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Abstract—Microgrids (MGs) formation enables distribution net-
works to enhance the resilience of the system after natural disasters
and faults. In this paper, a quantum computing (QC) method is
devised to resolve distribution grid restorations, which establishes a
promising computational platform for grid resilience applications.
The new method is based upon resilient MGs formation formulated
as an combinatorial optimization problem to restore critical
loads after natural disasters. Our main breakthrough consists
of a quantum optimization model for resilient MGs formation
and restoration, as well as a quantum annealing solution to
combinatorially complex problems which are difficult for classical
methods to tackle. To validate the efficacy of the quantum grid
restoration/MGs formation, test results obtained by D-Waveare
compared with those from classical solver, Gurobi.

Index Terms—Quantum computing, Quantum annealing, Mi-
crogrids formation, Load restoration, Microgrids

I. INTRODUCTION

Natural disasters can cause widespread blackouts on power

grids with economic upheavals. Enhancing the resilience of

power systems facing low-probability, high-impact events be-

comes an inevitable research [1]. To cope with the catastrophic

impacts of natural disasters, microgrids (MGs) formation is a

promising solution to restore critical loads [2] and the main grid.

As an operational optimization problem modeled in the form

of mixed-integer linear programming (MILP), however, MGs

formation has been a daunting problem due to its combinatorial

complexity [3], [4].

Most studies on critical load restoration and MGs forma-

tion take advantage of an MILP type of models, and then

solve the problem using optimization solvers [5]–[7]. The

mathematical model for MGs formation problem leads toward

the combinatorial complexity, which cannot guarantee optimal

solutions. Furthermore, the classical optimization solvers face

difficulties in finding near-optimal or global optimal solution

when the scale of the problem increases. To resolve these

issues, quantum computing (QC) is found promising to solve

a combinatorial problem including integer decision variables
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with many constraints [8], [9]. In [10], a thorough review of

applications of quantum computing to power system problems

is carried out, and the potential of QC in different areas,

such as fundamental power analytics [11], [12], power system

operation and optimization, power system stability and control,

communication security, and AI/machine learning applications,

is represented. As a first attempt to solve one of the important

operational optimization problems in power systems, in [8],

[9], distributed unit commitment problem is considered as an

MILP optimization problem, and a quantum model of unit

commitment is developed. Afterwards, a quantum version of

alternating direction method of multipliers (ADMM) is devel-

oped to solve it in a distributed manner through decomposing

the main problem into several subproblems, enabling current

quantum machines to solve those combinatorial problems that

are intractable for current classical computers. In [13], a combi-

nation of QC and Surrogate Lagrangian Relaxation (SLR) [14]

allowed for solving large unit commitment problems.
Today’s quantum computers are using either gate-based or

annealing-based approaches. In the gate-based quantum ma-

chines, input qubits are initialized to quantum states, and after

passing through unitary operators and quantum gates, the final

state of qubit(s) are measured. This quantum path from input

qubits to the measurement is called quantum circuit. According

to IBM’s QC roadmap, a Condor processor with 1,121 qubits is

realizable by 2023, [15] and a 4,000+ qubit processor built with

multiple clusters of modularly scaled processors is expected to

be produced by 2025. However, current gate-based quantum

devices face a major challenge in solving large-scale problems

because of limitations on qubit numbers and connectivity. To

resolve this issue, quantum annealers take advantage of quantum

adiabatic evolution to solve combinatorial problems in the form

of quadratic unconstrained binary optimization (QUBO). For

instance, D-Wave’s computers utilize quantum annealing (QA)

to solve large QUBO problems using lattice of qubits [16].
The main contributions of this paper are listed as follows:

• A quantum-amenable model is developed for networked

MGs formation-based load restoration problem in the form

of QUBO, where Hamiltonian of the Ising model is solv-

able via quantum annealing.

• A quantum-amenable load restoration algorithm using

MGs formation is successfully implemented and thor-

oughly verified with D-Wave quantum machines using D-

Wave’s hybrid quantum-classical solver.

II. PROBLEM FORMULATION

The main goal of networked microgrids formation is to alter

the distribution system topology so that a maximum amount of

978-1-6654-6441-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 P
ow

er
 &

 E
ne

rg
y 

So
ci

et
y 

G
en

er
al

 M
ee

tin
g 

(P
ES

G
M

) |
 9

78
-1

-6
65

4-
64

41
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

PE
SG

M
52

00
3.

