L)

Check for
updates

Data Farming the Parameters of Simulation-Optimization
Solvers

SARA SHASHAANI, Industrial and Systems Engineering, North Carolina State University at Raleigh,
Raleigh, United States

DAVID ECKMAN, Texas A&M University College Station, College Station, United States

SUSAN SANCHEZ, Operations Research, Naval Postgraduate School, Monterey, United States

The performance of a simulation-optimization algorithm, a.k.a. a solver, depends on its parameter settings.
Much of the research to date has focused on how a solver’s parameters affect its convergence and other
asymptotic behavior. While these results are important for providing a theoretical understanding of a solver,
they can be of limited utility to a user who must set up and run the solver on a particular problem. When
running a solver in practice, good finite-time performance is paramount. In this article, we explore the
relationship between a solver’s parameter settings and its finite-time performance by adopting a data farming
approach. The approach involves conducting and analyzing the outputs of a designed experiment wherein
the factors are the solver’s parameters and the responses are assorted performance metrics measuring the
solver’s speed and solution quality over time. We demonstrate this approach with a study of the ASTRO-DF
solver when solving a stochastic activity network problem and an inventory control problem. Through these
examples, we show that how some of the solver’s parameters are set greatly affects its ability to achieve
rapid, reliable progress and gain insights into the solver’s inner workings. We discuss the implications of
using this framework for tuning solver parameters, as well as for addressing related questions of interest to
solver specialists and generalists.

CCS Concepts: « Computing methodologies — Simulation evaluation; Modeling and simulation; « Gen-
eral and reference — Experimentation;

Additional Key Words and Phrases: Data farming, simulation optimization, design of experiments, parameter
tuning, ASTRO-DF

ACM Reference Format:

Sara Shashaani, David Eckman, and Susan Sanchez. 2024. Data Farming the Parameters of Simulation-
Optimization Solvers. ACM Trans. Model. Comput. Simul. 34, 4, Article 24 (August 2024), 29 pages.
https://doi.org/10.1145/3680282

1 Introduction

Many stochastic-optimization algorithms (a.k.a. solvers) have a multitude of settings that influence
how they operate, and in turn, how rapidly and reliably they make progress. For example, a basic
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version of the well-known stochastic gradient descent (SGD) algorithm may have several user-
specified settings, such as the step size, the sample size, and the type of projection operator [37].
A more sophisticated version may allow users to choose a line-search routine [36] or parameters
for shifting and scaling the underlying problem [5]. We refer to such user-specified settings or
parameters as solver factors, which may be real-valued, integer-ordered, or categorical.

In our opinion, the question of how best to investigate, characterize, and set solver factors has
not received as much attention as it deserves. The consideration it has received often concerns the
solver’s asymptotic performance, e.g., local or global convergence and associated rates, accompa-
nied by supporting theoretical results. For the SGD algorithm, for instance, having the sequence
of step sizes shrink to zero sufficiently slowly can help to ensure convergence to a local optimal
solution. These results are of theoretical value, but they do not always translate to practical rec-
ommendations for everyday users interested in achieving good finite-time performance. In partic-
ular, tuning parameters based on a problem’s properties, e.g., its Lipschitz constant, dimension, or
signal-to-noise ratio, remains a challenge. Moreover, factor settings that lead to desirable asymp-
totic performance do not necessarily yield good finite-time performance. In practice, if a user is
likely to run a solver only once on their problem of interest, good finite-time performance—namely,
the ability to quickly and consistently find better solutions—is paramount. In research, identifying
the most influential factors for achieving good performance for all problems (if possible), or for
specific classes of problems (e.g., those with convex or nonsmooth objective functions, or those
of low or high dimension), can provide a structured and holistic approach for identifying default
settings and developing guidance for users, so paving the way for a new generation of robust and
reliable solvers.

1.1 Related Work

Past research on setting solver factors has predominantly focused on search techniques for tuning
hyperparameters of machine-learning algorithms. Unlike in the simulation-optimization context
we consider in this article, these algorithms typically do not encounter any randomness in the
objective function evaluations [49, 50] and therefore do not exhibit variable performance from
run to run. These techniques include, but are not limited to: Bayesian optimization algorithms
[1, 31], which are limited by their dependence on certain assumptions and computational cost
when the space of hyperparameters grows; successive halving and bandit methods [27], which are
limited by their sensitivity to random sampling; and combinations of the two [13], which can be
limited by early stopping and the aforementioned scalability challenges of Bayesian optimization.
Random search [2] and evolutionary algorithms [35] are also often used for this purpose, but have
limitations in computation, parametric sensitivities, and a lack of convergence guarantees.

Many other studies have addressed the tuning of continuous-valued hyperparameters by
sequentially generating and evaluating candidate configurations of hyperparameters of an opti-
mization algorithm. Iterative procedures have been devised to generate a new set of candidates
via design of experiments (DOE) at the rudimentary level of full factorial, Latin hypercube, or
random sampling designs [15], probability models [33], neighborhood search [24], or optimiza-
tion algorithms including response surface methods and numerical gradient-based algorithms
or heuristics [21, 22]. The solver’s performance under a given configuration is assessed via fixed
evaluation [51], screening [3], or an adaptive number of runs [23]. Many of these methods aim to
find a promising region in the parameter space at minimum cost. For a recent survey, see [20].

Other gaps exist in the literature. A persistent challenge when searching for good hyperpa-
rameters for solving a specific problem has been the development of a framework that easily
accommodates categorical parameters and a large hyperparameter space. Moreover, when choos-
ing the best hyperparameter configuration for a solver for stochastic optimization, the variability
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(risk) of the solver’s performance under each configuration has rarely been incorporated [40]. In
addition, reporting a configuration as optimal for a solver without knowing why it is optimal is
of limited utility. Such an approach does not lend flexibility to see, for example, synergistic or
redundant interaction effects among hyperparameters or between hyperparameters and problem
features, e.g., the problem dimension. Consequently, this kind of reporting does not inform the
user on how the best configuration might change if the problem being solved were to change in
size, features, or certain constant factors.

