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Abstract—A neural-Lyapunov-barrier-enabled, physics-
informed-learning-based control method is devised to provide
certificated safe and stable hierarchical control of microgrids.
The main contributions include: 1) a neural hierarchical control
framework for microgrids with provable safety and stability
guarantees; 2) a control Lyapunov barrier function (CLBF)
considering the fast dynamics of distributed energy resources,
loads, and networks in microgrids; 3) a physics-informed
learning approach for CLBF-based neural hierarchical control
synthesis, which learns safety and stability certificates and
control policy simultaneously without a verification module.
Case studies demonstrate the effectiveness of the approach
in provably certifying the stability and safety of microgrids
equipped with hierarchical inverter control.

Index Terms—Microgrid control, learning-based control, con-
trol Lyapunov barrier function, certified control, microgrid
stability.

I. INTRODUCTION

THE primary objective of microgrid control is to ensure

the safety and stability of the system, meaning microgrid

controllers must drive the system to a stable equilibrium oper-

ating point and avoid unsafe regions after severe disturbances.

The increasing integration of distributed energy resources

(DERs) is unprecedentedly challenging microgrid control. On

the one hand, massive inverter interfaces can induce strongly

nonlinear dynamics which can deteriorate microgrid stability

because of reduction in inertia and damping [1]. On the other

hand, the high variability of renewable energy sources and

frequent changes in microgrid loads and structures can signif-

icantly perturb the system from its equilibrium point, leading

to large voltage and frequency deviations [2]. Therefore,

efficacious microgrid control that can assure large-disturbance

stability and safety is needed.

The hierarchical control framework is widely adopted in

microgrid control [3], [4]. However, controller synthesis based

on linearized microgrid models [5] can only guarantee the

small-signal stability of the system. The authors in [6] in-

troduce distributed barrier functions for the safe operation

of microgrids, and the sum-of-squares(SOS) optimization is
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used to find Lyapunov functions. However, the SOS opti-

mization leads to a tradeoff between representation accuracy

and computational complexity. Finding a qualified Lyapunov

function for microgrids with massive inverter interfaces can

be extremely challenging.

Recently, learning-based control approaches have emerged

to gain increased attention in power system control. Ref. [7]

introduces a deep learning-based control framework to dis-

cover Lyapunov functions and learn control strategies simul-

taneously. However, it employs a falsification module to pro-

duce controllers with performance guarantees, which retards

the training process and hinders the method’s applicability

in large-scale systems. Ref. [8] introduce a reinforcement

learning framework for frequency and voltage regulation,

which only provides a local stability guarantee in a small

region, and soft penalties are utilized to describe whether

the system state leaves the prescribed ranges, which does

not provide a certificated stability guarantee. In general, two

major challenges remain in existing methods: I) Lack of

certificates for microgrid safety and stability under different

large disturbances and II) Lack of effective learning strategies

to provide certificated safety and stability constraints without

additional verification modules.

To bridge the gap, this paper establishes a neural-Lyapunov-

barrier-enabled control framework for microgrids. We first

construct a control Lyapunov barrier function (CLBF) for

microgrids considering the dynamics of DERs, loads, and

networks to explicitly and rigorously formulate the safety and

stability certificates, and then we establish a CLBF-based,

physics-informed learning approach to train the safety/stability

certificates and control strategies simultaneously. Conse-

quently, the dynamic performance of microgrids with large

disturbance is certificated by CLBF during the training process

without involving an additional verification module, which en-

ables high efficiency for offline training and online application.

The remainder of this paper is organized as follows. Sec-

tion II presents the neural hierarchical control framework of

microgrids. Section III formulates the safety and stability

certificates for microgrids. Section IV establishes the CLBF-

enabled physics-informed learning for training the control

policy and certificates simultaneously. Section V presents case

studies. Section VI provides the conclusion of the paper.

II. NEURAL HIERARCHICAL CONTROL OF MICROGRIDS

This section establishes the formulation of the neural hierar-

chical control of microgrids. The kernel idea is to incorporate
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learning-based feedback control into DER controllers. By

properly training the learning-based controllers, the global

stability and safety of microgrids are certified.