20
23

.1
02

52
45

5

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 14,2024 at 21:01:40 UTC from IEEE Xplore.  Restrictions apply. 



2

prioritized loads are picked up for fast restoration via controlling

the line and load switches.

This paper focuses on the use of MGs formation to restore

distribution networks, where the following assumptions are

considered:

• Without loss of generality, only one aggregated distributed

generation (DG) is assigned to each MG to supply the load.

• After a natural disaster, only DGs are responsible to

energize the critical loads before restoring the main grids.

A. Networked MGs formation constraints

In this problem, the constraints are as follows:

1) Belonging of nodes and lines to MGs: Node i ∈ B�

should only belong to one of the microgrids in the set M . To

realize the node belonging constraint, a binary decision variable

wi should be defined to node i ∈ B�. Node i belongs to MG

m if wim = 1, otherwise wim = 0.∑
m∈M

wim = 1, i ∈ B�. (1)

Furthermore, if node i ∈ B� and node ĩ ∈ B� are two nodes

of MG m, the connected line lĩi between nodes i and ĩ belongs

to the same microgrid. Therefore,

lm
ĩi

= wim · wĩm, ∀i, ĩ ∈ B�, m ∈ M (2)

The equality constraint (2) can be converted to the following

set of inequality constraints:

lm
ĩi

≤ wim, ∀i, ĩ ∈ B�, m ∈ M, (3a)

lm
ĩi

≤ wĩm, ∀i, ĩ ∈ B�, m ∈ M, (3b)

lm
ĩi

≥ wim + wĩm − 1, ∀i, ĩ ∈ B�, m ∈ M. (3c)

2) Connectivity of nodes in each microgrid: To satisfy the

connectivity constraint in each microgrid, a parent-children node

matrix should be established. A child node can belong to an MG

if its parent belongs to the same MG. This constraint can be

written as follows:

wim ≤ wîm, ∀i, î ∈ B�, m ∈ M, (4)

where, wîm is the belonging status of parent node î to MG m.

3) Energized loads constraint: For an energized load in

microgrid m, the load should be connected to node n of MG

m. Therefore, the energized load status should be indicated as:

eim = wim · si, ∀i ∈ B�, m ∈ M, (5)

where, si is a binary decision variable, which indicates the
connection status of ith energized load to node i ∈ B� of

microgrid m. If load i in microgrid m is connected to node

i (si = 1) and node i belongs to MG m (wim = 1), as a

result the load is energized with the indication eim = 1. Similar

conversion as (3a)-(3c) should be applied to (5).

4) MG operational constraint: The linearized DistFlow

model is used for power flow constraints [17]. The linearized

DistFlow model can be written as follows [18]:

P flow
i,m =

∑
î

P flow

i−î,m
+ ei,m · PL

i,m, ∀i, î ∈ B�, m ∈ M,

(6a)

Qflow
i,m =

∑
î

Qflow

i−î,m
+ ei,m ·QL

i,m, ∀i, î ∈ B�, m ∈ M,

(6b)

Vi,m = Vî,m − Ri−î · P flow
i,m +Xi−î ·Qflow

i,m

V0,m
, ∀i, î ∈ B�,

(6c)

where, P flow
i,m and Qflow

i,m are real and reactive power in-flow at

node i of MG m, respectively. Real and reactive powers P flow

i−î,m

and Qflow

i−î,m
represent the injected real and reactive power to

children nodes î from node i in microgrid m, respectively.

Moreover, PL
i,m and QL

i,m are real and reactive loads, respec-

tively. While the voltage at node i is denoted by Vi, V0,m

describes the reference voltage at DG node in MG m. The

resistance and reactance of distribution lines i− î are described

by Ri−î and Xi−î, respectively.

Additionally, other constraints are considered such that the

in-flow real and reactive powers and nodes voltage are within

a range between minimum and maximum values.

B. Objective function for networked MGs formation

The objective function is to maximize the load restoration

after a disaster occurs. Different weights are assigned to loads,

and loads with higher priority to restore should have larger

weights (c). The weighted load restoration objective function

is written as follows:

max
w,l,s,e,Pflow,Qflow,V

∑
i∈B�

∑
m∈M

ci · eim · PL
i,m. (7)

III. QUANTUM-AMENABLE RESILIENT MICROGRIDS

FORMATION

In this section, a quantum-amenable model of resilient MG

formation is developed.

