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The performance of a simulation-optimization algorithm, a.k.a. a solver, depends on its parameter settings.
Much of the research to date has focused on how a solver’s parameters affect its convergence and other
asymptotic behavior. While these results are important for providing a theoretical understanding of a solver,
they can be of limited utility to a user who must set up and run the solver on a particular problem. When
running a solver in practice, good finite-time performance is paramount. In this article, we explore the
relationship between a solver’s parameter settings and its finite-time performance by adopting a data farming
approach. The approach involves conducting and analyzing the outputs of a designed experiment wherein
the factors are the solver’s parameters and the responses are assorted performance metrics measuring the
solver’s speed and solution quality over time. We demonstrate this approach with a study of the ASTRO-DF
solver when solving a stochastic activity network problem and an inventory control problem. Through these
examples, we show that how some of the solver’s parameters are set greatly affects its ability to achieve
rapid, reliable progress and gain insights into the solver’s inner workings. We discuss the implications of
using this framework for tuning solver parameters, as well as for addressing related questions of interest to
solver specialists and generalists.
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1 Introduction
Many stochastic-optimization algorithms (a.k.a. solvers) have a multitude of settings that influence
how they operate, and in turn, how rapidly and reliably they make progress. For example, a basic
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version of the well-known stochastic gradient descent (SGD) algorithm may have several user-
specified settings, such as the step size, the sample size, and the type of projection operator [37].
A more sophisticated version may allow users to choose a line-search routine [36] or parameters
for shifting and scaling the underlying problem [5]. We refer to such user-specified settings or
parameters as solver factors, which may be real-valued, integer-ordered, or categorical.

In our opinion, the question of how best to investigate, characterize, and set solver factors has
not received as much attention as it deserves. The consideration it has received often concerns the
solver’s asymptotic performance, e.g., local or global convergence and associated rates, accompa-
nied by supporting theoretical results. For the SGD algorithm, for instance, having the sequence
of step sizes shrink to zero sufficiently slowly can help to ensure convergence to a local optimal
solution. These results are of theoretical value, but they do not always translate to practical rec-
ommendations for everyday users interested in achieving good finite-time performance. In partic-
ular, tuning parameters based on a problem’s properties, e.g., its Lipschitz constant, dimension, or
signal-to-noise ratio, remains a challenge. Moreover, factor settings that lead to desirable asymp-
totic performance do not necessarily yield good finite-time performance. In practice, if a user is
likely to run a solver only once on their problem of interest, good finite-time performance—namely,
the ability to quickly and consistently find better solutions—is paramount. In research, identifying
the most influential factors for achieving good performance for all problems (if possible), or for
specific classes of problems (e.g., those with convex or nonsmooth objective functions, or those
of low or high dimension), can provide a structured and holistic approach for identifying default
settings and developing guidance for users, so paving the way for a new generation of robust and
reliable solvers.

1.1 Related Work
Past research on setting solver factors has predominantly focused on search techniques for tuning
hyperparameters of machine-learning algorithms. Unlike in the simulation-optimization context
we consider in this article, these algorithms typically do not encounter any randomness in the
objective function evaluations [49, 50] and therefore do not exhibit variable performance from
run to run. These techniques include, but are not limited to: Bayesian optimization algorithms
[1, 31], which are limited by their dependence on certain assumptions and computational cost
when the space of hyperparameters grows; successive halving and bandit methods [27], which are
limited by their sensitivity to random sampling; and combinations of the two [13], which can be
limited by early stopping and the aforementioned scalability challenges of Bayesian optimization.
Random search [2] and evolutionary algorithms [35] are also often used for this purpose, but have
limitations in computation, parametric sensitivities, and a lack of convergence guarantees.

Many other studies have addressed the tuning of continuous-valued hyperparameters by
sequentially generating and evaluating candidate configurations of hyperparameters of an opti-
mization algorithm. Iterative procedures have been devised to generate a new set of candidates
via design of experiments (DOE) at the rudimentary level of full factorial, Latin hypercube, or
random sampling designs [15], probability models [33], neighborhood search [24], or optimiza-
tion algorithms including response surface methods and numerical gradient-based algorithms
or heuristics [21, 22]. The solver’s performance under a given configuration is assessed via fixed
evaluation [51], screening [3], or an adaptive number of runs [23]. Many of these methods aim to
find a promising region in the parameter space at minimum cost. For a recent survey, see [20].

Other gaps exist in the literature. A persistent challenge when searching for good hyperpa-
rameters for solving a specific problem has been the development of a framework that easily
accommodates categorical parameters and a large hyperparameter space. Moreover, when choos-
ing the best hyperparameter configuration for a solver for stochastic optimization, the variability
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(risk) of the solver’s performance under each configuration has rarely been incorporated [40]. In
addition, reporting a configuration as optimal for a solver without knowing why it is optimal is
of limited utility. Such an approach does not lend flexibility to see, for example, synergistic or
redundant interaction effects among hyperparameters or between hyperparameters and problem
features, e.g., the problem dimension. Consequently, this kind of reporting does not inform the
user on how the best configuration might change if the problem being solved were to change in
size, features, or certain constant factors.

When algorithms for hyperparameter tuning are not employed, experimentation with solver
factors is often ad hoc. In the extreme case, experiments are run with solver factors set to what ap-
pear to readers to be arbitrary values. These values may be those that produced the best empirical
performance on the set of test problems, perhaps chosen to make a newly proposed solver look
good relative to its competitors. Even when experiments have been run with a variety of factor
settings, it can be difficult to extract practical guidance on how to set factors for a new problem.
This issue is compounded by the reality that a solver’s “out-of-the-box” settings in software imple-
mentations may not be good for all problems. Moreover, these default settings may not even be
the product of extensive experimentation.

