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Abstract
We propose, analyze, and test a penalty projection-based robust efficient and accurate algo-
rithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic
(MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer
variables formulation and discrete Hodge decomposition to decouple the stochastic MHD
system into four sub-problems (at each time-step for each realization) which are much easier
to solve than solving the coupled saddle point problems. Each of the sub-problems is designed
in a sophisticated way so that at each time-step the systemmatrix remains the same for all the
realizations but with different right-hand-side vectors which allows saving a huge amount of
computer memory and computational time. Moreover, the scheme is equipped with Ensem-
ble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with
respect to the time-step size of the algorithm is proven rigorously. We prove the proposed
scheme converges to an equivalent non-projection-based coupled MHD scheme for large
grad-div stabilization parameter values. We examine how Stochastic Collocation Methods
(SCMs) can be combinedwith the proposed penalty projectionUQalgorithm. Finally, a series
of numerical experiments are given which verify the predicted convergence rates, show the
algorithm’s performance on benchmark channel flow over a rectangular step, a regularized
lid-driven cavity problem with high random Reynolds number and high random magnetic
Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.
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1 Introduction

Numerical simulation of MHD flow has been explored by many scientists [7, 12, 13, 15, 25,
36, 42, 51, 68, 71, 72] for the last couple of decades. However, their promise to reduce the
computational cost and high accuracy for complex and largerMHD problems still remains an
open question. The situation becomes even worse for the more realistic MHD flows, where
convective-dominated flows interact with magnetic fields and model parameters involve ran-
dom noises which introduce aleatoric uncertainty into the system and play a key role in
determining the characteristic of the final solutions. We will use rigorous mathematics to
develop novel computational frameworks to reduce the immense computational complexity
involved in commonly used algorithms for Stochastic MHD (SMHD) flow problems.

Let D ⊂ R
d (d ∈ {2, 3}) be a convex polygonal or polyhedral physical domain with

boundary ∂D. A complete probability space is denoted by (�,F, P) with � the set of
outcomes, F ⊂ 2� the σ -algebra of events, and P : F → [0, 1] represents a probabil-
ity measure. We consider the time-dependent, dimensionless, viscoresistive, incompressible
SMHD flow problems for homogeneous Newtonian electrically conducting fluids which are
governed by the following non-linear coupled stochastic PDEs [3, 7, 23, 36, 49, 51, 54, 67]:

ut + u · ∇u − sB · ∇B − ∇ · (ν(x, ω)∇u) + ∇ p = f(t, x, ω), in (0, T ] × D, (1.1)

Bt + u · ∇B − B · ∇u − ∇ · (νm(x, ω)∇B) + ∇λ = ∇ × g(t, x, ω), in (0, T ] × D,

(1.2)

∇ · u = 0, in (0, T ] × D, (1.3)

∇ · B = 0, in (0, T ] × D, (1.4)

u(0, x, ω) = u0(x), in D, (1.5)

B(0, x, ω) = B0(x), in D, (1.6)

together with appropriate boundary conditions. T > 0 represents the simulation end time
and x is the spatial variable. The viscosity ν(x, ω) and magnetic diffusivity νm(x, ω) are
modeled as random fields with ω ∈ �. Here, the unknown quantities are the velocity field u
and the magnetic flux density B which map as u, B : � → R

d , and the modified pressure
p : � → R, where � := (0, T ] × D × �. The artificial magnetic pressure λ : � → {0},
but λ �= 0 in the discrete case. The external forces are represented by f, and ∇ × g in the
momentumequation (1.1), and induction equation (1.2), respectively. The coupling parameter
is denoted by s > 0 which is the coefficient of the Lorentz force into the momentum equation
(1.1); if s = 0, the fluid flow is not influenced by the magnetic field. The recent study
shows [2, 3, 15, 16, 23, 43, 49, 51, 54, 67, 69] instead of solving (1.1)–(1.6) (in terms of
the original variables) together with appropriate boundary conditions, a change of variable
called the Elsässer variables formulation, allows to propose stable decoupled algorithms.
This breakthrough idea was first presented by C. Trenchea in [67].
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Defining v := u + √
sB, w := u − √

sB, f1 := f+ √
s∇ × g, f2 := f− √

s∇ × g,
q := p + √

sλ, and r := p − √
sλ produces the Elsässer variables formulation of the above

SMHD system:

vt + w · ∇v − ∇ ·
[

ν(x, ω) + νm(x, ω)

2
∇v

]
− ∇ ·

[
ν(x, ω) − νm(x, ω)

2
∇w

]
+ ∇q = f1,

(1.7)

wt + v · ∇w − ∇ ·
[

ν(x, ω) + νm(x, ω)

2
∇w

]
− ∇ ·

[
ν(x, ω) − νm(x, ω)

2
∇v

]
+ ∇r = f2,

(1.8)

∇ · v = ∇ · w = 0, (1.9)

together with the initial and boundary conditions. The L2(D) inner product is denoted by
(·, ·). Defining the function spaces for velocity and magnetic flux density as X := H1

0(D),
for the pressure and the magnetic pressure as Q := L2

0(D), and the stochastic space as
W := L2

P (�), we get the weak formulation of (1.7)–(1.9) as

E [(vt ,χχχ)] + E [(w · ∇v,χχχ)] + E

[(
ν(x, ω) + νm(x, ω)

2
∇v,∇χχχ

)]

+ E

[(
ν(x, ω) − νm(x, ω)

2
∇w,∇χχχ

)]
− E [(q,∇ · χχχ)] = E [(f1,χχχ)] , ∀χχχ ∈ X ⊗ W,

(1.10)

E [(wt , l)] + E [(v · ∇w, l)] + E

[(
ν(x, ω) + νm(x, ω)

2
∇w,∇ l

)]

+ E

[(
ν(x, ω) − νm(x, ω)

2
∇v,∇ l

)]
− E [(r ,∇ · l)] = E [(f2, l)] , ∀l ∈ X ⊗ W,

(1.11)

E [(∇ · v, ζ )] = E [(∇ · w, η)] = 0, ∀ζ, η ∈ Q ⊗ W.

(1.12)

In UQ, it is common to assume that the randomness is approximated by a finite number of
random variables [4, 20]. To use SCMs, we consider y = (y1, · · · , yN ) ∈ � ⊂ R

N be a finite
N ∈ N dimensional vector with joint probability density function ρ( y) in some parameter

space � =
N∏

l=1

l . Then, the random fields ν(x, ω), and νm(x, ω) can be approximated in

terms of the random variable as ν(x, y), and νm(x, y), respectively. We define the space of
square-integrable functions on � subject to the weight ρ( y) as Y := L2

ρ(�), and consider
the following weak formulation: Find v,w ∈ X ⊗Y and q, r ∈ Q ⊗Y which, for almost all
t ∈ (0, T ], satisfy

∫



(vt ,χχχ)ρ( y)d y +
∫




(w · ∇v,χχχ)ρ( y)d y +
∫




(
ν(x, y) + νm(x, y)

2
∇v, ∇χχχ

)
ρ( y)d y

+
∫




(
ν(x, y) − νm(x, y)

2
∇w, ∇χχχ

)
ρ( y)d y −

∫



(q,∇ · χχχ)ρ( y)d y

=
∫




(f1,χχχ)ρ( y)d y, ∀χχχ ∈ X ⊗ Y, (1.13)
∫




(wt , l) ρ( y)d y +
∫




(v · ∇w, l)ρ( y)d y +
∫




(
ν(x, y) + νm(x, y)

2
∇w,∇ l

)
ρ( y)d y
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+
∫




(
ν(x, y) − νm(x, y)

2
∇v,∇ l

)
ρ( y)d y −

∫



(r ,∇ · l) ρ( y)d y

=
∫




(f2, l) ρ( y)d y, ∀l ∈ X ⊗ Y, (1.14)
∫




(∇ · v, ζ )ρ( y)d y =
∫




(∇ · w, η)ρ( y)d y = 0, ∀ζ, η ∈ Q ⊗ Y. (1.15)

To have an efficient penalty-projection scheme for UQ, we assume affine dependence of the
random variables for the viscosity and magnetic diffusivity as below:

ν(x, y) = ν0(x) +
N∑

l=1

νl(x)yl , and νm(x, y) = νm,0(x) +
N∑

l=1

νm,l(x)yl .

To have a robust high fidelity solution of (1.7)–(1.9), which is often essential for many
surrogate models [9, 52, 59, 70], one of the major hurdles is to realize the model over an
ensemble of flow parameters with high spatial resolution. In this case, a popular approach
is to use SCMs [4, 10, 20, 21, 39, 56, 62, 65], which requires fewer realizations compare
to other sampling-based UQ methods, such as the Monte Carlo (MC) method which comes
with high computational complexity [34]. SCMs use global polynomial approximation and
are independent of the PDE solvers, thus compatible with combining with any legacy code.

In this paper, we present, analyze, and test, a novel, robust, efficient, and accurate SCMs
based Stabilized Penalty Projection (SPP) algorithm for SMHD (SCM-SPP-SMHD) flowUQ
problems, which is the conjunction of the SCMs and an SPP - Finite Element Method (SPP-
FEM). The SPP-FEM is based on Elsässer formulation which provides a stable decoupling of
the SMHD system into two Oseen type sub-problems (velocity-pressure and magnetic field-
magnetic pressure types saddle-point sub-problems). These two sub-problems can be solved
simultaneously if the resources are available. For each of these sub-problems, we employ
“Projection Method” together with recent stabilization techniques [3, 45]. This allows us to
solve the difficult 2 × 2 block saddle-point sub-problems into two easier linear solves (a
1× 1, and a 2× 2 block systems), particularly in 3D problems with high Reynolds numbers
and high magnetic Reynolds numbers. The use of a large grad-div stabilization parameter
helps us to improve the accuracy of the penalty-projection algorithm which has examined on
problems of fluid-fluid interaction [1] and Navier-Stokes (N-S) flow [45]. Also, each of the
sub-problems contains an EEV term which is taken from the idea of turbulence modeling
techniques to reduce the numerical instability, particularly in 3D problems [6, 30, 31, 51,
54].

TheProjectionMethod is implemented in theElsässer variables sub-problems,which is the
simplest pressure-correction algorithm originally proposed by Chorin and Temam [11, 66] in
the early 1960s. The pressure-correction time-stepping algorithm utilizes a discrete Hodge
decomposition at each time-step and consists of two steps. In the first step, the Lagrange
multiplier is treated explicitly, and compute a non-divergence-free velocity-like solution. In
the second step, the Lagrange multiplier is corrected by projecting the intermediate velocity-
like solution onto a divergence-free space with a non-physical boundary condition of the
Lagrange multiplier and compute a second velocity-like variable that violates the boundary
condition.These issues in theProjectionMethod lead to sub-optimal convergencewith respect
to the time-step size.

Moreover, for each of the linear solves, the scheme is designed in an elegant way so that at
each time-step, each realization shares a common system matrix but a different right-hand-
side vector, following the breakthrough idea by N. Jiang and W. Layton given in [29]. This
allows us to use orders of magnitude shorter than the system matrix assembly time (which
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is assumed to be the most time-consuming step in the finite element assembly process).
Moreover, for problems for which a direct solver is appropriate, the LU decomposition
or its variants of the system matrix is needed to compute only once per time-step. For large
size and complex problems, Krylov subspace methods are appropriate [53] for which a single
preconditioner is needed to be built for each sub-problemper time-step. Further, the advantage
of the block linear solvers can be taken with a single system matrix for multiple right-hand-
side vectors at each time-step. This elegant feature leads to saving a huge computational cost
and memory for the UQ of complex dynamical systems and is successfully implemented
in the surface data assimilation [18], turbulence modeling [28], porous media flow [32],
Boussinesq [33], weather forecasting [41, 46], spectral methods [47], sensitivity analyses
[48], MHD [49, 51, 54], N-S simulations [26, 27, 30, 55], and hydrology [58].

The proposed SCM-SPP-SMHD algorithm consists of grad-div stabilization terms with
coefficient parameter γ . Large γ values help to achieve optimal temporal accuracy, reducing
penalty-projection splitting errors [3, 45]. Finally, using straightforward transformations, we
get back the solution in terms of the original variables. For deterministic MHD, the penalty-
projection method with grad-div stabilization terms used in [3, 15].

We consider a uniform time-step size�t and let tn = n�t for n = 0, 1, · · · ., (suppress the
spatial discretizationmomentarily), then computing the Nsc (number of stochastic collocation
points) solutions independently, takes the following form: For j=1,2,...,Nsc,

Step 1: Compute v̂
n+1
j :

v̂
n+1
j

�t
+ <ŵ>n ·∇v̂

n+1
j − ∇ ·

(
ν̄ + ν̄m

2
∇v̂

n+1
j

)
− ∇

(
γ∇ · v̂

n+1
j

)
− ∇ ·

(
νT (ŵ

′
, tn)∇v̂

n+1
j

)

= f1, j (t
n+1) + ṽn

j

�t
− ŵ

′n
j · ∇v̂

n
j + ∇ ·

(
ν j − νm, j

2
∇ŵ

n
j

)
+ ∇ ·

(
ν

′
j + ν

′
m, j

2
∇v̂

n
j

)
.