A. Quantum Optimization Procedure

Quantum annealing is an optimization algorithm that is used

by adiabatic quantum computers such as D-Wave devices.

The QA algorithm is mainly used to find the near-optimal

or even global optima of combinatorial optimization problems

with non-continuous decision variables [16], [19]. The quantum

processors units (QPUs) of D-Wave computers in quantum

annealing optimization procedure is adaptable to solve quadratic

unconstrained binary optimization (QUBO) problems. A classi-

cal QUBO problem can be defined as follows:

x = argmin
x

(
xTQx+ Cx

)
, (8)

where, x is an N × 1 vector of binary decision variables. Real-

valued matrices Q and C are N × N and 1 × N vectors,

respectively.
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In an optimization problem, finding the ground state of an

Ising Hamiltonian is equivalent to the minimum value of the

corresponding objective function [20]. To achieve the Ising

model of a QUBO problem, a graph G = (V,E) is used. In [8],

the steps of building the Hamiltonian Ising model using vertices

and edges of an graph has been explained in detail.

According to the graph and explained steps in [8], we can

formulate the Hamiltonian Ising model H as follows:

H =

N∑
k=1

N∑
j=1,j �=k

Lkj · ξk · ξj +
∑
k∈V

qk · ξk. (9)

where, the first term of Ising model in (9) indicates the

interaction/coupling between two qubits k and j through the

edge between them (Lkj) while the second term has to do with

the local field caused by external magnetic q with a spin ξ.

To map the classical QUBO problem to the Hamiltonian Ising

model, the binary decision variables x ∈ {0,+1} in (8) should

be replaced by spin variables ξ ∈ {−1,+1} in (9). To fulfill

this conversion, the transformation x = ξ+1
2 is employed. This

conversion results in:

Lkj =
1

4
Qkj , ∀(k, j) ∈ E, (10a)

qk =
1

2

⎛
⎝Ck +

∑
j

Qkj

⎞
⎠ , ∀k ∈ V. (10b)

A system Hamiltonian with the know ground state is initial-

ized and prepared as follows:

H0 =
N∑

k=1

σx
k , (11)

where, Pauli-x operator σx
k =

[
0 1
1 0

]
is applied to qubit k.

The system Hamiltonian is gradually move toward problem

Hamiltonian Hp, which is written as follows:

Hp =
N∑

k=1

N∑
j=1,j �=k

Lkj · σz
k · σz

j +
∑
k∈V

qk · σz
k, (12)

where, Pauli-z operator σz
k =

[
1 0
0 −1

]
is applied to qubit k.

The problem Hamiltonian Hp is the classical Ising model in

(9), and therefore, the solution of the Ising model is achieved by

finding the eigenvectors of corresponding problem Hamiltonian.

According to the adiabatic theorem of quantum mechanics,

if the required transition (annealing) time from H0 to Hp

is sufficiently slow, the system guarantees the ground state,

meaning that the optimal solution is achieved [21], [22].

B. Quantum Model for Resilient Microgrids Formation

In this subsection, the quantum-amenable resilient MGs for-

mation model is developed and the optimization solution using

quantum annealing (QA) in a D-Wave machine is discussed.

Objective Function. The objective function (7) should be

mapped to the Ising model by converting the binary variables

into spins using the transformation x = ξ+1
2 :

max
ξ

Hobj : max
ξ

∑
i∈B�

∑
m∈M

∑
k∈V

ci ·
1 + ξeim,k

2
· PL

i,m, (13)

where, ξeim,k is the spin of vertex (qubit) k associated with

energized load i in MG m.

Node Belonging Constraint. The constraint Hamiltonian asso-

ciated with classical constraint (1) is written as follows:

Hc1 = λ1

(∑
k∈V

∑
m∈M

1 + ξwim,k

2
− 1

)2

, i ∈ B�, (14)

where, ξwim,k is the spin of vertex (qubit) k for node i in MG

m. Furthermore, since the problem should be in unconstrained

form, the existing constraints should be added to the objective

function in a quadratic form by a penalty coefficient. Hence, λ1

is the penalty coefficient of node belonging constraint.

