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Abstract—A neural-Lyapunov-barrier-enabled, physics-
informed-learning-based control method is devised to provide
certificated safe and stable hierarchical control of microgrids.
The main contributions include: 1) a neural hierarchical control
framework for microgrids with provable safety and stability
guarantees; 2) a control Lyapunov barrier function (CLBF)
considering the fast dynamics of distributed energy resources,
loads, and networks in microgrids; 3) a physics-informed
learning approach for CLBF-based neural hierarchical control
synthesis, which learns safety and stability certificates and
control policy simultaneously without a verification module.
Case studies demonstrate the effectiveness of the approach
in provably certifying the stability and safety of microgrids
equipped with hierarchical inverter control.

Index Terms—Microgrid control, learning-based control, con-
trol Lyapunov barrier function, certified control, microgrid
stability.

I. INTRODUCTION

HE primary objective of microgrid control is to ensure

the safety and stability of the system, meaning microgrid
controllers must drive the system to a stable equilibrium oper-
ating point and avoid unsafe regions after severe disturbances.
The increasing integration of distributed energy resources
(DERs) is unprecedentedly challenging microgrid control. On
the one hand, massive inverter interfaces can induce strongly
nonlinear dynamics which can deteriorate microgrid stability
because of reduction in inertia and damping [1]. On the other
hand, the high variability of renewable energy sources and
frequent changes in microgrid loads and structures can signif-
icantly perturb the system from its equilibrium point, leading
to large voltage and frequency deviations [2]. Therefore,
efficacious microgrid control that can assure large-disturbance
stability and safety is needed.

The hierarchical control framework is widely adopted in
microgrid control [3], [4]. However, controller synthesis based
on linearized microgrid models [5] can only guarantee the
small-signal stability of the system. The authors in [6] in-
troduce distributed barrier functions for the safe operation
of microgrids, and the sum-of-squares(SOS) optimization is
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used to find Lyapunov functions. However, the SOS opti-
mization leads to a tradeoff between representation accuracy
and computational complexity. Finding a qualified Lyapunov
function for microgrids with massive inverter interfaces can
be extremely challenging.

Recently, learning-based control approaches have emerged
to gain increased attention in power system control. Ref. [7]
introduces a deep learning-based control framework to dis-
cover Lyapunov functions and learn control strategies simul-
taneously. However, it employs a falsification module to pro-
duce controllers with performance guarantees, which retards
the training process and hinders the method’s applicability
in large-scale systems. Ref. [8] introduce a reinforcement
learning framework for frequency and voltage regulation,
which only provides a local stability guarantee in a small
region, and soft penalties are utilized to describe whether
the system state leaves the prescribed ranges, which does
not provide a certificated stability guarantee. In general, two
major challenges remain in existing methods: I) Lack of
certificates for microgrid safety and stability under different
large disturbances and II) Lack of effective learning strategies
to provide certificated safety and stability constraints without
additional verification modules.

To bridge the gap, this paper establishes a neural-Lyapunov-
barrier-enabled control framework for microgrids. We first
construct a control Lyapunov barrier function (CLBF) for
microgrids considering the dynamics of DERs, loads, and
networks to explicitly and rigorously formulate the safety and
stability certificates, and then we establish a CLBF-based,
physics-informed learning approach to train the safety/stability
certificates and control strategies simultaneously. Conse-
quently, the dynamic performance of microgrids with large
disturbance is certificated by CLBF during the training process
without involving an additional verification module, which en-
ables high efficiency for offline training and online application.

The remainder of this paper is organized as follows. Sec-
tion II presents the neural hierarchical control framework of
microgrids. Section III formulates the safety and stability
certificates for microgrids. Section IV establishes the CLBF-
enabled physics-informed learning for training the control
policy and certificates simultaneously. Section V presents case
studies. Section VI provides the conclusion of the paper.

II. NEURAL HIERARCHICAL CONTROL OF MICROGRIDS

This section establishes the formulation of the neural hierar-
chical control of microgrids. The kernel idea is to incorporate
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learning-based feedback control into DER controllers. By
properly training the learning-based controllers, the global
stability and safety of microgrids are certified.

Without loss of generality, a two-layer hierarchical control
is considered. Mathematically, the neural hierarchical control
for DER ¢ is formulated as:

X . (1)
E; = Ef —ngi(Qi — QF) + ug

{ wi = w; —mp(P; — Pf) + up,
Locally, (1) performs droop control for frequency and voltage
regulation, where w;, F;, P; and @); respectively denote the
angular speeds, output voltage magnitudes, active power and
reactive power of DER i; superscript * denote the correspond-
ing nominal values; m,; and n,; respectively denote the
droop coefficients. Globally, (1) employs two learning-based
feedback controllers, i.e., u,; and u, ;, to perform secondary
control above the basic proportional controller.

