
Citation: Chang, C.S.; Chao, J. A

Review of Particle Packing Models and

Their Applications to Characterize

Properties of Sand-Silt Mixtures.

Geotechnics 2024, 4, 1124–1139.

https://doi.org/10.3390/

geotechnics4040057

Academic Editor: Salvatore Grasso

Received: 7 September 2024

Revised: 3 October 2024

Accepted: 29 October 2024

Published: 1 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Review of Particle Packing Models and Their Applications to
Characterize Properties of Sand-Silt Mixtures

Ching S. Chang * and Jason Chao

Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA;

jasonchao@umass.edu

* Correspondence: cchang@umass.edu

Abstract: This paper reviews particle packing models and explores their application in geotechnical

engineering, specifically for sand-silt mixtures. The review covers key models, including limiting case,

linear, and non-linear packing models, focusing on their mathematical structures, physical principles,

assumptions, and limitations through the concept of excess free volume. The application of particle

packing models in geotechnical engineering is explored in characterizing the properties of sand-silt

mixtures, offering insights into maximum, minimum, and critical void ratios and inter-granular void

ratio, and the prediction of mechanical properties.
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1. Introduction

The study of particle packing volume is important across many fields, including
concrete performance [1,2], powder technology [3], ceramics manufacturing [4], and phar-
maceuticals [5]. In geotechnical engineering, packing density plays a crucial role in de-
termining soil properties and the performance of granular materials. Understanding the
packing density of soil mixtures is essential for many engineering decisions [6,7], such as
foundation design and slope stability assessments. Therefore, the particle packing model is
potentially valuable in this context.

This paper reviews advances in particle packing models, with a focus on binary
mixtures of soil particles ranging in size from 10 µm (silt) to 10,000 µm (sand and coarse
aggregates). The review excludes cohesive clay particles, because clay behaves differently
from sand and silt due to hydration, plasticity, and long-range inter-particle forces, which
require alternative modeling approaches.

We begin by outlining the theoretical background of packing density models, describ-
ing the volume change from mixing two particle species based on granular physics. This
change is viewed as the sum of the “excess free volume” of each species, arising from their
geometric interactions. We then review various models, examining their mathematical
structures, physical principles, assumptions, and limitations through the concept of “ex-
cess free volume”. Finally, the application of these models in geotechnical engineering
is explored in three areas: (1) estimating maximum, minimum, and critical state void ra-
tios, (2) establishing connection to the inter-granular void ratio, and (3) predicting relative
densities and mechanical properties of soil mixtures.

2. Background

The underlying physics of volume change, due to the mixing of particles of different
sizes, can be understood as changes in “granular potential”. The framework of Edwards
thermodynamics has been applied to study this phenomenon [8], using the following
fundamental equation:
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dυ = χdS +
N

∑
1

µ̂idyi (1)

Here, υ is the specific volume, yi is the solid fraction of particles, and µ̂i is the granular
potential for the i-th species. χ is compactivity, and S is the configurational entropy of
the packing. Note that the erm χdS is analogous to heat in traditional thermodynamics,
while the second term resembles chemical potential [9]. In Edwards thermodynamics,
compactivity indicates how easily the packing can be compacted, often referred to as
granular temperature.

The granular potential in this context can be understood as Gibbs excess free volume
potential or “excess free volume”. For a bi-dispersed packing, where particle sizes are
denoted by d1 and d2, the solid fractions are denoted by y1 and y2 for large and small
particles, respectively. The total specific volume of the mixture is as follows:

υ = υ1y1 + υ2y2 (2)

Here, υi represents the partial volume of the i-th species, analogous to partial mole
energy in thermodynamics [9].

For a mono-dispersed packing made of the i-th component of the bi-dispersed mixture,
compacted to the same state of χ as the mixture, the volume of the mono-dispersed packing
is denoted by υ0

i . The difference between υi and υ0
i is

∆υi = υi − υ0
i (3)

This difference (∆υi) is referred to as the excess free volume of the i-th species, similar
to excess free energy in thermodynamics [9]. In this context, “free” refers to the available
void space that can be reduced through particle rearrangement. When particles of different
sizes mix, small particles fill the voids between large particles, and large particles embed
into the matrix of small particles, thereby reducing the overall void space. Therefore,
granular potential is essentially the excess free volume, influenced by the particle size ratio
and particle shapes of the two species [10].

The excess free volume, denoted as granular potential µ̂i = ∆υi, allows us to express
the change in volume (dυ) due to bi-dispersity as the sum of two contributions:

dυ = χdS +
2

∑
i=1

∆υidyi ; where χdS =
2

∑
i=1

υ0
i dyi (4)

In this expression, y1 represents the solid volume fraction for large particles, and
y2 represents the same for small particles. Since y2 = 1 − y1, the composition of the
bi-dispersed packing can be simplified to the fines content, denoted as fc = y2.

