
–

–

◦ ◦

’

journal homepage: www.elsevier.com/locate/conbuildmat 

mailto:chris.sales@drexel.edu
www.sciencedirect.com/science/journal/09500618
https://www.elsevier.com/locate/conbuildmat
https://doi.org/10.1016/j.conbuildmat.2024.135528
https://doi.org/10.1016/j.conbuildmat.2024.135528
https://doi.org/10.1016/j.conbuildmat.2024.135528
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


–

™ 

™ 

μ

≈ μ

≈
◦

◦

◦

◦

◦

μ

’

◦
◦
◦

◦
◦
◦ +
◦

+



μ

μ μ

– 

–

− ◦ ◦

◦

◦

Germination Ratio =
Number of germinated endospores

after exposure to harsh conditions

Number of germinated endospores

before exposure to harsh conditions

× 100

μ

◦

◦

◦

– ◦

μ

±

– ◦ ◦

CaCO3 (mg) = Weight of solid mass (g)

×
(

Weight ratio of
CaCO3

Solid mass
(%)

)
Obtained from TGA

× 10−3

× ×

◦

μ ’



μ μ μ μ

Crack healing (%) = Healed area of the crack (mm2)
Initial area of the crack (mm2) × 100

◦ ◦
◦

◦
◦ +

◦ +



Construction and Building Materials 419 (2024) 135528

5

genetic and physiological transformations, including the development of 
protein-coating layers around their core [21,22]. However, the impact 
of altered environmental conditions on endospore morphology and 
resilience to harsh conditions remains unclear. Our hypothesis proposes 
that by manipulating environmental factors, cells can augment the 
protective protein layers, thereby fortifying endospores against extreme 
conditions. To examine this hypothesis, we exposed vegetative cells to 
varying levels of the availability of carbon and essential nutrients for 
bacterial growth, temperature, pH, and incubation duration. Subse
quently, we monitored the resultant changes in endospore size and 
shape. 

3.1.1. Carbon and Nutrient Starvation 
Our findings indicated that in the presence of a carbon source (yeast 

extract), no endospores were observed in vegetative cells (Fig. 2A). This 
underscores the critical role of carbon scarcity in triggering endo
sporulation. Endospore-forming bacteria respond to conditions of car
bon starvation by detecting reduced accessible energy, initiating a 
complex quorum-sensing signaling pathway [23]. However, when uti
lizing the CS method at pH 7 and 35◦C, endospores emerged after two 
days of carbon deprivation (Fig. 2C). Driks’ study, which delves into the 
specific mechanism of endospore initiation in the absence of carbon 
sources [24], suggests that carbon availability can act as a 
growth-setting barrier, influencing the initiation of endosporulation in 
vegetative cells. 

Our investigation into the influence of nutrients on endospore pro
duction revealed that under conditions of limited carbon source coupled 
with insufficient nutrients, there is a detrimental impact on the endo
sporulation process. This results in a notable reduction in endospore 
production (Fig. 2B), underscoring the pivotal role of nutrient avail
ability in endosporulation. During endosporulation, endospores store 
essential nutrients within their core and cortex, forming protective 
layers around the cell. These layers serve to stabilize DNA, protecting it 
against environmental stress and enhancing long-term survivability [25, 
26]. Calcium ions play a crucial role by crosslinking the endospore coat 
proteins, thereby fortifying the protective layers against environmental 
challenges [27]. Additionally, studies suggest that ions such as Mn2 +, 
Fe2+, Fe3+, and Ca2+ act as cofactors during endosporulation. They 
stimulate the synthesis of enzymes (such as L-arabinose isomerase and 
dismutase) and facilitate the physiological transition from vegetative 
cells to endospores [9,28–31]. 

Vegetative cells were detected in both the CS and NS methods after 
two days of cell incubation, signifying their incapacity to initiate the 
endosporulation process and transform into endospores. This inability 
has a consequential impact on the endosporulation ratio, as discussed 
later. While carbon depletion served as a signal to halt bacterial growth, 
modifications in other environmental conditions, such as pH and tem
perature, potentially intensified the challenges for vegetative cells, 
making it more challenging to positively stimulate the initiation of the 
endosporulation process. 

3.1.2. pH of Culture Media 
Considering that the concentration of hydrogen ions (H+) influences 

nutrient absorption, cell membrane permeability, and morphology [32], 
we investigated to understand how altering the pH of the culture media 
impacts endospore development during the CS method. Our findings 
revealed that under acidic conditions (pH=3), vegetative cells displayed 
low tolerance to acidity, and after the endosporulation process, neither 
vegetative cells nor endospores were observed (Figure SA). The 
compromised integrity of cells in acidic environments indicated mem
brane disruption, protein denaturation, and leakage of cellular compo
nents into the culture media. Conversely, alkalinity (pH=9) was found to 
enhance endospore production, suggesting an accelerated initiation of 
endospore formation, possibly due to the alkalophilic properties of 
strain MB284 [5]. Moreover, alkaline conditions can alter cell mem
brane potential, promoting the formation of a polar septum that 

partitions cells into distinct compartments, ultimately leading to endo
spore development [33]. This result aligns with existing literature and 
demonstrates an enhancement in the endosporulation ratio by elevating 
the pH of the culture media to 11 [3]. However, the morphology of 
endospores produced under alkaline conditions was found to be similar 
to those produced under neutral conditions, indicating the insignifi
cance of elevated pH in changing the size of endospores (data not 
shown). 