1.2 Our Contributions
We seek to address the limited understanding users and developers may have about how a solver’s
factors affect its behavior and finite-time performance. We approach the problem from a data-
farming perspective wherein solver factors are systematically varied according to a DOE. Our
proposed approach entails running extensive experiments with different versions of a solver on
a given problem or a small class of problems. Our use of DOE differs from past research on data
farming, which generally concerns varying parameters of a simulation model to understand how
changes to its inputs affect its performance measures. We instead vary parameters of the solver,
and our response functions are performance metrics for simulation-optimization algorithms, such
as the time at which the solver attains some specified improvement in the objective. Our approach
can be extended to a range of algorithms that touch upon many domains. For example, algorithms
for surrogate optimization [19], derivative-free optimization [26], stochastic programming [4], and
Bayesian optimization [14] can all exhibit variable run-to-run performance and could benefit from
more informed setting of solver factors. Other approaches that have been observed to be sensitive
to the setting of hyperparameters are simulation-based inference (SBI) [28] and some types of
metamodeling [12]. To the best of our knowledge, DOE and data farming have not been applied
in the context of studying solver performance when incorporating the solver’s variability, but we
demonstrate that they can be powerful methods for gaining a deeper understanding of a solver.
The advantage of DOE for experimenting with solver factors is that it can provide more than just
an optimal configuration.

Different types of researchers or analysts can have different end goals when using this approach.
Consequently, they might benefit in different ways, either directly or indirectly. We consider three
groups. First, those interested in general solver performance could use this approach to assist in
setting appropriate default values for a particular solver’s factors during development, provide
guidance to solver users about when and how they might seek to improve on these default values,
or perhaps choose to remove some as factors and re-specify them as functions of other factors.
We refer to these as solver generalists or simply generalists throughout the remainder of this
article. We anticipate that providing insights into the tradeoffs, risks, and sensitivities of a solver’s
inner workings will assist generalists in advancing the state of the art in simulation-optimization
methodology. Second, those faced with the need to solve a particular class of problems on a regular
basis might seek to tune the solver’s factors in ways that are beneficial for that class. We will refer
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to these sophisticated users as solver specialists or simply specialists. Specialists directly benefit
from this approach, because even small improvements in the quality and timeliness of solutions
to individual problems may scale to massive overall improvements when hundreds or thousands
of problems are solved. Finally, occasional solver users also stand to benefit, albeit indirectly.
They may care about the solver parameters not at all, focusing solely on finding a high-quality
solution to a particular problem by making a limited number of runs of one or more solvers. We
will refer to these as occasional focused users or simply focused users. Focused users may care little
about differences in finite-time performance with different parameter configurations (or different
solvers) as long as a good solution is found in a reasonable time; if they have a month to solve a
problem, solving it in one hour, one day, or one week may be equally valuable. However, in the
short term, focused users might indirectly benefit from using a particular solver whose default
parameter settings have been chosen wisely. Similarly, if they decide to make more than one run of
the solver, perhaps because they are not sure they have a good solution from the first run, focused
users would benefit from having reasonable guidance on how to modify the solver’s parameters
on subsequent runs. In the longer term, focused users will benefit as better solvers are developed.
As a side note, much of the published discussion on tuning hyperparameters apparently focuses on
benchmarking studies for this type of user [11]; we believe the current wave of increased reliance
on analytics and AI will draw many more specialist users into the fold. While focused users could
use a data farming approach, they are less likely to do so unless the methodology is embedded into
the solver itself. Consequently, generalists and specialists are our primary audience in this article.

The rest of this article is organized as follows: In Section 2, we introduce the canonical
simulation-optimization problem and a set of metrics for evaluating a solver’s finite-time perfor-
mance. We then set up a data-farming framework for studying solver performance in Section 3.
In Section 4, we present a list of “Top Ten” questions and associated statistical techniques that
can guide an analysis of the experimental results. In Section 5, we apply these techniques to study
the ASTRO-DF algorithm and demonstrate that how the solver’s factors are set matters, in a mea-
surable way, and illustrate some of the types of attainable insights that extend beyond optimum
seeking or parameter tuning. We conclude in Section 6 with a discussion of extensions to the
data-farming framework and its implementation in the SimOpt testbed [10].

2 Simulation Optimization and Solver Performance Metrics
A simulation-optimization (SO) problem is an optimization problem where the objective func-
tion and/or constraints are evaluated (with noise) through a stochastic simulation. A wide variety
of problems can be formulated as SO problems. We consider the prototypical SO problem:

min
x

f (x) ≡ Ef (x , ξ ) subject tox ∈ D, (1)

wherex is a vector of decision variables that lies in a domain D. We consider the setting in which D
is either unconstrained, i.e., D solely restricts components of x to be integer-valued or continuous,
or is described by only deterministic constraints; we do not consider stochastically constrained
domains in this article. The term ξ represents the collection of random variables generated by a
simulation model in the course of simulating a single replication. The distribution of ξ is allowed
to depend on x , thus the expectation in Problem (1) is over realizations of ξ for a given x . The
function f (x , ·) denotes the logic used to obtain an estimate of the objective function f (x) for a
given feasible solution x .

2.1 Measuring Solver Performance
An SO solver attempts to solve Problem (1) by estimating the objective function values of different
feasible solutions. For example, at a given solution x , a solver may take nx simulation replications
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and estimate f (x) by the sample average of the outputs f (x , ξ1), f (x , ξ2), . . . , f (x , ξnx ). Depending
on the problem and available computational resources, it may be impossible to evaluate all
solutions in D; instead the solver may evaluate only a subset of feasible solutions. A solver
strives to quickly find feasible solutions with near-optimal objective function values. Although
SO algorithms are diverse, some efforts have been made to develop widely applicable metrics for
evaluating their performance. For example, performance profiles as well as data profiles [32] track
the solvability (percentage of problems solved by a solver—a.k.a., success ratio) given a fixed time
(computation budget), and overall efficiency metrics [48] track the trade-off between computation
time and solvability. We adopt and adapt many of the metrics introduced in [8] and provide only
a summary description here to convey the essential ideas.