When algorithms for hyperparameter tuning are not employed, experimentation with solver
factors is often ad hoc. In the extreme case, experiments are run with solver factors set to what ap-
pear to readers to be arbitrary values. These values may be those that produced the best empirical
performance on the set of test problems, perhaps chosen to make a newly proposed solver look
good relative to its competitors. Even when experiments have been run with a variety of factor
settings, it can be difficult to extract practical guidance on how to set factors for a new problem.
This issue is compounded by the reality that a solver’s “out-of-the-box” settings in software imple-
mentations may not be good for all problems. Moreover, these default settings may not even be
the product of extensive experimentation.

1.2 Our Contributions

We seek to address the limited understanding users and developers may have about how a solver’s
factors affect its behavior and finite-time performance. We approach the problem from a data-
farming perspective wherein solver factors are systematically varied according to a DOE. Our
proposed approach entails running extensive experiments with different versions of a solver on
a given problem or a small class of problems. Our use of DOE differs from past research on data
farming, which generally concerns varying parameters of a simulation model to understand how
changes to its inputs affect its performance measures. We instead vary parameters of the solver,
and our response functions are performance metrics for simulation-optimization algorithms, such
as the time at which the solver attains some specified improvement in the objective. Our approach
can be extended to a range of algorithms that touch upon many domains. For example, algorithms
for surrogate optimization [19], derivative-free optimization [26], stochastic programming [4], and
Bayesian optimization [14] can all exhibit variable run-to-run performance and could benefit from
more informed setting of solver factors. Other approaches that have been observed to be sensitive
to the setting of hyperparameters are simulation-based inference (SBI) [28] and some types of
metamodeling [12]. To the best of our knowledge, DOE and data farming have not been applied
in the context of studying solver performance when incorporating the solver’s variability, but we
demonstrate that they can be powerful methods for gaining a deeper understanding of a solver.
The advantage of DOE for experimenting with solver factors is that it can provide more than just
an optimal configuration.

Different types of researchers or analysts can have different end goals when using this approach.
Consequently, they might benefit in different ways, either directly or indirectly. We consider three
groups. First, those interested in general solver performance could use this approach to assist in
setting appropriate default values for a particular solver’s factors during development, provide
guidance to solver users about when and how they might seek to improve on these default values,
or perhaps choose to remove some as factors and re-specify them as functions of other factors.
We refer to these as solver generalists or simply generalists throughout the remainder of this
article. We anticipate that providing insights into the tradeoffs, risks, and sensitivities of a solver’s
inner workings will assist generalists in advancing the state of the art in simulation-optimization
methodology. Second, those faced with the need to solve a particular class of problems on a regular
basis might seek to tune the solver’s factors in ways that are beneficial for that class. We will refer
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to these sophisticated users as solver specialists or simply specialists. Specialists directly benefit
from this approach, because even small improvements in the quality and timeliness of solutions
to individual problems may scale to massive overall improvements when hundreds or thousands
of problems are solved. Finally, occasional solver users also stand to benefit, albeit indirectly.
They may care about the solver parameters not at all, focusing solely on finding a high-quality
solution to a particular problem by making a limited number of runs of one or more solvers. We
will refer to these as occasional focused users or simply focused users. Focused users may care little
about differences in finite-time performance with different parameter configurations (or different
solvers) as long as a good solution is found in a reasonable time; if they have a month to solve a
problem, solving it in one hour, one day, or one week may be equally valuable. However, in the
short term, focused users might indirectly benefit from using a particular solver whose default
parameter settings have been chosen wisely. Similarly, if they decide to make more than one run of
the solver, perhaps because they are not sure they have a good solution from the first run, focused
users would benefit from having reasonable guidance on how to modify the solver’s parameters
on subsequent runs. In the longer term, focused users will benefit as better solvers are developed.
As a side note, much of the published discussion on tuning hyperparameters apparently focuses on
benchmarking studies for this type of user [11]; we believe the current wave of increased reliance
on analytics and Al will draw many more specialist users into the fold. While focused users could
use a data farming approach, they are less likely to do so unless the methodology is embedded into
the solver itself. Consequently, generalists and specialists are our primary audience in this article.

The rest of this article is organized as follows: In Section 2, we introduce the canonical
simulation-optimization problem and a set of metrics for evaluating a solver’s finite-time perfor-
mance. We then set up a data-farming framework for studying solver performance in Section 3.
In Section 4, we present a list of “Top Ten” questions and associated statistical techniques that
can guide an analysis of the experimental results. In Section 5, we apply these techniques to study
the ASTRO-DF algorithm and demonstrate that how the solver’s factors are set matters, in a mea-
surable way, and illustrate some of the types of attainable insights that extend beyond optimum
seeking or parameter tuning. We conclude in Section 6 with a discussion of extensions to the
data-farming framework and its implementation in the SimOpt testbed [10].

2 Simulation Optimization and Solver Performance Metrics

A simulation-optimization (SO) problem is an optimization problem where the objective func-
tion and/or constraints are evaluated (with noise) through a stochastic simulation. A wide variety
of problems can be formulated as SO problems. We consider the prototypical SO problem:

mxin f(x) = Ef(x, &) subjecttox € D, (1)

where x is a vector of decision variables that lies in a domain 9. We consider the setting in which D
is either unconstrained, i.e., D solely restricts components of x to be integer-valued or continuous,
or is described by only deterministic constraints; we do not consider stochastically constrained
domains in this article. The term & represents the collection of random variables generated by a
simulation model in the course of simulating a single replication. The distribution of ¢ is allowed
to depend on x, thus the expectation in Problem (1) is over realizations of ¢ for a given x. The
function f(x,-) denotes the logic used to obtain an estimate of the objective function f(x) for a
given feasible solution x.

