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Abstract—Spiking Neural Networks (SNNs) have gained
popularity due to their high energy efficiency. Prior works
have proposed various methods for training SNNs, including
backpropagation-based methods. Training SNNs is computation-
ally expensive compared to their conventional counterparts and
would benefit from multiprocessor hardware acceleration. This
is the first paper to propose inter-layer pipelining to accelerate
training in SNNs using systolic array-based processors and
multiprocessor scheduling. The impact of training using delayed
gradients is observed using four networks training on different
datasets, showing no degradation for small networks and < 10%
degradation for large networks. The mapping of various training
tasks of the SNN onto systolic arrays is formulated, and the
proposed scheduling method is evaluated on the four networks.
The results are compared against standard pipelining algorithms.
The results show that the proposed method achieves an average
speedup of 1.7× compared to standard pipelining algorithms,
with an upwards of 2× improvement in some cases. The incurred
communication overhead due to the proposed method is less than
0.5% of the total required communication of training in networks
with convolutional layers.

Index Terms—Spiking neural networks, inter-layer pipelining,
multiprocessor scheduling, hardware accelerators.

I. INTRODUCTION

Spiking neural networks (SNNs) are a type of neural
network that mimic the functionality of biological neural
networks [1]–[4]. Due to their high energy efficiency, they
have been employed in a wide range of applications, including
computer vision, robotics, and speech recognition, and can
achieve performance similar to conventional neural networks
[5]. SNNs can be divided into two main types: synchronous
[6]–[8] and asynchronous [9]–[11]. In synchronous SNNs,
neuronal outputs are computed at linearly-spaced time in-
tervals, while asynchronous or event-driven SNNs compute
neuronal outputs based on the arrival of spikes.

Both synchronous and asynchronous SNNs use models of
neurons to compute membrane potentials and spike timings.
There are various models of neurons, such as the integrate-
and-fire (I&F) [12], the leaky integrate-and-fire (LIF) [12],
the Izhevsky model [13], and the Hodgkin-Huxley model
[14]. The simplest model, the I&F model, is a linear model
that does not account for the time-dependent nature of the
membrane potential. The LIF model is a nonlinear model that
incorporates decay and accounts for the time-dependent nature
of the membrane potential. The Hodgkin-Huxley model, the
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most accurate model of the neuron, accounts for the time-
dependent nature of the membrane potential and the ion
channels in the neuron. However, simulating the Hodgkin-
Huxley model is computationally expensive.

In the most straightforward implementation, the LIF neuron
is modeled as a first-order infinite impulse response (IIR)
filter [7], [15], [16], where the IIR filter’s output represents
the neuron’s membrane potential. Once the membrane po-
tential reaches a threshold value, the neuron spikes, and the
membrane potential is reset to resting potential. In a digital
implementation, the IIR filter is implemented using a digital
first-order section.

There are various methods of training SNNs, with the
two most common being backpropagation [6]–[10], [17] and
Spike Timing Dependent Plasticity (STDP) [11], [18]–[20].
Backpropagation, which inherently introduces feedback loops,
is challenging to map onto multiple processors to achieve high
throughput. This work focuses on training synchronous SNNs
using backpropagation. All the results shown in this work are
with the LIF neuron model. However, it is to be noted that
the proposed methods can easily be adapted to other neuron
models.

Prior works have proposed various methods for training
conventional neural networks, such as Convolutional Neural
Networks (CNNs), on multiple processors [21]–[26]. In our
prior LayerPipe approach [26], we proposed the use of variable
delayed gradients to achieve inter-layer pipelining of CNNs.
Delayed gradients have been used to pipeline adaptive digital
filters [27]. The basic assumption is that the gradients can
be replaced by delayed gradients if the gradients are slowly
varying. However, these methods cannot be directly applied to
SNNs because they do not account for the fact that activations
in SNNs are binary. By taking this into account, it is possible
to further pipeline the training process of training the SNNs
at a fine-grain level without significant overhead in commu-
nication. It may be noted that there exist prior works that
focused on developing hardware for accelerating the training
of SNNs [28]–[30]. However, this work’s primary objective
is accelerating training by efficient mapping onto multiple
processors, and therefore, can be used to further accelerate
the prior proposed hardware with small modifications.

The contributions of this paper are three-fold. We consider
training a digital SNN model that is based on a first-order IIR
digital filter with a forward gain that is not unity, introduced in
our prior work [15], [16]. Note that in prior SNNs, the forward
gain of the first-order IIR filter had been considered to be
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unity. Simulation results show that the proposed architecture
achieves 98.6% accuracy on the MNIST dataset using the
proposed structure, compared to 98.3% with a structure with
unity gain in the forward path. The hardware overhead for
realizing non-unity gain is also minimal. Our first contribution
lies in deriving the backpropagation equations for training the
proposed SNN architecture. It is shown that the IIR filter
structure used in the forward pass of the neuron model can also
be used to compute the backward pass, implying no additional
specialized blocks are necessary for training the SNN. This
is non-intuitive, and is important because the same datapath
can be used for both inference and training, especially in
edge devices. Second, we exploit a variable delayed-gradient
approach to achieve inter-layer pipelining. This is inspired
by our prior work on accelerating training in CNNs using
Layerpipe [26]. This paper is the first to accelerate training in
SNNs using inter-layer pipelining. This creates concurrency
that can be exploited to map the computations of different
layers to multiple processors. It is shown that the use of de-
layed gradients does not degrade the accuracy by a significant
amount. Third, a fine-grained layer-wise scheduling algorithm
is proposed to map the tasks to multiprocessors to accelerate
the training of SNNs. The proposed fine-grained pipelining
algorithm is evaluated using a few sample networks, and the
results are compared with existing scheduling algorithms.

This paper is organized as follows. Section II reviews the
SNN model considered in this paper. Section III derives the
backpropagation equations for training the SNN, and intro-
duces the delayed gradient approach. Section IV formulates
the mapping of the training tasks to systolic arrays. Section
V presents a fine-grained scheduling algorithm to map the
training tasks to multiple processors such that the underuti-
lization of the processors is minimized. Simulation results are
presented in Section VI.

II. MODELING NEURONS FOR SNNS
The first step in designing an SNN is modeling a single

neuron. Of the various neuron models, the Leaky Integrate-
and-Fire (LIF) [12] model is used in this work. The LIF model
is a nonlinear model that incorporates decay and accounts
for the time-dependent nature of the membrane potential. The
membrane potential, vm(t), of the LIF neuron follows first-
order dynamics and is described by (1). The neuron produces
a spike when the membrane potential crosses a threshold and
is reset to a resting potential.