When running a particular SO solver on a given problem, we fix a budgetT—measured in simula-
tion replications—and observe the sequence of solutions recommended by the solver as it expends
the budget. This sequence of recommended solutions can be conveniently viewed as a continuous-
time stochastic process {X (t) : 0 ≤ t ≤ 1} whereX (t) is the solution recommended when a fraction
t of the budget T has been expended. The objective function values of these solutions also form a
stochastic process { f (X (t)) : 0 ≤ t ≤ 1}. Plotting f (X (t)), or an estimate thereof, as a function of t
is common in the optimization literature. To produce metrics that are independent of the scaling of
the objective values and of the direction of optimization (minimization vs maximization), one can
standardize f (X (t)) using the objective function values of some (typically poor) initial solution x0
and a reference optimal solution x∗. To be more precise, consider

ν (t) = f (X (t)) − f (x∗)
f (x0) − f (x∗) ,

which represents the relative optimality gap of the solution recommended at t , relative to the
initial optimality gap. A realization of the stochastic process {ν (t) : 0 ≤ t ≤ 1} is called a progress
curve of the solver. A plot of ν (t) as a function of t shows a piecewise-constant function that
is typically, though not necessarily, nonincreasing. Because the objective function f cannot be
evaluated exactly for SO problems, one would more commonly work with an estimated progress
curve obtained by estimating the objective f using replications of the simulation model at x0, x∗,
and X (t). Using the outputs of the replications taken by the solver when visiting a solution X (t)
is known to produce an optimization bias [29]. Thus, it is advisable to take fresh independent
replications (referred to as postreplications) in a post-processing stage. The choices for the number
of postreplications for each X (t) and the number of postreplications for the reference solutions x0
and x∗ are user-specified and could be chosen to be relatively large to avoid incorrectly ordering
solutions by chance. See Section 8 of [8] for a detailed discussion and a theoretical investigation
of these choices.

A progress curve contains a great deal of information about the performance of a solver on a
single run. For example, Figure 1(a) shows progress curves for three different runs of a fictitious
solver. In Run 1, the solver takes a long time to begin improving on its initial solution, but finds
the optimal solution after 80% of the budget has been consumed. By contrast, the curve for Run 2
shows the solver making great progress initially, followed by a long period where no progress is
achieved before gradually reducing the optimality gap. In Run 3, the relative optimality gap drops
fairly early (though not as soon as in Run 2), but the solver later has a more difficult time improving
on its solution.

We will find it helpful to summarize the information contained in a progress curve with a
few scalar metrics, which can then be treated as responses within our data-farming framework.
We highlight four functionals of the progress curve that describe important aspects of a solver’s
performance:
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(a) Progress curves for three runs. Dashed lines indicate thresholds
of 0.05, 0.5, 0.2, and 0.1 for the relative optimality gap.

Solver metric Run 1 Run 2 Run 3
Final relative optimality gap

(1) 0.00 0.05 0.31
Area under progress curve

0.69 0.43 0.21
Time at which curve drops
below threshold

(0.5) 0.80 0.05 0.15
(0.2) 0.80 n/a 0.23
(0.1) 0.80 n/a 0.30
(0.05) 0.80 n/a 0.85

Curve drops below threshold
(0.5) 1 1 1
(0.2) 1 0 1
(0.1) 1 0 1
(0.05) 1 0 1

(b) Solver performance metrics for the three runs. The
bests of each measure are indicated in bold.

Fig. 1. Progress curves and performance metrics for three runs of a solver.

— The final relative optimality gap, ν (1), indicates what fraction of the initial optimality gap is
remaining after the solver has exhausted its budget.

— The area under the progress curve, A =
∫ 1

0 ν (t)dt , is the time-average relative optimality gap
associated with the solutions recommended by the solver over time.

— The α-solve time, or time at which the relative optimality gap first drops below some thresh-
old α ∈ [0, 1], τ (α) = inf{t ∈ [0, 1] : ν (t) ≤ α }, measures the speed with which the solver
achieves a specified degree of improvement.

— The α-solvability, or whether or not the relative optimality gap drops below some threshold
α ∈ [0, 1] before termination, y(α) = I{τ (α) ≤ 1}, measures the ability of the solver to find
a near-optimal solution given its budget.

Figure 1(b) displays the solver performance metrics associated with the three progress curves
from Figure 1(a). Each of the runs is associated with the best performance in at least one metric,
but none of the runs dominate in all.

The behavior of an SO solver varies from run to run due to random error when estimating the
objective function and (optional) intrinsic randomness, e.g., picking a random search direction. It
is therefore imperative to conduct multiple runs, hereafter referred to as macroreplications, of a
solver on a problem to understand its variable performance. In light of this variability, the scalar
metrics listed above can be regarded as random variables, and properties of their distribution, e.g,
their mean, median, variance (when finite), high-probability quantiles or VaR (Value at Risk),
and CVaR (Conditional Value at Risk) [18] serve as useful summary statistics.