2.1 Measuring Solver Performance

An SO solver attempts to solve Problem (1) by estimating the objective function values of different
feasible solutions. For example, at a given solution x, a solver may take n, simulation replications
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and estimate f(x) by the sample average of the outputs f(x, &), f(x, &), ..., f(x, &.,.). Depending
on the problem and available computational resources, it may be impossible to evaluate all
solutions in D; instead the solver may evaluate only a subset of feasible solutions. A solver
strives to quickly find feasible solutions with near-optimal objective function values. Although
SO algorithms are diverse, some efforts have been made to develop widely applicable metrics for
evaluating their performance. For example, performance profiles as well as data profiles [32] track
the solvability (percentage of problems solved by a solver—a.k.a., success ratio) given a fixed time
(computation budget), and overall efficiency metrics [48] track the trade-off between computation
time and solvability. We adopt and adapt many of the metrics introduced in [8] and provide only
a summary description here to convey the essential ideas.

When running a particular SO solver on a given problem, we fix a budget T—measured in simula-
tion replications—and observe the sequence of solutions recommended by the solver as it expends
the budget. This sequence of recommended solutions can be conveniently viewed as a continuous-
time stochastic process {X(¢): 0 < t < 1} where X(¢) is the solution recommended when a fraction
t of the budget T has been expended. The objective function values of these solutions also form a
stochastic process { f(X(¢)): 0 < t < 1}. Plotting f(X(t)), or an estimate thereof, as a function of ¢
is common in the optimization literature. To produce metrics that are independent of the scaling of
the objective values and of the direction of optimization (minimization vs maximization), one can
standardize f(X(t)) using the objective function values of some (typically poor) initial solution x;
and a reference optimal solution x*. To be more precise, consider

_ fIX@®) - f(x7)

flxo) = f(x*)
which represents the relative optimality gap of the solution recommended at ¢, relative to the
initial optimality gap. A realization of the stochastic process {v(t): 0 < t < 1} is called a progress
curve of the solver. A plot of v(¢) as a function of ¢ shows a piecewise-constant function that
is typically, though not necessarily, nonincreasing. Because the objective function f cannot be
evaluated exactly for SO problems, one would more commonly work with an estimated progress
curve obtained by estimating the objective f using replications of the simulation model at x(, x*,
and X(t). Using the outputs of the replications taken by the solver when visiting a solution X(t)
is known to produce an optimization bias [29]. Thus, it is advisable to take fresh independent
replications (referred to as postreplications) in a post-processing stage. The choices for the number
of postreplications for each X(t) and the number of postreplications for the reference solutions x;
and x™ are user-specified and could be chosen to be relatively large to avoid incorrectly ordering
solutions by chance. See Section 8 of [8] for a detailed discussion and a theoretical investigation
of these choices.

A progress curve contains a great deal of information about the performance of a solver on a
single run. For example, Figure 1(a) shows progress curves for three different runs of a fictitious
solver. In Run 1, the solver takes a long time to begin improving on its initial solution, but finds
the optimal solution after 80% of the budget has been consumed. By contrast, the curve for Run 2
shows the solver making great progress initially, followed by a long period where no progress is
achieved before gradually reducing the optimality gap. In Run 3, the relative optimality gap drops
fairly early (though not as soon as in Run 2), but the solver later has a more difficult time improving
on its solution.

We will find it helpful to summarize the information contained in a progress curve with a
few scalar metrics, which can then be treated as responses within our data-farming framework.
We highlight four functionals of the progress curve that describe important aspects of a solver’s
performance:

v(t)
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Solver metric Run1 Run2 Run3
Final relative optimality gap
1) 0.00 0.05 0.31
Area under progress curve
=y A 069 043 021
2 Time Tat which curve drops
”_; below threshold
£ 70.5) 080 005 015
& 70.2) 080 n/a 023
© 70.1) 0.80 n/a 0.30
g 70.05) 0.80 n/a 0.85
o Curve drops below threshold
y(0.5) 1 1 1
y(0.2) 1 0 1
y(0.1) 1 0 1
1(0.05) 1 0 1
I I I I I I
0 time ¢ !
(a) Progress curves for three runs. Dashed lines indicate thresholds (b) Solver performance metrics for the three runs. The
of 0.05, 0.5, 0.2, and 0.1 for the relative optimality gap. bests of each measure are indicated in bold.

Fig. 1. Progress curves and performance metrics for three runs of a solver.

— The final relative optimality gap, v(1), indicates what fraction of the initial optimality gap is
remaining after the solver has exhausted its budget.

— The area under the progress curve, A = /01 v(t) dt, is the time-average relative optimality gap
associated with the solutions recommended by the solver over time.

— The a-solve time, or time at which the relative optimality gap first drops below some thresh-
old @ € [0,1], 7(«) = inf{t € [0,1]: v(t) < a}, measures the speed with which the solver
achieves a specified degree of improvement.

— The a-solvability, or whether or not the relative optimality gap drops below some threshold
a € [0,1] before termination, y(a) = I{r(a) < 1}, measures the ability of the solver to find
a near-optimal solution given its budget.

Figure 1(b) displays the solver performance metrics associated with the three progress curves
from Figure 1(a). Each of the runs is associated with the best performance in at least one metric,
but none of the runs dominate in all.