Cm
dvm(t)

dt
= iin(t)−

vm(t)− Vrest

Rm
(1)

where iin(t) is the net input current to the neuron, Cm is the
membrane capacitance, and Rm is the membrane resistance
that causes decay in the membrane potential. For simplicity,
the resting potential Vrest is taken to be zero. The Laplace
transform of (1) is given by (2).

Vm(s) =
Iin(s)

s · Cm + 1
Rm

(2)

where, Vm(s) and Iin(s) are the Laplace transforms of vm(t)
and iin(t), respectively. From (2), it is evident that the transfer
function from input currents to membrane potential is a
first-order infinite impulse response (IIR) filter. The digital

equivalent of this filter can be obtained using the bilinear
transform as shown in (3).

H(z) =
Vm(z)

Iin(z)
=

1 + z−1

(c+ λ)− (c− λ)z−1
(3)

where, c = 2Cm/Ts, Ts is the sampling period, and λ =
1/Rm. The digital filter in (3) is implemented using a digital
first-order section as shown in Fig. 1.

Fig. 1. Digital first-order section for implementing the LIF neuron model.

Fig. 2. Modified LIF structure incorporating the reset operation. The delay
element is reset when the membrane potential crosses the threshold voltage.

The output of the first-order section is the membrane
potential of the neuron. Once the membrane potential reaches
a threshold value, the neuron spikes, and the membrane
potential is reset to resting potential. The spiking operation
is implemented using a simple comparator as shown in Fig.
21. vsp[n] is a binary time series whose value is 1 if there is a
spike at timestep n and 0 otherwise. The relation between the
input current, the membrane potential, and the output spike
train is given by (4) and (5).
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Fig. 3. (a) Sample input current for 20 timesteps and (b) the corresponding
membrane potential and spike train. The values of c and λ are 4 and 0.25,
respectively, and the threshold voltage is 0.5.

1It is to be noted that resetting the delay element also resets the feedforward
path, making it harder to produce consecutive spikes. This introduces a soft
refractory behavior in the neuron.
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vm[n] =
iin[n] + (c− λ) · d[n− 1]

c+ λ
+ d[n− 1] (4)

d[n] = v̄sp[n] ·
iin[n] + (c− λ) · d[n− 1]

c+ λ

vsp[n] =

{
1, if vm[n] ≥ Vth

0, otherwise
(5)

where, d[n] is the intermediate value stored in the delay
element at timestep n, and v̄sp is the binary complement of
vsp. Figure 3 shows the membrane potential and the spike train
for a sample input current.

III. TRAINING SNNS

A neural network is a network of neurons interconnected
by synapses. The topology of the network is generally prede-
termined and does not change over the course of training. In
the proposed Spiking Neural Network (SNN), each neuron is
modeled using the LIF neuron model as described in Section
II. The neurons are arranged in layers, and synapses connect
each neuron to a subset of neurons in the previous layer. The
weights associated with the synapses are learned during the
training process.

Fig. 4. A sample spiking neural network with two layers.

Figure 4 shows an example network with two inputs, x0[n]
and x1[n], one hidden layer with three neurons, and an output
layer with two neurons. The neuron i in layer l is represented
by nl

i. The same naming convention is used for all intermediate
variables iin, vm, and vsp. The weight connecting input i to
neuron j of the hidden layer is given by w0

ij . Therefore, the
input current to neuron j of the hidden layer is given by (6).

i0inj
[n] =

1∑
i=0

w0
ij · xi[n] (6)

Similarly, the weight connected to neuron i of the hidden
layer and neuron j of the output layer is given by w1

ij .
The corresponding input currents are used to compute the
membrane potentials and spike trains of every neuron using
(4) and (5). The output of the network is the spike train of the
output neurons. Figure 5 shows the unrolled dataflow graph
(DFG) of a neuron in the hidden layer for T timesteps, where
nodes iin, vm, and vsp are computed using (6), (4), and (5),
respectively.

A. Loss Function

For supervised learning, the network is trained using a loss
function that measures the deviation between the output of

the network and the desired output. The loss function is a
function of the weights of the network, and the goal of the
training process is to obtain the optimal set of weights that
minimize the loss function. The use of the appropriate loss
function is essential for training the network. Before discussing
the loss function, it is crucial to understand the network’s
output. Spike trains are binary sequences, and encoding the
desired output as a binary sequence is not trivial. Therefore,
the output of the network is taken to be the membrane
potential of the output neurons in the last timestep. To ensure
that the membrane potential accurately reflects the network’s
output, the output neurons are transformed into accumulators
with a feedforward path by removing their leaky nature and
preventing the membrane potential from resetting, i.e., by
setting c = 1 and λ = 0.

Using the membrane potential in the final timestep as the
network output, the categorical cross-entropy loss function,
given by (7), is used.

L = −
N−1∑
i=0

yi · log

(
exp(v1mi

[T − 1])∑N−1
j=0 exp(v1mj

[T − 1])

)
(7)

where, y = [y0, y1, . . . , yN−1]
T is the one-hot encoded desired

output, N is the number of outputs of the network, exp(.) is
the exponential function, and L is the loss between the network
output and desired output.

B. Backpropagation

To train the network, the gradient of the loss function with
respect to the weights of the network is needed. This gradient
is used to update the weights of the network using gradient
descent. The gradient of the loss function with respect to the
weights is computed using backpropagation. The backpropaga-
tion algorithm is based on the chain rule of differentiation. For
each node in the DFG in Fig. 5, the forward pass and backward
pass equations are detailed. The forward pass equations are
used to compute the output of the network, and the backward
pass equations are used to calculate the gradient of the loss
function with respect to the weights and intermediate outputs
of the network.

Fig. 5. Dataflow graph of a neuron in the hidden layer for T timesteps.
Spiking of the neuron in the previous timestep gates the input current and
membrane potential of the current timestep, and is shown by the colored line.
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1) iin[n]: The forward pass equation for computing iin[n]
of the first layer is given by (8).

i0inj
[n] =

∑
i

w0
ij · xi[n] (8)

For each subsequent layer, the forward pass equation for
computing iin[n] is given by (9).

ilinj
[n] =

∑
i

wl
ij · vl−1

spi
[n] (9)

Generally, the forward pass equation for computing iin[n] is
the same as for other neural networks such as CNNs. The
only difference is the operation is repeated for every timestep.
Therefore, in a Spiking CNN for each timestep, the input
spike train is convolved with the weights to generate the input
current to the neurons in the next layer.