Without loss of generality, a two-layer hierarchical control

is considered. Mathematically, the neural hierarchical control

for DER i is formulated as:

{
ωi = ω∗

i −mp(Pi − P ∗
i ) + up,i

Ei = E∗
i − nq,i(Qi −Q∗

i ) + uq,i

(1)

Locally, (1) performs droop control for frequency and voltage

regulation, where ωi, Ei, Pi and Qi respectively denote the

angular speeds, output voltage magnitudes, active power and

reactive power of DER i; superscript ∗ denote the correspond-

ing nominal values; mp,i and nq,i respectively denote the

droop coefficients. Globally, (1) employs two learning-based

feedback controllers, i.e., up,i and uq,i, to perform secondary

control above the basic proportional controller.

The learning-based control signals of all the N DERs, i.e.,

u = [up,1, up,2, ..., up,N , uq,1, uq,2, ..., uq,N ]T , are function-

ally formulated as a neural network u = πϕ(x), where π
denotes the neural network describing the control policy; u,

x and ϕ respectively denote the output, input, and weights of

the neural network. Specifically, the input features x denote

the microgrid states, e.g., states of DERs, loads, and lines.

Please refer to [2] for the detailed microgrid dynamic model.

With the consideration of load dynamics and line dynamics,

the dynamics of a microgrid system can be formulated as

a system of ordinary differential equations (ODE), which

is rigorously equivalent to the original differential algebraic

equation (DAE)-based formulation [2], [4]:

ẋ = fθ(x) + gθ(x)πϕ(x) (2)

where x ∈ χ ⊆ R
n denotes the microgrid states; π ⊆ R

2N ;

fθ : R
n → R

n and gθ : R
n → R

n×2N are functions de-

scribing the microgrid dynamics, which depend on microgrid

parameters θ and are assumed to be locally Lipschitz.

Fig. 1 accordingly presents the structure of the neural

hierarchical control for microgrids. The dynamics of each

component (e.g., the load, line, and DER) form the dynamics

of the entire microgrid system, and the neural control signal

u = πϕ(x) is trained using the microgrid dynamics to

provide global control among DERs with safety and stability

certificates of the whole system.

fffθθfffff :: RR →→ RR anandd gggθθ :: RR →→ RR arare fe fununctctioionsns dede

scribing the microgrid dynamics, which depend on microgrid

parameters θ and are assumed to be locally Lipschitz.

Fig. 1 accordingly presents the structure of the neural

hierarchical control for microgrids. The dynamics of each

component (e.g., the load, line, and DER) form the dynamics

of the entire microgrid system, and the neural control signal

u = πϕ(x) is trained using the microgrid dynamics to

provide global control among DERs with safety and stability

certificates of the whole system.

ggg

Fig. 1: Structure of the neural hierarchical control of microgrids

III. SAFETY AND STABILITY-CERTIFIED NEURAL

HIERARCHICAL CONTROL OF MICROGRIDS

This section presents the safety and stability certificates

for microgrids under neural hierarchical control so that the

dynamic performance of microgrids can be provably certified

by the control Lyapunov barrier function (CLBF).

A. Formulation of Stability and Safety Requirements

As formulated in (2), a microgrid with neural hierarchical

control can be modeled as a control-affine system, parame-

terized by θ (i.e., microgrid parameters). Denote the desired

operating point of the microgrid as xgoal. Denote the safe

region and unsafe region as χsafe ⊆ χ and χunsafe ⊆ χ
(such that χsafe ∩ χunsafe = ∅ and xgoal ∈ χsafe). Define

x(t) : ξπ(x0, t) as the trajectory of the microgrid, i.e., the

solution of (2), starting from an initial state x0 under the

control policy π.

According to the safe control theory, the stability and safety

requirements of a control-affine system are described as [9]:

1) Stability requirement: For an appropriate norm, for every

ε > 0, there exists a δ > 0 such that for all t2 ≥ t1 ≥ 0:

||x(t1)− xgoal|| ≤ δ ⇒ ||x(t2)− xgoal|| ≤ ε;
2) Safety requirement: For all t2 ≥ t1 ≥ 0, x(t1) ∈ χsafe

implies x(t2) /∈ χunsafe.