The behavior of an SO solver varies from run to run due to random error when estimating the
objective function and (optional) intrinsic randomness, e.g., picking a random search direction. It
is therefore imperative to conduct multiple runs, hereafter referred to as macroreplications, of a
solver on a problem to understand its variable performance. In light of this variability, the scalar
metrics listed above can be regarded as random variables, and properties of their distribution, e.g,
their mean, median, variance (when finite), high-probability quantiles or VaR (Value at Risk),
and CVaR (Conditional Value at Risk) [18] serve as useful summary statistics.

2.2 Solver Factors

SO solvers typically feature many parameters that affect how the solver evaluates solutions and
seeks better ones. In a nod to the conventional terminology used in DOE, we call such parameters
solver factors. Solver factors come in many forms and can control a myriad of aspects of solver be-
havior. For example, solver factors can relate to an exploration-exploitation tradeoff within an algo-
rithm, such as the choice of the population size in a genetic algorithm, the step length in a gradient-
descent algorithm, or the criteria for choosing a model-minimizing point within a trust-region
algorithm. As illustrated in these examples, solver factors can be integer-ordered, real-valued, or
categorical. These factors influence not only the solver’s behavior, but also the solver’s average and
variable performance from run to run, i.e., its ability to consistently find high-quality solutions.
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As a practical remark, to carry out the experiments we discuss in the next section, solvers should
be coded in a way that allows their parameters to be varied externally. In this way, an experiment
involving multiple versions of the same solver can be run without needing to manually change
hard-coded values. Many code implementations of SO solvers are not structured in this way, since
only one version of the solver is typically run when solving a problem in practice. One exception
is the SimOpt library [10], an open-source testbed of SO problems and solvers, wherein solvers
are coded to support flexible experimentation where any and all solver factors may be altered. The
solver performance metrics discussed in Section 2.1 and the data-farming framework we are about
to introduce have been implemented in a recent redesign of SimOpt, described in [9], and users can
reproduce the experiments in this article or run their own on the library’s collection of problems
and solvers.

For Solver s, we let s(v) denote a version of the solver corresponding to its factors being set
as v. As previously mentioned, v may represent a combination of numerical and non-numerical
factors. We wish to understand how performance metrics of Solver s, particularly those listed in
Section 2.1, change as the combined factor settings, v, change. To study this question, we introduce
a data-farming framework that involves testing multiple versions of the solver and analyzing the
results.

3 Experiment Design

Studies of new SO algorithms commonly feature experiments that test only a handful of versions
of a solver, with these often coming from varying one or two solver factors. Ad hoc comparisons
like this allow only limited conclusions to be drawn about the impact of solver factor settings
on solver performance. Varying individual factors one at a time while holding the other fixed
offers in sight into only the marginal effects of each factor, which may be of little informational
value because it precludes the identification and estimation of interaction effects and makes it
impossible to fit metamodels that capture solver behaviors in the interior of the factor space.
Moreover, full-factorial designs, wherein all combinations of setting solver factors at a finite num-
ber of levels are evaluated, can be too expensive to run, even for modest numbers of factors and
levels.

DOE affords a more systematic comparison of the performances of different versions of a solver
with a more efficient (i.e., smaller) design. For concreteness, consider a set of r versions of Solver
s, denoted by S = {s(v1),s(v2), ..., s(v,)} where the versions differ only in the settings of the k
solver factors under investigation. In the DOE terminology, the set V = {vy, vy, ..., v, } is called
the design, and each combination of factor settings, v; for j = 1,2,...,r, is called a design point.
The design V should possess certain properties suited to the user’s needs, such as filling the space
of factors or allowing for the study of interactions among factors. There are many good designs,
but some are more suitable for physical experiments or deterministic computer experiments
than for stochastic simulation experiments. A few designs we recommend for investigating
continuous-valued solver factors are nearly orthogonal Latin hypercubes (NOLHs) [7],
resolution V frequency based designs (R5FBDs) [39], or resolution V central composite
designs (R5CCDs) [41]. These all explore factors at multiple levels, and provide flexibility for
fitting different types of metamodels or using different visualization techniques during analysis.
Orthogonality or near-orthogonality is desirable for separately estimating the effects of different
factors. The R5FBD and R5CCD are perfectly orthogonal and permit all main effects, quadratic
effects, and two-way interaction effects to be fit simultaneously. If some factors are discrete with
relatively few levels, or categorical factors, then nearly orthogonal-and-balanced (NOAB
or NOB designs) [47] can be used; here, “nearly balanced” refers to sampling each level of a
discrete-valued or categorical factor approximately the same number of times. The space-filling
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behavior for most of these designs can be improved by reassigning factors to columns of the
design matrix, a process called stacking. Finally, crossing two designs V; (k; factors, r; design
points) and V; (k; factors, r, design points) is a straightforward way to construct designs capable
of exploring k; +k; factors in r; Xr, design points; these can be useful, even though they are not the
most efficient.

Those unfamiliar with the DOE field may not realize how extremely efficient these designs can
be. For instance, consider a solver with 20 factors. If one were to use a brute-force method to explore
these factors simultaneously, each at 2 levels, that would require 22° or nearly 1.05M design points;
exploring these at 10 levels each would require 10?° or 14 orders of magnitude more. Conversely,
the 20 factors could be studied at 129 levels in 129 design points (NOLH), at 1673 levels in 1673
design points (R5FBD), at 5 levels in 553 design points (rotatable R5CCD), or varying numbers
of levels in 512 design points (NOAB). See [43] for more information about DOE for simulation
experiments, or see [38] to download design generator software.

DOE plays a central role in the area of data farming [40]. In data farming, a user studying
a simulation model first “grows” a dataset by running the model with different combinations of
inputs (i.e., factors of the model) according to a design of experiments and then analyzes the results.
Our application of data farming differs from the conventional approach in that our responses of
interest are not the performance indicators of the simulation model but rather metrics of how well
a solver solves a given SO problem, such as those mentioned in Section 2.1.