(1.16)

Step 2: Compute ṽn+1
j , and q̂n+1

j :

ṽn+1
j

�t
+ ∇q̂n+1

j = v̂
n+1
j

�t
, (1.17)

∇ · ṽn+1
j = 0. (1.18)

Step 3: Compute ŵ
n+1
j :

ŵ
n+1
j

�t
+ <v̂>n ·∇ŵ

n+1
j − ∇ ·

(
ν̄ + ν̄m

2
∇ŵ

n+1
j

)
− ∇

(
γ∇ · ŵ

n+1
j

)
− ∇ ·

(
νT (v̂

′
, tn)∇ŵ

n+1
j

)

= f2, j (t
n+1) + w̃n

j

�t
− v̂

′n
j · ∇ŵ

n
j + ∇ ·

(
ν j − νm, j

2
∇v̂

n
j

)
+ ∇ ·

(
ν

′
j + ν

′
m, j

2
∇ŵ

n
j

)
.

(1.19)

Step 4: Compute w̃n+1
j , and r̂ n+1

j :

w̃n+1
j

�t
+ ∇r̂ n+1

j = ŵ
n+1
j

�t
, (1.20)

∇ · w̃n+1
j = 0. (1.21)
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The ensemble mean and fluctuation about the mean are defined as follows:

<û>n : = 1

Nsc

Nsc∑
j=1

ûn
j , û

′n
j := ûn

j− <û>n,

ν̄ := 1

Nsc

Nsc∑
j=1

ν j , ν
′
j : = ν j − ν̄, ν̄m := 1

Nsc

Nsc∑
j=1

νm, j , ν
′
m, j := νm, j − ν̄m .

The EEV term, which is of O(�t) accurate, is defined using mixing length phenomenology
following [30], and is given by

νT (z
′
, tn) := μ�t(ln

z )
2, and (ln

z )
2 :=

Nsc∑
j=1

|z′n
j |2, (1.22)

where | · | denotes length of a vector, ln
z is the mixing length of fluctuations, and μ is a

tuning parameter or calibration constant. The EEV term helps the scheme to provide stability
for convection-dominated flows that are not resolved on particular meshes. The EEV term
contains the ensemble information and works as a numerical damping for oscillations that
arise in under-resolved problems.With this stabilization term, we can prove the unconditional
stability (with respect to the time-step size) of the algorithm, but without it, a time-step
restriction arises for the stability. The idea of EEV is taken from turbulent modeling.

The solutions v̂
n+1
j , and ŵ

n+1
j in Step 1, and Step 3, respectively, do not satisfy the

divergence-free conditions, whereas the solution ṽn+1
j , and w̃n+1

j in Step 2, and Step 3,

respectively, do not satisfy the boundary conditions. Step 1 has only unknown v̂
n+1
j , and

(the finite element variational formation) provides a 1 × 1 block linear system which is
independent of the index j , thus for all Nsc realizations, the system matrix remains the same
but the right-hand-side vector varies. Therefore, at each time-step, we need to solve a linear
systemof equations of the formA

(
x1|x2| · · · |xNsc

) = (
b1|b2| · · · |bNsc

)
,whereA is a sparse

coefficient matrix, x j the solution, and b j the right-hand-side vector for the j-th realization.
This feature prevails in all other three steps which makes the algorithm efficient in saving a
huge time in global system matrix assembly and in saving a massive computer memory. The
size of the system matrixA is much smaller than the size of the corresponding system matrix
(which is the 2 × 2 block linear system) that arises in the saddle-point sub-problems.

Step 2 requires a linear solve for its 2 × 2 block system, which is a symmetric positive
definite matrix (since there is no non-linear term present), thus the advantage of using block
conjugate-gradient method [57] can be taken. Furthermore, using divergence-free conditions,
the 2 × 2 blocks reduce to 1 × 1 and the computational complexity of solving Step 2 and
Step 4 together can be reduced to solving a simple block Poisson equation.

Therefore, by employing the penalty-projection splitting, we replace the difficult linear
solve for each of the saddle point sub-systems (corresponding to theOseen-type sub-problems
that arise after decoupling the system given in (1.7)–(1.9), see [54]) into two easier linear
solves at each time-step. In Step 1, and Step 3, the system matrices are nonsymmetric (due
to the presence of non-linear terms), and we can take advantage of the block GMRES [61]
solver for the nonsymmetric systemwith multiple right-hand-side vectors. On the other hand,
for problems in which a direct solver is more appropriate, its decomposition needs to be done
only once per time-step and can be reused for all the realizations.

Thus, at each time-step, the feature of having a common system matrix in each of Steps
1-4, and the penalty-projection splittingmake the algorithm efficient in saving a huge compu-
tational time and computer memory. Moreover, having a grad-div stabilization term in Step
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1, and in Step 3, helps the scheme in achieving temporal accuracy similar to the non-splitting
(non-projection based scheme where velocity and pressure type variables are coupled) algo-
rithms for the coefficient γ → ∞.

Using finite element spatial discretization, in this paper, we investigate the novel SCM-
SPP-SMHD ensemble scheme in a fully discrete setting. The efficient SCM-SPP-SMHD
scheme is proved to be stable and convergent without any time-step restriction but takes care
of uncertainties in all model data. To the best of our knowledge, SCM-SPP-SMHD is new
for the UQ of MHD flow problems.

The rest of the paper is organized as follows: We provide necessary notations and math-
ematical preliminaries in Sect. 2 to follow a smooth analysis. As a benchmark algorithm for
(1.7)–(1.9), we consider a first-order backward-Euler time-stepping fully discrete Coupled
(where the velocity- and magnetic field- like variables are decoupled but the velocity with
the pressure, and magnetic field with the magnetic pressure are not) algorithm given in [54]
for Stochastic MHD (Coupled-SMHD) in Sect. 3. We also discuss the stability, convergence,
regularity assumptions, and small data assumptions of the Coupled-SMHD scheme for a fair
comparison with the SCM-SPP-SMHD scheme. In Sect. 4, we present the SCM-SPP-SMHD
scheme and describe the additional functional space we need for further analysis. We also
state and prove the stability and convergence theorems of the SCM-SPP-SMHD scheme in
Sect. 4. A brief description of SCMs is given in Sect. 5. To support the theoretical analysis,
we compute the convergence rates varying γ , time-step size, and mesh width, and finally
implement the scheme in benchmark channel flow past a rectangular step and a regularized
lid-driven cavity problemswith space-dependent variable high randomReynolds number and
variable high random magnetic Reynolds number in Sect. 6. Finally, conclusions and future
research avenues are given in Sect. 7.

2 Notation and Preliminaries

The usual L2(D) norm is denoted by ‖.‖. Similarly, the L p(D) norms and the Sobolev W k
p(D)

norms are ‖.‖L p and ‖.‖W k
p
, respectively for k ∈ N, 1 ≤ p ≤ ∞. Sobolev space W k

2 (D) is

represented by Hk(D) with norm ‖.‖k . The vector-valued spaces are

L p(D) = (L p(D))d , and Hk(D) = (Hk(D))d .

For X being a normed function space inD, L p(0, T ; X) is the space of all functions defined
on (0, T ] × D for which the following norm

‖u‖L p(0,T ;X) =
(∫ T

0
‖u‖p

Xdt

) 1
p

, p ∈ [1,∞)

is finite. For p = ∞, the usual modification is used in the definition of this space. The natural
function spaces for our problem are
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X : = H1
0(D) = {v ∈ L p(D) : ∇v ∈ L2(D)d×d , v = 0 on ∂D},

Ỹ : = {v ∈ H1(D) : v · n̂ = 0 on ∂D},
Q : = L2

0(D) = {q ∈ L2(D) :
∫
D

q dx = 0},

where n̂ denotes the outward unit normal vector normal to the boundary ∂D. Recall the
Poincaré inequality holds in X : There existsC depending only onD satisfying for allϕ ∈ X ,

‖ϕ‖ ≤ C‖∇ϕ‖.

The divergence-free velocity space is given by

V := {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

We define the skew symmetric trilinear form b∗ : X × X × X → R by

b∗(u, v,w) := 1

2
(u · ∇v,w) − 1

2
(u · ∇w, v).

By the divergence theorem [26], it can be shown

b∗(u, v,w) = (u · ∇v,w) + 1

2
(∇ · u, v · w). (2.1)

Recall from [37, 38, 45] that for any u, v,w ∈ X

b∗(u, v,w) ≤ C(D)‖∇u‖‖∇v‖‖∇w‖, (2.2)

and additionally, if v ∈ L∞(�), and ∇v ∈ L3(�), then

b∗(u, v,w) ≤ C(D)‖u‖ (‖∇v‖L3 + ‖v‖L∞
) ‖∇w‖. (2.3)

The following basic inequalities will be used:

‖u · ∇v‖ ≤ ‖|u|∇v‖, (2.4)

‖∇ · u‖L∞ ≤ C‖∇u‖L∞ . (2.5)

The conforming finite element spaces are denoted by Xh ⊂ X , and Qh ⊂ Q, and we assume
a regular triangulation τh(D), where h is the maximum triangle diameter. We assume that
(Xh, Qh) satisfies the usual discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖ ≥ β > 0, (2.6)

where β is independent of h. We assume that there exists a finite element space Ỹh ⊂ Ỹ . The
space of discretely divergence-free functions is defined as

V h := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh}.
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Proj L2

V h
(u) represents the L2 projection of u into V h . We will assume the mesh is suf-

ficiently regular for the inverse inequality to hold. The following lemma for the discrete
Grönwall inequality was given in [24]:

Lemma 2.1 Let �t , E , an, bn, cn, dn be non-negative numbers for n = 1, · · · , M such that

aM + �t
M∑

n=1

bn ≤ �t
M−1∑
n=1

dnan + �t
M∑

n=1

cn + E for M ∈ N,

then for all �t > 0,

aM + �t
M∑

n=1

bn ≤ exp

(
�t

M−1∑
n=1

dn

) (
�t

M∑
n=1

cn + E
)

for M ∈ N.

3 Coupled Backward-Euler Fully Discrete Time-Stepping Scheme

In this section, we consider a first-order accurate, fully discrete, backward-Euler time-
stepping “Coupled-SMHD” algorithm as the benchmark UQ scheme for SMHD flow
problems which was proposed, analyzed, and tested in [54]. We state its stability and con-
vergence theorems and give rigorous proof of the adopted small data assumption which
will be used in the analysis of the proposed SCM-SPP-SMHD scheme in Sect. 4. The
Coupled-SMHD scheme is based on Elsässer variables formulation, although, its momen-
tum and induction-like equations are decoupled, the velocity and pressure, magnetic field,
and magnetic pressure-like variables are still coupled. The unconditionally stable first-order
temporally accurate Coupled-SMHD scheme is proven to be optimally accurate in 2D, and
sub-optimally accurate in 3D, which is because of the EEV term present in the scheme that
leads to the use of the discrete inverse inequality. The Coupled-SMHD scheme was success-
fully implemented into a benchmark regularized lid-driven cavity and flow over rectangular
step problems with high random Reynolds number with random low magnetic diffusivity
parameter. The Coupled-SMHD algorithm proposed in [54] is efficient in terms of saving
a huge computational time and computer memory as it allows to use of block linear solver
at each time-step and can provide solutions of all realizations using a single block linear
solve. However, for the Coupled-SMHD, we are required to solve the saddle-point system
at each time since the velocity- and pressure-like variables are coupled together. To decou-
ple the velocity- and pressure-like variables, and to make the Coupled-SMHD scheme more
efficient, we combine the stochastic collocation method with a recently proposed grad-div
stabilization penalty projection method for N-S flow problems in [45]. The Coupled-SMHD
is presented in Algorithm 1.
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Algorithm 1 Coupled-SMHD ensemble scheme [54]

Given time-step �t > 0, end time T > 0, and for j = 1, 2, · · ·, Nsc initial conditions v0j , w
0
j ∈ Vh , and

f1, j , f2, j ∈ L2
(
0, T ; H−1(D)

)
. Set M = T /�t and for n = 0, 1, · · ·, M −1, compute: Find (vn+1

j,h , qn+1
j,h ) ∈

Xh × Qh satisfying, for all (χχχh , ζh) ∈ Xh × Qh :( vn+1
j,h − vn

j,h

�t
, χχχh

)
+ b∗(<wh>

n , vn+1
j ,h ,χχχh

)
+

(
ν̄ + ν̄m

2
∇vn+1

j,h , ∇χχχh

)
(3.1)

+
(
νT (w

′
h , tn)∇vn+1

j ,h ,∇χχχh

)
− (qn+1

j ,h , ∇ · χχχh) =
(
f1, j (t

n+1),χχχh

)
− b∗(w

′n
j,h , vn

j,h ,χχχh

)

−
(

ν j − νm, j

2
∇wn

j ,h ,∇χχχh

)
−

⎛
⎝ ν

′
j + ν

′
m, j

2
∇vn

j ,h , ∇χχχh

⎞
⎠,

(∇ · vn+1
j ,h , ζh) = 0. (3.2)

Find (wn+1
j,h , rn+1

j,h ) ∈ Xh × Qh satisfying, for all (lh , ηh) ∈ Xh × Qh :

(wn+1
j,h − wn

j,h

�t
, lh

)
+ b∗(<vh>

n , wn+1
j ,h , lh

)
+

(
ν̄ + ν̄m

2
∇wn+1

j,h ,∇ lh

)
(3.3)

+
(
νT (v

′
h , tn)∇wn+1

j ,h ,∇ lh
)

− (rn+1
j ,h , ∇ · lh) =

(
f2, j (t

n+1), lh
)

− b∗(v
′n
j,h , wn

j,h , lh
)

−
(

ν j − νm, j

2
∇vn

j ,h , ∇ lh

)
−

⎛
⎝ ν

′
j + ν

′
m, j

2
∇wn

j ,h , ∇ lh

⎞
⎠,

(∇ · wn+1
j ,h , ηh) = 0. (3.4)

For simplicity of our analysis, we define ν̄min := min
x∈D ν̄(x), ν̄m,min := min

x∈D ν̄m(x), and

αmin := min
1≤ j≤J

α j , where α j := ν̄min + ν̄m,min − ‖ν j − νm, j‖∞ − ‖ν ′
j + ν

′
m, j‖∞, for

j = 1, 2, · · ·, Nsc, and state the stability and convergence theorems of the Algorithm 1.