3.1.3. Temperature 
During the CS method under neutral conditions, we varied the 

temperature to investigate the impact of extreme temperatures on the 
morphology of endospores. Notably, we observed that the morphology 
of endospores remained unaltered after exposing cells to both 45◦C and 
2◦C. Intriguingly, both high and low temperatures were found to stim
ulate the endosporulation process, leading to an increased production of 
endospores. Consequently, we posit that strain MB284 perceives 
extreme temperatures as mild stress, initiating the endospore formation 
process. This hypothesis is grounded in literature that discusses the role 
of extreme temperatures in influencing the speed of endosporulation in 
Bacillus species [9]. 

The TS method was employed to leverage the advantages of extreme 
temperatures on endosporulation. The results indicated that the TS 
method not only increased the number of produced endospores but also 
influenced their morphology by enhancing the average thickness of 
endospores after two days of cell incubation (Fig. 2D). The underlying 
mechanism involves the upregulation of heat shock proteins (HSPs) 
within cells, synthesized in response to abrupt temperature fluctuations 
[34,35]. These proteins also function as molecular chaperones, ensuring 
the stability and proper three-dimensional structure of newly formed 
proteins and repairing damaged proteins caused by heat stress, which 
play roles in forming layers around the cells [36,37]. Consequently, this 
orchestrated process leads to the formation of well-structured endo
spores, complete with multi-layered protective coatings around their 
cores. It is hypothesized that this cellular adaptation can enhance the 
resilience of the core cells by safeguarding critical components such as 
DNA against a variety of stressors [35,38]. 

Moreover, the examination of the impact of alkaline conditions on 
the morphology of endospores demonstrated that incubating endospores 
in culture media with a pH of 9 did not alter the size of endospores 
produced under neutral conditions. Nevertheless, it increased the 
quantity of produced endospores (data not shown). Additionally, a 
parallel endosporulation methodology akin to the TS method was 
identified in a study conducted by Intarasoontron et al. for MICCP 
purposes [4]. However, the microscopic images depicting the 
morphology of the produced endospores were not provided in the study. 

3.1.4. Incubation time 
Given the intricate nature of the steps involved in endospore pro

duction [7,8], the duration of endosporulation can significantly influ
ence the successful conversion of cells into endospores. To delve deeper 
into this aspect, we extended the inoculation period from 2 days to 1 
month, maintaining a temperature of 35◦C and a pH of 7. The results 
illustrated that prolonging the incubation time resulted in an increased 
production of endospores in both the CS method (Fig. 2E) and the TS 
method (Fig. 2F). This extension allowed the cells to undergo multiple 
stages of biochemical transformation, ultimately enhancing the endo
sporulation ratio [7]. Notably, after one month, a higher quantity of 
endospores produced through the TS-produced endospores, along with 
superior size, was observed compared to those produced via the CS 
method. This underscores the advantages of the TS approach with a 
one-month incubation time for endospore formation. 

3.1.5. SEM images of endospores 
To scrutinize the morphological changes during endosporulation, in 

addition to optical microscopy, we employed scanning electron 
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germination, leading to an accelerated rate of crack filling (Fig. 8). 
During FTC, the formation of ice crystals occurs both inside and 

outside of the cells. Intracellular crystals can damage delicate structures, 
leading to cell death or damage. Additionally, razor-sharp crystals 
outside of the cell membranes can cause injury to the cells. Moreover, as 
ice forms in the extracellular space, water from inside the cells rushes 
out through aquaporins to dilute the higher concentration of solutes, 
desiccating the cells and leading to cell death, ultimately entering the 
death phase [56,57]. Therefore, the presence of multi-covering layers 
around the cells in TS-produced endospores can act as a shield to protect 
the cell membrane and as a blanket to limit the formation of ice crystals. 
A comparative study also indicated that the crack repair rate at 28 days 
for concrete specimens subjected to FTC was smaller than that of spec
imens not subjected to FTC [58]. Subsequently, expanded perlite was 
utilized as a carrier to protect endospores from FTC, maintaining the 
crack repair rate. 