The local gradients for the backward pass are given by (10)
and (11).

∂ilinj
[n]

∂vl−1
spi [n]

= wl
ij (10)

∂ilinj
[n]

∂wl
ij

= vl−1
spi

[n] (11)

The gradients with respect to the loss function are given by
(12) and (13) using the chain rule of differentiation.

∂L
∂vl−1

spi [n]
=
∑
j

∂L
∂ilinj

[n]
·
∂ilinj

[n]

∂vl−1
spi [n]

=
∑
j

∂L
∂ilinj

[n]
· wl

ij

(12)

∂L
∂wl

ij

=
∑
n

∂L
∂ilinj

[n]
·
∂ilinj

[n]

∂wl
ij

=
∑
n

∂L
∂ilinj

[n]
· vl−1

spi
[n]

(13)

2) vm[n]: The forward pass equation for computing vm[n]
is given by (4). All the corresponding vm, vsp, and iin are
vlmi

, vlspi
, and ilini

, respectively. Here, vlspi
acts as the gating

function to determine whether the input current and membrane
potential of the previous timestep should be used to compute
the membrane potential of the current timestep. The backward
pass equations for computing the gradients with respect to
ilini

[n], vlmi
[n − 1], and ilini

[n − 1] are given by (14), (15),
and (16), respectively.

∂vlmi
[n]

∂ilini
[n]

=
1

c+ λ
(14)

∂vlmi
[n]

∂vlmi
[n− 1]

= v̄lspi
[n− 1] · c− λ

c+ λ
(15)

∂vlmi
[n]

∂ilini
[n− 1]

= v̄lspi
[n− 1] · 1

c+ λ
(16)

The gradient with respect to the loss function is given by (17)
using the chain rule of differentiation.

∂L
∂ilini

[n]
=

1

c+ λ
·
(

∂L
∂vlmi

[n]
+ v̄lspi

[n] · ∂L
∂vlmi

[n+ 1]

)
(17)

For the output layer, the forward pass is given by (18).

vLmi
[n] = iLini

[n] + iLini
[n− 1] + vLmi

[n− 1]

vLmi
[T − 1] =

(
2 ·
∑
n

iLini
[n]

)
− iLini

[T − 1] (18)

The gradient is given by (19).

∂L
∂iLini

[n]
= k · ∂L

∂vLmi
[T − 1]

(19)

k =

{
1, if n = T − 1

2, otherwise

The relation between vLmi
[T − 1] and L is given by (7) and

the derivative is given by (20).

∂L
∂vLmi

[T − 1]
=

ev
L
mi

[T−1]∑
j e

vL
mj

[T−1]
− yi (20)

3) vsp[n]: When the membrane potential crosses a thresh-
old value, a spike is produced. The forward pass equation for
computing vsp[n] is given by (21).

vlspi
[n] = ϕ(vlmi

[n]) =

{
1, if vlmi

[n] ≥ Vth

0, otherwise
(21)

The thresholding activation function, ϕ(x), that produces the
spike is non-differentiable. To ensure that the gradient is
propagated through the thresholding function, the function is
approximated to be a linear function in the region around the
threshold value, as shown in Fig. 6 and described in [6]. The
gradient of the approximated function is given by (22). The
variable α in (22) and Fig. 6 is a hyperparameter that can be
tuned. For simplicity, α is set to 0.5 in this work.

∂vlspi
[n]

∂vlmi
[n]

= ϕ′(vlmi
[n]) =

{
1
2α , if |vlmi

[n]− Vth| ≤ α

0, otherwise
(22)

Fig. 6. Approximation of the thresholding function as linear in the region
around the threshold value.

For all layers except the output layer, the gradient of the
loss with respect to membrane potential is given by (23).

∂L
∂vlmi

[n]
=

∂L
∂vlspi

[n]
·
∂vlspi

[n]

∂vlmi
[n]

+
∂L

∂vlmi
[n+ 1]

·
∂vlmi

[n+ 1]

∂vlmi
[n]

=
∂L

∂vlspi
[n]
· ϕ′(vlmi

[n])

+
∂L

∂vlmi
[n+ 1]

· v̄lspi
[n] · c− λ

c+ λ
(23)

From (17) and (23), it is apparent that the gradient of the
loss with respect to the input current can be computed using
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a similar IIR filter structure as the LIF neuron model. The
structure of the IIR filter for the gradient computation is shown
in Fig. 7. All the variables in the structure are in time-reversed
order, i.e., ∂L

∂vspi [T−1] is the input in the first clock cycle,
∂L

∂vspi [T−2] in the second clock cycle, and so on. Similarly,
the output is also produced in time-reversed order.

Fig. 7. Structure of the IIR filter for computing the gradient of the loss with
respect to the input current.

C. Dataflow Graph of Training

Figure 8 shows the DFG for training a sample two-layer
network. Each node in the DFG computes the corresponding
variables for a single mini-batch. Therefore, one weight update
based on a single input mini-batch is computed per cycle of the
DFG. The DFG is similar to the DFG of a conventional neural
network, the difference being each computation in the DFG
of an SNN has a timestep dimension. The training process
inherently has feedback loops. The colored line in Fig. 8
highlights the critical loop in the example DFG, which has
the forward and backward computations of all the layers. Since
there is only one delay element in the critical loop, it is not
straightforward to retime the DFG for mapping onto multiple
processors.

Fig. 8. Dataflow graph of training a sample two-layer network. The colored
line indicates the critical loop.

D. Delayed Gradients

To split the DFG into multiple subgraphs and map onto
multiple processors, additional delay elements must be added
into the critical loop. One way of achieving this is using

delayed gradients [27]. The gradient update is delayed by a few
cycles, introducing additional delay elements into the critical
loop. The modified DFG can now be retimed and split into
multiple subgraphs. The use of delayed gradients and retiming
was used to achieve inter-layer pipelining in the training of the
CNNs in the LayerPipe approach described in [26]. Figure 9
shows the DFG after retiming with delayed gradients.

Fig. 9. Retimed DFG with delayed gradients. The DFG can be split into
subgraphs at the colored lines. The colored delay elements emerge from
retiming the DFG using delayed gradients.

