

Quantifying the effect of difluoromethane on ignition delay times of propane

Eduardo H. Guzman^a, Nora Khalil^b, Rachel A. Schwind^{a,c},
Richard H. West^b, C. Franklin Goldsmith^{a,*}

^aChemical and Environmental Engineering Group, School of Engineering, Brown University, Providence, RI 02912

^bDepartment of Chemical Engineering, Northeastern University, Boston, MA 02115

^cInstitute of Multiscale Thermofluids, School of Engineering, University of Edinburgh, Edinburgh, UK

Abstract

Poly- and Perfluorinated alkyl substances (PFAS) pose environmental and public health concerns. While incineration remains the most common PFAS remediation method, the complete combustion and pyrolysis mechanism of PFAS is unknown. This study aims to expand our understanding of the kinetics of gas-phase PFAS incineration by measuring the effect of difluoromethane (CH_2F_2) on propane ignition delay times (IDTs). The ignition delay times were measured by OH^* emission and end-wall pressure time histories behind the reflected shock wave. Different concentrations of CH_2F_2 were mixed with fuel-lean propane-oxygen mixtures diluted in argon. Experiments were conducted at a nominal reflected shock pressure of $P_5 = 1$ atm and reflected shock temperatures of $1200 < T_5 < 1800$ K. A new detailed chemical kinetic mechanism is presented. 135 new rate constants were computed using RRKM/ME theory, based upon stationary points computed using ANL0. The new mechanism is in excellent agreement with the measured ignition delay time. A novel sensitivity analysis helps to explain the elementary steps by which CH_2F_2 increases the ignition delay time.

Keywords: CH_2F_2 , PFAS, ignition delay time, propane, fluorine

*Corresponding author.

1 **1. Introduction**

2 Difluoromethane (CH_2F_2 , R-32) is a valuable com-
3 pound in the refrigerant industry, serving as a greener
4 alternative to chlorofluorocarbons (CFCs). Unlike
5 CFCs, CH_2F_2 and other hydrofluorocarbons do not
6 deplete the ozone layer and have lower global warm-
7 ing potentials. The increased interest in CH_2F_2 for
8 commercial applications underscored the importance
9 of understanding its thermodynamic and kinetic prop-
10 erties, particularly in the context of flammability and
11 flame suppression. Due to its increased reactivity and
12 flammability, CH_2F_2 presents potential risks to con-
13 sumer goods and manufacturing processes compared
14 to traditional CFC refrigerant blends. To address this
15 issue, the National Institute of Standards and Tech-
16 nology (NIST) compiled a comprehensive chemical
17 kinetic model for small fluorine-containing refriger-
18 ants, including CH_2F_2 [1], and other fluorinated or-
19 ganics [2–4], forming the basis for modeling fluoro-
20 organic reactions in the gas phase.

21 In addition to the work at NIST, other groups have
22 investigated the impact of small fluorinated species
23 on hydrocarbon combustion, including iodofluorocar-
24 bons [5], bromofluorocarbons [6], chlorobromofluo-
25 rocarbons [7], and hydrofluorocarbons [8]. Depend-
26 ing upon the specifics of (i) the fluorinated species,
27 (ii) the base hydrocarbon, and (iii) the reactor con-
28 ditions, the dopant either reduced the reactivity, in-
29 creased the reactivity, or had little-to-no discernible
30 effect.

31 Ososio et al. conducted flame speed and shock tube
32 experiments for methane, ethane, and propane doped
33 with CF_3Br (Halon-1301) [6]. They observed that
34 CF_3Br accelerated the ignition of CH_4 but decelerated
35 the ignition of C_2H_6 and C_3H_8 . Mathieu and coworkers
36 performed similar experiments to quantify the im-
37 pact of CF_3I (Halon-13001) and CF_2BrCl (Halon-
38 1211) on methane, ethylene, and propane [5, 7]. Con-
39 sistent with their results for CF_3Br , both CF_3I and
40 CF_2BrCl reduced the ignition delay time of CH_4 , in-
41 creased the ignition delay time of C_2H_4 , and had a
42 modest inhibiting effect on C_3H_8 . As observed in ref.
43 8, hydrofluorocarbons tended to enhance the reactiv-
44 ity: C_2HF_5 (HFC-125) and C_3HF_7 (HFC-227) signifi-
45 cantly reduced the ignition delay time of methane and
46 had a modest accelerating effect on propane [8]. Most
47 recently, Shaik and coworkers studied the thermal de-
48 composition of CH_2F_2 using laser schlieren densito-
49 metry and time-of-flight mass spectrometry in a shock
50 tube [9]. Their analysis provides important quantifi-
51 cation of CH_2F_2 decomposition kinetics and subse-
52 quent cross reactions on a much shorter timescale.

53 In addition to their role as potential flame suppres-
54 sants, the challenges related to the destruction of per-
55 and poly-fluoroalkyl substances (PFAS), prominent
56 environmental contaminants, have led to increased in-
57 terest in the high-temperature gas-phase kinetics of
58 fluorinated compounds. At present, the most com-
59 monly used route for destroying PFAS involves in-
60 cineration. Unfortunately, the incineration process

61 is poorly understood, and incinerator effluent can
62 contain products of incomplete combustion that are
63 still toxic, e.g. small fluoroalkanes like tetrafluor-
64 omethane and hexafluoroethane [10]. Computational
65 engineering could help solve the problem of incinera-
66 tor design, and several groups have sought to quan-
67 tify many of the unimolecular decomposition path-
68 ways [11–20]. These thermal decomposition studies
69 have demonstrated that perfluoroalkanes undergo a
70 complex sequence of dissociation reactions that leads
71 to a mixture of smaller fluorinated compounds [21],
72 including CH_2F_2 and other species that are used as
73 refrigerants or flame retardants.

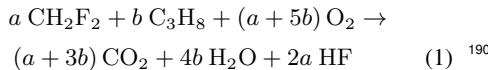
74 The present work aims to quantify the impact of di-
75 fluoromethane on the ignition delay time of propane
76 (C_3H_8) in a shock tube. The ignition delay time
77 (IDT, τ) is a valuable metric for assessing the gas-
78 phase kinetics of polyfluorinated compounds under
79 incinerator-relevant conditions [22]. The experimen-
80 tal ignition delay times are modeled using a newly
81 developed, detailed chemical kinetic mechanism. The
82 mechanism combines a hydrocarbon core mechanism
83 with *ab initio* rate constants and estimates obtained
84 using an automated mechanism generator.

85 **2. Methods**

86 *2.1. Experimental Setup and Operation*

87 Experiments were conducted in the Brown Shock
88 Tube (BST) [23] near atmospheric pressures over a
89 temperature range of 1200 – 1800 K. The current con-
90 figuration of the BST has been modified from previ-
91 ous publications [23–26]. The original diaphragm-
92 less driver was replaced with a double diaphragm
93 mechanism. The modifications did not change the di-
94 mensions of the driven section (internal diameter of
95 10 cm and length of 7 m). The new driver has the
96 same internal diameter as the driven section but has
97 a length of 3.3 m. A removable stainless steel in-
98 sert now isolates the driver and driven section with
99 two layers of the polycarbonate diaphragm (McMas-
100 ter, 0.020 inches thickness) clamped on either end.
101 The diaphragms were scored in a cross pattern before
102 loading to ensure consistent and repeatable ruptures
103 at the desired loading conditions. The stainless steel
104 insert has a port that connects to a removable hose at-
105 tached to a 1 L dump tank, roughing pump, and gas
106 line. The double diaphragm interface enables higher
107 loading pressures in the driver section, allowing for
108 higher driver-to-driven pressure ratios. Moreover, the
109 double diaphragm set-up provided increased stability
110 in post-reflected shock pressures relative to prior con-
111 figurations.

