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Electron microscopy is often criticized as subjective, tedious, slow, complicated, and less amenable to automation. In particular,
specialized in situ EM experiments are often considered hard to reproduce (especially in another lab) or compare with
complementary- or correlate with- synergistic methods, like synchrotron (or neutron) scattering and/or super-resolution
Mmicroscopy.

Inspired by the remarkable advances in high-throughout assays and related innovations in biomedicine, the ongoing work in
our group is meant to dispel these notions. We are striving to demonstrate that iz situ EM measurements can be consistent, re-
producible and amenable to “round-robin” type sharing to validate important observations and cross-correlative phenomena.
This is based on the synergistic approach to combine novel design and nanofabricated in situ stages [1, 2] with smart imaging
[3, 4] to utilize electron dose and exposure in a commensurate manner. This approach can be tailored to “ration” electrons
and time, both spatially and temporally, utilizing AI/ML methods. The electron rationing is greatly facilitated by the advent of
direct electron detectors (DEDs) while the exposure considerations are driven by sparse imaging and AI/ML-enabled acquisitions,
that are being pursued in a larger collaborative group at NU.

In the first phase of this initiative, we are working to overcome some of the major experimental shortcomings of currently avail-
able EM fluidic-stages: (i) fluidic-cells require thicker SiNx membranes (>30-40 nm) to maintain mechanical integrity and sta-
bility in use. Thicker membranes severely limit spatial resolution due to chromatic aberrations, and analytical/spectroscopic
signal weak and prone to artifacts, (ii) lack of reproducibility, consistency and inability to “share” the same experiment across
different collaborators and/or platform/microscopes. and (iii) lack of control over driving force (e.g. pumping of liquids), invari-
ably resulting in unacceptable sample instability such as drift, vibrations etc.

Towards these goals, we have developed design and procedures for nanofabrication of ultrathin (UT) window fluidic-stage
chips. This in situ chip design is inspired by the classical honeycomb framework that anchors ultrathin (<~5-10 nm) SiNx mem-
branes, which can withstand extreme environment and severe constraints in typical S/TEMs. Yet, this novel UT window chip de-
sign offers field of view orders of magnitudes larger than current “best in class”- with consistency, reproducibility, and
commercially viable yield. The obvious scientific advantages of SiNx of ~5-10 nm thickness include superb spectral and spatial
resolution (“t/A” of < ~0.3 compared to typical > 0.7), among other attributes (see separate presentations elsewhere). On the
second front of data acquisition, we are combining smart imaging and tailored exposure to minimize redundancy, coupled to ap-
propriate AI/ML-enabled decision making for adaptive and time-resolved sampling. Collectively, our approach makes it possible
to ration both time and electrons to spread more efficiently to gather information that is spatially encoded (for high throughput
discovery) or temporally monitored, as in iz situ measurements under timed stimuli.

The presentation will cover emerging opportunities in innovative UT window fluidic-cells that allow for low- and core loss
EELS for nanoscale discrimination of reactants and product gasses during catalysis, approaching atomic-resolution in real-(and
fast) time. The presentation will also explore the feasibility of AI/ML-enabled data acquisition approach for rapid and high
throughput characterization, as well as monitoring of iz situ processes and phenomena in the temporal domain [5].
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Fig. 1. The UT Window analytical fluidic-cell set-up: Schematic illustration of ultrathin (UT) SiNx and associated analytical methods. The honeycomb
support structure maintains stability and provides robust support even with ultrathin (~ 5-10 nm) SiNx window. The reduced chromatic aberration enables
resolution down to atomic-scale and facilitates spectral discrimination of fluidic species, in situ.
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