The introduction of delayed gradients calls for an analysis
of the trainability and convergence of the network. Delayed
gradients will not severely affect the trainability of the network
if the gradients change slowly over iterations. In the context
of neural networks, this is determined by the gradient update
algorithm used to train the network. The most common
gradient update algorithm is the stochastic gradient descent
(SGD) algorithm. The SGD algorithm is given by (24), where
w is the weight, η is the learning rate, and ∂L

∂w is the gradient
of the loss with respect to the weight.

wt+1 = wt − η · ∂L
∂w

(24)

From the SGD update equation, the gradients may change
rapidly in every iteration during the initial stages of training.
This would result in delayed gradients significantly affecting
the trainability of the network. The effect of delayed gradients
on the convergence of LMS filters is explored in [31] by using
the moving average of the gradients. In the context of neural
networks, the Adam optimizer [32] ensures a similar behavior
by introducing first and second-order momentum. The Adam
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optimizer is given by (25).

mt+1 = β1 ·mt + (1− β1) ·
∂L
∂w

vt+1 = β2 · vt + (1− β2) ·
(
∂L
∂w

)2

ηt+1 = η ·

√
1− βt+1

2

1− βt+1
1

wt+1 = wt − ηt+1 ·
mt+1√
vt+1 + ϵ

(25)

E. Example Networks

To analyze the effect of delayed gradients, the MNIST [33],
Neuromorphic-MNIST [34], DVS128 Gestures [35], and the
Spiking Heidelberg Digits (SHD) [36] datasets are considered.
Table I shows the networks used for the four datasets which
are trained for 8, 30, 40, and 40 timesteps, respectively. The
networks are trained using the SGD and Adam optimizers,
with and without delayed gradients. The gradients in the
layers are delayed by a predetermined number of batches,
as tabulated in Table I. This distribution of delays splits the
training DFG into subgraphs such that there is only one layer
per subgraph, as described in [26]. The learning rate is set
to 0.001 for both optimizers. The mini-batch size is set to
32 and the MNIST and N-MNIST networks are trained for
100 epochs, the DVS128 Gestures network is trained for
300 epochs, and the SHD dataset is trained for 30 epochs.
The results are shown in Table II. The mean and standard
deviation of the accuracy for 10 different weight initializations
are reported.

It is observed that the smaller networks trained on the
MNIST, N-MNIST, and SHD datasets achieve similar accuracy
with delayed gradients as without delayed gradients for both
SGD and Adam optimizers. As expected, the accuracy with
the Adam optimizer is higher than that of the SGD optimizer.
Overfitting is a major problem in the SHD dataset for feed-
forward SNNs, as mentioned in [36]. However, the use of
delayed gradients consistently achieves a higher accuracy on
this dataset, suggesting a form of regularization.

However, for the larger network trained on the DVS128
Gestures dataset, delayed gradients impact the performance.
It is also observed that the difference in accuracy in the
networks trained with and without delayed gradients increases
as the absolute accuracy obtained increases. Therefore, delayed
gradients have a more significant effect on the trainability of
the network when the network is trained to achieve higher
accuracy, as is the case with the Adam optimizer, as opposed to
the SGD optimizer. However, the maximum accuracy achieved
across the 10 runs in Adam is 81.25%, which is higher than the
77.43% achieved with SGD. Therefore, the Adam optimizer is
used for training the networks in the rest of the work. It is to
be noted that the networks trained with delayed gradients offer
a significant speedup in training time, as discussed in Section
VI, at the cost of a small reduction in accuracy. The trained
networks can be further fine-tuned without delayed gradients
to achieve higher accuracy if required. However, such fine-
tuning is not explored in this work.

TABLE I
DETAILS OF THE NETWORKS USED FOR THE FOUR DATASETS. THE DELAY

COLUMN INDICATES THE NUMBER OF BATCHES BY WHICH THE
GRADIENTS OF THE CORRESPONDING LAYERS ARE DELAYED.

Dataset Layer Output Shape # Params Delay

MNIST

Conv 1 (28× 28× 8) 80 6
Maxpool (14× 14× 8) - -
Conv 2 (14× 14× 8) 584 4

Maxpool (7× 7× 8) - -
FC 1 128 50,304 2

Output 10 1,290 0

N-MNIST

Conv 1 (32× 32× 8) 152 6
Maxpool (16× 16× 8) - -
Conv 2 (16× 16× 8) 584 4

Maxpool (8× 8× 8) - -
FC 1 32 16,416 2

Output 10 330 0

Gestures
DVS128

Conv 1 (64× 64× 32) 608 14
Maxpool (32× 32× 32) - -
Conv 2 (32× 32× 64) 18,496 14

Maxpool (16× 16× 64) - -
Conv 3 (16× 16× 128) 73,856 12
Conv 4 (16× 16× 128) 147,584 8

Maxpool (8× 8× 128) - -
Conv 5 (8× 8× 256) 295,168 4
Conv 6 (8× 8× 256) 590,080 2

Maxpool (4× 4× 256) - -
FC 1 128 524,416 0

Output 11 2,827 0

SHD
FC 1 256 179, 456 4
FC 2 256 65, 792 2

Output 20 5, 140 0

TABLE II
ACCURACY OF THE NETWORKS WHEN TRAINED WITH SGD AND ADAM

OPTIMIZERS, WITH AND WITHOUT DELAYED GRADIENTS. MEAN AND
STANDARD DEVIATION OF ACCURACIES OVER 10 DIFFERENT WEIGHT

INITIALIZATIONS ARE REPORTED.

Dataset Optimizer Delayed Gradients
No Yes

MNIST
SGD 96.37%± 0.32% 96.38%± 0.25%

Adam 98.64%± 0.13% 98.59%± 0.05%

N-MNIST
SGD 96.54%± 0.32% 96.34%± 0.52%

Adam 98.17%± 0.15% 98.13%± 0.12%

Gestures
DVS128 SGD 79.03%± 5.71% 73.35%± 2.71%

Adam 85.42%± 2.47% 76.39%± 3.52%

SHD
SGD 67.65%± 0.53% 69.41%± 0.80%

Adam 73.08%± 1.01% 73.90%± 0.98%

The obtained accuracies are compared against prior SNN
works, which have targeted the same four datasets, and tab-
ulated in Table III. The networks trained using the Adam
optimizer with delayed gradients have comparable accuracy
to the prior works on the MNIST and N-MNIST datasets. The
proposed method achieves competitive accuracy on the SHD
dataset using feed-forward SNNs with simple LIF models. The
use of recurrent SNNs or specialized adaptive delays [39] has
been shown to achieve higher accuracies but is beyond the
scope of this work. The accuracy on the DVS128 Gestures
dataset is lower than the prior works. However, the network
trained in this work has fewer parameters and timesteps than
the prior works. Moreover, the training method used in this
work is a generic method without any dataset-specific tuning
such as data preprocessing. There is also no fine-tuning done
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TABLE III
COMPARISON OF THE ACCURACIES OBTAINED IN THIS WORK WITH PRIOR

WORKS.