112 Figure 1 shows the new BST configuration. Shock
113 velocities were calculated using the timing intervals
114 between six piezoelectric pressure transducers (Dy-
115 nases, CA-1135) with response times of $\sim 0.1 \mu\text{s}$.
116 The Dynasen transducers are spaced 15 cm in series,
117 starting from 90 cm and ending 15 cm upstream of
118 the test window. The shock velocity was interpolated


Fig. 1: Brown Shock Tube double diaphragm configuration.

from the final transducer to the test window, resulting in an uncertainty of around 0.2%. The temperature, T_5 , and pressure, P_5 , behind the reflected shock wave were computed using CANTERA [27] and the SHOCK AND DETONATION TOOLBOX [28] assuming normal shock conditions. The uncertainty of P_5 and T_5 is $\sim 0.5\%$, based upon prior work with this system.

Table 1: Gas Mixture Composition

CH ₂ F ₂	C ₃ H ₈	O ₂	Ar	Dopant ratio	ϕ
—	1.0%	6.0%	93.0%	0.0	0.83 ₁₇₆
0.1%	1.0%	6.0%	92.9%	0.1	0.85 ₁₇₇
0.5%	1.0%	6.0%	93.5%	0.5	0.92 ₁₇₈
2.0%	1.0%	6.0%	91.0%	2.0	1.17 ₁₇₉
2.0%	0.5%	3.0%	95.5%	4.0	1.50 ₁₈₀

Mixtures were made manometrically in a 72 L round bottom flask attached to the manifold of the BST. The mixtures were allowed to settle for at least an hour and were agitated with a magnetic stir bar to ensure homogeneity. All compositions contained argon (Airgas, 99.9999%), oxygen (Airgas, 99.9999%), and propane (Airgas, 99.999%) with varying concentrations of CH₂F₂ (Airgas, 99.9%) as seen in Table 1. The concentration of propane and oxygen were held constant, while the addition of CH₂F₂ was offset by a reduction in argon. In Table 1, the “dopant ratio” refers to the proportion of CH₂F₂ relative to C₃H₈, varying from 0.0 to 4.0. All gas combinations were prepared in reference to a 1% propane concentration, except for the final mixture, which was scaled down to 0.5% propane (and thus uses 2% CH₂F₂) to reduce the proportion of reactant gases to bath gas in the driven mixture. These adjustments align with our experimental assumptions, which require dilute conditions for the normal shock equations to remain valid. During complete combustion, the fluorine atoms are assumed to form hydrogen fluoride. The stoichiometric equation used to define the equivalence ratio, ϕ , is given by:

Rather than focus on a fixed equivalence ratio, we maintained a constant O₂:C₃H₈ of 6.0. The resulting compositions range from fuel lean at low dopant levels to fuel rich at high dopant levels. This range of equivalence ratios highlights the sensitivity to different submechanisms in the mechanism validation process. More specifically, since our goal is to improve model predictions for small fluorinated compounds, the fuel-rich experiments at high dopant levels will be

more sensitive to the kinetics of CH₂F₂ and its various products. The experimental equivalence ratios are provided in Table 1.

The ignition delay times were measured behind the reflected shock using pressure histories and OH* chemiluminescence. The pressure history was measured at the end wall using a PCB transducer (113B21) with a rise time of 1 μ s. OH* emission was measured with a photo-multiplier tube (PMT) supplied by Hamamatsu (R928) at the side wall. The PMT was attached to a lens tube (Thorlabs, 6.43 cm length, ϕ 2.54 cm) set with a narrow-bandpass filter (Edmund Optics, 313 nm center wavelength, FWHM 10.00 \pm 2.0 nm) and a semi-planar convex lens (Thorlabs, ϕ 2.54 cm). The filter and the lens were placed at their focal lengths away from the aperture of the PMT, 5 mm and 20 mm, respectively. The OH* emission detector was then aligned perpendicular to the length of the shock tube at the side wall. The distance from the aperture of the PMT to the test windows was roughly 6.60 cm.

The ignition delay times were defined by extrapolating the maximum gradient of the relative OH* emission signal to the baseline. The gradient was calculated using a second-order centered difference approximation [29]. The error of this calculation scales with $\Delta t^2 \sim 10^{-5}$ ms. The pressure histories on the end wall were processed similarly to OH* IDTs and then compared. IDTs with a differential greater than 1% from both methods were disregarded. Example pressure and OH* emission profiles can be seen in Figure 2.

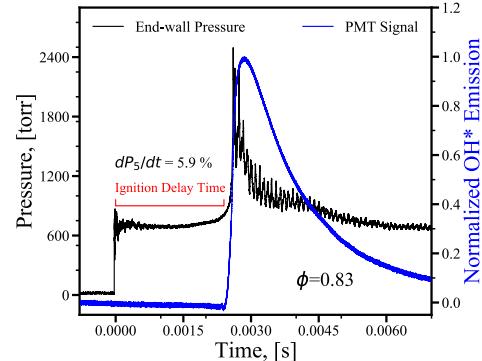


Fig. 2: Pressure and OH* emission profiles of propane (C₃H₈:1/O₂:6/Ar:93) at 1356 K.

2.2. Computational Methodology and Mechanism Development

The elementary kinetic mechanism combines two pre-existing mechanisms from the literature with newly developed rate coefficients. The hydrocarbon core was taken from Ref. 29, based on the small-molecule chemistry developed at Argonne National Laboratory, which we refer to as the “ANL” mecha-

199 nism [30]. As discussed below, additional hydrocar-
 200 bon mechanisms were considered. The ANL mech-
 201 anism was combined with the mechanism taken from
 202 Ref. 31, which consists of H- and F-abstraction re-
 203 actions involving fluorinated compounds. The result-
 204 ing combined mechanism served as an initial starting
 205 point; the present work builds off this initial mech-
 206 anism to include the unimolecular decomposition of
 207 several C₁ and C₂ species. For comparison purposes,
 208 the recent CH₂F₂ mechanism from NIST was addi-
 209 tionally tested [4].

210 REACTION MECHANISM GENERATOR (RMG)
 211 software [32–35] was used to propose new reactions
 212 for addition into the initial mechanism. The reaction
 213 system was simulated in RMG using a range-based
 214 simpleReactor() from 1000–1800 K and 1–
 215 10 bar with pressure-dependent chemistry included.
 216 Proposed reactions were then refined using compu-
 217 tational kinetics methods described below. Updated
 218 reactions were then added to the initial mechanism,
 219 and ignition delays were re-simulated. This process
 220 was repeated until no new reactions were required to
 221 simulate the experimental ignition delay times with
 222 sufficient accuracy.