It is important to note that “excess free volume” is not an intrinsic property of any
individual particle species. Rather, it depends on the characteristics of the bi-dispersed
mixtures, such as the particle size ratios and the solid fraction of each species.

To calculate the excess free volume, we must first determine the value of υi (as in
Equation (3)). This can be done by using the “add-a-particle” method [8], where adding a
particle of i-th species into the packing increases the total packing volume. The ratio of this
increase in volume to the solid volume of the added particle gives υi, which indicates how
much space the particles occupy relative to the voids—a key factor in understanding the
behavior of soil mixtures.

Figure 1 illustrates four different scenarios for mixtures with very small particle ratios.
(a) When a large particle is added to a uniform packing of large particles, it occupies a

space, which includes not only the solid volume of this particle but also the adjacent void
volume. The space is similar to the space occupied by a neighboring particle. Thus, the
ratio of this increase in volume to the solid volume of the added particle υ1 is equal to υ0

1,
meaning the excess free volume ∆υ1 = 0.
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(b) Conversely, if a large particle is added to a uniform packing of very small particles,
it becomes embedded in the matrix of the small particles. In this scenario, the space
occupied by the large particle consists solely of its solid volume, with virtually no adjacent
void space. Thus, the ratio of this increase in volume to the solid volume of the added
particle υ1 equals 1, and the excess free volume ∆υ1 = 1 − υ0

1.
(c) Similarly, when a small particle is added to a uniform packing of small particles,

it occupies a space comparable to that of a neighboring particle. Thus, the ratio of this
increase in volume to the solid volume of the added particle υ2 is equal to υ0

2, and the excess
free volume ∆υ2 = 0.

(d) If a small particle is added to a uniform packing of large particles, it fills the
interstices between large particles, and the increase in volume of the packing is zero,
leading to the value of υ2 being equal to 0, and the excess free volume ∆υ2 = −υ0

2.

ÿଵÿଵ଴ ∆ÿଵ = 0
ÿଵ ∆ÿଵ = 1 − ÿଵ଴

ÿଶ ÿଶ଴∆ÿଶ = 0
ÿଶ ∆ÿଶ = −ÿଶ଴ ýଶ/ýଵ →∆ÿ௜∆ÿ௜ ∆ÿ௜

ÿÿ = ÿଵ଴ÿଵ + ÿଶ଴ÿଶ + ∆ÿ∆ÿ∆ÿ = Δÿଵÿଵ + Δÿଶÿଶ
ÿଵ଴ÿଵ + ÿଶ଴ÿଶ ∆ÿýଶ/ýଵ

Figure 1. Four scenarios of limiting cases: (a) a large particle is added to a uniform packing of large

particles, (b) a large particle is added to a uniform packing of very small particles, (c) a small particle

is added to a uniform packing of small particles, and (d) a small particle is added to a uniform

packing of large particles. The red circle indicates the added particle.

These four scenarios are limiting cases where the particle size ratio d2/d1 → 0, provid-
ing upper and lower bounds for the values of ∆υi. For general cases, the actual values of
∆υi are within these bounds. Studies on the values of ∆υi for very dense or for very loose
sand-silt mixtures have been studied based on experimental measurement [11].

By combining Equations (2) and (3), the total specific volume υ can be expressed as

υ = υ0
1y1 + υ0

2y2 + ∆υ (5)

Here, the total excess free volume ∆υ in the system is as follows:

∆v = ∆υ1y1 + ∆υ2y2 (6)

As illustrated in Figure 2, line AB represents the total volume before mixing, calculated
as υ0

1y1 + υ0
2y2. The curve ACB represents the actual volume after particle mixing. The

shaded area between line AB and curve ACB corresponds to the excess free volume ∆υ.
In the extreme case, where the particle size ratio d2/d1 approaches zero, all the voids

are filled with small particles, represented by the blue line. Conversely, when all the large
particles are embedded in the matrix of small particles, it is represented by the red line.
Line AB serves as the upper bound, while the blue line and red line form the lower bound
for the system’s volume behavior.
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In the following sections, we will review various particle packing models and highlight
the connection between their assumptions and the concept of excess free volume.

ff ff

ÿ = ÿଵ଴ÿଵ          for coarse − grain dominant region.ÿ = ÿଵ + ÿଶ଴ÿଶ     for ϐine − grain dominant region.
∆ÿଵ =0 ∆ÿଶ = −ÿଶ଴∆ÿ = −ÿଶ଴ÿଶ ∆ÿଶ = 0∆ÿଵ = 1 − ÿଵ଴ ∆ÿ = (1 − ÿଵ଴)ÿଵ

ÿ = (ÿଵ଴ÿଵ + ÿଶ଴ÿଶ) − ÿଶ଴ÿଶ              for coarse − grain dominant region.ÿ = (ÿଵ଴ÿଵ + ÿଶ଴ÿଶ) − (ÿଵ଴ − 1)ÿଵ        for ϐine − grain dominant region.