Work Dataset Accuracy (%) # Params Timesteps

[6]

MNIST

98.89 636,010 30
[6] 99.42 606,740 30
[9] 99.31 517,780 -

[10] 98.42 22,662 -
[17] 99.59 517,780 50

This Work 98.46 52,258 8

[6]

N-MNIST

98.78 1,858,410 30
[9] 98.66 1,858,410 -

[10] 97.23 37,044 -
[17] 99.09 750,780 50

This Work 98.06 17,482 30

[37]

Gestures
DVS128

95.83 2,081,866 500
[38] 93.40 2,332,891 -

This Work 81.25 1,653,035 40

[36]
SHD

48.1 92,308 100
[39] 92.42 109,076 150

This Work 75.97 250,388 40

without delayed gradients to further improve the accuracy.
Therefore, the obtained accuracy is reasonable.

IV. ACCELERATORS FOR TRAINING SNNS
Recent years have seen significant progress in developing

efficient hardware accelerators for training neural networks.
Most accelerators developed for training neural networks are
based on systolic arrays [40]–[42], like the Google Tensor
Processing Unit (TPU) [43]. Systolic arrays are well-suited
for training neural networks because of their regular structure
and high compute density. Figure 10 shows the structure of
a typical 4 × 4 systolic array. Each element in the array is
a processing element (PE) that performs a single multiply-
and-accumulate (MAC) operation every cycle. The structure
in Fig. 10 is an output-stationary architecture performing the
convolution operation. The input is a 5×5 feature map with 3
channels, which is convolved with four 3×3 filters. The output
is a 3 × 3 feature map with 4 channels. The first element
in every channel of the output feature map is computed by
multiplying the first 3 × 3 patch of the input feature map
with the four filters. This operation is done in the first row of
the systolic array, where the 3 × 3 patch of the input feature
map is streamed through the row and the filters are streamed
down the four columns. In the structure shown in Fig. 10, only
four elements of the output feature map can be computed per
channel as there are only four rows in the systolic array. The
remaining elements of the output feature map are computed
after the first four are computed and streamed out.
A. Modified systolic array for SNNs

The systolic array structure and the data streaming scheme
need to be modified to train SNNs. Both the forward pass and
backward pass of the LIF neuron model require an IIR filter.
Therefore, a bank of IIR filters should be present along with
the systolic array. The output of each column of the systolic
array is passed through an IIR filter and sent to the output
SRAM. The number of IIR filters in the filter bank is SC ,
where SC is the number of columns in the systolic array.
Figure 11 shows the architecture of the modified systolic array
processor for SNNs. The interconnect bus in Fig. 11 connects
adjacent processors and facilitates data transfer between them.

Fig. 10. Structure of a regular 4 × 4 systolic array in output-stationary
configuration for computing a convolution. The input is a 5× 5 feature map
with 3 channels, which is convolved with four 3 × 3 filters. a

(f)
ij is the

coefficient of filter f at the i, jth location for the first channel. The second
and third channels are represented by b

(f)
ij and c

(f)
ij , respectively.

Fig. 11. Modified systolic array processor for training SNNs. The interconnect
bus connects adjacent processors and facilitates data transfer between them.

B. Estimating clock cycles for computation

The discussed processor has to be modeled to accurately
estimate the number of clock cycles required to compute a
given task [44]. Since the target problem is image classifica-
tion, only two types of computations are required: convolution
and matrix multiplication. For each of these, there are three
cases to consider: the forward pass, gradient with respect to
weights, and gradient with respect to inputs. The mapping of
the computations to the systolic array for each of these cases
is discussed in this section.

1) Convolutional layer: In the forward pass of convolution,
the input image is convolved with a set of filters. Assuming the
image to be H×W×C including padding, and the filter to be
K×K×C, the output of the convolution is Hout×Wout×1,
where Hout = (H −K + 1) and Wout = (W −K + 1). The
convolution operation is performed by sliding the filter over
the input image and computing the dot product of the filter and
the image patch. The dot product is computed by multiplying
the corresponding elements of the filter and the image patch
and summing them up. This is repeated for T timesteps and
F filters.
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For each of the three tasks, i.e., the forward pass, gradient
with respect to weights, and gradient with respect to inputs,
the number of rows and columns necessary for computation,
and the number of MACs per PE are different. Table IV
summarizes the number of rows and columns and the number
of MACs per PE for each of the three tasks. In most practical
cases, the systolic arrays are not large enough to accommodate
all the rows and columns necessary for computation. There-
fore, the computations are tiled to fit the systolic array. The
number of tiles required in an (SR × SC) systolic array is
given by (26).

Ntiles =

⌈
Nrows

SR

⌉
·
⌈
Ncols

SC

⌉
(26)

where, ⌈x⌉ is the ceiling function. For each tile, the number of
clock cycles is the number of cycles required for accumulating
the output, and the input and output skews, given by (27).

Ncyclestile = NMAC + (SR − 1) + (SC − 1) (27)

The total number of clock cycles required for each task is
given by (28) when Ntiles and Ncyclestile are computed using
the values from Table IV.

Nconv = Ntiles ·Ncyclestile (28)
TABLE IV

NUMBER OF ROWS AND COLUMNS, AND NUMBER OF MACS PER PE FOR
EACH OF THE THREE TASKS FOR CONVOLUTION.

Task Nrows Ncols NMAC

Forward pass Hout ·Wout · T F K ·K · C
Weight Gradient K ·K · C F Hout ·Wout · T
Input Gradient H ·W · T C K ·K · F

2) Fully-connected layer: In the forward pass of a fully-
connected layer simulated over T timesteps, the input feature
map is a vector of size Qin, and the output feature map is
a vector of size Qout. The number of tiles and number of
clock cycles per tile are given by (26) and (27), respectively.
Similar to the convolutional layer, the total number of clock
cycles required for the fully-connected layer is given by (29)
when Ntiles and Ncyclestile are computed using the values
from Table V.