2.2 Solver Factors
SO solvers typically feature many parameters that affect how the solver evaluates solutions and
seeks better ones. In a nod to the conventional terminology used in DOE, we call such parameters
solver factors. Solver factors come in many forms and can control a myriad of aspects of solver be-
havior. For example, solver factors can relate to an exploration-exploitation tradeoff within an algo-
rithm, such as the choice of the population size in a genetic algorithm, the step length in a gradient-
descent algorithm, or the criteria for choosing a model-minimizing point within a trust-region
algorithm. As illustrated in these examples, solver factors can be integer-ordered, real-valued, or
categorical. These factors influence not only the solver’s behavior, but also the solver’s average and
variable performance from run to run, i.e., its ability to consistently find high-quality solutions.
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As a practical remark, to carry out the experiments we discuss in the next section, solvers should
be coded in a way that allows their parameters to be varied externally. In this way, an experiment
involving multiple versions of the same solver can be run without needing to manually change
hard-coded values. Many code implementations of SO solvers are not structured in this way, since
only one version of the solver is typically run when solving a problem in practice. One exception
is the SimOpt library [10], an open-source testbed of SO problems and solvers, wherein solvers
are coded to support flexible experimentation where any and all solver factors may be altered. The
solver performance metrics discussed in Section 2.1 and the data-farming framework we are about
to introduce have been implemented in a recent redesign of SimOpt, described in [9], and users can
reproduce the experiments in this article or run their own on the library’s collection of problems
and solvers.

For Solver s , we let s(v) denote a version of the solver corresponding to its factors being set
as v . As previously mentioned, v may represent a combination of numerical and non-numerical
factors. We wish to understand how performance metrics of Solver s , particularly those listed in
Section 2.1, change as the combined factor settings,v , change. To study this question, we introduce
a data-farming framework that involves testing multiple versions of the solver and analyzing the
results.

3 Experiment Design
Studies of new SO algorithms commonly feature experiments that test only a handful of versions
of a solver, with these often coming from varying one or two solver factors. Ad hoc comparisons
like this allow only limited conclusions to be drawn about the impact of solver factor settings
on solver performance. Varying individual factors one at a time while holding the other fixed
offers in sight into only the marginal effects of each factor, which may be of little informational
value because it precludes the identification and estimation of interaction effects and makes it
impossible to fit metamodels that capture solver behaviors in the interior of the factor space.
Moreover, full-factorial designs, wherein all combinations of setting solver factors at a finite num-
ber of levels are evaluated, can be too expensive to run, even for modest numbers of factors and
levels.

DOE affords a more systematic comparison of the performances of different versions of a solver
with a more efficient (i.e., smaller) design. For concreteness, consider a set of r versions of Solver
s , denoted by S = {s(v1), s(v2), . . . , s(vr )} where the versions differ only in the settings of the k
solver factors under investigation. In the DOE terminology, the set V = {v1,v2, . . . ,vr } is called
the design, and each combination of factor settings, vj for j = 1, 2, . . . , r , is called a design point.
The design V should possess certain properties suited to the user’s needs, such as filling the space
of factors or allowing for the study of interactions among factors. There are many good designs,
but some are more suitable for physical experiments or deterministic computer experiments
than for stochastic simulation experiments. A few designs we recommend for investigating
continuous-valued solver factors are nearly orthogonal Latin hypercubes (NOLHs) [7],
resolution V frequency based designs (R5FBDs) [39], or resolution V central composite
designs (R5CCDs) [41]. These all explore factors at multiple levels, and provide flexibility for
fitting different types of metamodels or using different visualization techniques during analysis.
Orthogonality or near-orthogonality is desirable for separately estimating the effects of different
factors. The R5FBD and R5CCD are perfectly orthogonal and permit all main effects, quadratic
effects, and two-way interaction effects to be fit simultaneously. If some factors are discrete with
relatively few levels, or categorical factors, then nearly orthogonal-and-balanced (NOAB
or NOB designs) [47] can be used; here, “nearly balanced” refers to sampling each level of a
discrete-valued or categorical factor approximately the same number of times. The space-filling
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behavior for most of these designs can be improved by reassigning factors to columns of the
design matrix, a process called stacking. Finally, crossing two designs V1 (k1 factors, r1 design
points) and V2 (k2 factors, r2 design points) is a straightforward way to construct designs capable
of exploring k1+k2 factors in r1×r2 design points; these can be useful, even though they are not the
most efficient.

Those unfamiliar with the DOE field may not realize how extremely efficient these designs can
be. For instance, consider a solver with 20 factors. If one were to use a brute-force method to explore
these factors simultaneously, each at 2 levels, that would require 220 or nearly 1.05M design points;
exploring these at 10 levels each would require 1020 or 14 orders of magnitude more. Conversely,
the 20 factors could be studied at 129 levels in 129 design points (NOLH), at 1673 levels in 1673
design points (R5FBD), at 5 levels in 553 design points (rotatable R5CCD), or varying numbers
of levels in 512 design points (NOAB). See [43] for more information about DOE for simulation
experiments, or see [38] to download design generator software.

DOE plays a central role in the area of data farming [40]. In data farming, a user studying
a simulation model first “grows” a dataset by running the model with different combinations of
inputs (i.e., factors of the model) according to a design of experiments and then analyzes the results.
Our application of data farming differs from the conventional approach in that our responses of
interest are not the performance indicators of the simulation model but rather metrics of how well
a solver solves a given SO problem, such as those mentioned in Section 2.1.

Our experiment design entails running multiple macroreplications of each version of the solver
(corresponding to each design point) on a fixed SO problem. The same problem instance is solved
at all design points, hence, the progress curves and all associated metrics are standardized using
the same reference solutions x0 and x∗. Specifically, all macroreplications of all solver versions start
at the same initial solution x0, and x∗ is taken to be the estimated best solution recommended by
any solver on any macroreplication. We perform a common number of macroreplications at each
design point, though the data-farming framework permits the sample sizes to vary across design
points. For instance, if the observed responses (solver performance metrics) at a given design point
were highly variable, we may choose to take more macroreplications.