Figure 2. Binary particle packing with varying fines content and its influence on void space. The

figure illustrates the relationship between specific volume and fines content. The small plots represent

different packing scenarios, demonstrating how granular potential affects the specific volume. The

accompanying equation represents the thermodynamics theory applied to the packing model.

3. Review of Models

Three categories of models are briefly reviewed below.

3.1. Limiting Cases

In the 1930s, Westman [12] and Furnas [13] pioneered mathematical models to analyze
the packing density of binary particle mixtures. These models account for two distinct
packing scenarios:

(1) Dominant by coarse particles: the fine particles are fully accommodated in the
voids between the large particles (illustrated by the blue line in Figure 2).

(2) Dominant by fine particles: the large particles are isolated and embedded in the
matrix of fine particles (represented by the red line in Figure 2).

The proposed models are expressed as follows:

υ = υ0
1y1 for coarse − grain dominant region. (7)

υ = y1 + υ0
2y2 for fine − grain dominant region. (8)

These equations correspond to the blue and red lines in Figure 2, respectively. These
equations can be derived from the concept of excess free volume. In the scenarios of
coarse-grain dominance (Figure 1a,d), the excess free volume of the large particles ∆υ1 = 0
(Figure 1a), and for the small particles, ∆υ2 = −υ0

2 (Figure 1d). As a result, the total excess
free volume ∆υ = −υ0

2y2 (see Equation (6)).
On the other hand, when the system is dominant by fine particles (see Figure 1b,c),

the excess free volume of fine particles ∆υ2 = 0 (Figure 1c), and for the coarse particles,
∆υ1 = 1 − υ0

1 (Figure 1b), resulting in ∆υ =
(

1 − υ0
1

)

y1 (see Equation (6)).
Substituting these excess volumes into Equation (5), we obtain the following:

υ = (υ0
1y1 + υ0

2y2)− υ0
2y2 for coarse − grain dominant region. (9)

υ =
(

υ0
1y1 + υ0

2y2

)

− (υ0
1 − 1)y1 for fine − grain dominant region. (10)
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These two equations match Equations (7) and (8) as proposed by Westman and
Hugill [12], and they represent the limiting case models for packings with particle size ratio
approaching zero.

3.2. Linear Packing Models

In cases where the particle size ratio does not approach zero, the υ vs. fc curve deviates
from the lower bound (as shown in Figure 2). To address this, various models have been
developed. A common strategy among these models is to introduce interaction functions
that reduce the amount of excess free volume. Two such functions are employed: f (r)
for coarse-grain-dominant regions and g(r) for fine-grain dominant regions. The general
expressions for these regions are as follows:

υ = υ0
1y1 + υ0

2y2 − f (r)υ0
2y2 for coarse − grain dominant region. (11)

υ = υ0
1y1 + υ0

2y2 − g(r)(υ0
1 − 1)y1 for fine − grain dominant region. (12)

As f (r) = g(r) = 0, the equations represent the upper bound, and as f (r) = g(r) = 1,
they represent the lower bound. In general, the interaction functions depend on the size
ratio r, with 0 < f (r) < 1 and 0 < g(r) < 1, producing a curve that can be approximated
by two linear segments.

Ben Aim and Goff [14] proposed a model that assumes that the coarse-grain-dominant
region follows the lower bound ( f (r) = 1) but introduced g(r), referred to as the “wall
effect”, which accounts for the influence of coarse particles embedded in a fine-particle
matrix [15].

g(r) = 1 −
5

16

(

(1 + 2r)
3
2 − 1

)

/(υ0
1 − 1) (13)

When r = 0, it represents the lower bound.
In 1986, Stovall et al. [16] proposed the “linear packing density model” of particle

mixtures. In this model, f (r) is defined based on a critical cavity size (r0 = 0.2). For fine
particles smaller than r0 (i.e., r ≤ 0.2), f (r) = 1, corresponding to the limiting case. For
fine particles larger than r0 (i.e., r > 0.2), f (r) accounts for the loosening effect on the
coarse-grain network:

f (r) = 1 −
1 − (r0/r)3

(

(υ0
1−1)(1−r3

0)
υ0

1

− 3r3
0

)

(1 − r) +
(

1 − r3
0

)

r > r0 (14)

g(r) = 1 − r (15)

When r → 0 , g(r) = 1, leading to the lower bound. As r = 1 (d2 = d1), f (r) = g(r) = 0,
representing the upper bound.

In 1996, Yu, Zou, and Standish [17] introduced different expressions for the interaction
functions f (r) and g(r):

f (r) = (1 − r)3.3 + 2.8r(1 − r)2.7 (16)

g(r) = (1 − r)2.0 + 0.4r(1 − r)3.7 (17)

These functions f (r) and g(r) are specific to spherical particles. Yu, Zou, and Stan-
dish [17] have further modified these functions for non-spherical particles, though only a
limited range of shapes were considered.