Our experiment design entails running multiple macroreplications of each version of the solver
(corresponding to each design point) on a fixed SO problem. The same problem instance is solved
at all design points, hence, the progress curves and all associated metrics are standardized using
the same reference solutions x; and x™*. Specifically, all macroreplications of all solver versions start
at the same initial solution x, and x* is taken to be the estimated best solution recommended by
any solver on any macroreplication. We perform a common number of macroreplications at each
design point, though the data-farming framework permits the sample sizes to vary across design
points. For instance, if the observed responses (solver performance metrics) at a given design point
were highly variable, we may choose to take more macroreplications.

When taking a common number of macroreplications at all design points, common random
numbers (CRN) can be used across design points to sharpen the comparisons. In our setup, CRN
would ideally mean that the different versions of the solver would see the same sequences of
objective function estimates if simulating the same solutions and would all use the same sequence
of random inputs for their internal purposes. The former of these is readily achieved if the solver
additionally using CRN across solutions. The experiments in this paper were conducted in SimOpt
[10] and use CRN in all these ways by default. Our intention in using CRN across design points is
to better estimate the ordering of performance metrics when comparing multiple versions of the
solver.

4 Motivating Questions for Analysis

The experiment introduced in Section 3 produces a large amount of data, consisting of multiple
solver performance metrics tracked on each macroreplication of each solver version tested. It re-
mains to transform this data into insights via a purposeful analysis. In this section, we outline
pertinent questions to the study of solver performance and the statistical techniques best suited
for answering them. The intent is to showcase the range of analyses that can be carried out on the
data produced by the experiment. In Section 5, we present an empirical study, going into much
more depth and discussion on the methods and potential insights.

Table 1 lists the “Top Ten” questions that have been proposed as guides to the analysis of data-
farming experiments, along with a partial summary of statistical tools and visualization techniques
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Table 1. “Top Ten” Questions to Ask During the Analysis of Results from a Solver Performance Experiment

Question Some techniques

1. What was the spread of solver performance
metrics over the entire experiment?

2. What run-to-run variation (spread, shape, and summary statistics, histograms, box plots
central tendency) was observed for the solver
performance metrics of interest? Did these vary
across design points?

3. Are there any outliers or solver factor box plots, scatter plots, metamodel-specific diagnostics
configurations that lead to unusual behavior? (e.g., Cook’s distance for regression metamodels)
4. How are the solver performance metrics
correlated? Do they involve tradeoffs or behave correlation matrices, scatterplot matrices
serendipitously?
5. Which solver factors are most influential?
Are there any important interactions? stepwise regression, partition trees, other metamodels,
7. What are the interesting regions and threshold interaction profiles, interactive graphs

values in the solver factor space?

trace results to their causes as part of verification and

8. Are any of the results counterintuitive? 1
validation

9. Which configurations of solver factors are most ~ contour plots, metamodels of robustness as quantified

robust, leading to consistently good by loss functions over solver performance metrics,
performance for a solver metric of interest? risk-adjusted solver performance metrics

10. Are there any configurations that perform well parallel plots, heatmaps, defining constraints, Pareto
w.r.t. multiple solver performance metrics? optimal curves, weighted loss functions

that can be used to answer these questions [34]. These are not intended to be exhaustive, but are
adapted from similar questions that have helped direct the analysis for hundreds of data-farming
experiments that investigate the relationships between simulation model factors and simulation
model responses for specific applications. Our “Top Ten” questions shift the focus to exploring the
relationship between solver factors and solver performance metrics.

In Section 1.2, we stated that different types of researchers and analysts can benefit in different
ways from such a study. Their overarching goals in answering these questions may differ as well.
We now elaborate further.

Generalists (i.e., those interested in general solver performance) could use such a study to assist
in setting appropriate default values for a particular solver’s factors during development, provide
guidance to solver users about when and how they might seek to improve on these default values,
or perhaps choose to remove some as factors and re-specify them as functions of other factors.
Researchers developing or implementing new solvers can be thought of as generalists. Generalists
may also be interested in experimenting with a group of solvers across multiple problems to gain
insight into which problems can be characterized as “easy” or “hard” for those solvers; this kind
of meta-experiment is beyond the scope of this article, but is a worthwhile direction for future
research.

Specialists faced with the need to solve a particular class of problems on a regular basis might
seek to tune the solver’s factors in ways that achieve good finite-time performance for that class.
For example, a retail warehouse might be faced with setting inventory policies for thousands of
items where the policies are revisited over time as demand patterns evolve, costs change, or new
products are introduced. Specialists would benefit from including problem-specific factors (e.g.,
parameters of the demand distribution input models, holding costs, etc.) in their experiment, as
well as solver factors. Such a study could either determine that certain solver factor settings yield
good solver performance for a wide variety of potential futures, or provide guidance on how to
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select good solver factor settings based on the problem’s characteristics. Either way, even small
improvements in the quality and timeliness of the solutions may lead to substantive reductions in
the overall cost when the specialist is called on to solve thousands of problems. The upfront cost
and time required to run the data farming experiment may be quickly recouped by the benefits of
improved performance if, say, the specialist can solve problems on a much more rapid basis. Of
course, if the problems are relatively simple to solve, they might not need such a study or care
about which solver version they chose.

5 A Study of ASTRO-DF

We demonstrate how to leverage data farming to investigate solver factors with an example
consisting of one solver and two problems, described in Sections 5.1 and 5.2, respectively. These
are drawn from the portfolio of solvers and test problems currently implemented in the SimOpt
testbed [10], which continues to expand; the interested reader could conduct a similar study using
different solver and problem instances. We set up an experiment in Section 5.3 and then delve into
the “Top Ten” questions in Section 5.4. Throughout these sections, we discuss situations where
specialists and generalists might pursue different lines of inquiry. Our goal in this section is to
provide a general template for those embarking on data farming a solver’s parameters. That is, we
focus on illustrating the methodology rather than reporting on a definitive study of ASTRO-DF’s
performance. We discuss further extensions in Section 5.5.