Line Belonging Constraint. The line belonging constraint (3a-

3c) is transformed to the Hamiltonian model as follows:

Hc2 =λ2

⎛
⎝ ∑

(k,j)∈E

1 + ξlim,(k,j)

2
−

∑
k∈V

1 + ξwim,k

2

⎞
⎠

2

, (15a)

Hc3 =λ3

⎛
⎝ ∑

(k,j)∈E

1 + ξlim,(k,j)

2
−

∑
k∈V

1 + ξw̃im,k

2

⎞
⎠

2

, (15b)

Hc4 =λ4

(∑
k∈V

1 + ξwim,k

2
+

∑
k∈V

1 + ξw̃im,k

2
− (15c)

∑
(k,j)∈E

1 + ξlim,(k,j)

2
− 1

⎞
⎠

2

, ∀i, ĩ ∈ B�, m ∈ M,

where, ξlim,(k,j) is the spin of edge or distribution line l between

nodes/vertices k and j in MG m. ξwim,k is the spin of vertex

(qubit) k for node ĩ in MG m. Moreover, the penalty terms are

indicated by λ2, λ3 and λ4.

Node Connectivity Constraint. To ensure the connectivity

of nodes in a microgrid, classical constraint (4) should be

converted to the following constraint Hamiltonian:

Hc5 =λ5

(∑
k∈V

1 + ξwim,k

2
−

∑
k∈V

1 + ξw̃im,k

2

)2

, ∀i, î ∈ B�,

(16)

where, λ5 is the penalty term associated with node connectivity

constraint.

Energized Loads Constraint. Similar to the Hamiltonian of

(15a)-(17c), the Hamiltonian model of energized loads con-

straint can be rewritten by assigning penalty coefficients λ6,

λ7 and λ8.

DistFlow Constraint. The Hamiltonian of DistFow model is

written as follows:

Hc9 =λ9

⎛
⎝P flow

i,m −
∑
î

P flow

i−î,m
−

∑
k∈V

1 + ξeim,k

2
· PL

i,m

⎞
⎠

2

,

(17a)

Hc10 =λ10

⎛
⎝Qflow

i,m −
∑
î

Qflow

i−î,m
−

∑
k∈V

1 + ξeim,k

2
·QL

i,m

⎞
⎠

2

,

(17b)

where, λ9 and λ10 are penalty terms used for DistFlow con-

straint.
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Line Flow Constraint. In-flow real and reactive powers have

the similar Hamiltonian model as Distflow and line belonging

constraints with the penalty coefficients of line flow constraint

represented by λ11, λ12 and λ13.

After mapping the QUBO objective function and constraints

to a Hamiltonian model, the following problem Hamiltonian or

total energy function is constructed to find the minimum energy

of the system using QA:

Hp = −Hobj +
∑
d∈D

Hcd, (18)

where, D is the total number of constraints Hamiltonian. Since

the classical optimization problem in (7) is a maximization

problem, the sign of Hobj is changed to negative to be con-

sidered as a minimization problem solvable by QA.

IV. NUMERICAL RESULTS

In this section, a modified IEEE 37-bus distribution network

[23] is selected as a test system to show the efficacy of quantum

annealing solving the MILP problem of the grid restoration and

MGs formation. The single-line diagram of modified IEEE 37-

bus distribution system is depicted in Fig. 1.

Supply

Line switch

Load switch
Node

1 2 3 4 5 6
7

8

DG
37

9

10

31

32

33

34 35

36

28

29

30 11

12

13

14

27

15

17
16

18

22

19 20
21

23
24 25

26

Load

Fig. 1. The single-line diagram of modified IEEE 37-bus distribution system.

In this case study, there exist three DGs at nodes 2, 14

and 19 with the maximum real power generation capacities of

252.53 kW, 120.42 kW, and 202.99 kW, as well as maximum

VAR capacities of 46.31 kVar, 171.72 kVar, and 197.48 kVar,

respectively. Furthermore, the line switches and load switches

can be in either on (1) or off (0) mode. According to the

objective function, each load has a priority weight (c) to be

restored once a disaster happens. The load weights along with

real and reactive loads amount are adopted from [24].

The new topology of the distribution system Fig. 1 after MGs

formation upon the occurrence of a disaster is shown in Fig. 2.

In Fig. 2, after the blackout occurs, three lines become

unavailable that is the lines switch are turned into the off mode.

These lines are located between nodes 1-37, 2-28, and 8-31.