De Larrard’s “Compressible Packing Model” [18] built upon Stovall’s work, incorpo-
rating a compaction index K. The model accounts for the packing process via a compaction
index K. For a virtual packing, when K → ∞ , the model is similar to Equations (11) and
(12), with interaction functions given by the following:

f (r) =

√

1 − (1 − r)1.02 (18)
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g(r) = (1 − r)1.5 (19)

Chang, Wang, and Ge [19] have proposed a model for sand-silt mixtures, introducing
filling and embedding coefficients for soil particles, which have a large variation in shape.
The functions are as follows:

f (r) = (1 − r)p (20)

g(r) = (1 − r)s (21)

The exponents p and s are correlated to particle shapes, which can be calibrated from
experimental results.

Kim and Seo [20] evaluated the performance of the Chang et al. [19] model by com-
paring the measured and predicted void ratios for the three sand–sand mixture samples
at various fines contents. They found that although the use of two parameters, p and s,
in Equations (20) and (21) provides more accurate predictions of the measured results,
the model still produces reasonable predictions even when assuming p = s. This suggests
that with the one-parameter model, only a single interaction function is necessary (i.e.,
λ(r) = f (r) = g(r)).

Table 1 provides a comprehensive overview of various linear packing models de-
veloped by different researchers, specifically focusing on the interaction functions f (r)
and g(r). These functions are crucial for understanding how particles of different sizes
interact in a mixture, influencing the packing density and volume change. The function f (r)
typically represents the interaction in the coarse-grain dominant region, while g(r) charac-
terizes the interactions in the fine-grain dominant region. Both functions are dependent on
the particle size ratio, r.

Table 1. Summary of interaction functions f (r) and g(r) in linear packing models.

Researcher(s) f(r) Expression g(r) Expression

Aim and Goff [14] f (r) = 1 (Lower bound) g(r) = 1 − 5
16

(

1 + 2r3/2
)−1

Stovall et al. [16] f (r) = 1 −
1−(r0/r)3

(

(υ0
1
−1)(1−r3

0)
υ0

1

−3r3
0

)

(1−r)+(1−r3
0)

for r > r0
g(r) = 1 − r

Yu et al. [17] f (r) = (1 − r)3.3 + 2.8r(1 − r)2.7 g(r) = (1 − r)2.0 + 0.4r(1 − r)3.7

De Larrard [18] f (r) =
√

1 − (1 − r)1.02 g(r) = (1 − r)1.5

Chang, Wang, and Ge [19] f (r) = (1 − r)p g(r) = (1 − r)s

These interaction functions are key to accounting for effects such as the “wall effect”,
where coarse particles influence the packing of fine particles, and the “loosening effect”,
where fine particles loosen the structure of a coarse-particle matrix. Different models use
these functions to address complex particle interactions in various mixtures.

By summarizing these models, Table 1 provides a useful comparison of how different
researchers approach the prediction of volume changes due to particle mixing in coarse- and
fine-grain regions, taking into account the size ratio and associated physical phenomena.

The linear packing models for predicting the packing behavior of binary mixtures
typically rely on two straight lines, one representing the coarse-grain dominant region and
the other for the fine-grain dominant region. However, when the particle size ratio r > 0.22,
these models often fail to accurately predict experimental results due to the non-linearity
of the υ vs. y2 curve. This non-linearity becomes especially pronounced in transitional
regions where neither coarse nor fine particles dominate entirely.

3.3. Non-Linear Packing Models

There are two primary approaches used to achieve the desired non-linear curve in
packing models: (1) compressible packing models and (2) models with non-linear functions.
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3.3.1. Compressible Packing Models

This approach is based on the assumption that particles are deformable. The compress-
ible packing model (CPM), introduced by de Larrard [18], includes a compaction index K,
which allows the prediction of a non-linear curve shape.

The compaction index K relates virtual volume and real volume by the following:

υvirtual = υ
K

1 + K
(22)

When K → ∞ , the packing is considered virtual (non-deformable particles), with the
packing density predicted using linear models for coarse-grain and fine-grain dominant regions.

For smaller values of K, the compaction effect introduces a smooth non-linear behavior.
The value of K varies based on the sample preparation method and can differ for samples
prepared by pouring, tamping with a rod, vibration, or compression.

Roquier [21,22] enhanced the compressible packing model by proposing new formula-
tions for the interaction functions (wall effect and loosening effect coefficients) and new
values of K. The improvements account for size ratio r, the real specific volumes of each
species, and the compaction index K.

3.3.2. Models with Non-Linear Functions

The second approach involves treating the excess free volume ∆υ as a non-linear
function of the higher order of solid fractions y1 and y2 for each species:

∆υ = ∆υ(r, y1, y2) (23)

From Equation (5), a higher order function of ∆υ results in a non-linear curve of
specific volume υ vs. y2. There are two approaches to model ∆υ: (1) treat ∆υ as a single
function covering the entire range of fines content and (2) use two distinct functions—one
for the coarse-grain dominant region and the other for the fine-grain dominant region.