The learning-based control signals of all the N DERs, i.e.,
U = [Up1,Up2y.ey Up Ny Ug 1y Ug,2y - Ug N, are function-
ally formulated as a neural network u = 7, (x), where 7
denotes the neural network describing the control policy; u,
x and ¢ respectively denote the output, input, and weights of
the neural network. Specifically, the input features a denote
the microgrid states, e.g., states of DERs, loads, and lines.
Please refer to [2] for the detailed microgrid dynamic model.

With the consideration of load dynamics and line dynamics,
the dynamics of a microgrid system can be formulated as
a system of ordinary differential equations (ODE), which
is rigorously equivalent to the original differential algebraic
equation (DAE)-based formulation [2], [4]:

& = fo(x) + go(x)my(z) )
where * € x C R” denotes the microgrid states; w C R2N.
fo : R” — R" and g : R — R™2N are functions de-
scribing the microgrid dynamics, which depend on microgrid
parameters 6 and are assumed to be locally Lipschitz.

Fig. 1 accordingly presents the structure of the neural
hierarchical control for microgrids. The dynamics of each
component (e.g., the load, line, and DER) form the dynamics
of the entire microgrid system, and the neural control signal
u = m,(x) is trained using the microgrid dynamics to
provide global control among DERs with safety and stability
certificates of the whole system.
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Fig. 1: Structure of the neural hierarchical control of microgrids
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III. SAFETY AND STABILITY-CERTIFIED NEURAL
HIERARCHICAL CONTROL OF MICROGRIDS

This section presents the safety and stability certificates
for microgrids under neural hierarchical control so that the
dynamic performance of microgrids can be provably certified
by the control Lyapunov barrier function (CLBF).

A. Formulation of Stability and Safety Requirements

As formulated in (2), a microgrid with neural hierarchical
control can be modeled as a control-affine system, parame-
terized by 6 (i.e., microgrid parameters). Denote the desired
operating point of the microgrid as @z.,1. Denote the safe
region and unsafe region as Xsate € X and Xunsate & X
(such that Xsafe [ Xunsafe = (0 and Tgoal € Xsafe)- Define
x(t) : &x(xo,t) as the trajectory of the microgrid, i.e., the
solution of (2), starting from an initial state xy under the
control policy .

According to the safe control theory, the stability and safety
requirements of a control-affine system are described as [9]:

1) Stability requirement: For an appropriate norm, for every
€ > 0, there exists a § > 0 such that for all t5 > t; > O:
[[(t1) — xgoaIH <= ||z(t2) - Jjg;oza»lH <€

2) Safety requirement: For all t5 > t; > 0, 2(t1) € Xsafe
implies x(t2) ¢ Xunsafe-

In other words, to satisfy the stability requirement, the micro-

grid should be able to converge to the goal point state Zggal

while avoiding the unsafe region Xunsafe. 10 satisfy the safety
requirement, the microgrid trajectories should not cross into
the unsafe region once it is operating in a safe region.

Our target is to design a neural controller u = 7, (x) sat-
isfying the aforementioned stability and safety requirements.

B. CLBF Certificates for Microgrids

This subsection presents how to design a control policy u =
7 () for a microgrid governed by (2) while satisfying the
stability and safety requirements described in Subsection I1I-A.
We introduce the control Lyapunov barrier function (CLBF)
to provide microgrid stability and safety certificates. Basically,
the CLBF is a special case of a control Lyapunov function
where the safe and unsafe regions are respectively contained
in sub- and super-level sets [10].

A function V' (x) : x — R is a CLBF, if, for some safe
level ¢ and A > 0, it satisfies [10]:

V(Zgon1) =0, V(x) >0 Ve x\Tgoal (3a)
inf Lfev + Lge Vu+ \V < 0 Vxe X\xgoal (3b)
V(m) S c Vx e X safe (3C)
V(z) >c VYT € Xunsafe (3d)

Equations (3a) and (3b) jointly define V' as a Lyapunov
function of the microgrid with the goal point 4., being a
stable equilibrium point, where LV and L,V are respectively
the Lie derivatives of V' along f and g (i.e., specified in (2));
0 denotes the microgrid parameters. Equations (3c) and (3d)
jointly establish the barrier function requirement.

Define the set of admissible controls as:

K(z) = {u|LsV + Ly, Vu+ AV <0} 4)
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Fig. 2: Physics-informed training process of the safety-and-stability-certified neural hierarchical control

Ref. [10] has proved if V(z) is a CLBF, then any control
policy m(z) € K(z) will be both safe and stable when
executed on a system specified by fy and gg. Correspondingly,
the CLBF-based neural hierarchical control of microgrids, if
satisfying (3), can provably stabilize the microgrid without any
safety violation.

