BioFRC. 
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