1. Models with a single non-linear function

Instead of applying separate non-linear functions to each dominant region, one ap-
proach is to use a single non-linear function across the entire range of fines content. This
simplifies the mathematical structure and allows the specific volume of the packing mixture
to be expressed as follows:

υ = υ0
1y1 + υ0

2y2 − ∆υ(r, y1, y2) (24)

In 1976, Toufar et al. [23] proposed the following non-linear function:

∆υ(r, y1, y2) = y1

(

υ0
1 − 1

)

kdks (25)

This function incorporates two factors: kd, which depends on size ratio, and ks, a
statistical factor that is a linear function of volume fractions y1 and y2. This results in ∆υ

being a higher order function of volume fractions. Goltermann et al. [24] made a minor
correction to the value of ks in 1997.

Han et al. [25] considered another expression for the non-linear function,

∆υ(r, y1, y2) = y1

(

υ0
1 − 1

)

B (26)

Here, B is based on geometric considerations of the probability for one coarse particle
to come into contact with a fine particle. The expression of B is a function of r, y1, and y2.
When the two species have the same diameter (i.e., r = 1), B = 0, representing the upper
bound, while B = 1 reduces the equation to the lower bound solution for the fine-grain
dominant region.
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Wu and Li [26] extended Han et al.’s work to analyze sediment mixtures. They
introduced several ranges of B values for various conditions such as pebble-sand mixtures,
sand-clay mixtures, under hydrostatic pressures, and in river environments.

2. Models with two dominant packing structures

Kwan et al. [27] proposed two non-linear functions separately for coarse-grain and
fine-grain dominant regions. Besides the loosening effect coefficient a(r) (equivalent to
f (r)) and the wall effect coefficient b(r) (equivalent to g(r)), they introduced the wedging
effect coefficient c(r), which affects both coarse-grain and fine-grain dominant regions. The
wedge effect involves non-linear exponential forms of solid fractions.

∆υ(r, y1, y2) = (1 − a(r))υ0
2y2 − c(r)a(r)υ0

2y2(3.8y2 − 1)
for coarse − grain dominant region.

(27)

∆υ(r, y1, y2) =
(

1 − b(r))(υ0
1 − 1

)

y1(1 − c(r)(2.6y1 − 1))
for fine − grain dominant region.

(28)

The expressions of a(r), b(r), and c(r) are complex, accounting for various particle
shapes under compacted or uncompacted conditions.

Yu and Standish [28] developed a non-linear packing model, named the “linear—mixture
packing model”, which combines their linear packing model [17] with a cubic non-linear
“mixture model”. This model presents the non-linear function ∆υ as two separate functions of
the size ratio r (where r = d2/d1):

∆υ(r, y1, y2) = β12y1y2 + γ12y1y2(y1 − y2) (29)

Here, β12 and γ12 are, respectively, the quadratic and the cubic coefficients [29]. β12

and γ12 can be determined through a fitting procedure described by Yu and Standish [28]
and are found to be dependent on size ratio and initial specific volume υ0

i .
The model considers three conditions.
For r ≥ 0.741 (near uniform packing), β12 = γ12 = 0, representing the upper bound.
For 0.741 > r > 0.154, non-linear behavior exhibits, with values of β12 and γ12 deter-

mined by the fitting method suggested in [29]. The binary mixture of particles is mainly
characterized by occupation (mixing effect).

For r < 0.154, where the small particle size is less than the cavity size, it simplifies to
the linear packing model [17], characterized by filling (unmixing effects).

At r = 0.154, a slight discontinuity in the estimated packing densities occurs when
transitioning between the linear and non-linear models.

Liu et al. [30] developed a model proposing two non-linear functions for two dominant
regions. Both are expressed as quadratic functions with respect to solid fractions y1 and y2.

It is noted that all of the non-linear functions ∆υ(r, y1, y2) discussed here are phe-
nomenological constructs. Using a single function of ∆υ for the entire range of fines content
would result in a highly complex function. Since the packing structure can be broadly
divided into two dominant regions, it is more reasonable to establish two non-linear
functions—one for coarse-grain and one for fine-grain dominant regions—rather than a
single function that covers the entire region.

Moreover, the packing structure cannot always be simplified into these two dominant
types, particularly when dealing with larger size ratios. In reality, the packing structure is a
dual skeleton composed of both species, and it continuously transitions from one dominant
type to another as the fines content changes [31].