When taking a common number of macroreplications at all design points, common random
numbers (CRN) can be used across design points to sharpen the comparisons. In our setup, CRN
would ideally mean that the different versions of the solver would see the same sequences of
objective function estimates if simulating the same solutions and would all use the same sequence
of random inputs for their internal purposes. The former of these is readily achieved if the solver
additionally using CRN across solutions. The experiments in this paper were conducted in SimOpt
[10] and use CRN in all these ways by default. Our intention in using CRN across design points is
to better estimate the ordering of performance metrics when comparing multiple versions of the
solver.

4 Motivating Questions for Analysis
The experiment introduced in Section 3 produces a large amount of data, consisting of multiple
solver performance metrics tracked on each macroreplication of each solver version tested. It re-
mains to transform this data into insights via a purposeful analysis. In this section, we outline
pertinent questions to the study of solver performance and the statistical techniques best suited
for answering them. The intent is to showcase the range of analyses that can be carried out on the
data produced by the experiment. In Section 5, we present an empirical study, going into much
more depth and discussion on the methods and potential insights.

Table 1 lists the “Top Ten” questions that have been proposed as guides to the analysis of data-
farming experiments, along with a partial summary of statistical tools and visualization techniques
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Table 1. “Top Ten” Questions to Ask During the Analysis of Results from a Solver Performance Experiment

Question Some techniques
1. What was the spread of solver performance

metrics over the entire experiment?
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

summary statistics, histograms, box plots2. What run-to-run variation (spread, shape, and
central tendency) was observed for the solver
performance metrics of interest? Did these vary
across design points?

3. Are there any outliers or solver factor
configurations that lead to unusual behavior?

box plots, scatter plots, metamodel-specific diagnostics
(e.g., Cook’s distance for regression metamodels)

4. How are the solver performance metrics
correlated? Do they involve tradeoffs or behave
serendipitously?

correlation matrices, scatterplot matrices

5. Which solver factors are most influential? ⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

6. Are there any important interactions? stepwise regression, partition trees, other metamodels,
7. What are the interesting regions and threshold

values in the solver factor space?
interaction profiles, interactive graphs

8. Are any of the results counterintuitive? trace results to their causes as part of verification and
validation

9. Which configurations of solver factors are most
robust, leading to consistently good
performance for a solver metric of interest?

contour plots, metamodels of robustness as quantified
by loss functions over solver performance metrics,
risk-adjusted solver performance metrics

10. Are there any configurations that perform well
w.r.t. multiple solver performance metrics?

parallel plots, heatmaps, defining constraints, Pareto
optimal curves, weighted loss functions

that can be used to answer these questions [34]. These are not intended to be exhaustive, but are
adapted from similar questions that have helped direct the analysis for hundreds of data-farming
experiments that investigate the relationships between simulation model factors and simulation
model responses for specific applications. Our “Top Ten” questions shift the focus to exploring the
relationship between solver factors and solver performance metrics.

In Section 1.2, we stated that different types of researchers and analysts can benefit in different
ways from such a study. Their overarching goals in answering these questions may differ as well.
We now elaborate further.

Generalists (i.e., those interested in general solver performance) could use such a study to assist
in setting appropriate default values for a particular solver’s factors during development, provide
guidance to solver users about when and how they might seek to improve on these default values,
or perhaps choose to remove some as factors and re-specify them as functions of other factors.
Researchers developing or implementing new solvers can be thought of as generalists. Generalists
may also be interested in experimenting with a group of solvers across multiple problems to gain
insight into which problems can be characterized as “easy” or “hard” for those solvers; this kind
of meta-experiment is beyond the scope of this article, but is a worthwhile direction for future
research.

Specialists faced with the need to solve a particular class of problems on a regular basis might
seek to tune the solver’s factors in ways that achieve good finite-time performance for that class.
For example, a retail warehouse might be faced with setting inventory policies for thousands of
items where the policies are revisited over time as demand patterns evolve, costs change, or new
products are introduced. Specialists would benefit from including problem-specific factors (e.g.,
parameters of the demand distribution input models, holding costs, etc.) in their experiment, as
well as solver factors. Such a study could either determine that certain solver factor settings yield
good solver performance for a wide variety of potential futures, or provide guidance on how to
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select good solver factor settings based on the problem’s characteristics. Either way, even small
improvements in the quality and timeliness of the solutions may lead to substantive reductions in
the overall cost when the specialist is called on to solve thousands of problems. The upfront cost
and time required to run the data farming experiment may be quickly recouped by the benefits of
improved performance if, say, the specialist can solve problems on a much more rapid basis. Of
course, if the problems are relatively simple to solve, they might not need such a study or care
about which solver version they chose.

5 A Study of ASTRO-DF
We demonstrate how to leverage data farming to investigate solver factors with an example
consisting of one solver and two problems, described in Sections 5.1 and 5.2, respectively. These
are drawn from the portfolio of solvers and test problems currently implemented in the SimOpt
testbed [10], which continues to expand; the interested reader could conduct a similar study using
different solver and problem instances. We set up an experiment in Section 5.3 and then delve into
the “Top Ten” questions in Section 5.4. Throughout these sections, we discuss situations where
specialists and generalists might pursue different lines of inquiry. Our goal in this section is to
provide a general template for those embarking on data farming a solver’s parameters. That is, we
focus on illustrating the methodology rather than reporting on a definitive study of ASTRO-DF’s
performance. We discuss further extensions in Section 5.5.

5.1 The ASTRO-DF Solver
ASTRO-DF [16, 17, 45], which stands for Adaptive Sampling Trust-Region Optimization for
Derivative-Free problems, is a class of algorithms that use local models fitted on function estimates
of an incumbent solution and its neighbors to converge to a stationary point. The neighborhood
represents the region within which the local model is credible and its size (specifically, its radius)
governs the step size taken to determine the next iterate. ASTRO-DF is proven to converge to a
first-order critical point almost surely and reach ϵ-optimality at the rate of Õ(ϵ−4) under certain
assumptions, irrespective of the setting of its factors. This example illustrates the finite-time per-
formance of ASTRO-DF as a function of some of its factors that determine how the trust region is
updated; the relevant details of the ASTRO-DF solver are described below.