223 All electronic structure calculations were done us-
 224 ing the ANL0 compound method [36]. When appro-
 225 priate, torsional scans were performed in 10° incre-
 226 ments using M06-2X/cc-pVTZ [37], and the resulting
 227 potential was used to compute the partition function
 228 for hindered internal rotation via summation over the
 229 energy levels for the corresponding 1-D Schrödinger
 230 equation. All density functional theory calcula-
 231 tions were performed using GAUSSIAN09 [38]. All
 232 wavefunction methods were performed using MOL-
 233 PRO [39].

234 All RRKM/ME calculations were performed using
 235 MESS, which is part of the PAPR family of computa-
 236 tional kinetics software [40, 41]. All elementary re-
 237 actions with a first-order saddle point were treated us-
 238 ing fixed transition state theory, according to which
 239 the transition state is assumed to be the saddle point,
 240 and the corresponding partition function is assumed
 241 to be a harmonic oscillator. For the barrierless re-
 242 actions, variational analysis was performed using the
 243 semi-empirical PhaseSpaceTheory method in
 244 MESS [42–44]. The coefficient of the interaction po-
 245 tential, αr^{-6} , was set so that the high-pressure limit
 246 for the rate coefficient of the radical-radical recombi-
 247 nation was approximately $3 \times 10^{-11} \text{ cm}^3/\text{molecule-s}$.
 248 In cases with a clear analogy to hydrocarbon
 249 chemistry, α was adjusted to match (but not ex-
 250 ceed) the high-pressure limit of the hydrocarbon case.
 251 For example, for the recombination of difluoromethyl
 252 radical, CHF₂ + CHF₂ → CHF₂CHF₂, α was ad-
 253 justed so that the high-pressure limit constant was
 254 $k^\infty(800 \text{ K}) = 1.2 \times 10^{-11} \text{ cm}^3/\text{molecule-s}$ and
 255 $k^\infty(1800 \text{ K}) = 1.3 \times 10^{-11} \text{ cm}^3/\text{molecule-s}$, based
 256 upon the corresponding high-pressure limit values
 257 for CH₃ + CH₃ → C₂H₆ of $k^\infty(800 \text{ K}) = 3.9 \times$
 258 $10^{-11} \text{ cm}^3/\text{molecule-s}$ and $k^\infty(1800 \text{ K}) = 2.0 \times$
 259 $10^{-11} \text{ cm}^3/\text{molecule-s}$. Future work will replace

260 this form of variational transition state theory with
 261 a more rigorous variable reaction coordinate transi-
 262 tion state theory. Collisional energy transfer was as-
 263 sumed to follow a simple single exponential model,
 264 with $\langle \Delta E_{\text{down}} \rangle = 100 (T/298[\text{K}])^{0.85} \text{ cm}^{-1}$ for C₁
 265 species and $\langle \Delta E_{\text{down}} \rangle = 200 (T/298[\text{K}])^{0.85} \text{ cm}^{-1}$ for C₂ species. The thermophysical properties for all
 266 fluorinated species were taken from Ref. 31.

268 2.3. Simulations and Sensitivity Analysis

269 CANTERA was used to compute ignition delay
 270 times in a homogenous, adiabatic, constant-volume
 271 zero-dimensional Reactor(). Ignition delays were
 272 calculated to match the experimental conditions at
 273 $1 \pm 0.015 \text{ atm}$, with temperatures of 1282–1887 K, and
 274 initial mole fractions as described in Table 1. The
 275 calculation of the modeled IDTs closely mirrored the
 276 experimental approach, except for the use of the sim-
 277 ulated OH species histories.

278 Sensitivity analyses were performed to determine
 279 which reactions had considerable influence on the
 280 simulated ignition delay times. The reference IDTs
 281 (τ_{ref}) were calculated without any modification to the
 282 newly developed mechanism. To quantify the impact
 283 of the i^{th} reaction on the IDTs, the corresponding rate
 284 constant, k_i , was increased by 1%. The IDTs were
 285 then recalculated with this single rate constant pertur-
 286 bation, τ_i . The resulting normalized sensitivity coef-
 287 ficient, S_i , was computed for each reaction:

$$288 S_i = \frac{\partial \ln \tau}{\partial \ln k_i} = \frac{k_{i,\text{ref}}}{\tau_{\text{ref}}} \left(\frac{\tau_i - \tau_{\text{ref}}}{k_i - k_{i,\text{ref}}} \right). \quad (2)$$

289 Sensitivities were calculated at a representative low,
 290 middle, and high temperature (1292, 1467, and
 291 1818 K, respectively). The sensitivity coefficients, as
 292 defined by Eq. (2), highlight a large number of hydrocarbon
 293 reactions that have little to do with fluorine
 294 chemistry, many of which are well characterized (e.g.
 295 H + O₂ ⇌ O + OH). While undoubtedly critical for
 296 ignition, these reactions do not help us understand the
 297 fire-suppressing behavior of CH₂F₂. Instead, we wish
 298 to isolate the reactions most responsible for the in-
 299 crease in observed τ as the amount of CH₂F₂ in the
 300 mixture increases. To do so, we define a new sensitiv-
 301 ity coefficient, S_i^{sup} , which takes the ratio of ignition
 302 delay time with the highest dopant ratio, $\tau^{4.0}$, to the
 303 ignition delay time with the lowest non-zero dopant
 304 ratio, $\tau^{0.1}$, and then see how minor perturbations in
 305 the rate constants affect this ratio:

$$306 S_i^{\text{sup}} = \frac{k_{i,\text{ref}}}{\tau_{\text{ref}}^{4.0}/\tau_{\text{ref}}^{0.1}} \left(\frac{\tau_i^{4.0}/\tau_i^{0.1} - \tau_{\text{ref}}^{4.0}/\tau_{\text{ref}}^{0.1}}{k_i - k_{i,\text{ref}}} \right). \quad (3)$$

307 These suppression-focused sensitivity coefficients
 308 identified which reactions were important in increas-
 309 ing the ignition delay time when the amount of CH₂F₂
 310 was increased. This approach was critical in the iter-
 311 ative mechanism construction since it allowed us to

310 determine which of the fluorochemical reactions that
311 RMG proposed were important.

3. Results and Discussion

3.1. Ignition Delay Times

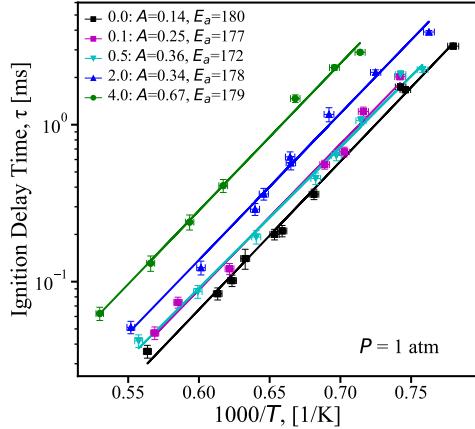


Fig. 3: Measured ignition delay (symbols) of propane with dopant ratio $\text{CH}_2\text{F}_2:\text{C}_3\text{H}_8$ of 0.0 (black), 0.1 CH_2F_2 (magenta), 0.5 CH_2F_2 (cyan), 2.0 CH_2F_2 (blue), and 4.0 CH_2F_2 (green) in excess argon at 1 atm. The lines are the corresponding regression to the data, in the format $\tau = A \exp [E_a/RT]$, with A in ms and E_a in kJ/mol.