To further consider the influence of packing structure, Chang and Deng [32] introduced
a model that considers the variation of the packing skeleton with fines content. They
hypothesized a characteristic size λ (d1> λ >d2), which varies continuously with packing
composition, λ(d1, d2, y1, y2). In this context, the size ratio λ

d1
is used to characterize the

excess free volume of the large particle species, representing the filling mechanism. The
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size ratio d2
λ is used to characterize the excess free volume of the small particle species,

representing the embedment mechanism. This model effectively accounts for both filling
and embedment mechanisms in particle packings. The total excess free volume of the
packing is expressed as a function of these ratios, given by

∆υ =

(

1 −
λ

d1

)η

(υ0
1 − 1) +

(

1 −
d2

λ

)η

υ0
2 (30)

The characteristic length λ(d1, d2, y1, y2) is determined by the minimization of excess
free volume.

d(∆υ)

dλ
= 0 (31)

This model was later contextualized within the Edward thermodynamics theory [8],
where the excess free volume in Equation (30) is analogous to chemical potential. In [11],
Equation (31) was derived from the second law of thermodynamics, which stipulates that
the Gibbs volume potential must be minimized for a closed system to be at equilibrium at a
constant compactivity [8].

Table 2 provides a summary of the strengths and limitations of the different particle
packing models discussed in this section, categorized into three main types: limiting case
models, linear packing models, and non-linear packing models.

Table 2. Summary table: Strengths and limitations of models.

Model Type Strength/Limitation Guideline on Size Ratio

Limiting Case Models
Simple and intuitive/Valid only for

limiting case
Size ratio smaller than 0.1 or larger then 0.8

Linear Packing Models
Accounts for interaction between particles/

In accurate in transition zone
Size ratio smaller than 0.2

Non-Linear Packing Models
Captures more complex particle interactions/

Requires more parameters
Size ratio smaller than 0.8 or larger than 0.2

Building on their foundational formulations, several bi-dispersed models have been
extended to predict the packing density of multi-component particle mixtures. These
include Mooney [33], Stovall [16], Yu [17,29], De Larrard [18], Roquier [21,22], Chang [32],
and Liu [30]. These multi-sized models are not included in this review.

4. Geotechnical Application

Although particle packing models are primarily limited to predicting the packing
density of soil mixtures, they are highly valuable in geotechnical engineering due to the
strong correlation between soil density and its properties, as well as the performance of
granular materials. In the context of geotechnical engineering, we examine the application
of particle packing models in three important areas: (1) estimating the maximum, minimum,
and critical state void ratios for sand-silt mixtures, (2) connecting the packing model to the
inter-granular void ratio, and (3) predicting the mechanical properties of binary mixtures
based on relative density.

4.1. Estimating Maximum, Minimum, and Critical State Void Ratios

The variation in maximum void ratio with respect to fines content in sand-silt mixtures
is driven by the same mechanisms that influence the variation of minimum void ratio [34].
As a result, particle packing models can reliably estimate both minimum and maximum
void ratios for sand-silt mixtures as fines content changes. This has been validated across
various sand-silt mixtures with different fines contents [34]. Figure 3, for example, shows
the comparison of predicted and measured results of maximum and minimum void ratios
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predicted using the method by Chang and Deng [32]. The input material parameter η is 2.1
for silica mixture and 3.9 for Hokksund mixture.
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Figure 3. Comparison of predicted and measured maximum and minimum void ratios of silica and

Hokksund mixtures.

It is important to note that in situ soil density, by itself, is not correlated well with
mechanical properties. Instead, relative density serves as a better indicator. Therefore, reli-
able estimation of both minimum and maximum void ratios is essential for understanding
soil behavior.

Furthermore, the variation in critical state void ratio with fines content is governed
by the same mechanisms that influence the variation of minimum void ratio. This allows
particle packing models to estimate critical state void ratios for sand-silt mixtures as fines
content changes. In Figure 4a, the symbols represent the experimentally measured critical
state void ratios versus effective stress for various fines contents in the Foundry mixture.
In Figure 4b, the critical state void ratios measured at effective stresses of 40, 400, and
1400 MPa are plotted against fines content. The solid lines represent the predicted results
using the model by Chang and Deng [32] with parameter η = 3.2. The comparison illustrates
the model’s ability to predict critical state void ratios.
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Figure 4. (a) Experimentally measured critical state void ratios versus effective stress for packings

with various fines content. (b) The comparison of predicted and measured critical state void ratios

with fines content for three different effective stresses. The void ratios at three effective stress levels,

represented by dotted lines in Figure 4a, are plotted in Figure 4b for different fines contents.

By predicting minimum, maximum, and critical state void ratios, particle packing
models provide a more comprehensive metric for estimating the mechanical performance
of sand-silt mixtures. This is crucial for designing foundations, embankments, and other
geotechnical structures.
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4.2. Connection to Inter-Granular Void Ratio

The concept of inter-grain void ratio [35,36] has been widely used to characterize
the mechanical behavior of sand-silt mixtures, such as peak stress ratio, yield strength
ratio [37], shear modulus (wave velocity) [38], static and cyclic strength, and the liquefaction
potential [36,39–41]. In this regard, a transitional fines content ( ftr) is defined to indicate
whether the mixture behaves predominantly as coarse-grained or as fine-grained.