5.1 The ASTRO-DF Solver

ASTRO-DF [16, 17, 45], which stands for Adaptive Sampling Trust-Region Optimization for
Derivative-Free problems, is a class of algorithms that use local models fitted on function estimates
of an incumbent solution and its neighbors to converge to a stationary point. The neighborhood
represents the region within which the local model is credible and its size (specifically, its radius)
governs the step size taken to determine the next iterate. ASTRO-DF is proven to converge to a
first-order critical point almost surely and reach e-optimality at the rate of 6(6_4) under certain
assumptions, irrespective of the setting of its factors. This example illustrates the finite-time per-
formance of ASTRO-DF as a function of some of its factors that determine how the trust region is
updated; the relevant details of the ASTRO-DF solver are described below.

On an iteration k, ASTRO-DF maintains a trust region of radius Ay centered at an incumbent
solution Xy, denoted by B(Xy;Ax) = {x € D : ||x — Xi|| < Ax}. The algorithm estimates the
objective function values at neighboring solutions located on the boundary of B(Xj; Ay ) along the
coordinate basis. The sample sizes for each neighboring solution are determined by an adaptive
sampling rule and are roughly (j(A;4). This ensures that as the trust region contracts, signifying
closeness to a stationary point, the accuracy of the estimated objective function values sufficiently
increases. ASTRO-DF then fits a quadratic model on these estimated objective function values
and performs a quality certification. In the quality-certification step, if the norm of the gradient
of the model at the incumbent solution is too small relative to Ag, the trust-region radius is
reduced and a new quadratic model is constructed. The algorithm then optimizes (minimizes) the
certified local model within the trust region B(Xy; Ag), and the resulting solution Xj41 serves as
a candidate for the next incumbent. The success of the local model is assessed by estimating the
objective function at the candidate solution Xj,; and comparing the estimated improvement in
moving from X to X,; with the improvement predicted by the model. The objective function
estimate improvement divided by the model improvement is called the success ratio pj, and
ASTRO-DF accepts the candidate solution if px > n; and rejects it otherwise. The trust-region
radius A is updated before the start of the next iteration according to the following rule:

ACM Trans. Model. Comput. Simul., Vol. 34, No. 4, Article 24. Publication date: August 2024.



Data Farming the Parameters of Simulation-Optimization Solvers 24:11

min{y;Ag, Amax}  if px = 12 [very successful iteration — expand trust region],
Api1 =3 Ag, if pr. € [n1,172) [successful iteration - keep trust region unchanged],
Y2k, otherwise [unsuccessful iteration — contract trust region].

()

The trust-region radius, and how it changes throughout the search, affects the performance
of ASTRO-DF in several ways: it governs the local model construction and certification, and it
controls the step size between consecutive iterations. Four user-specified parameters appear in
(2): y1, the rate of expansion of the trust region after a very successful iteration; y,, the rate of
contraction of the trust region after an unsuccessful iteration; and 7, and n, the thresholds defining
successful and very successful iterations, respectively. We will vary these four factors in a design.

5.2 The Problems

We cannot investigate a solver’s behavior without observing its performance. So, we apply the
ASTRO-DF algorithm to two problems from the SimOpt library [10]: SSCONT, an (s, S) inventory
problem with continuous demand and order quantities, and SAN, a stochastic activity network
problem with 9 nodes and 13 arcs. The former is a 2-dimensional problem that is non-convex,
whereas the latter is 13-dimensional and convex.

The SSCONT problem features a single product whose inventory level is dictated by an (s, S)
inventory policy, meaning that when the inventory level drops below s, an order is placed so
that the inventory level can be brought back up to S. The demand in each period is assumed to
be exponentially distributed with a mean of 100 units, independent across periods. The order lead
time is assumed to be discrete and random, following a Poisson distribution with mean of 6 periods,
independent across periods. The objective is to find values of s and S that minimize the expected
total cost over 100 periods, which is the sum of total back-order cost ($4 per unit), total holding cost
($1 per unit per period), total fixed cost ($36 per order), and total variable cost ($2 per unit) using
a warm-up of 20 periods. The standard formulation of the problem requires that s < S, however,
in SimOpt, we reparameterize the decision variables to be s and S — s so that the domain is the
non-negative orthant » = R* x R*. The optimal solution is unknown.

In the SAN problem, a network of nodes are connected with arcs representing activities in a
project; the length of each arc represents the duration of the activity and the direction of each
arc reflects the precedence. The objective is to specify parameters of the arc-length distributions
to minimize a combination of the length of the longest path and an associated cost. In particular,
if0 = (6;, i = 1,2,...,13) are the parameters of exponential distributions for arc lengths and
¢ = (ci, i =1,2,...,13) are the associated costs per unit time for arcs 1 to 13, then the objective
function is of the form EL(0) + ¢(0), where L(6) is the (random) length of the longest path from
node a to node i, i.e., the duration of the project, and ¢(8) = 21 ¢;/0;. For this instance of the
problem, we let ¢; = 1 for i = 1,2,...,13 and use the network structure depicted in Figure 2. The
optimal solution to this problem is also unknown.