314 The measured ignition delay times for the different dopant ratios are presented in Figure 3. As anticipated, the addition of CH_2F_2 increases the ignition delay. To a reasonable approximation, the ignition delay time increased linearly with increasing dopant ratio (see Supplemental Materials for details).

320 A one-sample t -test using the R software was per-
321 formed on the slopes and y -intercept of the linear re-
322 gressions from the doped cases, which were tested
323 on the slope and y -intercept of the linear regression
324 of the neat case [45]. The slopes of the regressions
325 were significantly similar (p -value > 0.05 , $|t| = 2.04$),
326 while the y -intercepts of the regression were signifi-
327 cantly different (p -value < 0.05 , $|t| = 5.13$). As seen
328 in Figure 3, the regression slope (E_a in the figure) is
329 consistent in all five cases, with less than 3% devia-
330 tion from the mean of $E_a = 177$ kJ/mol. The intercept,
331 in contrast, increases approximately linearly with in-
332 creasing dopant ratio. For the two lowest non-zero
333 dopant ratios, 0.1 (magenta squares) and 0.5 (cyan tri-
334 angles), the measured ignition delays were virtually
335 identical.

3.2. Mechanism Validation

336 The first step in the analysis was to focus on the
337 ignition delay time of undoped propane, with nom-
338 inal pressures of 1 atm and excess oxygen. Five
339 different mechanisms were selected from the litera-
340 ture: ANL [29], San Diego [46], CRECK [47], Aram-
341 coMech 3.0 [48], and NUIGMech 1.3 [49].

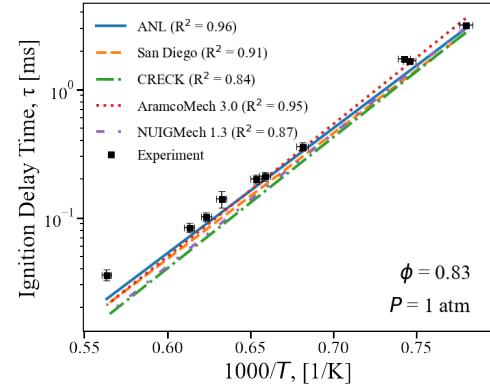


Fig. 4: Measured ignition delay of propane (symbols) com-
pared to ANL [29], San Diego [46], CRECK [47], Aram-
coMech3.0 [48], and NUIGMech 1.3 [49] mechanisms.

343 The simulated IDT is plotted with the measured
344 IDT in Figure 4, together with the corresponding co-
345 efficient of determination, R^2 (in $\ln \tau$). All five mech-
346 anisms perform well. The agreement between all five
347 models and the data confirms that the new BST diag-
348 nostic works as intended. Based on these results,
349 the ANL mechanism was selected as the base hydrocar-
350 bon mechanism. Similar results were obtained when
351 the NUIGMech was used instead (the most recently
352 validated propane mechanism); these results are in-
353 cluded in the Supplemental Material.

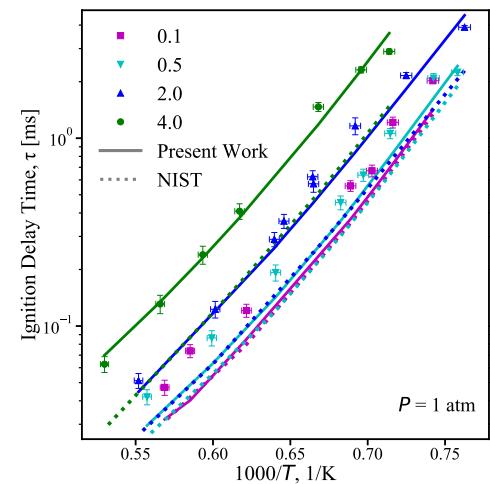
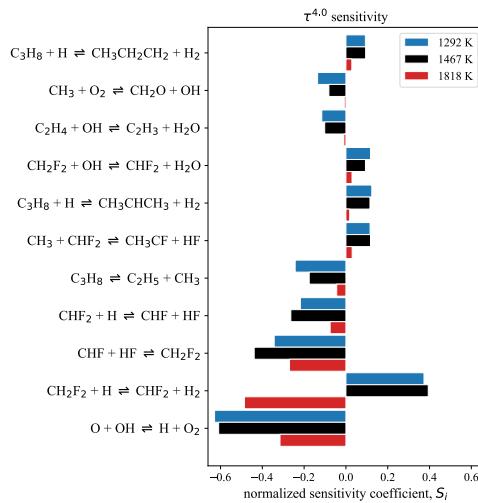


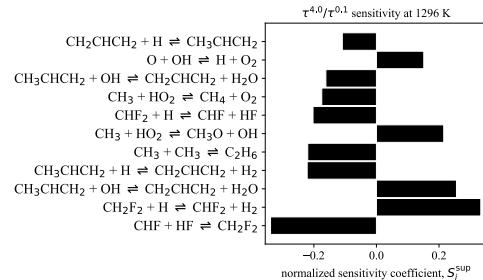
Fig. 5: Measured ignition delay (symbols) compared to
present work (solid line) and NIST mechanism (dotted line
with ANL as the base hydrocarbon mechanism [4, 29]).


354 The CH_2F_2 mechanism by Burgess and coworkers
355 [4] at NIST originally used GRI-Mech for the
356 hydrocarbon chemistry subset. To facilitate use in
357 propane autoignition, we replaced that portion of the
358 mechanism with the ANL mechanism from Ref. [29].
359 Although the NIST mechanism predicts trends cor-
360 rectly, it fails to predict the ignition delay times quan-

361 titatively, particularly for the higher dopant concen- 397
362 trations (see dotted lines in Figure 5).

363 Figure 5 presents the new mechanism, based upon 399
364 the iterative refinement process in which RMG would 400
365 propose a missing reaction, and then transition state 401
366 theory was used to update the results. As part of this 402
367 procedure, RMG highlighted the importance of the 403
368 difluoromethyl radical, CHF_2 . Of particular impor- 404
369 tance were various recombination reactions involv- 405
370 ing CHF_2 and other radicals (both fluorinated and or- 406
371 ganic) that were present before ignition. This pro-
372 cess led to a cascade of new reactions to consider.
373 Ultimately, radical-radical, unimolecular decomposi-
374 tion, and phenomenological (well-skipping) reactions
375 were added for the following potential energy sur-
376 faces: CH_2F , CHF_2 , CH_3F , CH_2F_2 , FCO , CHFO ,
377 CHF_2O , CHF_2OH , CF(O)OH , CHF_2O_2 , CHF_2OOH ,
378 CH_3CHF_2 , CH_2FCHF_2 , and CHF_2CHF_2 . Addition-
379 ally, RMG suggested two new H-abstraction reactions,
380 $\text{CH}_2\text{CH} + \text{CH}_2\text{F}_2$ and $\text{H} + \text{CHF}_2\text{CHF}_2$, which
381 were important for the ignition delay but were not
382 considered in Ref. 31. In total, the iterative procedure
383 resulted in 135 new rate constants that were added to
384 the 85 abstraction reactions in our prior work. Consis-
385 tent with our mechanism, the analysis by Shaik et al.
386 found that HF elimination was the only unimolecular
387 decomposition channel for CH_2F_2 [9].