Our findings also indicated that the corresponding crack-filling rates 
for vegetative cells were 25.12% and 41.74% after 14 and 28 days, 
respectively, which were lower than those observed for cracks filled by 
endospores produced through both the TS and CS methods. It is assumed 
that, since the cement paste content is carbon-free, endosporulation was 
triggered following the mixing of vegetative cells into the mortar. The 
process of endosporulation occurred by adding vegetative cells into the 
cement paste and can be compared with the NS method, given the car
bon and nutrient-free content of concrete. Since a significant reduction 
in the number of produced endospores was observed through the NS 
method, it is concluded that the lower performance in crack filling by 
vegetative cells may be attributed to the lack of nutrients in the pore 
solution, leading to a reduction in the number of vegetative cells that 
could successfully be converted to endospores. This underscores the 
necessity of adding pre-produced endospores, rather than vegetative 
cells, into the cement paste as a healing agent. Additionally, we observed 
healing percentages of 17.11% and 40.12% after 14 and 28 days, 
respectively, for the bacteria-free cement paste specimens, referred to as 
autogenous filling, which occurred due to the leftover reagents (Fig. 8). 
Water entering the cracks during the wet-dry cycles causes un-hydrated 
cement particles to produce calcium carbonate [4]. 

4. Conclusion 

This study underscores the pivotal role of endosporulation methods 
in shaping the efficacy of MICCP reactions. Through our investigation 
into various endosporulation methods, we have elucidated that endo
spores of strain MB284, when produced via the TS method, exhibit a 
distinctive multi-layered structure around the core, resulting in altered 
endospore morphology. Furthermore, our observations reveal that be
sides expediting endosporulation, the multi-layered structure provides a 
protective barrier, safeguarding core genetic components against 
adverse environmental conditions, including FTC, alkaline, and saline 
environments. 

Moreover, our findings highlight the superior performance of TS- 
produced endospores in enhancing the germination ratio, leading to 
higher yields of calcium carbonate production and increased surface 
crack filling rates in both in vitro and cement paste conditions, compared 
to endospores produced through the CS method. 

Given the significant enhancement in MICCP efficacy achieved 
through TS-produced endospores, future research endeavors should 
focus on exploring the potential of employing these endospores to 
bolster the mechanical properties, such as compressive and flexural 
strength, of healed concrete subjected to FTC. 
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N. Piqué, Improvement of the pour plate method by separate sterilization of agar 
and other medium components and reduction of the agar concentration, Microbiol 
Spectr. 11 (1) (2023), https://doi.org/10.1128/spectrum.03161-22. 

[19] ASTM C150/C150M-20. Standard Specification for Portland Cement, ASTM 
International, West Conshohocken, PA, 2020. 〈https://doi.org/10.1128/spectr 
um.03161-22〉. 

[20] "ImageJ User Guide - Analyze Menu, 2012. [Online]. 〈https://imagej.nih.gov 
/ij/docs/menus/analyze.html〉. 

[21] S.R.B.R. Sella, L.P.S. Vandenberghe, C.R. Soccol, Life cycle and spore resistance of 
spore-forming Bacillus atrophaeus, Microbiol. Res. 169 (12) (2014) 931–939, 
https://doi.org/10.1016/j.micres.2014.05.001. 

[22] P.T. McKenney, A. Driks, P. Eichenberger, The Bacillus subtilis endospore: assembly 
and functions of the multilayered coat, Nat. Rev. Microbiol. 11 (2013) 33–44, 
https://doi.org/10.1038/nrmicro2921. 

[23] Y. Xing, W.F. Harper, Bacillus spore awakening: recent discoveries and 
technological developments, Curr. Opin. Biotechnol. 64 (2020) 110–115, https:// 
doi.org/10.1016/j.copbio.2019.12.024. 

[24] A. Driks, Overview: development in bacteria: spore formation in Bacillus subtilis, 
Cell Mol. Life Sci. 59 (3) (2002) 389–391, https://doi.org/10.1111/1758- 
2229.12130. 

[25] P.J. Piggot, D.W. Hilbert, Sporulation of Bacillus subtilis, Curr. Opin. Microbiol. 7 
(6) (2004) 579–586, https://doi.org/10.1016/j.mib.2004.10.001. 

[26] P. Setlow, I will survive: DNA protection in bacterial spores, Trends Microbiol. 15 
(4) (2007) 172–180, https://doi.org/10.1016/j.tim.2007.02.004. 

[27] E. Abel-Santos, Endospores, Sporulation and Germination, Chapter 9 (1). in: 
Molecular Medical Microbiology (Second Edition), Academic Press, 2015, 
pp. 163–178, 10.1016/B978-0-12-397169-2.00009-3. 

[28] L. Jiang, G. Jia, Y. Wang, Z. Li, Optimization of sporulation and germination 
conditions of functional bacteria for concrete crack-healing and evaluation of their 
repair capacity, Appl. Mater. Interface 12 (9) (2020) 10938–10948, https://doi. 
org/10.1021/acsami.9b21465. 

[29] A. Yokota, K.-I. Sasajima, Derepressed syntheses of sporulation marker enzymes in 
a Bacillus species mutant, Agric. Biol. Chem. 45 (1981) 2417–2423, https://doi. 
org/10.1080/00021369.1981.10864925. 
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