Nfc = Ntiles ·Ncyclestile (29)
TABLE V

VALUES OF NR , NC , AND NMAC FOR EACH OF THE TASKS IN THE
FULLY-CONNECTED LAYER.

Task Nrows Ncols NMAC

Forward pass T Qout Qin

Weight Gradient Qin Qout T

Input Gradient T Qin Qout

C. Extending to complex neuron models

The cycle estimate per tile in (27) is determined only by
the systolic array and not the neuron model computation, as
it is assumed that the neuron model is run on a dedicated
block that can be pipelined with the systolic array, owing to
its simplicity. However, such pipelining may not be feasible
for more complex neuron models, resulting in additional cycles
per tile. Assuming the number of cycles required by dedicated
hardware to compute the neuron model is given by Nneuron,
the new value of Ncyclestile is given by (30).

Ncyclestile = max (NMAC + (SR − 1) + (SC − 1), Nneuron)
(30)

The total number of cycles in (28) and (29) would be com-
puted using the new Ncyclestile . However, in most practical
situations, the value of NMAC + (SR − 1) + (SC − 1) is in
the order of 100-1000, while the value of Nneuron would be
at most 100 for the most complex models, implying the effect
of Nneuron on the throughput can be ignored.
D. Clock cycles for the MNIST network

For the four-layer network trained on MNIST detailed in
Table I, the number of clock cycles required for each layer
when mapped to a 32 × 32 systolic array is given in Table
VI. For most practical applications, the input gradient of the
first layer is not required. Therefore, the total number of clock
cycles needed for one weight update of the entire network is
46, 956.

TABLE VI
NUMBER OF CLOCK CYCLES REQUIRED FOR EACH LAYER OF THE MNIST

NETWORK WHEN MAPPED TO A 32× 32 SYSTOLIC ARRAY.

Layer Forward pass Weight gradient Input gradient
Conv1 13,916 6,334 26,264
Conv2 6,566 4,890 6,566
FC1 1,816 3,640 2,470

Output 190 280 288

V. SCHEDULING TO MULTIPLE PROCESSORS

When the training is done with more than one processor, the
workload should be distributed evenly among the processors
to minimize the total number of clock cycles required for
the entire network. Ideally, the training throughput should be
increased by a factor equal to the number of processors used.
However, achieving this in practice is difficult. This section
explores various scheduling algorithms that can distribute
the workload among multiple processors and compares their
performance in terms of throughput. The number of cycles
required for the forward pass, weight gradient, and input
gradient of a layer indexed l is denoted by N l

FP , N l
WG,

and N l
IG, respectively. The number of processors used for

training is denoted by P . The total number of clock cycles
required for the entire network is represented by Ntotal. The
network trained on MNIST detailed in Table I is used for the
simulations in this section. For this network, Ntotal is 46,956
clock cycles. The values of N l

FP , N l
WG, and N l

IG, for all l,
are tabulated in Table VI. N1

IG corresponds to the computation
of ∂L/∂x[n] in Fig. 8, and is ignored in the simulations since
it is not required for training.

The basis for all the discussed scheduling algorithms is the
ability to split the training dataflow graph shown in Fig. 8 into
various subgraphs. As discussed in Section III-D, this can be
achieved with the help of delayed gradients. The DFG can be
retimed and split into subgraphs, shown by the dashed lines in
Fig. 9. Each subgraph can be mapped onto a processor. The
number of batches by which each batch is delayed depends
on the processor to which the corresponding weight gradient
computation task is mapped. For each weight gradient task, the
number of delays would be twice the number of processors
following the processor to which the task is mapped. For
example, if a weight gradient task is mapped to the third
processor, and there are a total of 5 processors, the number of
delays would be 2× (5− 3) = 4.

Throughout this section, the speedup of training is compared
to the single processor implementation. If the training is
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done on a single processor, the number of clock cycles per
weight update is Ntotal, or 46, 956 for the network under
consideration. The number of required clock cycles reduces
when the training is done on multiple processors. The speedup
of training is the ratio of the number of clock cycles per weight
update on a single processor to the number of clock cycles per
weight update on multiple processors.

A. Layer-wise scheduling
The most straightforward way to distribute the workload

among multiple processors is to consider an entire layer as a
single task and schedule the tasks to the processors. With this
approach, the speedup in computation, σ, is upper bounded by
the number of clock cycles required for the longest layer, as
given by (31).

σlayerwise ≤
Ntotal

maxl(N l
FP +N l

WG +N l
IG)

(31)

For the network trained on MNIST detailed in Table I, the
longest layer is the first layer, with 20, 250 clock cycles2.
σlayerwise for this network is 2.32. Therefore, using more than
three processors does not improve training throughput. Figure
12(a) shows the schedule map for the layer-wise scheduling
algorithm when P = 2 along with the number of clock cycles
necessary for each task. The schedule map shows the processor
to which each task is assigned. After the pipeline is full, the
processor P0 is active for 20, 250 cycles and the processor
P1 is active for 26, 706 cycles. The number of cycles per
weight update is 26, 706, resulting in a speedup of 1.8× over
the single processor implementation. Figure 12(b) shows the
split of the DFG into two subgraphs that are mapped to the
corresponding processors.

Fig. 12. (a) Schedule map for the layer-wise scheduling algorithm when
P = 2 and (b) split of the DFG to two subgraphs. xLi represents the tasks
of layer i for input batch index x.

B. PipeDream-based scheduling

Scheduling based on the PipeDream algorithm [23] assumes
the layer’s tasks are split into forward and backward passes.
The backward pass contains both input gradient computation
and weight gradient computation. This method of splitting
increases the upper bound of speedup by considering the

2Note that the input gradient task is ignored for the first layer.

maximum of the longest forward pass and longest backward
pass. The speedup bound is given by (32).

σpipedream ≤
Ntotal

max(maxl(N l
FP ),maxl(N l

WG +N l
IG))

(32)

For the values in Table VI, the longest forward pass takes
13, 916 cycles, and the longest backward pass takes 11, 456
cycles, resulting in σpipedream of 3.37. Figure 13(a) shows the
schedule map for the PipeDream-based scheduling algorithm
when P = 4. The number of cycles per weight update is
13, 916, resulting in a speedup of 3.37× over the single
processor implementation. Figure 13(b) shows the split of the
DFG into four subgraphs.

Fig. 13. (a) Schedule map for the PipeDream-based scheduling algorithm
when P = 4 and (b) split of the DFG to four subgraphs.