The rest of the grid is considered for the MGs formation to

restore the loads. As a result of MGs formation, three MGs

are established. Each MG is empowered with a DG to feed its

loads. In Table I, the node belonging status of each node to an

MG is described. According to the results of resilient MGs

formation shown in Fig. 2 and Table I, the switching mode of

loads and lines leads toward belonging of nodes and lines for

Supply

Line switch

Load switch

1 2 3 4 5 6
7

8

37

9

10

31

32

33

34 35

36

28

29

30
11

12

13

14

27

15
17

16

18

22

19 20
21

23
24 25

26

on off neutral

on off neutral

Line outage after a disaster

Node
on off neutral

MG1

MG2

MG3

Fig. 2. Microgrids formation after a natural disaster.

TABLE I
BELONGING OF SYSTEM NODES TO MGS AND ENERGIZED STATUS

OF NODES AFTER RESILIENT MGS FORMATION

MG Nodes Energized nodes
MG1 1,2,3,4,5,6,7,8,9,10,27 1,2
MG2 11,12,13,14 14
MG3 15,16,17,18,19,20,21,22,23,24,25,26 19,20,21

each MG. Furthermore, the load energized following the disaster

is described for MGs.

The minimum energy level of the system is -700.4632 using

D-Wave’s hybrid quantum-classical solver, which is the same as

minimum amount of objective function obtained by the classical

solver Gurobi.

In MG1, the real power injections from nodes 1 and 2 are

30.4 kW and 49.01 kW, respectively, while the reactive power

injections are 5.09 kVar and 28.69 kVar, respectively. In MG2,

the real and reactive power outputs are 41.18 kW and 7.45

kVar, respectively. Similarly, in MG3, nodes 19, 20 and 21 send

60.14 kW, 35.12 kW and 12.45 kW, respectively. Moreover,

the VAR injections from aforementioned nodes are 41.49 kVar,

19.28 kVar and 13.76 kVar, respectively.

In Fig. 3, the energy level of the problem’s objective function

is depicted. In a D-Wave quantum computer, low-energy states

of a problem’s objective function are sampled by samplers.

The hybrid constrained quadratic model (CQM) sampler is

utilized to sample the low-energy states of the critical load

restoration problem. According to Fig. 3(a), D-Wave’s quantum-

classical hybrid CQM solver returns the number of samples

for each achieved energy level or solution. The hybrid CQM

sampler sampled from 47 solution. Because of the probabilistic

nature of solutions obtained by D-Wave’s hybrid solver, the

distribution of solutions are depicted as a box plot in Fig. 3(b).

In this distribution, minimum and maximum values of objective

function are -4017.5212 and 0, respectively. The median value

of load restoration-oriented objective function is -700.4632 with

a probability of occurrence at 42.5%. Furthermore, the first

quartile value (Q1 or 25th percentile) is -1531.2285.

The superposition and tunneling features of D-Wave quantum

machines enable the hybrid solver to to return a combination of

feasible and infeasible samples. In the feasible solutions of load

restoration/MGs formation problem, all the constraints (14)-(17)

along with line flow constraints are satisfied. The feasibility of

samples from annealing-based quantum computing is shown in

Fig. 4.
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(a)

(b)

Fig. 3. Energy level of the system. (a) Energy level of the problem for different
samples of the problem’s objective function. (b) Box plot diagram of the energy
level indicating the distribution of energy level of the objective function.

The MGs formation-based load restoration problem takes

0.032s to be solved by the quantum processing unit (QPU) while

the classical solver Gurobi needs 0.055s.

Fig. 4. The feasibility of samples from the sampled low-energy states.

Large number of qubits along with high connectivity be-

tween qubits are the key factors in solving large scale load

restoration/MGs formation optimization problem using today’s

D-Wave hybrid solvers incorporating one million decision vari-

ables and 100,000 constraints.

V. CONCLUSION

Combinatorially complex operational optimization problems

including non-continuous decision variables are good candidates

for annealing-based quantum computing to overcome the barri-

ers of current classical methods. In this paper, by leveraging

quantum optimization methods, the quantum resilient MGs

formation and load restoration problem is developed by deriving

the Ising Hamiltonian model. To restore the critical loads in

the distribution system, MGs formation is considered as an

effective strategy where the switching status (0/1) of distribution

lines and loads were deciding factors in keeping the critical

loads energized after a natural disaster occurs. D-Wave’s hybrid

quantum-classical solver has been used to solve a case study

with 37-bus and 3 MGs considering versatile constraints. The

results obtained by quantum annealing illustrated the accuracy

of this computing platform compared to the classical solver.
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