In other words, to satisfy the stability requirement, the micro-

grid should be able to converge to the goal point state xgoal

while avoiding the unsafe region χunsafe. To satisfy the safety

requirement, the microgrid trajectories should not cross into

the unsafe region once it is operating in a safe region.

Our target is to design a neural controller u = πϕ(x) sat-

isfying the aforementioned stability and safety requirements.

B. CLBF Certificates for Microgrids

This subsection presents how to design a control policy u =
πϕ(x) for a microgrid governed by (2) while satisfying the

stability and safety requirements described in Subsection III-A.

We introduce the control Lyapunov barrier function (CLBF)

to provide microgrid stability and safety certificates. Basically,

the CLBF is a special case of a control Lyapunov function

where the safe and unsafe regions are respectively contained

in sub- and super-level sets [10].

A function V (x) : χ → R is a CLBF, if, for some safe

level c and λ > 0, it satisfies [10]:

V (xgoal) = 0, V (x) > 0 ∀x ∈ χ\xgoal

inf
u

LfθV + LgθV u+ λV ≤ 0 ∀x ∈ χ\xgoal

V (x) ≤ c ∀x ∈ χsafe

V (x) > c ∀x ∈ χunsafe

(3a)

(3b)

(3c)

(3d)

Equations (3a) and (3b) jointly define V as a Lyapunov

function of the microgrid with the goal point xgoal being a

stable equilibrium point, where LfV and LgV are respectively

the Lie derivatives of V along f and g (i.e., specified in (2));

θ denotes the microgrid parameters. Equations (3c) and (3d)

jointly establish the barrier function requirement.

Define the set of admissible controls as:

K(x) = {u|LfθV + LgθV u+ λV ≤ 0} (4)
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Fig. 2: Physics-informed training process of the safety-and-stability-certified neural hierarchical control

Ref. [10] has proved if V (x) is a CLBF, then any control

policy π(x) ∈ K(x) will be both safe and stable when

executed on a system specified by fθ and gθ. Correspondingly,

the CLBF-based neural hierarchical control of microgrids, if

satisfying (3), can provably stabilize the microgrid without any

safety violation.

IV. PHYSICS-INFORMED LEARNING FOR NEURAL

HIERARCHICAL CONTROL

This section designs a physics-informed supervised learning

framework to synthesize the CLBF-based neural controller. As

a combination of both physics-based and learning-based phi-

losophy, this approach can resolve the challenges that model-

based methods are hard to generalize and learning-based

methods hardly provide certificated safety guarantees [11].

A. Physics-Informed Training Process

The physics-informed training process of the neural hi-

erarchical control is shown in Fig. 2. The training process

comprises three main parts: 1) training of the CLBF certificate

neural network V , 2) training of the certificated control policy

neural network πϕ, 3) and using the trained controller to

generate new training samples.

First, the microgrid physics model generates training sam-

ples xtrain and hard safety constraints for the neural networks.

Then the certificate neural network learns the safety and stabil-

ity certificates that yield a CLBF for microgrids. Meanwhile,

a control policy u ∈ K(x) is jointly learned. To improve

the training performance and enable the sampling of training

data from different portions of the state space, we further

use the learned controller to generate new training samples

after several epochs. The safety and stability of the control

policy are certificated by designing loss functions for CLBF

and control policy aligning with (3), which will be detailed

in the next subsection. Therefore, no additional verification

module will be required in the devised approach.

B. Design of Loss Functions

We first introduce the CLBF-related loss function [10],

which is used to train a CLBF certificate neural network (see

Fig. 2) such that the conditions in (3) are satisfied:

LCLBF = L1 + L2 + L3 + L4 (5)

where

L1 = V (xgoal)
2

L2 =
a1

Nsafe

∑
x∈χsafe

σ(ε+ V (x)− c)

L3 =
a2

Nunsafe

∑
x∈χunsafe

σ(ε+ c− V (x))

L4 =
a3

Ntrain

∑
x

σ(ε+ LfθV (x) + LgθV (x)πϕ(x)

+ λV (x))

(6a)

(6b)

(6c)

(6d)