5.3 The Experiment

Now that we have specified our solver and some problems on which it will be applied, we can set
up an experiment to systematically study how the solver factors that control changes to the trust-
region size—namely y1, y2, 71, and nz—influence the performance of ASTRO-DF. For each of these
factors, we specify a range of values over which we will vary them in a design. For y; in particular,
the exploration range is chosen to be [1.0,3.0] because increasing the trust-region radius (which
determines the step size) by more than a factor of 3 seems unreasonable. The other three factors
must be between 0 and 1, and additionally we must set ; < 1. In all runs of all variations of the
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Fig. 2. The stochastic activity network structure used in the experiment.

Table 2. ASTRO-DF Solver Factors and Factor Ranges Used in the Experiment

Factor Description Type Specification Range

Y1 expansion rate of Ay after a very successful iteration continuous € (1, o) [1.0,3.0]
Y2 contraction rate of Ay after an unsuccessful iteration continuous € (0, 1) [0.1,0.9]
m threshold for a successful iteration continuous € (0,1) [0.1,0.5]
N2 threshold for a very successful iteration continuous € (11, 1) [0.5,0.9]

ASTRO-DF solver, we fix the initial solution of SSCONT to be x, = (600, 600) with total budget
(the maximum number of function evaluations) of T = 1, 000 and the initial solution of SAN to be
xo = (8,38,...,8) with total budget of T = 10,000.

For efficiency, our chosen design over solver factors is a nearly orthogonal Latin hypercube
(NOLH) design with 3 stacks for a total of 17 + 16 + 16 = 49 design points. This design was
generated using the datafarming Ruby gem version 1.4.0 [38] with

stack_nolhs.rb -s 3 < astrodf_factor_setting.txt > astrodf_design.txt

run in the command line. In the command above, astrodf_factor_setting.txt is an input
text file specifying the range of settings of the four solver factors, as listed in Table 2, and
astrodf_design. txt is an output text file (to be created) listing all 49 design points. Each de-
sign point corresponds to a version of the ASTRO-DF solver with a specific combination of values
for the factors y1, y2, 11, and 2. Note how efficient this is: a full factorial design (gridded design) for
4 factors at 17 levels requires 17* = 83521 design points, while three stacks of our NOLH requires
only 49. On a computing cluster with 49 or more cores, this is essentially the same user time as
running a single design point.

Many options are possible for the problem factor design. We opt for the simplest in this article:
a single categorical factor that specifies the problem name, as shown in the first column of Table 3.
In this table, we also list the default settings that, while unchanged in our experiment, might be
factors of interest in future experiments. For example, a solver specialist might wish to vary the
factors of the SSCONT problem to get a sense of how often it is feasible and useful to re-optimize
if costs or demand patterns change, or investigate how long the warm-up period and run lengths
should be to achieve satisfactory performance on key solver metrics. A solver generalist might be
more interested in exploring how the solver behaves on problems of different dimensions, e.g., by
generating a wide variety of stochastic activity networks with different structures and numbers of
arcs, or by exploring a larger selection of problems from the SimOpt testbed.

Our overall design is the result of crossing the two individual designs: one for the solver factors,
the other for the categorical “Problem” factor, for a total of 49 x 2 = 98 design points. For each
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Table 3. Problem-Specific Potential Factors and Default Settings for Two Simple Problems

Problem |Factor Description Type Specification  Default
demand distribution categorical exponential®
mean demand per period continuous >0 100
order lead time distribution categorical Poisson”
mean order lead time, in periods continuous >0 6

SSCONT backl-order cost per.unit cont%nuous >0 4
holding cost per unit continuous >0 1
fixed cost per order continuous >0 36
variable cost per unit continuous >0 2
warm-up before data collection, in periods  integer >0 20
number of periods after warm-up in each run integer >1 100
distribution of activity time for arc i categorical exponential”®
cost per unit time for arc i continuous > 1

SAN .
number of nodes integer >1 9
graph precedence structure categorical see Figure 2

*Not currently farmable in SimOpt.

design point, we ran 10 macroreplications of the corresponding version of ASTRO-DF and set
the numbers of postreplications as 200 for each recommended solution. On each macroreplication
of each design point, we recorded the following 10 responses: the final relative optimality gap
v(1), the area under the progress curve A, and the a-solve times r(«) and a-solvabilities y(«) for
a = 0.05,0.1,0.2, and 0.5. The final relative optimality gaps and a-solvability responses reflect
the goodness of the solutions that ASTRO-DF can find given the budget. On the other hand, the
area under the progress curves and a-solve times reflect the speed at which the solver finds better
solutions over time.

The data farming analysis requires the factors and responses to be consolidated into a single
file so that we can explore the input-output relationships. SimOpt facilitates this by automatically
creating a comma-separated value (.csv) file suitable for analysis. Each of the 49 X 2 X 10 = 980
rows in this file provides the factor settings, response measures, and any other constants, outputs,
or diagnostics recorded for a single run; we call this the raw datafile. We also create a summary
datafile by aggregating across macroreplications at each design point, obtaining the mean and stan-
dard deviation of each numeric-valued response and the probability of achieving each threshold
of interest; the summary-by-problem-and-solver-design-point datafile has 49 X 2 = 98 rows. When
analyzing ASTRO-DF’s performance on either SAN or SSCONT, we will use only the subset of the
rows of the summary-by-problem-and-solver-design-point corresponding to that problem. We can
further summarize the data over the “Problem” factor to obtain a summary-by-solver-design-point
datafile with 49 rows each containing summary statistics for a single combination of solver factors.
Some of the graphs and statistical methods that follow use the raw datafile, others are based on
one of the summary datafiles.

5.4 Steps in Analysis

Our objective in this section is to provide examples of the types of analyses that might be of interest
to a solver specialist or generalist.