Theorem 3.1 Suppose f1, j , f2, j ∈ L2
(
0, T ; H−1(D)

)
, and v0j,h, w0

j,h ∈ H1(D) for j =
1, 2, · · ·, Nsc, then the solutions to the Algorithm 1 are stable: For any �t > 0, if α j > 0,
and μ > 1

‖vM
j,h‖2 + ‖wM

j,h‖2 + αmin�t

2

M∑
n=1

(
‖∇vn

j,h‖2 + ‖∇wn
j,h‖2

)
≤ C(data). (3.5)

Proof See Theorem 4.1 in [54]. ��
Theorem 3.2 Assume

(
v j ,w j , q j , r j

)
satisfying (1.7)–(1.9) with regularity assumptions

v j ,w j ∈ L∞(0, T ; Hk+1(D)), v j,t ,w j,t ∈ L∞(0, T ; H2(D)), v j,t t ,w j,t t ∈ L∞(0, T ;
L2(D)) for k ≥ 2 and j = 1, 2, · · ·, Nsc, then the solution (v j,h,w j,h) to the Algorithm 1
converges to the true solution: For any �t > 0, if α j > 0, and μ > 1, then one has

‖v j (T ) − vM
j,h‖2 + ‖w j (T ) − wM

j,h‖2 + αmin�t

2

M∑
n=1

(
‖∇

(
v j (t

n) − vn
j,h

)
‖2
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+ ‖∇
(
w j (t

n) − wn
j,h

)
‖2

)

≤ C
(
�t2 + h2k + h2k�t2 + h2−d�t2 + h2k−1�t

)
. (3.6)

Proof See the Theorem 5.1, equation (5.18) in [54]. ��

Lemma 3.3 Assume the true solution v j ,w j ∈ L∞(0, T ; H2(D)). Then, there exists a con-
stant C∗ which is independent of h, �t , and γ such that for sufficiently small h and �t , the
solutions of the Algorithm 1 satisfies

max
1≤n≤M

(
‖∇vn

j,h‖L3 + ‖∇wn
j,h‖L3 + ‖vn

j,h‖L∞ + ‖wn
j,h‖L∞

)
≤ C∗, ∀ j = 1, 2, · · · , Nsc.

Proof Using triangle inequality, we write

‖∇vn
j,h‖L3 + ‖vn

j,h‖L∞ ≤ ‖∇(vn
j,h − v j (t

n))‖L3

+ ‖∇v j (t
n)‖L3 + ‖vn

j,h − v j (t
n)‖L∞ + ‖v j (t

n)‖L∞ . (3.7)

Apply Sobolev embedding theorem on the first two terms, and Agmon’s [60] inequality on
the last two terms in the right-hand-side of (3.7), to provide

‖∇vn
j,h‖L3 + ‖vn

j,h‖L∞ ≤ C‖∇(vn
j,h − v j (t

n))‖ 1
2 ‖∇2(vn

j,h − v j (t
n))‖ 1

2

+ C‖v j (t
n)‖

1
2
H1‖v j (t

n)‖
1
2
H2 . (3.8)

Apply the regularity assumption of the true solution and discrete inverse inequality, to obtain

‖∇vn
j,h‖L3 + ‖vn

j,h‖L∞ ≤ Ch− 1
2 ‖∇(vn

j,h − v j (t
n))‖ + C . (3.9)

Consider the (Pk, Pk−1) element for the pair (v j,h, q j,h), and use the error bounds in (3.6),
gives

‖∇vn
j,h‖L3 + ‖vn

j,h‖L∞ ≤ Ch− 1
2

(
�t

1
2 + hk

�t
1
2

+ hk�t
1
2 + h1− d

2 �t
1
2 + hk− 1

2

)
+ C .

Choose �t so that

�t
1
2

h
1
2

≤ 1

C
,

hk− 1
2

�t
1
2

≤ 1

C
, hk− 1

2 �t
1
2 ≤ 1

C
, h

1−d
2 �t

1
2 ≤ 1

C
, and hk−1 ≤ 1

C
,

which gives

‖∇vn
j,h‖L3 + ‖vn

j,h‖L∞ ≤ 4 + C,

with the time-step restrictions O(h2k−1) ≤ �t ≤ O(hd−1). Similarly, we can show

‖∇wn
j,h‖L3 + ‖wn

j,h‖L∞ ≤ 4 + C .

Therefore, C∗ := 8 + C completes the proof. ��
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4 Efficient SCM-SPP-SMHD Scheme for UQ of SMHD Flow Problems

In this section, we present the proposed efficient, robust, fully discrete, and stable penalty-
projection-based decoupled time-stepping algorithm SCM-SPP-SMHD, which combines the
SCM for the UQ of SMHD flow problems. We state and prove the unconditional stability
theorem and provide an error analysis which shows that as γ → ∞, the outcomes of the
SCM-SPP-SMHD scheme converge to the outcomes of the Coupled-SMHD in Algorithm 1.

The SCM-SPP-SMHD computes the solution in four steps. The scheme is designed in
a technical way so that at each of these steps, the system matrix remains the same for all
realizations, which makes it efficient in saving a huge computational time and computer
memory. We describe the scheme below in Algorithm 2:

Remark 4.1 Taking divergence on both sides of (1.17) and using (1.18), it can be shown that
the computational complexity of solving Step 2 is equivalent to solving a Poisson equation.
Moreover, Step 2 and Step 4 can be combined into a single block Poisson system with the

same coefficient matrix as below: Consider q̂n+1
j,h =

N∑
i=1

Q̂ j iψi , and r̂ n+1
j,h =

N∑
i=1

R̂ j iψi , then

S

(
Q̂1 R̂1

∣∣∣∣ Q̂2 R̂2

∣∣∣∣ · · ·
∣∣∣∣ Q̂Nsc R̂Nsc

)

=
(

RH Sv̂
1 RH Sŵ

1

∣∣∣∣ RH Sv̂
2 RH Sŵ

2

∣∣∣∣ · · ·
∣∣∣∣ RH Sv̂

Nsc
RH Sŵ

Nsc

)
,

where S is the stiffness matrix and is positive definite with entries (S)i j = (∇ψ j ,∇ψi
)
, for

i, j = 1, 2, · · · ,N ; N is the dimension of the FE space Qh ; Q̂ j = (Q̂ j i ), and R̂ j = (R̂ j i )

are the coordinate vectors of q̂n+1
j,h , and r̂ n+1

j,h , respectively, relative to the basis {ψi }Ni=1, RH Sv̂
j ,

and R H Sŵ
j are the right-hand-side of Step 2, and Step 4, respectively, for j = 1, 2, · · · , Nsc.

As a result, essentially SCM-SPP-SMHD requires only three easier steps at each time-step.
Moreover, a single LU decomposition of S can be reused for all time-steps. Therefore,
though apparently at each time-step, the Coupled-SMHD requires two solves whereas the
SCM-SPP-SMHD requires four (easier) solves in the Algorithm 2, the SCM-SPP-SMHD
scheme is faster without compromising accuracy for appropriately large γ .

Since Xh ⊂ Ỹh , we can choose ξh = χχχh in (4.2), sh = lh in (4.5) and combine them with
equations (4.1) and (4.4), respectively, to get

(
v̂

n+1
j,h − v̂

n
j,h

�t
,χχχh

)
+ b∗(<ŵh>

n, v̂
n+1
j,h ,χχχh

)
+

(
ν̄ + ν̄m

2
∇v̂

n+1
j,h , ∇χχχh

)

+ γ
(
∇ · v̂

n+1
j,h ,∇ · χχχh

)
+

(
νT (ŵ

′
h, tn)∇v̂

n+1
j,h , ∇χχχh

)
−

(
q̂n

j,h,∇ · χχχh

)
=

(
f1, j (t

n+1),χχχh

)

− b∗(ŵ
′n
j,h, v̂

n
j,h,χχχh

)
−

(
ν j − νm, j

2
∇ŵ

n
j,h,∇χχχh

)
−

(
ν

′
j + ν

′
m, j

2
∇v̂

n
j,h,∇χχχh

)
, (4.7)

and
(

ŵ
n+1
j,h − ŵ

n
j,h

�t
, lh

)
+ b∗(<v̂h>

n, ŵ
n+1
j,h , lh

)
+

(
ν̄ + ν̄m

2
∇ŵ

n+1
j,h ,∇ lh

)

+ γ
(
∇ · ŵ

n+1
j,h ,∇ · lh

)
+

(
νT (v̂

′
h, tn)∇ŵ

n+1
j,h ,∇ lh

)
−

(
r̂ n

j,h,∇ · lh

)
=

(
f2, j (t

n+1), lh

)
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Algorithm 2 Fully discrete, decoupled grad-div Stabilized Penalty-projection Finite Element
Method (SCM-SPP-SMHD)

Given time-step �t > 0, end time T > 0, f1, j , f2, j ∈ L2
(
0, T ; H−1(D)

)
, stabilization parameter γ > 0,

initial conditions v̂0j,h = ṽ0j ,h = Proj L2

Vh
(v0j ) ∈ Vh , ŵ0

j ,h = w̃0
j,h = Proj L2

Vh
(w0

j ) ∈ Vh , for j =
1, 2, · · · , Nsc . Set M = T /�t and for n = 0, 1, · · · , M − 1, compute:
Step 1: Find v̂n+1

j,h ∈ Xh satisfying for all χχχh ∈ Xh :

( v̂n+1
j,h − ṽn

j,h

�t
,χχχh

)
+ b∗(

<ŵh>
n , v̂n+1

j ,h ,χχχh

)
+

(
ν̄ + ν̄m

2
∇v̂n+1

j,h , ∇χχχh

)
(4.1)

+ γ
(
∇ · v̂n+1

j,h ,∇ · χχχh

)
+

(
νT (ŵ

′
h , tn)∇v̂n+1

j ,h , ∇χχχh

)
=

(
f1, j (t

n+1),χχχh

)

− b∗(
ŵ

′n
j,h , v̂n

j ,h ,χχχh

)
−

(
ν j − νm, j

2
∇ŵn

j ,h , ∇χχχh

)
−

⎛
⎝ ν

′
j + ν

′
m, j

2
∇v̂n

j,h , ∇χχχh

⎞
⎠.

Step 2: Find (ṽn+1
j,h , q̂n+1

j,h ) ∈ Ỹh × Qh satisfying for all (ξh , ζh) ∈ Ỹh × Qh :

( ṽn+1
j ,h − v̂n+1

j ,h

�t
, ξh

)
− (q̂n+1

j ,h , ∇ · ξh) = 0, (4.2)

(∇ · ṽn+1
j ,h , ζh) = 0. (4.3)

Step 3: Find ŵn+1
j,h ∈ Xh satisfying for all lh ∈ Xh :

( ŵn+1
j,h − w̃n

j ,h

�t
, lh

)
+ b∗(

<v̂h>
n , ŵn+1

j ,h , lh
)

+
(

ν̄ + ν̄m

2
∇ŵn+1

j,h , ∇ lh

)
(4.4)

+ γ
(
∇ · ŵn+1

j ,h ,∇ · lh
)

+
(
νT (v̂

′
h , tn)∇ŵn+1

j ,h ,∇ lh
)

=
(
f2, j (t

n+1), lh
)

− b∗(
v̂

′n
j,h , ŵn

j ,h , lh
)

−
(

ν j − νm, j

2
∇v̂n

j ,h , ∇ lh

)
−

⎛
⎝ ν

′
j + ν

′
m, j

2
∇ŵn

j,h ,∇ lh

⎞
⎠.

Step 4: Find (w̃n+1
j,h , r̂ n+1

j,h ) ∈ Ỹh × Qh satisfying for all (sh , ηh) ∈ Ỹh × Qh :

( w̃n+1
j ,h − ŵn+1

j ,h

�t
, sh

)
− (r̂ n+1

j ,h ,∇ · sh) = 0, (4.5)

(∇ · w̃n+1
j ,h , ηh) = 0. (4.6)

− b∗(v̂
′n
j,h, ŵ

n
j,h, lh

)
−

(
ν j − νm, j

2
∇v̂

n
j,h,∇ lh

)
−

(
ν

′
j + ν

′
m, j

2
∇ŵ

n
j,h,∇ lh

)
. (4.8)

4.1 Stability Analysis

We now prove stability and well-posedness for the Algorithm 2.
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Assumption 4.1 We assume there exists a constant C∗ which is independent of h, and �t ,
such that for sufficiently small h for a fixed mesh and fixed �t as γ → ∞, the solution of
the Algorithm 2 satisfies

max
1≤n≤M

{
‖v̂n

j,h‖L∞ , ‖ŵn
j,h‖L∞

}
≤ C∗, ∀ j = 1, 2, · · · , Nsc. (4.9)

The Assumption 4.1 is proved later in Lemma 4.4. The idea of utilizing the Assumption
4.1 in the following convergence analysis is taken from the finite element analysis of the
reaction-diffusion equation in [50].