IV. PHYSICS-INFORMED LEARNING FOR NEURAL
HIERARCHICAL CONTROL

This section designs a physics-informed supervised learning
framework to synthesize the CLBF-based neural controller. As
a combination of both physics-based and learning-based phi-
losophy, this approach can resolve the challenges that model-
based methods are hard to generalize and learning-based
methods hardly provide certificated safety guarantees [11].

A. Physics-Informed Training Process

The physics-informed training process of the neural hi-
erarchical control is shown in Fig. 2. The training process
comprises three main parts: 1) training of the CLBF certificate
neural network V/, 2) training of the certificated control policy
neural network 7., 3) and using the trained controller to
generate new training samples.

First, the microgrid physics model generates training sam-
ples t;ain and hard safety constraints for the neural networks.
Then the certificate neural network learns the safety and stabil-
ity certificates that yield a CLBF for microgrids. Meanwhile,
a control policy u € K(x) is jointly learned. To improve
the training performance and enable the sampling of training
data from different portions of the state space, we further
use the learned controller to generate new training samples
after several epochs. The safety and stability of the control
policy are certificated by designing loss functions for CLBF
and control policy aligning with (3), which will be detailed
in the next subsection. Therefore, no additional verification
module will be required in the devised approach.

B. Design of Loss Functions

We first introduce the CLBF-related loss function [10],
which is used to train a CLBF certificate neural network (see
Fig. 2) such that the conditions in (3) are satisfied:

Lorpr =L1+ Lo+ L3+ Ly &)
978-1-6654-6441-3/23/$31.00 ©2023 IEEE

where

£1 - V(Jfgoal)Q (63)

Lo = ]\?1 o(e+ V(l‘) —0) (6b)
safe TEXsafe

Ly = Na2 ole+c—V(z)) (6¢)
unsafe TE Xunsafe
as

£4 - Ntrain Z 0(6 + Lng(x) + LQBV(x)WW (l’)

+ AV (x)) 6d)

Here, the hyperparameters include positive tuning parameters
ai-as, a safe level ¢, A, and e.

Both the boundary loss (i.e., £1, Lo and L3) and the
descent loss (i.e., £4) are considered in the CLBF loss function
Lcrpr. In the boundary loss, £q defined in (6a) ensures
that (3a) is satisfied. £o and L3 utilize a ReLU function
o(x) = max(x,0) to ensure (3c) and (3d) and the small
parameter € > 0 encourages strict inequality satisfaction in the
loss function. In the descent loss, £4 guarantees the stability
requirement in (3b), which targets making sure the value of
LV + Lg,Vu+ AV is smaller than zero. Additionally, to
ensure V(xz) > 0 (V& € x\Zgoa1), along with the loss Ly,
the CLBF is designed as V(z) = hT(z)h(x) > 0, where
h(zx) is the activation vector of the last hidden layer of the
CLBF neural network.

We then define the loss function for the neural controller
(i.e., the policy neural network in Fig. 2). Targeting learning a
control policy from the admissible control set K (x) (see (4)),
intuitively, we define the loss function of the control policy
as:

Eu = ||'LL((E) - unominal||2 (7)

where Unominal 18 @ nominal controller that provides a training
signal for neural network 7, (z).

Consequently, the final loss function for the neural hierar-
chical control training is constructed as:

L= Lcrr + BLy ®)

where /3 is a small weight to ensure the CLBF condition is
preferentially satisfied during the training process [10].

C. Algorithm Flow

The pseudo-code for the proposed method is given in
Algorithm 1. The hyperparameters to be pre-determined are

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 14,2024 at 20:59:57 UTC from IEEE Xplore. Restrictions apply.



¢, \, e and the size of the CLBF neural network V' and the
control policy neural network 7,. A nominal controller is
utilized to generate microgrid trajectories for initialization.
Training data are sampled from the state space covered by the
trajectories. To improve the training performance and broaden
the space covered by training samples, we specify fixed
percentages of training points sampled from the goal, safe,
and unsafe regions and use the learned controller to regenerate
new training samples to improve the training performance after
several epochs.

Algorithm 1: Learning controller with certificates

1 > Require: Microgrid parameters ©, learning rate c, batch
size H, epochs I per episode and total epochs K

2 > Input: Microgrid initial states, safe region, unsafe region
and system model (2) and initial weights ¢ for network

3 > Training samples generation:
T = fG (il?) + goUnominal — Tgoaly Tsafe, Lunsafe

4 for current_epoch = 1 to K do

5 Calculate total loss of all the batches
Loss = Lorsr + BLu
6 Update weights in the neural network by passing Loss

to Adam optimizer

7 Output V' (z) and 7, (x)

8 if current_epoch % I == 0 then

Update training samples :
z:d = fola) + gom,()

10 end
11 end
12 > Output: Neural controller u(x)

V. CASE STUDY

The CLBF-enabled neural hierarchical control method is
tested in a typical microgrid detailed in [5]. The training was
conducted on a workstation with a 16-core Intel 199 CPU and
1 NVIDIA Quadro T1000 GPU.