5.4.1 Question 1: What was the spread of solver performance metrics over the entire experiment?
There are several reasons for asking this question. From the raw datafile, we can determine
whether or not all the metrics are available, and whether the ranges of values are plausible. From
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Fig. 3. Histograms and boxplots for several quantitative ASTRO-DF solver performance metrics from the
raw datafile. The numbers of non-missing responses are also shown in parentheses. Note that the 7(2) in
3(c)-3(f) are on the same scale.
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Fig. 4. Boxplots of final relative optimality gap, v(1), across design points for two problems (SSCONT and
SAN) from the raw datafile.

the summary datafile, we can determine whether the ranges of summary metrics across design
points differ enough that we would be interested in fitting metamodels of the response surfaces.
For example, Figure 3 shows a series of histograms for the six numeric responses. Additionally, the
a-solvabilities (not shown) are y(0.05) = 0.365, y(0.1) = 0.620, y(0.2) = 0.837, and y(0.5) = 0.965,
respectively; the rows for which the a-solve times are missing correspond to runs where the
solver failed to a-solve the problem.

The histograms for the final relative optimality gap and the area under the progress curve were,
at first, surprising, because we did not expect any normalized values to fall outside the range [0, 1].
After further discussion, we realized this is indeed plausible. We leave a full discussion to Question
8, but remark here that solver generalists and specialists should be aware of the possibility of
some solver performance metrics falling outside the normalized limits. The distributions of the
a-solve times conform to our expectations that it becomes more difficult to solve problems as «
decreases. This is revealed both by the increasing frequencies of runs that use high proportions
of the available time, as well as decreasing numbers of runs where the 7(«) values were reported.
Figures 3(c)-3(f) reveal that a greater preponderance of runs require more of the available time to
solve the problem as the « threshold for optimality decreases.

5.4.2 Question 2: What run-to-run variation (spread, shape, and central tendency) was observed
for the solver performance metrics of interest? Did these vary across design points? Answers to
these questions may shape further analysis or lead to additional experiments. The boxplots in
Figure 4 show that the final optimality gap data for a specific design point tends to be either
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relatively symmetric or positively skewed (towards high values). This is unsurprising since the
unknown absolute optimality gap is bounded below by zero. However, it is interesting to see
how the distributions of v(1) differ by problem: SSCONT is much harder to solve than SAN,
which may be due to a small budget chosen for solving it and the problem’s high degree of
simulation error (variability) when evaluating solutions. The high variability in v(1) for SSCONT
is not necessarily a cause for concern. A generalist will be more interested in solver performance
across a wide range of problems than in predicting the actual solver performance for a specific
problem, and there is no requirement that the variabilities across problems be similar. If the
generalist was concerned about the number of runs resulting in v(1) > 1, they could choose to
rerun the SSCONT experiments with a larger budget before conducting more detailed analysis.
Alternatively, they could add a budget multiplier as a factor in a later experiment; if this ranged
from 0.5 to 2.0 (say), then budgets for a specific problem would range from one half to twice their
initial budget. This would help ensure that general insight made on solver factors is based on
qualitatively similar small, medium, or large budgets, where small, medium, and large could differ
by problem. Similarly, a specialist will be more interested in solver performance across a wide
range of variants (problem-specific factor combinations) for their problem than in predicting the
actual solver performance for a particular variant, but could choose to rerun the SSCONT with a
larger budget, or incorporate a budget-related factor into a new experiment, before proceeding.

5.4.3 Question 3: Are there any outliers or solver factor configurations that lead to unusual be-
havior? Recall that the raw datafile may contain results from hundreds or thousands of runs. Con-
sequently, it is not surprising that many of the histograms or boxplots will reveal large numbers
of outliers, in one or both of the typical statistical measures: a distance over roughly two standard
deviations from the mean, or a distance over 1.5 times the interquartile range from the ends of the
box in a box plot.

By construction, none of the design points can be considered an outlier in terms of its combina-
tion of factor settings, but they can be in terms of the solver performance metrics. While a lot of
variability is present across the design points in the ASTRO-DF experiment, none appear to be a
clear outlier. In contrast, consider Figure 5(a), where three design points stand out from the rest.
In this notional (synthetic) data, design point 3 has a very large spread, design point 13 has a very
large median, design point 15 has a very low spread and low median, and the remaining 14 design
points have boxplots based on 20 observations generated from essentially identical distributions.

Another graphic that can reveal design points with unusual behavior is a scatterplot matrix
of the summary datafile, as shown in Figure 5(b). One design point is interactively selected as
an outlier based on the lower-left subplot; this highlights it in all subplots. This selected design
point is unusual in that the associated version of ASTRO-DF struggles to achieve even 0.2- or 0.5-
solvability. The upper-left subplots indicate that the v(1) mean for this design point is fairly high
while its standard deviation is fairly low. In other words, this version of ASTRO-DF consistently
fails to make good progress on the SSCONT problem. We chose to show plots for a single problem
in Figure 5(b), but similar plots could be of interest to a generalist if they were constructed from
the summary-by-solver-design-point datafile.

Figures 5(a) and 5(b) clarify another important point: unlike situations involving observational
data, unusual design points should not be discarded or ignored. Tracing back to their source may
identify bugs in the solver or the solver-problem interface that can be corrected, i.e., the data farm-
ing approach can help verify the solver source code. Additionally, unusual design points with un-
desirable behaviors may help both generalists and specialists set boundaries or limits on the solver
factors, while unusual design points with desirable behaviors may help them select appropriate
defaults.
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Fig. 5. Examples of two types of plots that may assist in identifying unusual design points.

5.4.4 Question 4: How are the solver performance metrics correlated? Do they involve tradeoffs or
behave serendipitously? This question can be of interest for several reasons. First, at times, it may
streamline the detailed analysis process. If, for example, two or more of the solver performance
metrics have very strong pairwise correlations, then examining one (rather than all) of them in
greater detail for questions 5-10 may be sufficient. Second, the sign of the correlation between two
solver performance met