Lemma 4.1 (Unconditional stability with respect to the time-step size) Let
(
v̂

n+1
j,h , q̂n+1

j,h ,

ŵ
n+1
j,h , r̂ n+1

j,h

)
be the solution of Algorithm 2, and f1, j , f2, j ∈ L2

(
0, T ; H−1(D)

)
, and v0j,h,

w0
j,h ∈ H1(D) for j = 1, 2, · · · , Nsc. Then for all �t > 0, if α j ≥ C

h and μ ≥ Cα j h2

�t hold,
we have the following stability bound:

‖v̂M
j,h‖2 + ‖ŵM

j,h‖2 + ν̄min + ν̄m,min

2
�t

(
‖∇v̂

M
j,h‖2 + ‖∇ŵ

M
j,h‖2

)

+ 2γ�t
M∑

n=1

(
‖∇ · v̂

n
j,h‖2 + ‖∇ · ŵ

n
j,h‖2

)
≤ ‖v̂0j,h‖2 + ‖ŵ0

j,h‖2

+ ν̄min + ν̄m,min

2
�t

(
‖∇v̂

0
j,h‖2 + ‖∇ŵ

0
j,h‖2

)

+ 2�t

α j

M∑
n=1

(
‖f 1, j (t

n)‖2−1 + ‖f 2, j (t
n)‖2−1

)
. (4.10)

Proof Taking χχχh = v̂
n+1
j,h in (4.1) and lh = ŵ

n+1
j,h in (4.4), to obtain

(
v̂

n+1
j,h − ṽn

j,h

�t
, v̂

n+1
j,h

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇v̂

n+1
j,h ‖2 + γ ‖∇ · v̂

n+1
j,h ‖2

+
(
νT (ŵ

′
h, tn)∇v̂

n+1
j,h ,∇v̂

n+1
j,h

)
=

(
f1, j (t

n+1), v̂
n+1
j,h

)
− b∗(ŵ

′n
j,h, v̂

n
j,h, v̂

n+1
j,h

)

−
(ν j − νm, j

2
∇ŵ

n
j,h,∇v̂

n+1
j,h

)
−

(ν
′
j + ν

′
m, j

2
∇v̂

n
j,h,∇v̂

n+1
j,h

)
, (4.11)

and

(
ŵ

n+1
j,h − w̃n

j,h

�t
, ŵ

n+1
j,h

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇ŵ

n+1
j,h ‖2 + γ ‖∇ · ŵ

n+1
j,h ‖2

+
(
νT (v̂

′
h, tn)∇ŵ

n+1
j,h ,∇ŵ

n+1
j,h

)
=

(
f2, j (t

n+1), ŵ
n+1
j,h

)
− b∗(v̂

′n
j,h, ŵ

n
j,h, ŵ

n+1
j,h

)

−
(ν j − νm, j

2
∇v̂

n
j,h,∇ŵ

n+1
j,h

)
−

(ν
′
j + ν

′
m, j

2
∇ŵ

n
j,h,∇ŵ

n+1
j,h

)
. (4.12)

Using polarization identity, (1.22), and
(
νT (ŵ

′
h, tn)∇v̂

n+1
j,h ,∇v̂

n+1
j,h

)
= μ�t‖ln

ŵ,h∇v̂
n+1
j,h ‖2,

we get
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1

2�t

(
‖v̂n+1

j,h ‖2 − ‖ṽn
j,h‖2 + ‖v̂n+1

j,h − ṽn
j,h‖2

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇v̂

n+1
j,h ‖2 + γ ‖∇ · v̂

n+1
j,h ‖2

+ μ�t‖ln
ŵ,h∇v̂

n+1
j,h ‖2 =

(
f1, j (t

n+1), v̂
n+1
j,h

)
− b∗(ŵ

′n
j,h, v̂

n
j,h, v̂

n+1
j,h

)

−
(ν j − νm, j

2
∇ŵ

n
j,h,∇v̂

n+1
j,h

)
−

(ν
′
j + ν

′
m, j

2
∇v̂

n
j,h,∇v̂

n+1
j,h

)
, (4.13)

and

1

2�t

(
‖ŵn+1

j,h ‖2 − ‖w̃n
j,h‖2 + ‖ŵn+1

j,h − w̃n
j,h‖2

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇ŵ

n+1
j,h ‖2 + γ ‖∇ · ŵ

n+1
j,h ‖2

+ μ�t‖ln
v̂,h∇ŵ

n+1
j,h ‖2 =

(
f2, j (t

n+1), ŵ
n+1
j,h

)
− b∗(v̂

′n
j,h, ŵ

n
j,h, ŵ

n+1
j,h

)

−
(ν j − νm, j

2
∇v̂

n
j,h,∇ŵ

n+1
j,h

)
−

(ν
′
j + ν

′
m, j

2
∇ŵ

n
j,h,∇ŵ

n+1
j,h

)
. (4.14)

We rewrite the trilinear form in (4.13), use identity (2.1), Cauchy-Schwarz, Hölder’s,
Poincaré, and (2.4) inequalities, to have

−b∗(ŵ
′n
j,h, v̂

n
j,h, v̂

n+1
j,h

)
= b∗(ŵ

′n
j,h, v̂

n+1
j,h , v̂

n
j,h

)

=
(
ŵ

′n
j,h · ∇v̂

n+1
j,h , v̂

n
j,h

)
+ 1

2
(∇ · ŵ

′n
j,h, v̂

n+1
j,h · v̂

n
j,h)

≤ ‖ŵ′n
j,h · ∇v̂

n+1
j,h ‖‖v̂n

j,h‖ + 1

2
‖∇ · ŵ

′n
j,h‖L∞‖v̂n+1

j,h ‖‖v̂n
j,h‖

≤ ‖|ŵ′n
j,h |∇v̂

n+1
j,h ‖‖∇v̂

n
j,h‖ + C‖∇ · ŵ

′n
j,h‖L∞‖∇v̂

n+1
j,h ‖‖∇v̂

n
j,h‖.
(4.15)

Using (1.22), Young’s, (2.5), discrete inverse inequalities, and Assumption 4.1 in (4.15),
gives

−b∗(ŵ
′n
j,h, v̂

n
j,h, v̂

n+1
j,h

)
≤ α j

8
‖∇v̂

n+1
j,h ‖2 + C‖ln

ŵ,h∇v̂
n+1
j,h ‖‖∇v̂

n
j,h‖

+ C

α j h2 ‖ŵ′n
j,h‖2L∞‖∇v̂

n
j,h‖2

≤ α j

8
‖∇v̂

n+1
j,h ‖2 + Cα j h

2‖ln
ŵ,h∇v̂

n+1
j,h ‖2 + CC∗

α j h2 ‖∇v̂
n
j,h‖2.

(4.16)

Adding (4.13) and (4.14), and then applying the Cauchy-Schwarz inequality to the forcing
term and Hölder’s inequality to the last two terms in the right-hand-side together with the
bound in (4.16), reduces to

1

2�t

(
‖v̂n+1

j,h ‖2 − ‖ṽn
j,h‖2 + ‖v̂n+1

j,h − ṽn
j,h‖2 + ‖ŵn+1

j,h ‖2 − ‖w̃n
j,h‖2 + ‖ŵn+1

j,h − w̃n
j,h‖2

)

+
(

ν̄min + ν̄m,min

2
− α j

8

) (
‖∇v̂

n+1
j,h ‖2 + ‖∇ŵ

n+1
j,h ‖2

)

+ γ
(
‖∇ · v̂n+1

j,h ‖2 + ‖∇ · ŵ
n+1
j,h ‖2

)
+ (

μ�t − Cα j h
2) (

‖ln
ŵ,h∇v̂

n+1
j,h ‖2 + ‖ln

v̂,h∇ŵ
n+1
j,h ‖2

)

≤ C

α j h2

(
‖∇v̂

n
j,h‖2 + ‖∇ŵ

n
j,h‖2

)
+ ‖f1, j (t

n+1)‖−1‖∇v̂
n+1
j,h ‖ + ‖f2, j (t

n+1)‖−1‖∇ŵ
n+1
j,h ‖

+ ‖ν j − νm, j‖∞
2

(
‖∇ŵ

n
j,h‖‖∇v̂

n+1
j,h ‖ + ‖∇v̂

n
j,h‖‖∇ŵ

n+1
j,h ‖

)
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+ ‖ν ′
j + ν

′
m, j‖∞
2

(
‖∇v̂

n
j,h‖‖∇v̂

n+1
j,h ‖ + ‖∇ŵ

n
j,h‖‖∇ŵ

n+1
j,h ‖

)
. (4.17)

Use Young’s inequality and reduce, to have

1

2�t

(
‖v̂n+1

j,h ‖2 − ‖ṽn
j,h‖2 + ‖v̂n+1

j,h − ṽn
j,h‖2 + ‖ŵn+1

j,h ‖2 − ‖w̃n
j,h‖2 + ‖ŵn+1

j,h − w̃n
j,h‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇v̂

n+1
j,h ‖2 − ‖∇v̂

n
j,h‖2 + ‖∇ŵ

n+1
j,h ‖2 − ‖∇ŵ

n
j,h‖2

)

+ γ
(
‖∇ · v̂

n+1
j,h ‖2+‖∇ · ŵ

n+1
j,h ‖2

)
+(

μ�t−Cα j h
2) (

‖ln
ŵ,h∇v̂

n+1
j,h ‖2+‖ln

v̂,h∇ŵ
n+1
j,h ‖2

)

+
(

α j

4
− C

α j h2

) (
‖∇v̂

n
j,h‖2 + ‖∇ŵ

n
j,h‖2

)
≤ 2

α j

(‖f1, j (t
n+1)‖2−1 + ‖f2, j (t

n+1)‖2−1

)
.

(4.18)

If
α j
4 − C

α j h2
≥ 0, and choose μ ≥ Cα j h2

�t , and drop non-negative terms from left-hand-side,
to get

1

2�t

(
‖v̂n+1

j,h ‖2 − ‖ṽn
j,h‖2 + ‖ŵn+1

j,h ‖2 − ‖w̃n
j,h‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇v̂

n+1
j,h ‖2 − ‖∇v̂

n
j,h‖2 + ‖∇ŵ

n+1
j,h ‖2 − ‖∇ŵ

n
j,h‖2

)

+ γ
(
‖∇ · v̂

n+1
j,h ‖2 + ‖∇ · ŵ

n+1
j,h ‖2

)
≤ 2

α j

(
‖f1, j (t

n+1)‖2−1 + ‖f2, j (t
n+1)‖2−1

)
. (4.19)

Now, choose ξh = ṽn+1
j,h in (4.2), ζh = q̂n+1

j,h in (4.3) and sh = w̃n+1
j,h in (4.5), ηh = r̂ n+1

j,h in
(4.6). Then apply Cauchy-Schwarz and Young’s inequalities, to obtain

‖ṽn+1
j,h ‖2 ≤ ‖v̂n+1

j,h ‖2, and ‖w̃n+1
j,h ‖2 ≤ ‖ŵn+1

j,h ‖2,
for all n = 0, 1, 2, · · · , M − 1. Plugging these estimates into (4.19), results in

1

2�t

(
‖v̂n+1

j,h ‖2 − ‖v̂n
j,h‖2 + ‖ŵn+1

j,h ‖2 − ‖ŵn
j,h‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇v̂

n+1
j,h ‖2 − ‖∇v̂

n
j,h‖2 + ‖∇ŵ

n+1
j,h ‖2 − ‖∇ŵ

n
j,h‖2

)

+ γ
(
‖∇ · v̂

n+1
j,h ‖2 + ‖∇ · ŵ

n+1
j,h ‖2

)
≤ 2

α j

(
‖f1, j (t

n+1)‖2−1 + ‖f2, j (t
n+1)‖2−1

)
. (4.20)

Multiplying both sides by 2�t and summing over the time steps, completes the proof. ��
We now prove the Algorithm 2 converges to Algorithm 1 as γ → ∞. Thus, we need to

define the space Rh := V⊥
h ⊂ Xh to be the orthogonal complement of V h with respect to

the H1(D) norm.

Lemma 4.2 Let the finite element pair (Xh, Qh) ⊂ (X, Q) satisfy the inf-sup condition
(2.6) and the divergence-free property, i.e., ∇ · Xh ⊂ Qh. Then there exists a constant CR

independent of h such that

‖∇vh‖ ≤ CR‖∇ · vh‖, ∀vh ∈ Rh .

Proof See [19, 45] ��
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Theorem 4.3 (Convergence) Let (vn+1
j,h ,wn+1

j,h , qn+1
j,h ), and (v̂

n+1
j,h , ŵ

n+1
j,h , q̂n+1

j,h ) for j =
1, 2, · · · , Nsc, are the solutions to the Algorithms 1 and 2, respectively, for n = 0, 1, · · · , M−
1. If μ ≥ Cα j h2

�t and α j ≥ C
h , we then have

�t
M∑

n=1

(
‖∇<vh>

n −∇<v̂h>
n ‖2 + ‖∇<wh>

n −∇<ŵh>
n ‖2

)

≤ CC2
R

γ 2 exp

(
C

αmin

(
1 + �t

h3

)) M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

×
(

1

αmin
exp

(
C

αmin

) (
1

α2
min

+ 1 + �t2
)

+ �t

)
. (4.21)

Remark 4.2 The above theorem states the first order convergence of the penalty-projection
algorithm to the Algorithm 1 as γ → ∞ for a fixed mesh and time-step size.

Proof Denote en+1
j := vn+1

j,h − v̂
n+1
j,h , and εn+1

j := wn+1
j,h − ŵ

n+1
j,h and use the following

H1-orthogonal decomposition of the errors:

en+1
j := en+1

j,0 + en+1
j,R , and εn+1

j := εn+1
j,0 + εn+1

j,R ,

with en+1
j,0 , εn+1

j,0 ∈ V h , and en+1
j,R , εn+1

j,R ∈ Rh , for n = 0, 1, · · · , M − 1.