A. Algorithm Settings

Hyperparameters in (5) are set as a; = ag = 100 and a3 =
1, B =107° X = 1.0 and € = 0.01. We construct fully-
connected neural networks with 2 hidden layers, 64 units at
each layer, and tanh activation functions for all cases. Adam
is used for neural network training. The LQR controller serves
as the nominal controller to initialize the algorithm.

For the training data, we sample 0.2 Ni,,i, uniformly from
the goal region, 0.3 Niyain uniformly from the unsafe region,
and 0.5y, uniformly from the safe region. We generate
Nirain = 40000 training samples at the beginning. Then,
during the training process, the samples are updated every 20
epochs using the learned controller.

Specifically, in this paper, we mainly consider the volt-
age safety constraints, i.e., fluctuations of transient voltages
beyond the safe region can cause safety risks of damaging
electrical equipment. Therefore, the safe region is defined as:

©))
where v; is the voltage of DER <. Typical values for the limits
during transients operation could be v; = 0.88 p.u. and v; =
1.10 p.u [12]. In this paper, stricter voltage limits v; = 0.98
p-u. and 7; = 1.02 p.u. are adopted to verify that the proposed

v; <u(t) <7
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method can strictly promise the safety for a microgrid with
higher safety requirements. Other forms of safety constraints
will be considered in future work.

B. Validity of CLBF-based Neural Hierarchical Control

This subsection validates the efficacy of the proposed
method under a typical large disturbance, i.e., a sudden load
change. Fig. 3 shows the training and validation loss during
the training process. The value of the loss function decreases
to 10 after 20 epochs without changing anymore if no training
samples are updated. After updating the training samples every
20 epochs, the loss function value converges to 0.

3001
Train loss
val loss
200
S
100
0 R y Sy A .
0 20 40 60 80 100 120 140 160

Epoch
Fig. 3: Evolution of the training and validation loss

We then show the values of CLBF and the dynamic per-
formance of the microgrid to verify the safety and stability
certificates. Suppose the load at bus 3 experiences a step load
occurring at t = 0.1s. Fig. 4 illustrates the contour plot of
the CLBF V(x) vs. voltage of DER1 and DER2. The safe
and unsafe regions are also shown in the figure. The blue
line describes the region under a safe level ¢ = 0.4. The
contour plot shows that the safe region is enclosed in the c-
level set, which ensures (3c)-(3d) are satisfied with the safety
requirement. Further, Fig. 5 (a) shows the trajectories of DER
voltages. It can be seen that the system reaches a stable steady
state within about 0.01 s after the load change. Meanwhile, the
learned controller promises that DER voltages are enclosed in
safe regions. Fig. 5 (b) further shows the value of CLBF V (z).
The result shows that the value of CLBF is always less than
the safe level even if the system undergoes a step load change.
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Fig. 4: Contour plots of CLBF V() vs. v1 and v under step load change

C. Necessity of CLBF-based Neural Hierarchical Control

In this subsection, we show that the proposed method can
learn a nonlinear controller that outperforms the widely used
distributed average proportional integral (DAPI) controller [3].
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Another typical large disturbance, i.e., the short-circuit fault,
is studied. We generate dynamic trajectories when a short-
circuit fault happens| at different nodes in the microgrid with
different fault duration. To obtain both safe and unsafe training
data, we sample midrogrid states from the trajectories during
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Fig. 7: DERI voltage in short-circuit fault case under different control

controller to suppress the oscillation. In contrast, the devised
neural controller (shown by the blue trajectories) stabilizes the
system in a very short time after the fault is cleared and the
voltages of DERs are always enclosed in the safe region.

VI. CONCLUSION

This paper presents a CLBF-based, physjcs-informed con-
trol method to synthesize the nonlinear neural hierarchical
control of microgrids. Different from existing learning-based
control methods, the nonlinear physical dynamics of DERs,
power loads, and networks are fully considered in the simulta-
neous training of CLBF and the control policy, which therefore
provides provable safety and stability certificates of microgrid
dynamics under large disturbances and relieves the require-
ment on additional verification modules. For future work, we
will exploit the devised method in networked microgrids under

short periods after the fault clearance. To promise that neural
hierarchical control can stick the system to safe regions after
fault clearance, a relatively small safe level ¢ = 0.1 is selected.

— Safe Region —— Unsafe Region - Vix)=c

more comphcated system operations.
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