C. Split backward pass

The PipeDream-based scheduling algorithm considers the
entire backward pass of a layer as a single task. In most cases,
this becomes a bottleneck. The backward pass can be split into
weight gradient and input gradient tasks. This increases the
upper bound of speedup by considering the longest task. The
upper bound of speedup is given by (33).

σsplit ≤
Ntotal

max(maxl(N l
FP ),maxl(N l

WG),maxl(N l
IG))

(33)

However, for the example network, this does not offer any
further speedup as the longest task is the forward pass of the
first layer.

D. Fine-grained pipelining

The speedup of training might not be close to ideal even
when the number of processors is less than the upper bound
of speedup. In Fig. 12, the speedup is only 1.8× instead of
the ideal speedup of 2×. This is because the tasks require
a different number of clock cycles, which results in some
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processors being idle. Fine-grained pipelining can be used
to balance the pipeline stages such that the number of clock
cycles required for each stage is the same, thus reducing the
idle time of the processors.

Fine-grained pipelining is done by splitting the tasks into
multiple subtasks wherever necessary and assigning them to
different processors. The forward pass of a layer needs outputs
of the previous layer and weights of the current layer. The
output of the forward pass is used as input to the forward
pass and weight gradient of the next layer. Therefore, moving
a part of the forward pass to the next processor requires more
communication of moving part of previous outputs and current
weights to the next layer. However, it reduces the cost of
moving the outputs of the current forward pass to the next
processor. Figure 14 shows the process of moving part of the
forward pass to the next processor. The task F0 is split into
F0 and F ′

0. The task F ′
0 is moved to the next processor.

Fig. 14. Mapping two layers to two processors by (a) splitting the forward
pass in the first layer and (b) moving one part of the forward pass to the next
processor.

Fig. 15. (a) Schedule map for the proposed fine-grained scheduling scheme
when P = 4 and (b) split of the DFG to four subgraphs.

Algorithm 1 First-to-last allocation scheme
1: ▷ Compute clock cycles for each task and store in a matrix

of size L× 3
2: NC ← COMPUTECYCLES(Network)
3: ▷ Allocate tasks to P processors using first to last allo-

cation scheme
4: Ntot ← sum(NC [l, i]) for l← 0 to L− 1, i← 0 to 2
5: Nideal ← Ntot

P ▷ Compute ideal time per processor
6: α← 1.1
7: flag ← True
8: while flag do
9: Nalloc[p]← 0 for p← 0 to P − 1

10: Layer index, l← 0
11: Processor index, p← 0
12: Task index, i← 2
13: while True do
14: if Nalloc[p] +NC [l, i] ≤ Nideal then
15: Allocate task i of layer l to processor p
16: Nalloc[p]← Nalloc[p] +NC [l, i]
17: if i = 0 then
18: l← l + 1
19: i← 2
20: else
21: i← i− 1
22: else
23: if i = 1 then ▷ Cannot split weight gradient
24: if NC [l, i]/2 ≤ (Nideal −Nalloc[p]) then
25: Allocate task i of layer l to processor p
26: Nalloc[p]← Nalloc[p] +NC [l, i]
27: i← 0
28: else
29: Nrem ← Nideal −Nalloc[p]
30: Split task into Nrem and NC [l, i]−Nrem

31: Allocate Nrem of task i to processor p
32: Nalloc[p]← Nalloc[p] +Nrem

33: NC [l, i]← NC [l, i]−Nrem

34: p← p+ 1
35: if p = P − 1 then
36: if l = L− 1 then
37: flag ← False
38: else
39: Nideal ← α ·Nideal

40: break
41: return layer map, Nalloc

Similarly, the input gradient task can be split into subtasks
and moved to the previous processors. Both the forward pass
and input gradient splits involve a small overhead of com-
municating appropriate weights to the respective processor.
Splitting the weight gradient task, however, would result in a
large overhead of moving either the outputs of the previous
layer or the input gradient of the next layer. Therefore, the
weight gradient task is not split. Using these conditions, the
tasks are allotted to processors using a first-to-last allocation
scheme detailed in Algorithm 1. The first-to-last algorithm al-
locates the tasks in the order of input gradient, weight gradient,
and forward pass. The algorithm starts with assigning the first
layer’s tasks to the first processor and continues allocating the
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tasks to the next processor until all the processors are full.
If all the layers are not assigned, the ideal time constraint
is relaxed, and the algorithm is rerun until all the layers are
allocated. Similarly, the tasks can be allocated in the order
of forward pass, input gradient, and weight gradient from the
last layer to the first layer, resulting in a last-to-first allocation
scheme.

For a given network, both allocation schemes are run, and
the one with the better speedup is chosen. Since the weight
gradient task is not split, this becomes the bottleneck for
speedup. The maximum speedup for this scheme is given by
(34).

σfinegrained =
Ntotal

maxl(N l
WG)

(34)

For the example network, the longest weight gradient task
takes 6, 334 cycles, resulting in a σfinegrained of 7.41×, which
is more than twice that of the speedup from the PipeDream-
based scheduling scheme. Figure 15(a) shows the schedule
map for the proposed fine-grained scheduling scheme for P =
4. Figure 15(b) shows the modified DFG with the tasks split
and moved to execute the schedule given by Fig. 15(a). With
this split of the DFG, the number of cycles per weight update
is 11, 900, resulting in a speedup of 3.95×, which is very close
to the ideal speedup of 4×.

VI. SIMULATION RESULTS
The proposed fine-grained scheduling scheme is simulated

on the networks described in Table I and compared with the
PipeDream-based scheduling scheme for a varying number of
processors. Figure 16 shows the speedup of both scheduling
schemes for the example network with a batch size of 1 when
mapped to 32× 32 systolic arrays.

To test the effect of batch size and systolic array size on
the speedup, both the scheduling algorithms are simulated for
different batch sizes and systolic array sizes. Figure 17 shows
the mean and standard deviation of the speedup when batch
size is varied from 1 to 128, and the systolic array size is
varied from 16× 16 to 256× 256.

Figure 18 shows the individual effect of batch size and
systolic array size on the speedup. Batch size does not have
a significant impact on the speedup for both the scheduling
schemes, as evident in Fig. 18(a), (c), (e), and (g), which show
the speedup with varying batch sizes and a 32 × 32 systolic
array. Figure 18(b), (d), (f), and (h), however, show that the
systolic array size affects the speedup of both algorithms.
Having smaller systolic arrays is beneficial for the PipeDream
algorithm but the proposed algorithm benefits from a few
specific array sizes, based on the network structure.