Here, the hyperparameters include positive tuning parameters

a1-a3, a safe level c, λ, and ε.
Both the boundary loss (i.e., L1, L2 and L3) and the

descent loss (i.e., L4) are considered in the CLBF loss function

LCLBF . In the boundary loss, L1 defined in (6a) ensures

that (3a) is satisfied. L2 and L3 utilize a ReLU function

σ(x) = max(x, 0) to ensure (3c) and (3d) and the small

parameter ε > 0 encourages strict inequality satisfaction in the

loss function. In the descent loss, L4 guarantees the stability

requirement in (3b), which targets making sure the value of

LfθV + LgθV u + λV is smaller than zero. Additionally, to

ensure V (x) > 0 (∀x ∈ χ\xgoal), along with the loss L4,

the CLBF is designed as V (x) = hT (x)h(x) ≥ 0, where

h(x) is the activation vector of the last hidden layer of the

CLBF neural network.

We then define the loss function for the neural controller

(i.e., the policy neural network in Fig. 2). Targeting learning a

control policy from the admissible control set K(x) (see (4)),

intuitively, we define the loss function of the control policy

as:

Lu = ||u(x)− unominal||2 (7)

where unominal is a nominal controller that provides a training

signal for neural network πϕ(x).
Consequently, the final loss function for the neural hierar-

chical control training is constructed as:

L = LCLBF + βLu (8)

where β is a small weight to ensure the CLBF condition is

preferentially satisfied during the training process [10].

C. Algorithm Flow

The pseudo-code for the proposed method is given in

Algorithm 1. The hyperparameters to be pre-determined are
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c, λ, ε and the size of the CLBF neural network V and the

control policy neural network πϕ. A nominal controller is

utilized to generate microgrid trajectories for initialization.

Training data are sampled from the state space covered by the

trajectories. To improve the training performance and broaden

the space covered by training samples, we specify fixed

percentages of training points sampled from the goal, safe,

and unsafe regions and use the learned controller to regenerate

new training samples to improve the training performance after

several epochs.

Algorithm 1: Learning controller with certificates

1 � Require: Microgrid parameters Θ, learning rate α, batch
size H , epochs I per episode and total epochs K

2 � Input: Microgrid initial states, safe region, unsafe region
and system model (2) and initial weights ϕ for network

3 � Training samples generation:
ẋ = fθ(x) + gθunominal −→ xgoal, xsafe, xunsafe

4 for current epoch = 1 to K do
5 Calculate total loss of all the batches

Loss = LCLBF + βLu

6 Update weights in the neural network by passing Loss
to Adam optimizer

7 Output V (x) and πϕ(x)
8 if current epoch % I == 0 then
9 Update training samples :

x : ẋ = fθ(x) + gθπϕ(x)
10 end
11 end
12 � Output: Neural controller u(x)

V. CASE STUDY

The CLBF-enabled neural hierarchical control method is

tested in a typical microgrid detailed in [5]. The training was

conducted on a workstation with a 16-core Intel i9 CPU and

1 NVIDIA Quadro T1000 GPU.

A. Algorithm Settings

Hyperparameters in (5) are set as a1 = a2 = 100 and a3 =
1, β = 10−5, λ = 1.0 and ε = 0.01. We construct fully-

connected neural networks with 2 hidden layers, 64 units at

each layer, and tanh activation functions for all cases. Adam

is used for neural network training. The LQR controller serves

as the nominal controller to initialize the algorithm.

For the training data, we sample 0.2Ntrain uniformly from

the goal region, 0.3Ntrain uniformly from the unsafe region,

and 0.5Ntrain uniformly from the safe region. We generate

Ntrain = 40000 training samples at the beginning. Then,

during the training process, the samples are updated every 20

epochs using the learned controller.

Specifically, in this paper, we mainly consider the volt-

age safety constraints, i.e., fluctuations of transient voltages

beyond the safe region can cause safety risks of damaging

electrical equipment. Therefore, the safe region is defined as:

vi ≤ vi(t) ≤ vi (9)

where vi is the voltage of DER i. Typical values for the limits

during transients operation could be vi = 0.88 p.u. and vi =
1.10 p.u [12]. In this paper, stricter voltage limits vi = 0.98
p.u. and vi = 1.02 p.u. are adopted to verify that the proposed

method can strictly promise the safety for a microgrid with

higher safety requirements. Other forms of safety constraints

will be considered in future work.