On an iteration k , ASTRO-DF maintains a trust region of radius ∆k centered at an incumbent
solution Xk , denoted by B(Xk ;∆k ) = {x ∈ D : ∥x − Xk ∥ ≤ ∆k }. The algorithm estimates the
objective function values at neighboring solutions located on the boundary of B(Xk ;∆k ) along the
coordinate basis. The sample sizes for each neighboring solution are determined by an adaptive
sampling rule and are roughly Õ(∆−4

k ). This ensures that as the trust region contracts, signifying
closeness to a stationary point, the accuracy of the estimated objective function values sufficiently
increases. ASTRO-DF then fits a quadratic model on these estimated objective function values
and performs a quality certification. In the quality-certification step, if the norm of the gradient
of the model at the incumbent solution is too small relative to ∆k , the trust-region radius is
reduced and a new quadratic model is constructed. The algorithm then optimizes (minimizes) the
certified local model within the trust region B(Xk ;∆k ), and the resulting solution X̃k+1 serves as
a candidate for the next incumbent. The success of the local model is assessed by estimating the
objective function at the candidate solution X̃k+1 and comparing the estimated improvement in
moving from Xk to X̃k+1 with the improvement predicted by the model. The objective function
estimate improvement divided by the model improvement is called the success ratio ρk , and
ASTRO-DF accepts the candidate solution if ρk ≥ η1 and rejects it otherwise. The trust-region
radius ∆k is updated before the start of the next iteration according to the following rule:
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∆k+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min{γ1∆k ,∆max} if ρk ≥ η2 [very successful iteration – expand trust region],
∆k , if ρk ∈ [η1,η2) [successful iteration – keep trust region unchanged],
γ2∆k , otherwise [unsuccessful iteration – contract trust region].

(2)
The trust-region radius, and how it changes throughout the search, affects the performance

of ASTRO-DF in several ways: it governs the local model construction and certification, and it
controls the step size between consecutive iterations. Four user-specified parameters appear in
(2): γ1, the rate of expansion of the trust region after a very successful iteration; γ2, the rate of
contraction of the trust region after an unsuccessful iteration; andη1 andη2, the thresholds defining
successful and very successful iterations, respectively. We will vary these four factors in a design.

5.2 The Problems
We cannot investigate a solver’s behavior without observing its performance. So, we apply the
ASTRO-DF algorithm to two problems from the SimOpt library [10]: SSCONT, an (s , S) inventory
problem with continuous demand and order quantities, and SAN, a stochastic activity network
problem with 9 nodes and 13 arcs. The former is a 2-dimensional problem that is non-convex,
whereas the latter is 13-dimensional and convex.

The SSCONT problem features a single product whose inventory level is dictated by an (s , S)
inventory policy, meaning that when the inventory level drops below s , an order is placed so
that the inventory level can be brought back up to S . The demand in each period is assumed to
be exponentially distributed with a mean of 100 units, independent across periods. The order lead
time is assumed to be discrete and random, following a Poisson distribution with mean of 6 periods,
independent across periods. The objective is to find values of s and S that minimize the expected
total cost over 100 periods, which is the sum of total back-order cost ($4 per unit), total holding cost
($1 per unit per period), total fixed cost ($36 per order), and total variable cost ($2 per unit) using
a warm-up of 20 periods. The standard formulation of the problem requires that s < S , however,
in SimOpt, we reparameterize the decision variables to be s and S − s so that the domain is the
non-negative orthant D = IR+ × IR+. The optimal solution is unknown.

In the SAN problem, a network of nodes are connected with arcs representing activities in a
project; the length of each arc represents the duration of the activity and the direction of each
arc reflects the precedence. The objective is to specify parameters of the arc-length distributions
to minimize a combination of the length of the longest path and an associated cost. In particular,
if θ = (θi , i = 1, 2, . . . , 13) are the parameters of exponential distributions for arc lengths and
c = (ci , i = 1, 2, . . . , 13) are the associated costs per unit time for arcs 1 to 13, then the objective
function is of the form EL(θ ) + c(θ ), where L(θ ) is the (random) length of the longest path from
node a to node i, i.e., the duration of the project, and c(θ ) = ∑13

i=1 ci/θi . For this instance of the
problem, we let ci = 1 for i = 1, 2, . . . , 13 and use the network structure depicted in Figure 2. The
optimal solution to this problem is also unknown.

5.3 The Experiment
Now that we have specified our solver and some problems on which it will be applied, we can set
up an experiment to systematically study how the solver factors that control changes to the trust-
region size—namely γ1, γ2, η1, and η2—influence the performance of ASTRO-DF. For each of these
factors, we specify a range of values over which we will vary them in a design. For γ1 in particular,
the exploration range is chosen to be [1.0, 3.0] because increasing the trust-region radius (which
determines the step size) by more than a factor of 3 seems unreasonable. The other three factors
must be between 0 and 1, and additionally we must set η1 < η2. In all runs of all variations of the
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Fig. 2. The stochastic activity network structure used in the experiment.