Step 1 Estimate of en+1
j,R , and εn+1

j,R : Subtracting the equation (3.1) from (4.7) and (3.3)
from (4.8) produces

1

�t

(
en+1

j − en
j ,χχχh

)
+

(
ν̄ + ν̄m

2
∇en+1

j ,∇χχχh

)

+ γ
(
∇ · en+1

j,R ,∇ · χχχh

)
+ b∗(<ŵh>

n, en+1
j ,χχχh

)

+ b∗(<ε>n, vn+1
j,h ,χχχh

)
−

(
qn+1

j,h − q̂n
j,h,∇ · χχχh

)
+ μ�t

(
(ln

ŵ,h)2∇en+1
j ,∇χχχh

)

+ μ�t
({

(ln
w,h)2 − (ln

ŵ,h)2
}∇vn+1

j,h ,∇χχχh

)
= −b∗(ŵ

′n
j,h, en

j ,χχχh

)
− b∗(ε

′n
j , vn

j,h,χχχh

)

−
(ν j − νm, j

2
∇εn

j ,∇χχχh

)
−

(ν
′
j + ν

′
m, j

2
∇en

j ,∇χχχh

)
, (4.22)

and

1

�t

(
εn+1

j − εn
j , lh

)
+

(
ν̄ + ν̄m

2
∇εn+1

j ,∇ lh

)

+ γ
(
∇ · εn+1

j,R ,∇ · lh

)
+ b∗(<v̂h>

n, εn+1
j , lh

)

+ b∗(<e>n,wn+1
j,h , lh

)
−

(
rn+1

j,h − r̂ n
j,h,∇ · lh

)
+ μ�t

(
(ln

v̂,h)2∇εn+1
j ,∇ lh

)

+ μ�t
({

(ln
v,h)2 − (ln

v̂,h)2
}∇wn+1

j,h ,∇ lh

)
= −b∗(v̂

′n
j,h, εn

j , lh

)
− b∗(e′n

j ,wn
j,h, lh

)

−
(ν j − νm, j

2
∇en

j ,∇ lh

)
−

(ν
′
j + ν

′
m, j

2
∇εn

j ,∇ lh

)
. (4.23)

Take χχχh = en+1
j in (4.22), and lh = εn+1

j in (4.23), which yields

b∗(<v̂h>
n, εn+1

j , lh

)
= 0, and b∗(<ŵh>

n, en+1
j ,χχχh

)
= 0,
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and use polarization identity, to get

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2 + ‖en+1

j − en
j‖2

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇en+1

j ‖2 + γ ‖∇ · en+1
j,R ‖2

+ b∗(<ε>n, vn+1
j,h , en+1

j

)
−

(
qn+1

j,h − q̂n
j,h,∇ · en+1

j,R

)
+ μ�t‖ln

ŵ,h∇en+1
j ‖2

+ μ�t
({

(ln
w,h)2 − (ln

ŵ,h)2
}∇vn+1

j,h ,∇en+1
j

)
= −b∗(ŵ

′n
j,h, en

j , e
n+1
j

)

− b∗(ε
′n
j , vn

j,h, en+1
j

)
−

(ν j − νm, j

2
∇εn

j ,∇en+1
j

)
−

(ν
′
j + ν

′
m, j

2
∇en

j ,∇en+1
j

)
, (4.24)

and
1

2�t

(
‖εn+1

j ‖2 − ‖εn
j ‖2 + ‖εn+1

j − εn
j ‖2

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇εn+1

j ‖2 + γ ‖∇ · εn+1
j,R ‖2

+ b∗(<e>n,wn+1
j,h , εn+1

j

)
−

(
rn+1

j,h − r̂ n
j,h,∇ · εn+1

j,R

)
+ μ�t‖ln

v̂,h∇εn+1
j ‖2

+ μ�t
({

(ln
v,h)2 − (ln

v̂,h)2
}∇wn+1

j,h ,∇εn+1
j

)
= −b∗(v̂

′n
j,h, εn

j , ε
n+1
j

)

− b∗(e′n
j ,wn

j,h, εn+1
j

)
−

(ν j − νm, j

2
∇en

j ,∇εn+1
j

)
−

(ν
′
j + ν

′
m, j

2
∇εn

j ,∇εn+1
j

)
.

(4.25)

Now, we find the bound of the terms in (4.24) first. Similar as (4.15), we rearrange, use
identity in (2.1), Cauchy-Schwarz, Hölder’s, Poincaré, and (2.4) inequalities, in the following
nonlinear term, to get

−b∗(ŵ
′n
j,h, en

j , e
n+1
j

)
= b∗(ŵ

′n
j,h, en+1

j , en
j

)

=
(
ŵ

′n
j,h · ∇en+1

j , en
j

)
+ 1

2

(
∇ · ŵ

′n
j,h, en+1

j · en
j

)

≤ ‖ŵ′n
j,h · ∇en+1

j ‖‖en
j ‖+

1

2
‖∇ · ŵ

′n
j,h‖L∞‖en+1

j ‖‖en
j ‖

≤ C‖|ŵ′n
j,h |∇en+1

j ‖‖∇en
j ‖+C‖∇ · ŵ

′n
j,h‖L∞‖∇en+1

j ‖‖∇en
j ‖.
(4.26)

Using (1.22), Young’s, (2.5), discrete inverse inequalities, and Assumption 4.1 in (4.26),
yields

−b∗(ŵ
′n
j,h, en

j , e
n+1
j

)
≤ C‖ln

ŵ,h∇en+1
j ‖‖∇en

j ‖ + α j

16
‖∇en+1

j ‖2+ C

α j h2 ‖ŵ′n
j,h‖2L∞‖∇en

j ‖2

≤ Cα j h
2‖ln

ŵ,h∇en+1
j ‖2 + α j

16
‖∇en+1

j ‖2+ CC∗
α j h2 ‖∇en

j ‖2.

Applying Hölder’s and Young’s inequalities, we have∣∣∣(ν j − νm, j

2
∇εn

j ,∇en+1
j

)∣∣∣ ≤ ‖ν j − νm, j‖∞
4

(
‖∇εn

j ‖2 + ‖∇en+1
j ‖2

)
,

∣∣∣(ν
′
j + ν

′
m, j

2
∇en

j ,∇en+1
j

)∣∣∣ ≤ ‖ν ′
j + ν

′
m, j‖∞
4

(
‖∇en

j ‖2 + ‖∇en+1
j ‖2

)
.

Applying Cauchy-Schwarz and Young’s inequalities, produces∣∣∣(qn+1
j,h − q̂n

j,h,∇ · en+1
j,R

)∣∣∣ ≤ 1

2γ
‖qn+1

j,h − q̂n
j,h‖2 + γ

2
‖∇ · en+1

j,R ‖2.
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Use the non-linear bound in (2.3), estimate inLemma3.3, andYoung’s inequalities, to provide

∣∣∣b∗(<ε>n, vn+1
j,h , en+1

j

)∣∣∣ ≤ C‖<ε>n‖
(
‖∇vn+1

j,h ‖L3+‖vn+1
j,h ‖L∞

)
‖∇en+1

j ‖
≤ CC∗‖<ε>n‖‖∇en+1

j ‖

≤ α j

16
‖∇en+1

j ‖2 + CC2∗
α j

‖<ε>n‖2,
∣∣∣b∗(ε

′n
j , vn

j,h, en+1
j

)∣∣∣ ≤ C‖ε ′n
j ‖

(
‖∇vn

j,h‖L3 + ‖vn
j,h‖L∞

)
‖∇en+1

j ‖
≤ CC∗‖ε ′n

j ‖‖∇en+1
j ‖

≤ α j

16
‖∇en+1

j ‖2 + CC2∗
α j

‖ε ′n
j ‖2.

For the third non-linear term, we apply Hölder’s, and triangle inequalities, the stability esti-
mate of Algorithm 1, uniform boundedness in Lemma 3.3 and in Assumption 4.1, Agmon’s
[60], discrete inverse, and Young’s inequalities, to get

2μ�t
({

(ln
w,h)2−(ln

ŵ,h)2
}∇vn+1

j,h ,∇en+1
j

)

≤ 2μ�t‖(ln
w,h)2 − (ln

ŵ,h)2‖L∞‖∇vn+1
j,h ‖‖∇en+1

j ‖

= 2μ�t‖
Nsc∑
i=1

(
|w′n

i,h |2 − |ŵ′n
i,h |2

)
‖L∞‖∇vn+1

j,h ‖‖∇en+1
j ‖

≤ 2μ�t
Nsc∑
i=1

‖(w′n
i,h − ŵ

′n
i,h) · (w

′n
i,h + ŵ

′n
i,h)‖L∞‖∇vn+1

j,h ‖‖∇en+1
j ‖

≤ 2μ�t
Nsc∑
i=1

‖w′n
i,h − ŵ

′n
i,h‖L∞‖w′n

i,h + ŵ
′n
i,h‖L∞‖∇vn+1

j,h ‖‖∇en+1
j ‖

≤ C�t
1
2

Nsc∑
i=1

‖ε ′n
i ‖L∞

(
‖w′n

i,h‖L∞ + ‖ŵ′n
i,h‖L∞

)
‖∇en+1

j ‖

≤ C�t
1
2

Nsc∑
i=1

‖εn
i ‖L∞‖∇en+1

j ‖ ≤ C�t
1
2 h− 3

2

Nsc∑
i=1

‖εn
i ‖‖∇en+1

j ‖

≤ α j

16
‖∇en+1

j ‖2 + C�t

h3α j

Nsc∑
i=1

‖εn
i ‖2. (4.27)

Using the above estimates in (4.24), dropping the non-negative term ‖en+1
j − en

j ‖2 from the
left-hand-side, and reducing, produces

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2

)
+ ν̄min + ν̄m,min

4
‖∇en+1

j ‖2 + γ

2
‖∇ · en+1

j,R ‖2

+(μ�t − Cα j h
2)‖ln

ŵ,h∇en+1
j ‖2 ≤ ‖ν j − νm, j‖∞

4
‖∇εn

j ‖2 + ‖ν ′
j + ν

′
m, j‖∞
4

‖∇en
j ‖2
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+ 1

2γ
‖qn+1

j,h − q̂n
j,h‖2 + CC2∗

α j

(
‖<ε>n‖2 + ‖ε ′n

j ‖2
)

+ C�t

h3α j

Nsc∑
i=1

‖εn
i ‖2+ C

α j h2 ‖∇en
j‖2.

(4.28)

Now, apply similar estimates to the right-hand-side terms of (4.25), to get

1

2�t

(
‖εn+1

j ‖2 − ‖εn
j ‖2

)
+ ν̄min + ν̄m,min

4
‖∇εn+1

j ‖2 + γ

2
‖∇ · εn+1

j,R ‖2

+(μ�t − Cα j h
2)‖ln

v̂,h∇εn+1
j ‖2 ≤ ‖ν j − νm, j‖∞

4
‖∇en

j ‖2 + ‖ν ′
j + ν

′
m, j‖∞
4

‖∇εn
j ‖2

+ 1

2γ
‖rn+1

j,h − r̂ n
j,h‖2 + CC2∗

α j

(
‖<e>n‖2 + ‖e′n

j ‖2
)

+ C�t

h3α j

Nsc∑
i=1

‖en
i ‖2+ C

α j h2 ‖∇εn
j ‖2.
(4.29)

Add (4.28) and (4.29), and rearrange

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2 + ‖εn+1

j ‖2 − ‖εn
j‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇en+1

j ‖2 − ‖∇en
j ‖2 + ‖∇εn+1

j ‖2 − ‖∇εn
j ‖2

)

+(μ�t − Cα j h
2)

(
‖ln

ŵ,h∇en+1
j ‖2 + ‖ln

v̂,h∇εn+1
j ‖2

)

+
(

α j

4
− C

α j h2

) (
‖∇en

j ‖2 + ‖∇εn
j ‖2

)

+ γ

2

(
‖∇ · en+1

j,R ‖2 + ‖∇ · εn+1
j,R ‖2

)
≤ 1

2γ

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

+ CC2∗
α j

(
‖<e>n‖2 + ‖e′n

j ‖2 + ‖<ε>n‖2 + ‖ε ′n
j ‖2

)
+ C�t

h3α j

Nsc∑
i=1

(
‖en

i ‖2 + ‖εn
i ‖2

)
.

(4.30)

Now, if
α j
4 − C

α j h2
≥ 0 holds, choose μ ≥ Cα j h2

�t , and drop non-negative terms from the

left-hand-side, to have

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2 + ‖εn+1

j ‖2 − ‖εn
j‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇en+1

j ‖2 − ‖∇en
j ‖2 + ‖∇εn+1

j ‖2 − ‖∇εn
j ‖2

)

+ γ

2

(
‖∇ · en+1

j,R ‖2 + ‖∇ · εn+1
j,R ‖2

)
≤ 1

2γ

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

+ CC2∗
α j

(
‖<e>n‖2 + ‖e′n

j ‖2 + ‖<ε>n‖2 + ‖ε ′n
j ‖2

)
+ C�t

h3α j

Nsc∑
i=1

(
‖en

i ‖2 + ‖εn
i ‖2

)
.