B. Validity of CLBF-based Neural Hierarchical Control

This subsection validates the efficacy of the proposed

method under a typical large disturbance, i.e., a sudden load

change. Fig. 3 shows the training and validation loss during

the training process. The value of the loss function decreases

to 10 after 20 epochs without changing anymore if no training

samples are updated. After updating the training samples every

20 epochs, the loss function value converges to 0.

0 20 40 60 80 100 120 140 160
0

100

200

300
Train  loss
val loss

Fig. 3: Evolution of the training and validation loss

We then show the values of CLBF and the dynamic per-

formance of the microgrid to verify the safety and stability

certificates. Suppose the load at bus 3 experiences a step load

occurring at t = 0.1s. Fig. 4 illustrates the contour plot of

the CLBF V (x) vs. voltage of DER1 and DER2. The safe

and unsafe regions are also shown in the figure. The blue

line describes the region under a safe level c = 0.4. The

contour plot shows that the safe region is enclosed in the c-
level set, which ensures (3c)-(3d) are satisfied with the safety

requirement. Further, Fig. 5 (a) shows the trajectories of DER

voltages. It can be seen that the system reaches a stable steady

state within about 0.01 s after the load change. Meanwhile, the

learned controller promises that DER voltages are enclosed in

safe regions. Fig. 5 (b) further shows the value of CLBF V (x).
The result shows that the value of CLBF is always less than

the safe level even if the system undergoes a step load change.

Fig. 4: Contour plots of CLBF V (x) vs. v1 and v2 under step load change

C. Necessity of CLBF-based Neural Hierarchical Control

In this subsection, we show that the proposed method can

learn a nonlinear controller that outperforms the widely used

distributed average proportional integral (DAPI) controller [3].
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(a) DER voltages with CLBF-based neural hierarchical control

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

Safe level

(b) Value of CLBF V (x)

Fig. 5: Microgrid dynamics and the value of CLBF in the load change case

Another typical large disturbance, i.e., the short-circuit fault,

is studied. We generate dynamic trajectories when a short-

circuit fault happens at different nodes in the microgrid with

different fault duration. To obtain both safe and unsafe training

data, we sample microgrid states from the trajectories during

short periods after the fault clearance. To promise that neural

hierarchical control can stick the system to safe regions after

fault clearance, a relatively small safe level c = 0.1 is selected.

Fig. 6: Contour plots of CLBF vs. v1 and v2 in the short-circuit fault case

Fig. 6 shows the contour plots of CLBF vs. the voltage of

DER1 and DER2 in the short-circuit fault case. The safe level

set (shown by the blue line) encloses the safe region (shown

by the green line), which demonstrates that the system’s safety

is guaranteed as long as the microgrid enters a safe region.

Fig. 7 shows the dynamics of the voltage of DER1 using

different controllers. In this case, a short circuit fault occurs

at 0.1s and is cleared at 0.15s. Simulation shows that after

the fault is cleared, the DER voltage under DAPI control

(shown by the red trajectories) undergoes a large fluctuation

and enters an unsafe region. It takes about 0.15s for the DAPI

Fig. 7: DER1 voltage in short-circuit fault case under different control

controller to suppress the oscillation. In contrast, the devised

neural controller (shown by the blue trajectories) stabilizes the

system in a very short time after the fault is cleared and the

voltages of DERs are always enclosed in the safe region.

VI. CONCLUSION

This paper presents a CLBF-based, physics-informed con-

trol method to synthesize the nonlinear neural hierarchical

control of microgrids. Different from existing learning-based

control methods, the nonlinear physical dynamics of DERs,

power loads, and networks are fully considered in the simulta-

neous training of CLBF and the control policy, which therefore

provides provable safety and stability certificates of microgrid

dynamics under large disturbances and relieves the require-

ment on additional verification modules. For future work, we

will exploit the devised method in networked microgrids under

more complicated system operations.
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