Table 2. ASTRO-DF Solver Factors and Factor Ranges Used in the Experiment

Factor Description Type Specification Range
γ1 expansion rate of ∆k after a very successful iteration continuous ∈ (1,∞) [1.0, 3.0]
γ2 contraction rate of ∆k after an unsuccessful iteration continuous ∈ (0, 1) [0.1, 0.9]
η1 threshold for a successful iteration continuous ∈ (0, 1) [0.1, 0.5]
η2 threshold for a very successful iteration continuous ∈ (η1, 1) [0.5, 0.9]

ASTRO-DF solver, we fix the initial solution of SSCONT to be x0 = (600, 600) with total budget
(the maximum number of function evaluations) ofT = 1, 000 and the initial solution of SAN to be
x0 = (8, 8, . . . , 8) with total budget of T = 10,000.

For efficiency, our chosen design over solver factors is a nearly orthogonal Latin hypercube
(NOLH) design with 3 stacks for a total of 17 + 16 + 16 = 49 design points. This design was
generated using the datafarming Ruby gem version 1.4.0 [38] with

stack_nolhs.rb -s 3 < astrodf_factor_setting.txt > astrodf_design.txt

run in the command line. In the command above, astrodf_factor_setting.txt is an input
text file specifying the range of settings of the four solver factors, as listed in Table 2, and
astrodf_design.txt is an output text file (to be created) listing all 49 design points. Each de-
sign point corresponds to a version of the ASTRO-DF solver with a specific combination of values
for the factorsγ1,γ2, η1, and η2. Note how efficient this is: a full factorial design (gridded design) for
4 factors at 17 levels requires 174 = 83521 design points, while three stacks of our NOLH requires
only 49. On a computing cluster with 49 or more cores, this is essentially the same user time as
running a single design point.

Many options are possible for the problem factor design. We opt for the simplest in this article:
a single categorical factor that specifies the problem name, as shown in the first column of Table 3.
In this table, we also list the default settings that, while unchanged in our experiment, might be
factors of interest in future experiments. For example, a solver specialist might wish to vary the
factors of the SSCONT problem to get a sense of how often it is feasible and useful to re-optimize
if costs or demand patterns change, or investigate how long the warm-up period and run lengths
should be to achieve satisfactory performance on key solver metrics. A solver generalist might be
more interested in exploring how the solver behaves on problems of different dimensions, e.g., by
generating a wide variety of stochastic activity networks with different structures and numbers of
arcs, or by exploring a larger selection of problems from the SimOpt testbed.

Our overall design is the result of crossing the two individual designs: one for the solver factors,
the other for the categorical “Problem” factor, for a total of 49 × 2 = 98 design points. For each
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Table 3. Problem-Specific Potential Factors and Default Settings for Two Simple Problems

Problem Factor Description Type Specification Default

SSCONT

demand distribution categorical exponential∗
mean demand per period continuous > 0 100
order lead time distribution categorical Poisson∗

mean order lead time, in periods continuous > 0 6
back-order cost per unit continuous > 0 4
holding cost per unit continuous > 0 1
fixed cost per order continuous > 0 36
variable cost per unit continuous > 0 2
warm-up before data collection, in periods integer ≥ 0 20
number of periods after warm-up in each run integer ≥ 1 100

SAN
distribution of activity time for arc i categorical exponential∗
cost per unit time for arc i continuous > 0 1
number of nodes integer ≥ 1 9
graph precedence structure categorical see Figure 2

*Not currently farmable in SimOpt.

design point, we ran 10 macroreplications of the corresponding version of ASTRO-DF and set
the numbers of postreplications as 200 for each recommended solution. On each macroreplication
of each design point, we recorded the following 10 responses: the final relative optimality gap
ν (1), the area under the progress curve A, and the α-solve times τ (α) and α-solvabilities y(α) for
α = 0.05, 0.1, 0.2, and 0.5. The final relative optimality gaps and α-solvability responses reflect
the goodness of the solutions that ASTRO-DF can find given the budget. On the other hand, the
area under the progress curves and α-solve times reflect the speed at which the solver finds better
solutions over time.

The data farming analysis requires the factors and responses to be consolidated into a single
file so that we can explore the input-output relationships. SimOpt facilitates this by automatically
creating a comma-separated value (.csv) file suitable for analysis. Each of the 49 × 2 × 10 = 980
rows in this file provides the factor settings, response measures, and any other constants, outputs,
or diagnostics recorded for a single run; we call this the raw datafile. We also create a summary
datafile by aggregating across macroreplications at each design point, obtaining the mean and stan-
dard deviation of each numeric-valued response and the probability of achieving each threshold
of interest; the summary-by-problem-and-solver-design-point datafile has 49 × 2 = 98 rows. When
analyzing ASTRO-DF’s performance on either SAN or SSCONT, we will use only the subset of the
rows of the summary-by-problem-and-solver-design-point corresponding to that problem. We can
further summarize the data over the “Problem” factor to obtain a summary-by-solver-design-point
datafile with 49 rows each containing summary statistics for a single combination of solver factors.
Some of the graphs and statistical methods that follow use the raw datafile, others are based on
one of the summary datafiles.

5.4 Steps in Analysis
Our objective in this section is to provide examples of the types of analyses that might be of interest
to a solver specialist or generalist.

5.4.1 Question 1: What was the spread of solver performance metrics over the entire experiment?
There are several reasons for asking this question. From the raw datafile, we can determine
whether or not all the metrics are available, and whether the ranges of values are plausible. From
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Fig. 3. Histograms and boxplots for several quantitative ASTRO-DF solver performance metrics from the
raw datafile. The numbers of non-missing responses are also shown in parentheses. Note that the τ (α) in
3(c)–3(f) are on the same scale.

Fig. 4. Boxplots of final relative optimality gap, ν (1), across design points for two problems (SSCONT and
SAN) from the raw datafile.

the summary datafile, we can determine whether the ranges of summary metrics across design
points differ enough that we would be interested in fitting metamodels of the response surfaces.
For example, Figure 3 shows a series of histograms for the six numeric responses. Additionally, the
α-solvabilities (not shown) are y(0.05) = 0.365, y(0.1) = 0.620, y(0.2) = 0.837, and y(0.5) = 0.965,
respectively; the rows for which the α-solve times are missing correspond to runs where the
solver failed to α-solve the problem.