388 As can be seen in Figure 5, the new mechanism is
389 in excellent agreement with the experimental data for
390 all five dopant ratios.


391 3.3. Sensitivity Analyses

437 Fig. 6: Normalized sensitivity coefficients for the mixture 438 with a dopant ratio of 4.0 at three temperatures.

439 Figure 6 summarizes the normalized sensitivity co- 437
440 efficients for the mixture with dopant ratio of 4. The 438
441 11 reactions that had the highest average sensitivity
442 coefficient for all three temperatures are presented.
443 As expected, the reaction $\text{O} + \text{OH} \rightleftharpoons \text{H} + \text{O}_2$ is

437 among the most sensitive, but the importance of this
438 reaction is otherwise omitted from the discussion be-
439 low. Whereas the sensitivity coefficients for the low
440 (1292 K) and intermediate (1467 K) temperatures are
441 fairly consistent, the sensitivity coefficients for the
442 high-temperature case (1818 K) are different. The ig-
443 nition delay time at the highest temperatures is highly
444 sensitive to only a few reactions, with the two most
445 sensitive reactions being the decomposition of CH_2F_2
446 and H-abstraction from CH_2F_2 via H atom.

437 Fig. 7: Normalized sensitivity coefficients for the 438 suppression-focused sensitivity analysis, Eq. (3).

439 Figure 7 presents the suppression-focused sensitiv- 437
440 ity coefficients, Eq. (3), at 1296 K. According to this
441 new metric, some reactions will decrease the spread
442 between $\tau^{4.0}$ and $\tau^{0.1}$ (i.e., $S_i^{\text{sup}} < 0$), whereas other
443 reactions will increase the spread between $\tau^{4.0}$ and
444 $\tau^{0.1}$ (i.e., $S_i^{\text{sup}} > 0$). As seen in the figure, the
445 two most important reactions involve CH_2F_2 , but they
446 have opposite signs.

447 The reaction $\text{CH}_2\text{F}_2 + \text{H} \rightleftharpoons \text{CHF}_2 + \text{H}_2$ has a large
448 positive S_i^{sup} , because it consumes H atoms, thereby
449 decreasing the rate of important chain branching re-
450 actions, such as $\text{H} + \text{O}_2 \rightarrow \text{O} + \text{OH}$. The larger
451 the concentration of CH_2F_2 , the more effective it is
452 at scavenging H atoms. In contrast, HF elimination
453 from CH_2F_2 has a large negative S_i^{sup} because it re-
454 moves CH_2F_2 as an H scavenger and replaces it with
455 a more reactive singlet carbene, CHF.

456 Under the experimental conditions, the well-
457 skipping reaction $\text{CHF}_2 + \text{H} \rightleftharpoons \text{CHF} + \text{HF}$ runs in
458 the reverse direction; increasing the rate constant in-
459 creases the rate at which H atoms are regenerated, and
460 thus it decreases both $\tau^{4.0}$ and $\tau^{0.1}$. It has a negative
461 S_i^{sup} because it decreases $\tau^{4.0}$ more than it decreases
462 $\tau^{0.1}$. The reactions of H and OH with propene,
463 CH_3CHCH_2 , also have negative suppression-focused
464 sensitivity coefficients but for a different reason.
465 These reactions shift the composition of the radical
466 pool from the more reactive H and OH to the less
467 reactive allyl, CH_2CHCH_2 , and increasing those rate
468 constants increases τ across the board. This effect
469 is more pronounced for the 0.1 dopant ratio mixture
470 than for the 4.0 dopant ratio mixture, and thus increas-
471 ing those rate constants increases $\tau^{0.1}$ more than it
472 increases $\tau^{4.0}$.

473 One immediate distinction between the present

442 work and the collective work of Peterson and coworkers is that our ratio of “dopant” to hydrocarbon is 443 significantly greater than in refs. 5–8. The comparative 444 abundance of fluorinated species in the present 445 work has a strong impact on the observed sensitivities. 446 With this caveat in mind, if we contrast CH_2F_2 447 with other fluorinated compounds, we begin to form a 448 more complete picture of the small-molecule chemistry. 449 First, much of the decrease in reactivity observed 450 with CF_3Br and CF_3I is due to the formation 451 of CF_3 as a decomposition product [5]. Although 452 CF_3 can participate in many reactions, some of which 453 could increase reactivity, the net effect of CF_3 is to 454 act like a radical scavenger. Similarly, for CF_2BrCl , 455 much of the inhibitory effect comes from the liberated 456 Br, which also acts as a radical scavenger – either directly 457 (e.g. $\text{C}_2\text{H}_3 + \text{Br}$) or indirectly (e.g. $\text{HBr} + \text{H}$). 458 Other contributions from CF_2BrCl to the total reactivity 459 come from CF_2 as a reactive intermediate. 460 Collectively, these results were more pronounced for 461 methane than for propane.

462 The pyrolysis and combustion of CH_2F_2 , in contrast, 463 does not lead to significant amounts of CF_3 . The 464 main route for CF_3 production from CH_2F_2 is an 465 indirect route via CHF_2 , but it is comparatively minor 466 under the current conditions. Similarly, the net rate 467 of CF_2 production is quite small. In their investigation 468 into the impact of hydrofluorocarbons on alkane 469 ignition, Osorio et al. found that neither C_2HF_5 nor 470 C_3HF_7 had a substantial impact on the ignition delay 471 time of C_3H_8 , but that the reaction $\text{CHF}_2 + \text{OH} \rightleftharpoons$ 472 $\text{CHFO} + \text{HF}$ was the most significant reaction in terms 473 of the inhibition of the C_3H_8 ignition delay time [8]. 474 Although our mechanism includes this well-skipping 475 reaction, it is not among the most sensitive for our 476 conditions, perhaps because the overall yield of CHF_2 477 is low in our system.

478 Collectively, the present work complements the experimental and modeling studies of refs. 5–9 regarding our understanding of small-molecule kinetics for fluorine-hydrocarbon combustion. Future work will expand the current mechanism to include their validation targets.

485 4. Conclusions

486 The ignition delay times of different mixtures of 487 CH_2F_2 , C_3H_8 , and O_2 in Ar were measured in a shock 488 tube via OH^* chemiluminescence. Experiments were 489 conducted at a reflected shock pressure of $P_5 = 1 \text{ atm}$ 490 and reflected shock temperatures of $1200 < T_5 <$ 491 1700 K . Increasing the $\text{CH}_2\text{F}_2:\text{C}_3\text{H}_8$ ratio while holding 492 the $\text{O}_2:\text{C}_3\text{H}_8$ ratio constant reduced the reactivity 493 of the system, thereby increasing the ignition delay 494 time. A new detailed chemical kinetic mechanism 495 for $\text{CH}_2\text{F}_2/\text{C}_3\text{H}_8/\text{O}_2$ blends was developed using an 496 iterative procedure. The automatic mechanism generator 497 RMG was used to propose reactions involving 498 fluorinated species, and these reactions were subse- 499 quently refined using high-level computational meth- 500 ods. The new mechanism is in excellent agreement

501 with the measured data. CH_2F_2 increases the igni- 502 tion delay time because it acts as a scavenger of H 503 atoms, thereby decreasing the net rate of the most im- 504 portant chain branching reaction in high-temperature 505 autoignition.