Table VII summarizes the speedup of both algorithms on
the four networks for various processors, averaged over all
batch sizes and systolic array sizes. It also shows the additional
overhead incurred by the fine-grained scheduling scheme. On
average, the proposed fine-grained pipelining and scheduling
algorithm achieves a speedup improvement of 73.41% over the
PipeDream-based algorithm. The proposed algorithm achieves
more than 2× speedup over the PipeDream-based algorithm
when using a higher number of processors.

The overhead incurred by the fine-grained scheduling
scheme is negligible compared to the total memory require-
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Fig. 16. Comparison of the proposed fine-grained scheduling with the
PipeDream-based scheduling over single-processor implementation for the (a)
MNIST, (b) N-MNIST, (c) DVS128 Gestures networks, and (d) SHD

. The results are with a batch size of 1 and a 32× 32
systolic array.

Fig. 17. Mean and standard deviation of the speedup with different batch sizes
and systolic array sizes for (a) MNIST, (b) N-MNIST, (c) DVS128 Gestures,
and (d) SHD

networks.
ment for the MNIST, N-MNIST, and DVS Gestures net-
works. For the network trained on MNIST, the communication
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Fig. 18. Speedup with 8 processors with (a) varying batch sizes of the MNIST
network, (b) varying systolic array sizes of the MNIST network, (c) varying
batch sizes of the N-MNIST network, (d) varying systolic array sizes of the
N-MNIST network, (e) varying batch sizes of the DVS128 Gestures network,
(f) varying systolic array sizes of the DVS128 Gestures network, (g) varying
batch sizes of the SHD network, and (h) varying systolic array sizes of the
SHD network
. Results with varying batch sizes are with a systolic array of
size 32× 32, and varying array sizes are with a batch size of

32. The speedup is normalized to one processor.
required to transfer intermediate outputs and gradients is
3.22 MB on average. The maximum overhead is 16.86 KB,
which is 0.51% of the total communication. For the larger
network trained on the DVS128 Gestures dataset, the total
communication requirement is 982.98 MB on average, while
the maximum overhead is ≈ 260 KB, which is only 0.03% of
the total communication. However, the overhead for the SHD
network is ≈ 10% of the total communication requirement.
The reason for such high overhead is the nature of the network.
The network used for SHD contains only fully connected
layers. The overhead incurred by the proposed algorithm is
the communication cost of transferring weights to the adjacent
processors, and the number of weights in a fully connected
layer is much higher than in a convolutional layer. Therefore,
the proposed method incurs a lower overhead in the networks
with convolutional layers such as the MNIST, N-MNIST, and
DVS Gestures.

The size of the SRAM required in the processors increases
for large networks to store the inputs and intermediate com-
puted variables. However, assuming the worst-case scenario of
having a single processor and storing all intermediate outputs
for the backward pass, the memory requirement is 11.568 MB,
44.217 MB, 2.092 GB, and 10.769 MB for the MNIST, N-

MNIST, DVS128 Gestures, and SHD networks, respectively,
for a batch size of 32. This requirement reduces almost linearly
with an increase in number of processors.

TABLE VII
SUMMARY OF RESULTS FOR THE TWO SCHEDULING SCHEMES. RESULTS

AVERAGED OVER ALL BATCH SIZES AND SYSTOLIC ARRAY SIZES. THE
NETWORKS USED FOR THE DATASETS ARE DESCRIBED IN TABLE I.

(Memory
Network Required) Procs.

No. of Speedup
(KB)

Overhead

PipeDream Grain
Fine

(%)
Improv.

(11.57 MB)
MNIST

1 1.00 1.00 0.00 0.00
2 1.81 1.97 8.94 0.73
4 2.67 3.78 41.84 2.62
6 2.67 5.04 88.84 9.83
8 2.67 5.49 105.86 10.40
10 2.67 5.57 108.92 16.86
12 2.67 5.57 108.92 16.86

(44.22 MB)
N-MNIST

1 1.00 1.00 0.00 0.00
2 1.83 2.00 8.92 0.56
4 2.49 3.67 50.67 2.08
6 2.52 5.00 101.55 4.03
8 2.52 4.81 94.02 3.92
10 2.52 4.81 94.02 3.92
12 2.52 4.81 94.02 3.92

(2.09 GB)
Gestures
DVS128

1 1.00 1.00 0.00 0.00
2 1.76 1.99 14.31 9.00
4 3.26 3.93 21.35 54.60
6 4.04 5.33 33.70 96.64
8 4.29 6.89 67.60 133.95
10 4.29 8.35 102.75 194.10
12 4.29 8.56 106.39 260.18
14 4.29 9.04 113.98 252.56
16 4.29 9.87 134.73 254.70

SHD (10.77 MB)

1 1.00 1.00 0.00 0.00
2 1.55 1.92 25.23 396.67
4 2.17 3.67 69.74 668.67
6 2.17 4.28 96.88 803.07
8 2.17 4.57 108.84 992.00
10 2.17 4.60 110.01 992.00
12 2.17 4.60 110.01 992.00

VII. CONCLUSION

This paper discusses the general modeling of Spiking Neu-
ral Networks based on the Leaky Integrate-and-Fire model,
and their training using the backpropagation algorithm. The
dataflow graph of training is then pipelined and retimed using
delayed gradients in an attempt to map it to multiple proces-
sors. The design of typical systolic array-based processors is
discussed, along with their modeling to estimate clock cycles
necessary for executing various tasks. Using the estimated
clock cycles, the dataflow graph is split in various ways
using pre-existing algorithms. A fine-grained pipelining and
scheduling scheme is then proposed to improve the throughput
of training over conventional methods. The proposed scheme is
evaluated on four networks, and the results show an average of
≈ 73% improvement in throughput with upward of > 100%
improvement in some cases, with a small drop in accuracy
for larger networks. The overhead incurred by the proposed
scheme is ≤ 0.5% compared to the total communication
requirement of the network for networks with convolutional
layers. The proposed scheme assumes that the neural networks
have only convolutional or fully-connected layers. The future
scope of this work includes extending the proposed scheme to
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networks with other types of layers, such as normalization and
residual layers, which can improve the accuracies of deeper
networks. Further, a hybrid multiprocessor training and single
processor fine-tuning approach can be explored to improve the
accuracy of the networks trained using the proposed scheme.
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