(4.31)

Now, multiply both sides by 2�t , and sum over the time steps n = 0, 1, · · · , M − 1, to get

‖eM
j ‖2 + ‖εM

j ‖2 + ν̄min + ν̄m,min

2
�t

(
‖∇eM

j ‖2 + ‖∇εM
j ‖2

)
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+ �t
M−1∑
n=0

γ
(
‖∇ · en+1

j,R ‖2 + ‖∇ · εn+1
j,R ‖2

)
≤ �t

γ

M−1∑
n=0

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

+ CC2∗
α j

�t
M−1∑
n=0

(
‖<e>n‖2 + ‖e′n

j ‖2 + ‖<ε>n‖2 + ‖ε ′n
j ‖2

)

+ C�t2

h3α j

M−1∑
n=1

Nsc∑
i=1

(
‖en

i ‖2 + ‖εn
i ‖2

)
. (4.32)

Using triangle, Cauchy-Schwarz, and Young’s inequalities, to get

‖eM
j ‖2 + ‖εM

j ‖2 + ν̄min + ν̄m,min

2
�t

(
‖∇eM

j ‖2 + ‖∇εM
j ‖2

)

+ �t
M∑

n=1

γ
(
‖∇ · en

j,R‖2 + ‖∇ · εn
j,R‖2

)
≤ �t

γ

M−1∑
n=0

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

+
(

CC2∗
α j

�t + C�t2

h3α j

) M−1∑
n=1

Nsc∑
j=1

(
‖en

j‖2 + ‖εn
j ‖2

)
. (4.33)

Summing over j = 1, 2, · · · , Nsc, we have

Nsc∑
j=1

‖eM
j ‖2 +

Nsc∑
j=1

‖εM
j ‖2 + ν̄min + ν̄m,min

2
�t

Nsc∑
j=1

(
‖∇eM

j ‖2 + ‖∇εM
j ‖2

)

+ γ�t
M∑

n=1

Nsc∑
j=1

(
‖∇ · en

j,R‖2 + ‖∇ · εn
j,R‖2

)

≤ �t

γ

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)

+ �t
M−1∑
n=1

(
CC2∗
αmin

+ C�t

h3αmin

) Nsc∑
j=1

(
‖en

j ‖2 + ‖εn
j ‖2

)
. (4.34)

Apply discrete Grönwall inequality given in Lemma 2.1, to get

Nsc∑
j=1

‖eM
j ‖2 +

Nsc∑
j=1

‖εM
j ‖2 + ν̄min + ν̄m,min

2
�t

Nsc∑
j=1

(
‖∇eM

j ‖2 + ‖∇εM
j ‖2

)

+ γ�t
M∑

n=1

Nsc∑
j=1

(
‖∇ · en

j,R‖2 + ‖∇ · εn
j,R‖2

)

≤ 1

γ
exp

(
CT

(
C2∗
αmin

+ �t

h3αmin

)) ⎛
⎝�t

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)⎞
⎠.

(4.35)

Using Lemma 4.2 with (4.35) yields the following bound

�t
M∑

n=1

Nsc∑
j=1

(
‖∇en

j,R‖2 + ‖∇εn
j,R‖2

)
≤ C2

R�t
M∑

n=1

Nsc∑
j=1

(
‖∇ · en

j,R‖2 + ‖∇ · εn
j,R‖2

)
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≤ C2
R

γ 2 exp

(
CC2∗
αmin

+ C�t

h3αmin

) ⎛
⎝�t

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)⎞
⎠.

(4.36)

Step 2 Estimate of en
j,0, and εn

j,0: To find a bound on �t
M∑

n=1

Nsc∑
j=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)
,

take χχχh = en+1
j,0 in (4.22), and lh = εn+1

j,0 in (4.23), which yields

1

�t

(
en+1

j − en
j , e

n+1
j,0

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇en+1

j,0 ‖2

= −b∗(<ŵh>
n, en+1

j,R , en+1
j,0

)
− b∗(<ε>n, vn+1

j,h , en+1
j,0

)

− μ�t
(
(ln

ŵ,h)2∇en+1
j ,∇en+1

j,0

)
− μ�t

({
(ln

w,h)2 − (ln
ŵ,h)2

}∇vn+1
j,h ,∇en+1

j,0

)

− b∗(ŵ
′n
j,h, en

j , e
n+1
j,0

)

− b∗(ε
′n
j , vn

j,h, en+1
j,0

)
−

(ν j − νm, j

2
∇εn

j,0,∇en+1
j,0

)
−

(ν
′
j + ν

′
m, j

2
∇en

j,0,∇en+1
j,0

)
,

(4.37)

and

1

�t

(
εn+1

j − εn
j , ε

n+1
j,0

)
+ 1

2
‖(ν̄ + ν̄m)

1
2 ∇εn+1

j,0 ‖2

= −b∗(<v̂h>
n, εn+1

j,R , εn+1
j,0

)
− b∗(<e>n,wn+1

j,h , εn+1
j,0

)

− μ�t
(
(ln

v̂,h)2∇εn+1
j ,∇εn+1

j,0

)
− μ�t

({
(ln

v,h)2 − (ln
v̂,h)2

}∇wn+1
j,h ,∇εn+1

j,0

)

− b∗(v̂
′n
j,h, εn

j , ε
n+1
j,0

)

− b∗(e′n
j ,wn

j,h, εn+1
j,0

)
−

(ν j − νm, j

2
∇en

j,0,∇εn+1
j,0

)
−

(ν
′
j + ν

′
m, j

2
∇εn

j,0,∇εn+1
j,0

)
.

(4.38)

Apply the non-linear bounds in (2.2), and (2.3) to the first, and second non-linear terms of
(4.37), respectively, to obtain

1

�t

(
en+1

j − en
j , e

n+1
j,0

)
+ ν̄min + ν̄m,min

2
‖∇en+1

j,0 ‖2 + μ�t‖ln
ŵ,h∇en+1

j,0 ‖2

≤ C‖∇<ŵh>
n‖‖∇en+1

j,R ‖‖∇en+1
j,0 ‖ + C‖<ε>n‖

(
‖∇vn+1

j,h ‖L3+‖vn+1
j,h ‖L∞

)
‖∇en+1

j,0 ‖
− μ�t

(
(ln

ŵ,h)2∇en+1
j,R ,∇en+1

j,0

)
− μ�t

({
(ln

w,h)2 − (ln
ŵ,h)2

}∇vn+1
j,h ,∇en+1

j,0

)

− b∗(ŵ
′n
j,h, en

j , e
n+1
j,0

)

− b∗(ε
′n
j , vn

j,h, en+1
j,0

)
−

(ν j − νm, j

2
∇εn

j,0,∇en+1
j,0

)
−

(ν
′
j + ν

′
m, j

2
∇en

j,0,∇en+1
j,0

)
.

(4.39)
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Similar as (4.15) and (4.26),we rearrange, use identity in (2.1),Cauchy-Schwarz,Hölder’s,
Poincaré, and (2.4) inequalities, in the following nonlinear term, to get

−b∗(ŵ
′n
j,h, en

j , e
n+1
j,0

)
= b∗(ŵ

′n
j,h, en+1

j,0 , en
j

)

=
(
ŵ

′n
j,h · ∇en+1

j,0 , en
j

)
+ 1

2

(
∇ · ŵ

′n
j,h, en+1

j,0 · en
j

)

≤ ‖ŵ′n
j,h · ∇en+1

j,0 ‖‖en
j ‖ + 1

2
‖∇ · ŵ

′n
j,h‖L∞‖en+1

j,0 ‖‖en
j ‖

≤ ‖|ŵ′n
j,h |∇en+1

j,0 ‖‖en
j ‖+C‖∇ · ŵ

′n
j,h‖L∞‖∇en+1

j,0 ‖‖en
j ‖. (4.40)

Using (1.22), Young’s, (2.5), discrete inverse inequalities, and Assumption 4.1 in (4.40),
yields

−b∗(ŵ
′n
j,h, en

j , e
n+1
j,0

)
≤ Cα j h

2‖ln
ŵ,h∇en+1

j,0 ‖2 + C

α j h2 ‖en
j ‖2 + α j

16
‖∇en+1

j,0 ‖2.

Using the above bound, triangle inequality, stability estimate, Lemma 3.3, and finally rear-
ranging, we have

1

�t

(
en+1

j − en
j , e

n+1
j,0

)
+ ν̄min + ν̄m,min

2
‖∇en+1

j,0 ‖2 + (
μ�t − Cα j h

2) ‖ln
ŵ,h∇en+1

j,0 ‖2

≤ C

(ν̄min + ν̄m,min)
1
2 �t

1
2

‖∇en+1
j,R ‖‖∇en+1

j,0 ‖ + CC∗‖<ε>n‖‖∇en+1
j,0 ‖ + C

α j h2 ‖en
j ‖2

+ μ�t
∣∣∣((ln

ŵ,h)2∇en+1
j,R ,∇en+1

j,0

)∣∣∣ + μ�t
∣∣∣({

(ln
w,h)2 − (ln

ŵ,h)2
}∇vn+1

j,h ,∇en+1
j,0

)∣∣∣
+ α j

16
‖∇en+1

j,0 ‖2

+
∣∣∣b∗(ε

′n
j , vn

j,h, en+1
j,0

)∣∣∣ +
∣∣∣(ν j − νm, j

2
∇εn

j,0,∇en+1
j,0

)∣∣∣ +
∣∣∣(ν

′
j + ν

′
m, j

2
∇en

j,0,∇en+1
j,0

)∣∣∣.
(4.41)

To evaluate the discrete time-derivative term, we use polarization identity, Cauchy-Schwarz,
Young’s, and Poincaré’s inequalities

1

�t

(
en+1

j − en
j , e

n+1
j,0

)
= 1

�t

(
en+1

j − en
j , e

n+1
j − en+1

j,R

)

= 1

2�t

(
‖en+1

j − en
j ‖2 + ‖en+1

j ‖2 − ‖en
j ‖2

)

− 1

�t

(
en+1

j − en
j , e

n+1
j,R

)

≥ 1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2

)
− C

�t
‖∇en+1

j,R ‖2.
Plugging the above estimate into (4.41) and using Hölder’s, and Young’s inequalities, yields

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2

)
+ ν̄min + ν̄m,min

2
‖∇en+1

j,0 ‖2

+ (
μ�t − Cα j h

2) ‖ln
ŵ,h∇en+1

j,0 ‖2 ≤ C

�t

(
1

α2
j

+ 1

)
‖∇en+1

j,R ‖2 + CC2∗
α j

‖<ε>n‖2

+ μ�t
∣∣∣((ln

ŵ,h)2∇en+1
j,R ,∇en+1

j,0

)∣∣∣ + μ�t
∣∣∣({

(ln
w,h)2 − (ln

ŵ,h)2
}∇vn+1

j,h ,∇en+1
j,0

)∣∣∣
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+ α j

8
‖∇en+1

j,0 ‖2 + C

α j h2 ‖en
j ‖2 +

∣∣∣b∗(ε
′n
j , vn

j,h, en+1
j,0

)∣∣∣

+ ‖ν j − νm, j‖∞
4

(
‖∇εn

j,0‖2 + ‖∇en+1
j,0 ‖2

)
+ ‖ν ′

j + ν
′
m, j‖∞
4

(
‖∇en

j,0‖2 + ‖∇en+1
j,0 ‖2

)
.

(4.42)

We nowfind the bounds for the non-linear terms. For the first non-linear term,we use Cauchy-
Schwarz, andYoung’s inequalities, uniform boundedness inAssumption 4.1, and the stability
estimate, to obtain

μ�t
∣∣∣((ln

ŵ,h)2∇en+1
j,R ,∇en+1

j,0

)∣∣∣ ≤ μ�t‖ln
ŵ,h∇en+1

j,R ‖‖ln
ŵ,h∇en+1

j,0 ‖

≤ 1

2
μ�t‖ln

ŵ,h∇en+1
j,R ‖2 + 1

2
μ�t‖ln

ŵ,h∇en+1
j,0 ‖2

≤ 1

2
μ�t‖ln

ŵ,h‖2L∞‖∇en+1
j,R ‖2 + 1

2
μ�t‖ln

ŵ,h∇en+1
j,0 ‖2

≤ C�t‖∇en+1
j,R ‖2 + 1

2
μ�t‖ln

ŵ,h∇en+1
j,0 ‖2.

For the second non-linear term, we follow the same treatment as in (4.27), and get

μ�t
({

(ln
w,h)2 − (ln

ŵ,h)2
}∇vn+1

j,h ,∇en+1
j,0

)
≤ α j

16
‖∇en+1

j,0 ‖2 + C�t

h3α j

Nsc∑
i=1

‖εn
i ‖2.

Use the non-linear bound in (2.3), estimate in Lemma 3.3, and Young’s inequalities, to get

|b∗(ε
′n
j , vn

j,h, en+1
j,0

)
| ≤ C‖ε ′n

j ‖
(
‖∇vn

j,h‖L3 + ‖vn
j,h‖L∞

)
‖‖∇en+1

j,0 ‖
≤ CC∗‖ε ′n

j ‖‖∇en+1
j,0 ‖

≤ α j

16
‖∇en+1

j,0 ‖2 + CC2∗
α j

‖ε ′n
j ‖2.