506 Declaration of competing interest

507 The authors declare that they have no known com- 508 peting financial interests or personal relationships that 509 could have appeared to influence the work reported in 510 this paper.

511 Acknowledgments

512 The authors are grateful to Dr. Robert Tranter and 513 Dr. Raghu Sivaramakrishnan for numerous helpful 514 discussions on difluoromethane and in the develop- 515 ment of the CH_2F_2 mechanism. This work was sup- 516 ported by the U.S. Army Corps of Engineers, Strate- 517 gic Environmental Research and Development Pro- 518 gram (SERDP), through award number 008305, with 519 Dr. Andrea Leeson as the program manager. RAS 520 gratefully acknowledges support from the Office of 521 Naval Research (N00014-20-1-2713), with Dr. Maria 522 Mederios as the program manager. CFG gratefully 523 acknowledges additional support from the US Depart- 524 ment of Energy, Basic Energy Science, through grant 525 number DE-SC0019489, with Dr. Wade Sisk as the 526 program manager. This material is based upon work 527 also supported by the National Science Foundation 528 under Grant No. 1751720 and by the National Sci- 529 ence Foundation Graduate Research Fellowship (for 530 NK) under Grant No. 1938052.

531 *franklin_goldsmit@brown.edu

532 Supplementary material

533 The Supplemental Material includes:

- 534 • Experimental data for ignition delay time mea- 535 surements of $\text{CH}_2\text{F}_2/\text{C}_3\text{H}_8/\text{O}_2/\text{Ar}$ mixtures sim- 536 ulated with NUIGMech 1.3 and new mech- 537 nism [49].
- 538 • Normalized sensitivity coefficients for dopant 539 ratios of 0.0 and 4.0 at 1292, 1467, and 1818 540 K.
- 541 • Suppression-focused sensitivity analysis results 542 at 1292, 1467, and 1818 K.
- 543 • chemical kinetic mechanism (in `yaml` format)

544 References

- 545 [1] V. I. Babushok, D. R. J. Burgess, D. K. Kim, M. J. 546 Hegetschweiler, G. T. Linteris, Modeling of combus- 547 tion of fluorine-containing refrigerants, Tech. rep., Na- 548 tional Institute of Standards and Technology (U.S.) 549 (Nov. 2021). doi:10.6028/nist.tn.2170.
- 550 [2] I. H. Bell, P. A. Domanski, M. O. McLinden, 551 G. T. Linteris, The hunt for nonflammable re- 552 frigerant blends to replace R-134a, International 553 Journal of Refrigeration 104 (2019) 484–495. 554 doi:10.1016/j.ijrefrig.2019.05.035.

555 [3] D. R. Burgess, J. A. Manion, Rate Constants for Ab- 622
 556 straction of H from the Fluoromethanes by H, O, F, and 623
 557 OH, *Journal of Physical and Chemical Reference Data* 624
 558 50 (2) (2021). doi:10.1063/5.0028874. 625

559 [4] D. R. Burgess Jr., V. I. Babushok, J. A. Manion, A 626
 560 chemical kinetic mechanism for combustion and flame 627
 561 propagation of $\text{CH}_2\text{F}_2/\text{O}_2/\text{N}_2$ mixtures, *International* 628
 562 *Journal of Chemical Kinetics* 54 (3) (2022) 154–187. 629
 563 doi:<https://doi.org/10.1002/kin.21549>. 630

564 [5] O. Mathieu, J. Goulier, F. Gourmet, M. Mannan, 631
 565 N. Chaumeix, E. Petersen, Experimental study of the 632
 566 effect of CF_3I addition on the ignition delay time 633
 567 and laminar flame speed of methane, ethylene, and 634
 568 propane, *Proceedings of the Combustion Institute* 35 635
 569 (2015) 2731–2739. doi:10.1016/j.proci.2014.05.096. 636

570 [6] C. H. Osorio, A. J. Vissotski, E. L. Petersen, M. S. 637
 571 Mannan, Effect of CF_3Br on C1–C3 ignition and lam- 638
 572 inar flame speed: Numerical and experimental eval- 639
 573 uation, *Combustion and Flame* 160 (2013) 1044–1059. 640
 574 doi:10.1016/j.combustflame.2013.01.025. 641

575 [7] O. Mathieu, C. Keesee, C. Gregoire, E. L. Petersen, 642
 576 Experimental and Chemical Kinetics Study of the Ef- 643
 577 fects of Halon 1211 (CF_2BrCl) on the Laminar Flame 644
 578 Speed and Ignition of Light Hydrocarbons, *The Jour- 645
 579 nal of Physical Chemistry A* 119 (2015) 7611–7626. 646
 580 doi:10.1021/acs.jpca.5b00959. 647

581 [8] C. Osorio, A. Morones, J. Hargis, E. Petersen, 648
 582 M. Mannan, Effect of C_2HF_5 and C_3HF_7 on methane 649
 583 and propane ignition and laminar flame speed: Ex- 650
 584 perimental and numerical evaluation, *Journal of Loss 651
 585 Prevention in the Process Industries* 48 (2017) 21–31. 652
 586 doi:10.1016/j.jlp.2017.04.003. 653

587 [9] R. A. Shaik, A. W. Jasper, P. T. Lynch, R. SIVARA- 654
 588 MAKRISHNAN, R. S. Tranter, Initiation and 655
 589 carbene induced radical chain reactions in 656
 ch_2f_2 pyrolysis, *ChemPhysChem* (5) (2024). 657
 590 doi:10.1002/cphc.202400362. 658

591 [10] T. Yamada, P. H. Taylor, R. C. Buck, M. A. 659
 592 Kaiser, R. J. Giraud, Thermal degradation 660
 593 of fluorotelomer treated articles and related 661
 594 materials, *Chemosphere* 61 (2005) 974–984. 662
 595 doi:10.1016/j.chemosphere.2005.03.025. 663

596 [11] M. Khan, S. So, G. da Silva, Decompo- 664
 597 sition kinetics of perfluorinated sulfonic 665
 598 acids, *Chemosphere* 238 (2020) 124615. 666
 599 doi:<https://doi.org/10.1016/j.chemosphere.2019.124615>. 677

600 [12] D. S. Farina, S. K. Sirumalla, E. J. Mazeau, R. H. West, 668
 601 Extensive high-accuracy thermochemistry and group 669
 602 additivity values for halocarbon combustion modeling, 670
 603 *Industrial & Engineering Chemistry Research* 60 (43) 671
 604 (2021) 15492–15501. doi:10.1021/acs.iecr.1c03076. 672

605 [13] M. Altarawneh, M. H. Almatarneh, B. Z. Dlugogorski, 673
 606 Thermal decomposition of perfluorinated carboxylic 674
 607 acids: Kinetic model and theoretical requirements for 675
 608 PFAS incineration, *Chemosphere* 286 (2022) 131685. 676
 609 doi:<https://doi.org/10.1016/j.chemosphere.2021.131685>. 677

610 [14] M. Y. Khan, J. Song, M. Narimani, G. da Silva, 678
 611 Thermal decomposition mechanism and kinetics of 679
 612 perfluorooctanoic acid (PFOA) and other perfluori- 680
 613 nated carboxylic acids: a theoretical study, *Envi- 681
 614 ron. Sci.: Processes Impacts* 24 (2022) 2475–2487. 682
 615 doi:10.1039/D2EM00259K. 683

616 [15] M. A. Adi, M. Altarawneh, Thermal decom- 684
 617 position of heptafluoropropylene-oxide-dimer 685
 618 acid (GenX), *Chemosphere* 289 (2022) 133118. 686
 619 doi:<https://doi.org/10.1016/j.chemosphere.2021.133118>. 687

620 [16] C.-B. Paultre, A. M. Mebel, K. E. O’Shea, Com- 688
 621 putational study of the gas-phase thermal degrada- 622
 622 tion of perfluoroalkyl carboxylic acids, *The Journal 623
 623 of Physical Chemistry A* 126 (46) (2022) 8753–8760. 624
 624 doi:10.1021/acs.jpca.2c06437.