At low fines content ( fc < ftr), the fine particles do not carry load and thus are
assumed to not contribute to the mechanical properties, and the mixture behaves as a
coarse-grain network. Oppositely, when the fines content is high ( fc > ftr), coarse grains,
embedded in the network of fine grains, play a limited role in the mechanical behavior.
Thus, the mixture behaves as a fine-grain network. The behavior of a sand-silt mixture
depends more on whether the fines content is above or below the ftr rather than on the
actual fines content itself. The value of ftr can be determined from index data or from the
results of triaxial tests.

In case of low fines content, some fine particles may still carry load. To account for these
active fine particles, Thevanayagam et al. [36] introduced an “equivalent” inter-granular
void ratio e∗c by

e∗c =
e + (1 − b) fc

1 − (1 − b) fc
fc < ftr (32)

The variable e∗c is a function of the void ratio e and the fines content fc of silty sand.
The parameter b was defined as the active fraction of fines in the mixture, varying between
0 and 1. However, it is not clear how to determine the exact amount of active fraction of
fines in a soil mixture. Thus, the value of b cannot be measured directly. Thevanayagam
et al. [36] provided back-calculated values from experimental results. Some researchers
suggest empirical expressions as a function of fines content.

The particle packing framework can be used to estimate e∗c [42]. This is made possible
by a conjecture that e∗c for a sand-silt mixture at a given fines content fc is equal to the
void ratio of pure sand under the same relative density of the sand-silt mixture. In linear
particle packing models, the value of b corresponds to the slope of the plot of e versus fc.
An explicit expression of b can be derived as a function of specific volumes of pure sand υ0

1
and pure silt υ0

2, along with the particle size ratio:

b =
υ0

2

υ0
1

(

1 −

(

1 −
d50

D50

)p)

(33)

where υ0
i represents the specific volume of each species. The two specific volumes υ0

1 and
υ0

2, in general, are different due to the difference in their particle sizes and shapes. In the
condition that υ0

1 = υ0
2, the equation simplifies to

b = 1 −

(

1 −
d50

D50

)p

(34)

This formula of parameter b has been validated through comparisons between pre-
dicted and measured results for various sand-silt mixtures [42], showing significant influ-
ence when the specific volumes of the two species differ substantially.

4.3. Predicting Mechanical Properties and Relative Density

Particle packing models can also predict mechanical properties based on relative den-
sity, such as stress ratio, yield strength ratio, and shear modulus, for different fines contents.

4.3.1. Stress Ratio and Yield Strength Ratio

The experimental results by Yang et al. [37] were selected in this study. Shear strength
was measured from undrained triaxial compression tests (CIU) conducted on sand-silt
mixtures with varying fines content ranging from 0% to 94%. The mixtures were prepared
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using Hokksund sand and Chengbei silt. The sand is composed primarily of quartz,
feldspar, and mica, characterized by sharp, cubical particles with a mean particle size
D50 = 0.44 mm. The non-plastic silt, with a d50 = 0.032 mm, was used for the fines, and
mixtures were created to achieve different fines content.

Isotropically consolidated undrained triaxial compression tests were conducted on
sand-silt mixtures under confining pressures ranging from 50 to 150 kPa. The initial relative
density of the samples, which varies in fines content, ranges from 0.2 to 0.8. Due to the
effects of consolidation from the applied confining pressures, the relative density of the
samples increased slightly.

The undrained strength (expressed as stress ratio) for all samples is plotted in Figure 5a.
The yield strength ratio for all samples is illustrated in Figure 5b.

~ÿହ଴ =0.44 ýହ଴ = 0.032
ff

ff

t

ÿ௖Figure 5. Consolidated undrained triaxial compression experimental results for sand-silt mixtures

with various fines content ( fc from 0% to 94%): (a) stress ratio versus void ratio, (b) yield strength

ratio versus void ratio.

Figure 6 illustrates the maximum and minimum void ratios determined in accordance
with ASTM standards (represented by symbols) compared with the predicted maximum
and minimum void ratios (depicted by solid lines) for various fines content. The solid lines
were predicted using the non-linear model by Chang and Deng [32]. The input data are
provided in Table 3. The predicted and measured results are in good agreement. The dashed
lines represent relative densities ranging from 0.1 to 0.9. Additionally, the test results of
each sample’s undrained stress ratio and yield strength ratio are plotted in symbols.

~ÿହ଴ =0.44 ýହ଴ = 0.032
ff
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Figure 6. Minimum and maximum void ratios for sand-silt mixtures with varying fines content.

Symbols represent the void ratio of the samples after consolidation. The samples were used in

triaxial tests to measure the stress ratio and yield strength ratio. The dashed line indicates the relative

densities of the sand-silt mixtures as the fines content varies.
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Table 3. The model’s parameters for the sand-silt mixtures.

Soil Type Size (mm) emax emin η

Sand 0.44 0.949 0.572 4.0
Silt 0.032 1.480 0.770 4.0

Using the predicted values of maximum and minimum void ratios, the relative density
for each sample at failure was calculated, and the relationships between relative density,
stress ratio, and yield strength were then plotted in Figure 6.