Use the above estimates, assume μ ≥ Cα j h2

�t to drop non-negative terms from left-hand-side,
and reducing, the equation (4.42) becomes

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2

)
+ ν̄min + ν̄m,min

4
‖∇en+1

j,0 ‖2

≤ C

�t

(
1

α2
j

+ 1 + �t2
)

‖∇en+1
j,R ‖2 + CC2∗

α j

(
‖<ε>n‖2 + ‖ε ′n

j ‖2
)

+ C�t

h3α j

Nsc∑
i=1

‖εn
i ‖2+ C

α j h2 ‖en
j ‖2+

‖ν j − νm, j‖∞
4

‖∇εn
j,0‖2+

‖ν ′
j +ν

′
m, j‖∞
4

‖∇en
j,0‖2.
(4.43)

Apply similar techniques to (4.38), yields

1

2�t

(
‖εn+1

j ‖2 − ‖εn
j ‖2

)
+ ν̄min + ν̄m,min

4
‖∇εn+1

j,0 ‖2

≤ C

�t

(
1

α2
j

+ 1 + �t2
)

‖∇εn+1
j,R ‖2 + CC2∗

α j

(
‖<e>n‖2 + ‖e′n

j ‖2
)
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+ C�t

h3α j

Nsc∑
i=1

‖en
i ‖2+ C

α j h2 ‖εn
j ‖2+

‖ν j − νm, j‖∞
4

‖∇en
j,0‖2+

‖ν ′
j +ν

′
m, j‖∞
4

‖∇εn
j,0‖2.
(4.44)

Add equations (4.43), and (4.44), and use triangle inequality, to get

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2 + ‖εn+1

j ‖2 − ‖εn
j ‖2

)
+ ν̄min + ν̄m,min

4

(
‖∇en+1

j,0 ‖2 + ‖∇εn+1
j,0 ‖2

)

≤ C

�t

(
1

α2
j

+ 1 + �t2
) (

‖∇en+1
j,R ‖2 + ‖∇εn+1

j,R ‖2
)

+ C

α j

(
1 + �t

h3 + 1

h2

) Nsc∑
j=1

(
‖en

j ‖2 + ‖εn
j ‖2

)

+ ‖ν j − νm, j‖∞ + ‖ν ′
j + ν

′
m, j‖∞

4

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)
. (4.45)

Rearranging

1

2�t

(
‖en+1

j ‖2 − ‖en
j ‖2 + ‖εn+1

j ‖2 − ‖εn
j ‖2

)

+ ν̄min + ν̄m,min

4

(
‖∇en+1

j,0 ‖2 − ‖∇en
j,0‖2 + ‖∇εn+1

j,0 ‖2 − ‖∇εn
j,0‖2

)

+ α j

4

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)
≤ C

�t

(
1

α2
j

+ 1 + �t2
) (

‖∇en+1
j,R ‖2 + ‖∇εn+1

j,R ‖2
)

+ C

α j

(
1 + �t

h3 + 1

h2

) Nsc∑
j=1

(
‖en

j ‖2 + ‖εn
j ‖2

)
. (4.46)

Multiply both sides by 2�t , and summing over the time-step n = 0, 1, · · · , M − 1, results
in

‖eM
j ‖2 + ‖εM

j ‖2 + ν̄min + ν̄m,min

2
�t

(
‖∇eM

j,0‖2 + ‖∇εM
j,0‖2

)

+ α j

2
�t

M−1∑
n=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)

≤ C

(
1

α2
j

+ 1 + �t2
)

M∑
n=1

(
‖∇en

j,R‖2 + ‖∇εn
j,R‖2

)

+ C�t

α j

(
1 + �t

h3 + 1

h2

) M−1∑
n=1

Nsc∑
j=1

(
‖en

j‖2 + ‖εn
j ‖2

)
. (4.47)

Now, simplifying, and summing over j = 1, 2, · · · , Nsc, we have

Nsc∑
j=1

(
‖eM

j ‖2 + ‖εM
j ‖2

)
+ �t

M∑
n=1

αmin

2

Nsc∑
j=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)

≤
M∑

n=1

C

(
1

α2
min

+ 1 + �t2
) Nsc∑

j=1

(
‖∇en

j,R‖2 + ‖∇εn
j,R‖2

)
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+ C�t

αmin

M−1∑
n=1

(
1 + �t

h3 + 1

h2

) Nsc∑
j=1

(
‖en

j ‖2 + ‖εn
j ‖2

)
. (4.48)

Apply the version of the discrete Grönwall inequality given in Lemma 2.1

Nsc∑
j=1

(
‖eM

j ‖2 + ‖εM
j ‖2

)
+ αmin

2
�t

M∑
n=1

Nsc∑
j=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)

≤ exp

(
CT

αmin

(
1 + �t

h3 + 1

h2

)) [
C

(
1

α2
min

+ 1 + �t2
)

M∑
n=1

Nsc∑
j=1

(
‖∇en

j,R‖2 + ‖∇εn
j,R‖2

)]
,

(4.49)

and use the estimate (4.36) in (4.49), to get

�t
M∑

n=1

Nsc∑
j=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)
≤ CC2

R

γ 2αmin
exp

(
C

αmin

(
1 + �t

h3 + 1

h2

))

×
[ (

1

α2
min

+ 1 + �t2
)

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)]
. (4.50)

Using triangle and Young’s inequalities

�t
M∑

n=1

(‖∇<e0>n ‖2 + ‖∇<ε0>
n ‖2) ≤ 2�t

N 2
sc

M∑
n=1

Nsc∑
j=1

(
‖∇en

j,0‖2 + ‖∇εn
j,0‖2

)

≤ CC2
R

γ 2αmin
exp

(
C

αmin

(
1 + �t

h3 + 1

h2

))

×
[ (

1

α2
min

+ 1 + �t2
)

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)]
, (4.51)

and

�t
M∑

n=1

(
‖∇<eR>n ‖2 + ‖∇<εR>n ‖2

)
≤ 2�t

N 2
sc

M∑
n=1

Nsc∑
j=1

(
‖∇en

j,R‖2 + ‖∇εn
j,R‖2

)

≤ CC2
R

γ 2 exp

(
C

αmin

(
1 + �t

h3

)) ⎛
⎝�t

M−1∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h − q̂n
j,h‖2 + ‖rn+1

j,h − r̂ n
j,h‖2

)⎞
⎠.

(4.52)

Finally, apply triangle and Young’s inequalities on

‖∇<vh>
n −∇<v̂h>

n ‖2 + ‖∇<wh>
n −∇<ŵh>

n ‖2

to obtain the desire result. ��
Remark 4.3 Using triangle and Young’s inequalities together with equations (3.6) and (4.21),
it is straightforward to show that, SCM-SPP-SMHD scheme achieves the same order of
accuracy as the Coupled-SMHD scheme for γ → ∞.
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We prove the following Lemma by strong mathematical induction.

Lemma 4.4 If γ → ∞ then there exists a constant C∗ which is independent of h, and �t ,
such that for sufficiently small h for a fixed mesh and fixed �t , the solution of the Algorithm
2 satisfies

max
0≤n≤M

{
‖v̂n

j,h‖L∞ , ‖ŵn
j,h‖L∞

}
≤ C∗, ∀ j = 1, 2, · · · , Nsc. (4.53)

Proof Basic step: v̂0j,h = Ih(vtrue
j (0, x)), where Ih is an appropriate interpolation operator.

Because of the regularity assumption of vtrue
j (0, x), we have ‖v̂0j,h‖L∞ ≤ C∗, for some

constant C∗ > 0.
Inductive step: Assume for some K ∈ N and K < M , ‖v̂n

j,h‖L∞ ≤ C∗ holds true for
n = 0, 1, · · · , K . Then, using triangle inequality and Lemma 3.3, we have

‖v̂K+1
j,h ‖L∞ ≤ ‖v̂K+1

j,h − vK+1
j,h ‖L∞ + C∗.

Using Agmon’s inequality [60], and discrete inverse inequality, yields

‖v̂K+1
j,h ‖L∞ ≤ Ch− 3

2 ‖v̂K+1
j,h − vK+1

j,h ‖ + C∗. (4.54)

Next, using equation (4.35)

‖v̂K+1
j,h ‖L∞ ≤ C∗

+ C

h
3
2 γ

1
2

exp

(
CT

(
C2∗
αmin

+ �t

h3αmin

)) ⎛
⎝�t

K∑
n=0

Nsc∑
j=1

(
‖qn+1

j,h −q̂n
j,h‖2+‖λn+1

j,h − λ̂n
j,h‖2

)⎞
⎠

1
2

.

(4.55)

For a fixed mesh, and time-step size, as γ → ∞, yields ‖v̂K+1
j,h ‖L∞ ≤ C∗. Hence, by the

principle of strong mathematical induction, ‖v̂n
j,h‖L∞ ≤ C∗ holds true for 0 ≤ n ≤ M .

Similarly, we can prove the uniform boundedness of ŵ
n
j,h . ��

5 SCMs

As SCMs, in this work, we consider sparse grid algorithm [56], where for a given time tn and
a set of sample points { y j }Nsc

j=1 ⊂ �, we approximate the exact solution of (1.13)–(1.15) by

solving a discrete scheme. Then, for a basis {φl}Np
l=1 of dimension Np for the space L2

ρ(�), a
discrete approximation is constructed with coefficients cl(tn, x) of the form

usc
h (tn, x, y) =

Np∑
l=1

cl(t
n, x)φl( y),

which is essentially an interpolant. In the sparse grid algorithm, we consider Leja and
Clenshaw–Curtis points as the interpolation points that come with the associated weights
{w j }Nsc

j=1. SCMs were recently developed for the UQ of the Quantity of Interest (QoI), ψ ,
which can be the lift, drag, and energy. SCMs provide statistical information about QoI, that
is,

E[ψ(u(tn))] =
∫




ψ(u(tn), y)ρ( y)dy ≈
Nsc∑
j=1

w jψ(un
j,h).
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SCMs are highly efficient compared to the standard MC method for large-scale problems
with large-dimensional random inputs because in this case, the rate of convergence of MC
generates unaffordable computational cost. A full outline of the SCMs is given in Algorithm
3.

Algorithm 3 SCMs
procedure S(p)arse grid algorithm

Initialization: Mesh, FE functions, T , M , { y j }Nsc
j=1, {w j }Nsc

j=1

Pre-compute: {ν j }Nsc
j=1, {νm, j }Nsc

j=1, {u0j ,h}Nsc
j=1, {B0

j ,h}Nsc
j=1

for n = 0 . . . M − 1 do
for j = 1 . . . Nsc do

To compute ûn+1
j ,h , solve (4.1)-(4.6)

Calculate ψ(ûn+1
j ,h )

end for

Estimate E[ψ(u(tn+1))] ≈
Nsc∑
j=1

w j ψ(ûn+1
j ,h )

end for
end procedure

6 Numerical Experiments

To test the proposed Algorithm 2 (SCM-SPP-SMHD method) and the associated theory, in
this section, we present the results of numerical experiments. For MHD simulations, it is
crucial to enforce the discrete solenoidal constraint ∇ · B j,h = 0 strongly, otherwise, it can
produce large errors in the solution [8, 44]. Moreover, to have the divergence-free condition
of the magnetic field at all times, the initial magnetic field must need to be zero. This is
because the curl of the electric field is equal to and opposite of the time derivative of the
magnetic flux density. Thus, it is popular to use pointwise divergence-free elements such
as Scott-Vogelius (SV) elements on barycenter refined regular triangular meshes to enforce
the divergence constraints [3, 23, 35, 51, 54]. However, using SV elements requires higher
degrees of freedom (dof) which is quite demanding. Throughout this numerical section, we
will use (P2, Pdisc

1 ) SV element in the Coupled-SMHD method for the velocity-pressure
and magnetic flux density-magnetic pressure variables. Their outcomes will be considered
as the benchmark solutions. Also, in the SCM-SPP-SMHDmethod, we will use the (P2, P1)

Taylor-Hood (TH) element (which is weakly divergence-free and requires less dof) with
appropriately large γ . Both methods will be employed on a barycenter refined triangular
mesh. We used the platform Freefem++ [22] with the direct solver UMFPACK [14].

In the first experiment,we verify the predicted convergence rates given inTheorem4.3 as γ

varies and compute the spatial and temporal convergence rates with manufactured solutions.
We implement the scheme on a channel flow over a step problem and a regularized lid-driven
cavity problem in the second and third experiments, respectively. Finally, we examine the
sparse grid algorithm as SCM in the lid-driven cavity problem and show the impact of the
EEV stabilization in the MHD UQ algorithm.
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6.1 Convergence Rate Verification

Wewill begin this experiment with x = (x1, x2)T and the following manufactured analytical
functions,

v =
(
cos x2 + (1 + et ) sin x2
sin x1 + (1 + et ) cos x1

)
, w =

(
cos x2 − (1 + et ) sin x2
sin x1 − (1 + et ) cos x1

)
,

q = sin(x1 + x2)(1 + et ), r = 0.

Clearly, ∇ · v = ∇ · w = 0 hold. Next, introducing a perturbation parameter ε we introduce
noise in the above analytical functions as below to create manufactured solutions

v j (t, x) := (
1 + k jε

)
v, w j (t, x) := (

1 + k jε
)
w, q j := (1 + k jε)q, and r j := 0,

(6.1)

where k j := (−1) j+14� j/2�
Nsc

, and j = 1, 2, · · · , Nsc, where Nsc = 20. We consider the kine-
matic viscosity ν and magnetic diffusivity νm as continuous random variables with uniform
distribution. In this experiment, we consider ν ∼ U(0.0009, 0.0011) with E[ν] = 0.001,
ν ∼ U(0.009, 0.011) with E[ν] = 0.01, and νm ∼ U(0.0009, 0.0011) with E[νm] = 0.001.
For each case, we collect an i.i.d sample size of 20, leading us to have two two-dimensional
randomsamples. For afixed j togetherwith pair (ν j , νm, j ), and the analytical solution in (6.1),
we compute the forcing functions. We consider a domain D = (0, 1)2, and v0j,h = v j (0, x)

and w0
j,h = w j (0, x) as the initial conditions for both algorithms. The boundary conditions

for the Algorithm 1 are considered as v j,h |∂D = v j in Step 1, and w j,h |∂D = w j in Step
2, whereas the boundary conditions for the Algorithm 2 are considered as v̂ j,h |∂D = v j in
Step 1, ṽ · n̂|∂D = 0 in Step 2, ŵ j,h |∂D = w j in Step 3, and w̃ · n̂|∂D = 0 in Step 4. We
compute the ensemble average solutions (<vh>n,<wh>n), and (<v̂h,γ >n,<ŵh,γ >n) at
t = tn using the Algorithm 1, and the penalty-projection based Algorithm 2, respectively,
and compare them by computing the difference between the two algorithms.