625 [17] X. Ding, X. Song, X. Chen, D. Ding, C. Xu, H. Chen, 626
 626 Degradation and mechanism of hexafluoropropylene 627
 627 oxide dimer acid by thermally activated persulfate in 628
 628 aqueous solutions, *Chemosphere* 286 (2022) 131720. 629
 629 doi:<https://doi.org/10.1016/j.chemosphere.2021.131720>.

630 [18] N. H. Weber, L. J. Dixon, S. P. Stockenhuber, 631
 631 C. C. Grimison, J. A. Lucas, J. C. Mackie, 632
 632 M. Stockenhuber, E. M. Kennedy, Thermal de- 633
 633 composition of PFOA: Influence of reactor and 634
 634 reaction conditions on product formation, *Chemical 635
 635 Engineering Science* 278 (2023) 118924. 636
 636 doi:<https://doi.org/10.1016/j.ces.2023.118924>.

637 [19] A. Alinezhad, H. Shao, K. Litvanova, R. Sun, 638
 638 A. Kubatova, W. Zhang, Y. Li, F. Xiao, Mechanistic 639
 639 investigations of thermal decomposition of per- 640
 640 fluoroalkyl ether carboxylic acids and short-chain 641
 641 perfluoroalkyl carboxylic acids, *Environmental 642
 642 Science & Technology* 57 (23) (2023) 8796–8807. 643
 643 doi:10.1021/acs.est.3c00294.

644 [20] J. Blotevogel, R. J. Giraud, A. K. Rappé, Incin- 645
 645 erability of PFOA and HFPO-DA: Mechanisms, 646
 646 kinetics, and thermal stability ranking, *Chemical 647
 647 Engineering Journal* 457 (2023) 141235. 648
 648 doi:<https://doi.org/10.1016/j.cej.2022.141235>.

649 [21] F. Xiao, P. C. Sasi, B. Yao, A. Kubátová, S. A. 650
 650 Golovko, M. Y. Golovko, D. Soli, Thermal stabil- 651
 651 ity and decomposition of perfluoroalkyl substances 652
 652 on spent granular activated carbon, *Environmental 653
 653 Science & Technology Letters* 7 (2020) 343–350. 654
 654 doi:10.1021/acs.estlett.0c00114.

655 [22] O. Mathieu, P. Diévert, M. Turner, D. Mohr, 656
 656 C. Grégoire, S. Alturaifi, L. Catoire, E. Pe- 657
 657 tersen, Experimental and detailed kinetics mod- 658
 658 eling study of the fire suppressant properties of 659
 659 di(2,2,2trifluoroethyl) carbonate, *Proceedings of 660
 660 the Combustion Institute* 39 (1) (2023) 499–510. 661
 661 doi:<https://doi.org/10.1016/j.proci.2022.07.078>.

662 [23] M. E. Fuller, M. Skowron, R. S. Tranter, C. F. Gold- 663
 663 smith, A modular, multi-diagnostic, automated shock 664
 664 tube for gas-phase chemistry, *Review of Scientific 665
 665 Instruments* 90 (2019) 064104. doi:10.1063/1.5095077.

666 [24] C. A. Almodovar, C. F. Goldsmith, Laser schlieren 667
 667 study of the thermal decomposition of 2-ethylhexyl- 668
 668 nitrate, *Proceedings of the Combustion Institute* 38 669
 669 (2021) 997–1005. doi:10.1016/j.proci.2020.07.105.

670 [25] M. Döntgen, M. E. Fuller, S. Peukert, D. Na- 671
 671 tiviel, C. Schulz, K. A. Heufer, C. F. Goldsmith, 672
 672 Shock tube study of the pyrolysis kinetics of di- and 673
 673 trimethoxy methane, *Combustion and Flame* 242 (8 674
 674 2022). doi:10.1016/j.combustflame.2022.112186.

675 [26] M. E. Fuller, C. F. Goldsmith, Shock tube laser 676
 676 schlieren study of the pyrolysis of isopropyl nitrate, 677
 677 *Journal of Physical Chemistry A* 123 (2019) 5866– 678
 678 5876. doi:10.1021/acs.jpca.9b03325.

679 [27] D. G. Goodwin, R. L. Speth, H. K. Moffat, 680
 680 B. W. Weber, Cantera: An object-oriented soft- 681
 681 ware toolkit for chemical kinetics, thermodynam- 682
 682 ics, and transport processes, version 2.6.0 (2023). 683
 683 doi:10.5281/zenodo.4527812.

684 [28] S. T. Browne, J. L. Ziegler, N. P. Bitter, B. E. Schmidt, 685
 685 J. Lawson, J. E. G. Shepherd, SDToolbox: Numeri- 686
 686 cal Solution Methods for Shock and Detonation Jump 687
 687 Conditions, version 3 (2018).

689 [29] M. E. Fuller, A. Mousse-Rayaleh, N. Chaumeix, 756
 690 C. F. Goldsmith, Laminar flame speeds and igni- 757
 691 tion delay times for isopropyl nitrate and propane 758
 692 blends, *Combustion and Flame* 242 (2022) 112187. 759
 693 doi:<https://doi.org/10.1016/j.combustflame.2022.112187>

694 [30] J. A. Miller, R. Sivaramakrishnan, Y. Tao, C. F. 761
 695 Goldsmith, M. P. Burke, A. W. Jasper, N. Hansen, 762
 696 N. J. Labbe, P. Glarborg, J. Zádor, *Combustion chem- 763
 697 istry in the twenty-first century developing theory- 764
 698 informed chemical kinetics models, *Progress in En- 765
 699 ergy and Combustion Science* 83 (2021) 100886. 766
 700 doi:<https://doi.org/10.1016/j.pecs.2020.100886>.*

701 [31] S. Sharma, K. Abeywardane, C. F. Goldsmith, Theory- 768
 702 Based Mechanism for Fluoromethane Combustion I: 769
 703 Thermochemistry and Abstraction Reactions, *Journal 770
 704 of Physical Chemistry A* 127 (6) (2023) 1499–1511. 771
 705 doi:[10.1021/acs.jpca.2c06623](https://doi.org/10.1021/acs.jpca.2c06623).