It is noted that in Figure 5, the stress ratio and yield strength ratio do not show clear
correlations with the void ratio. However, when the measured results are plotted along
relative density in Figure 7, three distinct types of behavior emerge:

1. For fc < 15%, the behavior is coarse-grain dominant, similar to pure sand.
2. For fc > 50%, the behavior is fine-grain dominant, similar to pure silt.
3. For 15% < fc < 50%, the behavior is a mix of the two, showing transitional characteristics.
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 ÿ௖
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Figure 7. (a) Relationship between stress ratio and relative density and (b) relationship between yield

strength ratio and relative density of sand-silt mixtures with varying fines content. For fc < 15%

(coarse-grain dominant) or fc > 50% (fine-grain dominant), the relationship can be represented by

solid lines. For fc in between 15% and 50% (transition zone), the relationship is scattered in a zone.

This range of fines content significantly affects the relationship between mechanical
properties. The first two behaviors align with the concept of inter-grain void ratio. In
Figure 6, the transitional fines content ( ftr) is approximately 26%. Mixtures with fc < 26%
exhibit coarse-grain dominant behavior, while those with fc > 26% show fine-grain domi-
nant behavior. The third type of behavior in Figure 7 provides a more refined description
of the mixture behavior around this transitional fines content ftr.

The particle packing model is a useful tool that provides a better assessment of relative
density, which is a critical factor in evaluating the risk of soil liquefaction and serves as
guidance for construction and quality control.

4.3.2. Shear Modulus

In this study, particle packing models are applied to interpret the acoustic properties
of sandstone. Data from Han et al. [43] were used, with samples taken from well cores and
quarries. These samples ranged in dimensions from 2.0 to 5.0 cm in length and 5.0 cm in
diameter, ensuring the sample dimensions were at least 100 times the average grain size.
The shear wave velocities (Vs) were measured using pulse transmission techniques, under
confining pressures of 40 MPa and pore pressures of 1.0 MPa, to simulate deep subsurface
conditions. The shear modulus (G) was then calculated using the formula G = ρVs², where
ρ is the density of the sandstone.

Figure 8 presents results from tests conducted on 75 sandstone samples with clay
content from 0% to 50%. The maximum and minimum void ratios were predicted using
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the non-linear model by Chang and Deng [32] and are represented by the solid lines shown
in Figure 9a. The dashed lines represent the lines of relative density ranging from 0.1 to 0.9.
The input data for these predictions are provided in Table 4.

ý௦ ÿ  ÿ =  ÿý௦²ÿ
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Figure 8. Shear modulus test results for 75 sandstone samples with varying void ratios and

clay content.
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Figure 9. (a) Maximum and minimum void ratios versus fines content and (b) shear modulus versus

relative density for sandstone mixtures.

Table 4. The model’s parameters for the sandstone sample.

Soil Type Size (mm) emax emin η

Sandstone 0.2 0.426 0.162 4.0
Silty size clay 0.015 0.480 0.100 4.0

The measured modulus for each sample is plotted in symbols in Figure 9a. Using
the predicted values of maximum and minimum void ratios, the relative density for each
sample was calculated. The relationships between relative density and shear modulus
were plotted in Figure 9b, which reveals two distinct types of behavior: samples with
fc = 0%, 5%, 15% and samples with fc = 25%, 35%. These two groups exhibit different
trends in the relationship between relative density and shear modulus.

In summary, relative density (compared to void ratio alone) offers a more detailed and
useful metric for understanding and predicting mechanical behavior in engineering applications.

5. Conclusions

Various particle packing models can be classified into three categories: limiting case
models, linear packing models, and non-linear packing models. Each model has distinct
mathematical formulations. Despite these differences, our review indicated that the un-
derlying physics across all models is rooted in the concept of “excess free volume”, which
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is crucial for understanding the assumptions behind the models and predicting volume
change behavior in sand-silt mixtures.

Current particle packing models are primarily focused on predicting packing density.
However, beyond this, there is potential to analyze the statistical properties of free volume
associated with the void distribution in soil mixtures using analytical methods from the
framework of Edwards thermodynamics. This approach can offer valuable insights into
soil microstructures, shedding light on the granular arrangements and interactions at the
microscopic level. This area remains insufficiently explored and warrants further research
to better understand the complex behavior of soil mixtures.

Particle packing models have been applied in fields such as high-performance concrete,
ceramics, sediments, and the pharmaceutical industry. In geotechnical engineering, we
examine its use in three key areas: (1) estimating maximum, minimum, and critical state
void ratios for binary mixtures, (2) connecting the packing model to the inter-granular void
ratio, and (3) predicting the mechanical properties of binary mixtures based on relative
density. Our findings indicate that particle packing models are a valuable tool for improving
the assessment of minimum, maximum, and critical state void ratios and shear modulus,
which are essential for developing constitutive models and characterizing the mechanical
properties of sand-silt mixtures.
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