6.1.1 Convergence with � Varies

To observe the convergence of the SCM-SPP-SMHD to the Coupled-SMHD scheme, for
z = v or w, we define <ezh,γ >:=<zh> − <ẑh,γ > and compute

‖<ezh,γ >‖2,1 := ‖<zh> − <ẑh,γ >‖L2(0,T ;H1(D)2).

In Table 1, we represent the above errors and convergence rates as γ increases with
fixed ε = 0.01, T = 1.0, �t = T /10, h = 1/32, and two 2D samples {(ν j , νm, j ) ∈
[0.009, 0.011] × [0.0009, 0.0011]} with (E[ν],E[νm]) = (0.01, 0.001), and {(ν j , νm, j ) ∈
[0.009, 0.011] × [0.09, 0.11]} with (E[ν],E[νm]) = (0.01, 0.1). We observe a first-order
convergence as the γ increases, which is in excellent agreement with the Theorem 4.3.

6.1.2 Temporal and Spatial Convergence

To observe the spatial and temporal errors and their convergence rates, we define <ez>:=<

z > − < ẑh > for z = v or w, which are the difference between the outcomes of the
SCM-SPP-SMHD scheme and the true analytical solutions stated above.

To receive the temporal convergence, we use a fixed mesh width of h = 1/64, end
time T = 1, vary time-step size as �t = T /4, T /8, T /16, T /32, and T /64 on the other
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hand, to get the spatial convergence, we use a small end time T = 0.001, a fixed time-step
size �t = T /8, vary mesh size as h = 1/4, 1/8, 1/16, 1/32, and 1/64. For both cases,
we run the simulations using the proposed Algorithm 2 varying the perturbation parameter
ε (which introduces noise in the initial, and boundary conditions and forcing functions),
and the two 2D random samples {(ν j , νm, j ) ∈ [0.0009, 0.0011] × [0.0009, 0.0011]} and
{(ν j , νm, j ) ∈ [0.009, 0.011]× [0.0009, 0.0011]}. The first and second samples are collected
from populations with (E[ν],E[νm]) = (0.001, 0.001), and (E[ν],E[νm]) = (0.01, 0.001),
respectively. Then, we record the errors, compute the convergence rates, and present them
in Tables 2 and 3. In Table 2, we observe the first-order temporal convergence which is the
optimal convergence rate of a first-order time-stepping algorithm. In Table 3, we observe a
second-order spatial convergence which is also consistent with the theory as we have used
(P2, P1) element.

6.2 SMHD Channel Flow Past a Unit Step: A Comparison Between SCM-SPP-SMHD
and Coupled-SMHD Schemes

We now implement the SCM-SPP-SMHD and Coupled-SMHD schemes in a 2D channel of
electrically conducting fluid flow past a unit step under the influence of a magnetic field and
compare their outcomes.

The domain of the flow is a 30 × 10 rectangular channel over a 1 × 1 step on the
lower wall which is five units away from the inflow. At the inflow, we set u j = (1 +
k jε) (x2(10 − x2)/25, 0)T and B j = (0, 1)T , and the outflow condition uses a channel
extension of 10 units, and at the end of the extension, we set outflow velocity and magnetic
field equal to their counterpart in the inflow. We consider the initial conditions as

u0j = (1 + k jε) (x2(10 − x2)/25, 0)T, and B0
j = 0.

For the Coupled-SMHD scheme, on the walls, we implement no-slip boundary conditions
u j |
1 = 0 and B j |
1 = (1 + k jε) (0, 1)T . For the SCM-SPP-SMHD scheme, since the
velocity and pressure-like variables appear in different steps, in Step 1, and Step 3, we
consider u j |
1 = 0 and B j |
1 = (1 + k jε) (0, 1)T on the walls, and in Step 3, and Step 4,
we define the following space for the Elsässer variables v, and w:

Ỹ h := {vh ∈ Pk(τh)d ∩ H1(D)d : vh · n̂|
1 = 0}.

The time-step size �t = 0.05, Nsc = 20, γ = 105, f = g = 0 (no-external source),
μ = 1, and a constant coupling parameter s = 0.001 are considered. We consider the
mean kinematic viscosity E[ν] = 0.001, and mean magnetic diffusivity E[νm] = 0.01
for random samples with distribution ν ∼ U(0.0009, 0.0011), and νm ∼ U(0.009, 0.011),
respectively. A triangular unstructured mesh of the domain that provides a total of 419058
dof is considered, where velocity dof = 186134, magnetic field dof = 186134, pressure
dof = 23395, and magnetic pressure dof = 23395. We run the simulations until T = 40
and plot the speed contour and magnetic field strength in Fig. 1 for both SCM-SPP-SMHD
and Coupled-SMHD algorithms. We compute the mean energies at time t = tn , which
are defined as the average of 1

2‖uh(tn, y j )‖2, and 1
2‖ûh(tn, y j )‖2 for all sample points for

Coupled-SMHD, and SCM-SPP-SMHD algorithm, respectively, and plot them in Fig. 2. The
superposition of the energy graphs provide an excellent agreement between the two solutions,
which supports our claim in the theory.
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Fig. 1 SCM-SPP-SMHDvs. Coupled-SMHD:Velocity ensemble average solutions shown as streamlines over
speed contours (top) and the magnetic field strength (bottom) at T = 40 with ε = 0.01, μ = 1, s = 0.001,
E[ν] = 0.001, and E[νm ] = 0.01

Fig. 2 1D random viscosity and
magnetic diffusivity in a channel
flow past a rectangular step
problem: Plot of energy vs. time
for μ = 1, ε = 0.01, s = 0.001,
E[ν] = 0.001, and E[νm ] = 0.01

6.3 Variable 5D RandomViscosities with Regularized Lid-Driven Cavity Problem

We now consider a 2D benchmark regularized lid-driven cavity problem [5, 17, 40] with a
domainD = (−1, 1)2. No-slip boundary conditions are applied to all sides except on the top
wall (lid) of the cavity where we impose the following boundary conditions:

u j |lid = (1 + k jε)
(
(1 − x21 )

2, 0
)T
.

On all sides of the cavity, we enforce the following the magnetic field boundary conditions:

B j = (1 + k jε) (0, 1)T.

The maximum speed of the lid is 1 and the characteristic length is 2. In this experiment, we
consider γ = 10000, f= g = 0, and Clenshaw–Curtis sparse grid as the SCM, generated via
the software package TASMANIAN [63, 64] with Nsc = 11. The generated computational
barycentered refined mesh of the domain provides a total of 729840 degrees of freedom
(dof), where velocity dof = 324266, magnetic field dof = 324266, pressure dof = 40654,
and magnetic pressure dof= 40654. The flow initiates from the state of rest in absence of the
magnetic flux density. In this section, we consider the equations (1.1)–(1.6) with a random
viscosity ν(x, y), and magnetic diffusivity νm(x, y), where y = (y1, y2, · · · , yd) ∈ 
 ⊂ R

d

is a higher-dimensional random variable, E[ν](x) = 2c
15000 , and E[νm](x) = 0.01c for a

suitable c > 0,Cov[ν](x, x
′
) = 4

150002
exp

(
− (x−x

′
)2

l2

)
, and l is the correlation length. This
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Fig. 3 Variable 5D random viscosity and magnetic diffusivity in lid-driven cavity problem: Plot of speed
contour for varying s at t = 600 with γ = 10000, E[Re] = 15000, and E[νm ] = 0.01

random field can be represented by the Karhunen-Loéve expansion:

ν(x, y) = 2

15000
ψ(x, y), and νm(x, y) = 1

100
ψ(x, y), (6.2)

where

ψ(x, y) =
(

c +
(√

πl

2

) 1
2

y1(ω) +
q∑

j=1

√
ξ j

(
sin

(
jπx1
2

)
sin

(
jπx2
2

)
y2 j (ω)

+ cos

(
jπx1
2

)
cos

(
jπx2
2

)
y2 j+1(ω)

)
,

in which the infinite series is truncated up to the first q terms. The uncorrelated random
variables y j have zero mean and unit variance, and the eigenvalues are equal to

√
ξ j = (

√
πl)

1
2 exp

(
− ( jπl)2

8

)
.

For our test problem, we consider the random variables y j (ω) ∈ [−√
3,

√
3], the correlation

length l = 0.01, d = 5, c = 1, and q = 2. We run the simulation with time-step size
�t = 5 until the simulation end time T = 600 for various values of the coupling parameter
s together with the perturbation parameter ε = 0.01 in the initial and boundary conditions.
The Figs. 3 and 4 illustrate the velocity solution as the speed contour, and the magnetic field
strength for s = 0.001, and 0.01 and are the outcomes of the SCM-SPP-SMHD scheme
given in Algorithm 2. As s grows, the impact of the Lorentz force gets stronger in the flow
field, which in turn slows down the evolution over time process. This can be observed as the
speed and the size of the vorticities get reduced in Fig. 3.

For this experiment, in Fig. 5, we plot the system energy vs. time for two different values
of s using both the SCM-SPP-SMHD and Coupled-SMHD methods. To compare the two
models, we compute the weighted mean energy at time t = tn , which is defined as the
weighted average of 1

2‖u(tn, x, y j )‖2 for all sample points. We found excellent agreements
between the energy plots from the solution of the Coupled-SMHD scheme and the solution
of penalty projection based SCM-SPP-SMHD method with γ = 10000, which supports the
theory.
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Fig. 4 Variable 5D random viscosity and magnetic diffusivity in lid-driven cavity problem: Plot of magnetic
field strength for varying s at t = 600 with γ = 10000, E[Re] = 15000, and E[νm ] = 0.01

Fig. 5 Variable 5D random viscosity and magnetic diffusivity in lid-driven problem: Plot of energy vs. time
for μ = 1, ε = 0.01, γ = 104 E[Re] = 15000, and E[νm ] = 0.01

6.3.1 Stability of EEV

We wanted to exhibit the significance of the EEV stabilization in the MHD UQ algorithm.
To this end, we ran several simulations for different values of μ, with ε = 0.01, s = 1,
l = 0.001, �t = 0.7, E[Re] = 15000, and E[νm] = 0.01 of the above lid-driven cavity
problem using the Algorithm 1 (Coupled-SMHD). We plotted the energy versus time curve
in Fig. 6. We observe that in the absence of the EEV term (μ = 0), the solution blows up,
whereas asμ > 0 the solutions are stable and the solution converges asμ increases. Extensive
numerical tests are given in [30] to show how this EEV term helps in the numerical simulation
with under-resolved meshes for convection-dominated flows.

7 Conclusion and FutureWorks

In this paper,wepropose, analyze, and test an efficient, robust, and accurate grad-div stabilized
penalty-projection SCM-SPP-SMHDscheme in conjunctionwith SCMfor solving stochastic
MHD flow problems. The intriguing algorithm has several features that make it efficient and
accurate: (1) The use of Elsässer variables formulation allows for a stable decoupling of
the coupled PDEs, (2) A discrete Hodge decomposition is used for decoupling further which
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Fig. 6 Regularized lid-driven
cavity problem: Plot of energy vs.
time. The case μ = 0 remains
unstable

allows to use twomuch easier linear solves instead of using a difficult solve of the saddle point
problems for each realization at each time-step, (3) The four sub-problems are designed in an
elegant way that at each time-step, the system matrix remains common to all realizations but
with different right-hand-side vectors, which saves a huge computer memory and assembly
time of assembling several global different system matrices; Furthermore, this allows to
take the advantage of using block linear solvers, (4) The use of ensemble eddy-viscosity
terms provide stability of flows that are not resolved on particular meshes. (5) The large (but
optimal) coefficient of the grad-div stabilization parameter provides accuracy of the splitting
algorithm equivalent to a coupled scheme, and (6) The sparse grid SCM wrapper helps to
use fewer realization.

The SCM-SPP-SMHD algorithm is rigorously proven to be stable and converges to the
equivalent coupled Coupled-SMHD ensemble scheme for large grad-div stabilization param-
eters. The numerical test verifies the first-order convergence of the SCM-SPP-SMHD scheme
to theCoupled-SMHDscheme.Theoptimal spatial andfirst-order temporal convergence rates
of the scheme are verified with synthetic data for analytical test problems with random noise
in the parameter values. We implement the scheme on benchmark channel flow over a step
problem and a regularized lid-driven cavity problem with space-dependent 5D random high
Reynolds and high magnetic Reynolds numbers. We found the efficient SCM-SPP-SMHD
scheme performs well with high grad-div stabilization parameters. This penalty-projection-
based efficient algorithm will be an enabling tool for large-scale simulation of complex 3D
MHD problems.

In the future, we will implement this scheme on the 3D Taylor-Green vortex problem, and
examine its performance togetherwith various linear solvers and appropriate preconditioners.
As a future work, we will propose, analyze, and test first- and second-order accurate time-
stepping penalty-projection schemes for the UQ of N-S flow problems following the work in
[45]. An evolve-filter-relax stabilized Reduced Order (ROM) SCM for the time-dependent
MHD flowwill be proposed following the recent work in [20]. A second-order time-stepping
SCM-SPP-SMHD method based on deferred correction for MHD flow ensemble could be a
future research work following the work in [15].
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