706 [32] W. H. Green, R. H. West, Rmg - reaction mechanism 773
 707 generator version 3.1.0 (2021). 774

708 [33] C. W. Gao, J. W. Allen, W. H. Green, R. H. 775
 709 West, Reaction Mechanism Generator: Automatic 776
 710 construction of chemical kinetic mechanisms, 777
 711 *Comput. Phys. Commun.* 203 (2016) 212–225. 778
 712 doi:[10.1016/j.cpc.2016.02.013](https://doi.org/10.1016/j.cpc.2016.02.013).

713 [34] M. Liu, A. Grinberg Dana, M. S. Johnson, M. J. Gold- 780
 714 man, A. Jocher, A. M. Payne, C. A. Grambow, K. Han, 781
 715 N. W. Yee, E. J. Mazeau, K. Blodnal, R. H. West, C. F. 782
 716 Goldsmith, W. H. Green, Reaction Mechanism Gener- 783
 717 ator v3.0: Advances in Automatic Mechanism Gener- 784
 718 ation, *J. Chem. Inf. Model.* 61 (6) (2021) 2686–2696. 785
 719 doi:[10.1021/acs.jcim.0c01480](https://doi.org/10.1021/acs.jcim.0c01480).

720 [35] M. Johnson, X. Dong, A. Grinberg Dana, Y. Chung, 787
 721 D. Farina Jr, R. Gillis, M. Liu, N. Yee, K. Blodnal, 788
 722 E. Mazeau, C. Grambow, A. Payne, K. Spiekermann, 789
 723 H.-W. Pang, C. F. Goldsmith, R. West, W. Green, The 790
 724 RMG Database for Chemical Property Prediction, *J. 791
 725 Chem. Inf. Model.* (in press) (2022).

726 [36] S. J. Klippenstein, L. B. Harding, B. Ruscic, Ab 793
 727 initio computations and active thermochemical tables 794
 728 hand in hand: Heats of formation of core combus- 795
 729 tion species, *The Journal of Physical Chemistry A* 121 796
 730 (2017) 6580–6602.

731 [37] Y. Zhao, D. Truhlar, The M06 suite of density func- 798
 732 tionals for main group thermochemistry, thermochem- 799
 733 ical kinetics, noncovalent interactions, excited states, 800
 734 and transition elements: two new functionals and sys- 801
 735 tematic testing of four M06-class functionals and 12 802
 736 other functionals, *Theoretical Chemistry Accounts* 120 803
 737 (2008) 215–241.

738 [38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 805
 739 Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal- 806
 740 mani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, 807
 741 M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, 808
 742 R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Or- 809
 743 oz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams- 810
 744 Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, 811
 745 B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, 812
 746 V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, 813
 747 W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, 814
 748 J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki- 815
 749 tao, H. Nakai, T. Vreven, K. Throssell, J. A. Mont- 816
 750gomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, 817
 751 J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. 818
 752 Staroverov, T. A. Keith, R. Kobayashi, J. Normand, 819
 753 K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. 820
 754 Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, 821
 755 C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, 822

562 [39] K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, 756
 563 Gaussian 09 Revision D.01, Gaussian Inc. Wallingford 757
 564 CT (2013).

565 [40] H.-J. Werner, P. J. Knowles, G. Gia, F. R. Manby, 758
 566 M. Schütz, P. Celani, W. Györfy, D. Kats, T. Korona, 759
 567 R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shama- 760
 568 sundar, T. B. Adler, R. D. Amos, A. Bernhardsson, 761
 569 A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dob- 762
 570 byn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, 763
 571 G. Hetzer, T. Hrenar, G. Jansen, C. Köpl, Y. Liu, 764
 572 A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, 765
 573 W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, 766
 574 P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Rei- 767
 575 her, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, 768
 576 T. Thorsteinsson, M. Wang, Molpro, version 2015.1, 769
 577 a package of ab initio programs (2015).

578 [41] Y. Georgievskii, S. J. Klippenstein, MESS: Master 770
 579 equation system solver 2016.3.23 (2016).

580 [42] Y. Georgievskii, J. A. Miller, M. P. Burke, S. J. Klip- 771
 581 penstein, Reformulation and solution of the master 772
 582 equation for multiple-well chemical reactions, *The 773
 583 Journal of Physical Chemistry A* 117 (2013) 12146– 774
 584 12154. doi:[10.1021/jp4060704](https://doi.org/10.1021/jp4060704).

585 [43] J. O. Hirschfelder, E. Wigner, Some quantum- 775
 586 mechanical considerations in the theory of reactions 777
 587 involving an activation energy, *The Journal of Chemical 778
 588 Physics* 7 (1939) 616.

589 [44] W. H. Miller, Unified statistical model for “complex” 779
 590 and “direct” reaction mechanisms, *The Journal of 780
 591 Chemical Physics* 65 (1976) 2216–2223.

592 [45] W. J. Chesnavich, L. Bass, T. Su, M. T. Bowers, Multi- 781
 593 ple transition states in unimolecular reactions: A transi- 782
 594 tion state switching model. application to the $C_4H_8^+$. 783
 595 system, *The Journal of Chemical Physics* 74 (1981) 784
 596 2228–2246.

597 [46] R Core Team, R: A language and environment for sta- 785
 598 tistical computing, version 4.3.2 (2021).

599 [47] U. of California at San Diego Mechanical, A. E. C. Re- 786
 600 search, Chemical-kinetic mechanisms for combustion 787
 601 applications, <http://combustion.ucsd.edu> (2012).

602 [48] G. Bagheri, E. Ranzi, M. Pellicchi, A. Parente, 788
 603 A. Frassoldati, T. Faravelli, Comprehensive kinetic 789
 604 study of combustion technologies for low environ- 790
 605 mental impact: Mild and oxy-fuel combustion of 791
 606 methane, *Combustion and Flame* 212 (2020) 142–155. 792
 607 doi:[10.1016/j.combustflame.2019.10.014](https://doi.org/10.1016/j.combustflame.2019.10.014).

608 [49] C.-W. Zhou, Y. Li, U. Burke, C. Banyon, K. P. Somers, 793
 609 S. Ding, S. Khan, J. W. Hargis, T. Sikes, O. Mathieu, 794
 610 E. L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, 795
 611 Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S. S. Vasu, 796
 612 H. J. Curran, An experimental and chemical kinetic 797
 613 modeling study of 1,3-butadiene combustion: Ignition 798
 614 delay time and laminar flame speed measurements, 799
 615 *Combustion and Flame* 197 (2018) 423–438. 800
 616 doi:[10.1016/j.combustflame.2018.08.006](https://doi.org/10.1016/j.combustflame.2018.08.006).

617 [50] L. Zhu, S. Panigrahy, S. N. Elliott, S. J. Klippen- 801
 618 stein, M. Baigmohammadi, A. A. E. S. Mohamed, 802
 619 J. W. Hargis, S. Alturaifi, O. Mathieu, E. L. Petersen, 803
 620 K. A. Heufer, A. Ramalingam, Z. Wang, H. J. Cur- 804
 621 ran, A wide range experimental study and further de- 805
 622 velopment of a kinetic model describing propane ox- 806
 623 idation, *Combustion and Flame* 248 (2023) 112562. 807
 624 doi:[10.1016/J.COMBUSTFLAME.2022.112562](https://doi.org/10.1016/J.COMBUSTFLAME.2022.112562).