The histograms for the final relative optimality gap and the area under the progress curve were,
at first, surprising, because we did not expect any normalized values to fall outside the range [0, 1].
After further discussion, we realized this is indeed plausible. We leave a full discussion to Question
8, but remark here that solver generalists and specialists should be aware of the possibility of
some solver performance metrics falling outside the normalized limits. The distributions of the
α-solve times conform to our expectations that it becomes more difficult to solve problems as α
decreases. This is revealed both by the increasing frequencies of runs that use high proportions
of the available time, as well as decreasing numbers of runs where the τ (α) values were reported.
Figures 3(c)–3(f) reveal that a greater preponderance of runs require more of the available time to
solve the problem as the α threshold for optimality decreases.

5.4.2 Question 2: What run-to-run variation (spread, shape, and central tendency) was observed
for the solver performance metrics of interest? Did these vary across design points? Answers to
these questions may shape further analysis or lead to additional experiments. The boxplots in
Figure 4 show that the final optimality gap data for a specific design point tends to be either
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relatively symmetric or positively skewed (towards high values). This is unsurprising since the
unknown absolute optimality gap is bounded below by zero. However, it is interesting to see
how the distributions of ν (1) differ by problem: SSCONT is much harder to solve than SAN,
which may be due to a small budget chosen for solving it and the problem’s high degree of
simulation error (variability) when evaluating solutions. The high variability in ν (1) for SSCONT
is not necessarily a cause for concern. A generalist will be more interested in solver performance
across a wide range of problems than in predicting the actual solver performance for a specific
problem, and there is no requirement that the variabilities across problems be similar. If the
generalist was concerned about the number of runs resulting in ν (1) > 1, they could choose to
rerun the SSCONT experiments with a larger budget before conducting more detailed analysis.
Alternatively, they could add a budget multiplier as a factor in a later experiment; if this ranged
from 0.5 to 2.0 (say), then budgets for a specific problem would range from one half to twice their
initial budget. This would help ensure that general insight made on solver factors is based on
qualitatively similar small, medium, or large budgets, where small, medium, and large could differ
by problem. Similarly, a specialist will be more interested in solver performance across a wide
range of variants (problem-specific factor combinations) for their problem than in predicting the
actual solver performance for a particular variant, but could choose to rerun the SSCONT with a
larger budget, or incorporate a budget-related factor into a new experiment, before proceeding.

5.4.3 Question 3: Are there any outliers or solver factor configurations that lead to unusual be-
havior? Recall that the raw datafile may contain results from hundreds or thousands of runs. Con-
sequently, it is not surprising that many of the histograms or boxplots will reveal large numbers
of outliers, in one or both of the typical statistical measures: a distance over roughly two standard
deviations from the mean, or a distance over 1.5 times the interquartile range from the ends of the
box in a box plot.

By construction, none of the design points can be considered an outlier in terms of its combina-
tion of factor settings, but they can be in terms of the solver performance metrics. While a lot of
variability is present across the design points in the ASTRO-DF experiment, none appear to be a
clear outlier. In contrast, consider Figure 5(a), where three design points stand out from the rest.
In this notional (synthetic) data, design point 3 has a very large spread, design point 13 has a very
large median, design point 15 has a very low spread and low median, and the remaining 14 design
points have boxplots based on 20 observations generated from essentially identical distributions.

Another graphic that can reveal design points with unusual behavior is a scatterplot matrix
of the summary datafile, as shown in Figure 5(b). One design point is interactively selected as
an outlier based on the lower-left subplot; this highlights it in all subplots. This selected design
point is unusual in that the associated version of ASTRO-DF struggles to achieve even 0.2- or 0.5-
solvability. The upper-left subplots indicate that the ν (1) mean for this design point is fairly high
while its standard deviation is fairly low. In other words, this version of ASTRO-DF consistently
fails to make good progress on the SSCONT problem. We chose to show plots for a single problem
in Figure 5(b), but similar plots could be of interest to a generalist if they were constructed from
the summary-by-solver-design-point datafile.

Figures 5(a) and 5(b) clarify another important point: unlike situations involving observational
data, unusual design points should not be discarded or ignored. Tracing back to their source may
identify bugs in the solver or the solver-problem interface that can be corrected, i.e., the data farm-
ing approach can help verify the solver source code. Additionally, unusual design points with un-
desirable behaviors may help both generalists and specialists set boundaries or limits on the solver
factors, while unusual design points with desirable behaviors may help them select appropriate
defaults.
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Fig. 5. Examples of two types of plots that may assist in identifying unusual design points.

5.4.4 Question 4: How are the solver performance metrics correlated? Do they involve tradeoffs or
behave serendipitously? This question can be of interest for several reasons. First, at times, it may
streamline the detailed analysis process. If, for example, two or more of the solver performance
metrics have very strong pairwise correlations, then examining one (rather than all) of them in
greater detail for questions 5–10 may be sufficient. Second, the sign of the correlation between two
solver performance metrics provides a partial indication about whether improving one will tend
to be serendipitous (benefiting the other) or involve tradeoffs (worsening the other).

Figure 6 shows a correlation matrix of the means and standard deviations of the 10 solver perfor-
mance metrics. (Because the observations of theα-solvabilities are binary responses, their standard
deviations are omitted.) One indication of serendipity in the figure is the strong positive correlation
between the ν (1) mean and ν (1) standard deviation, because the ideal value for both metrics is 0;
consistently and rapidly reducing the relative optimality gap is desirable. The strong negative cor-
relation between the ν (1) mean and the y(0.05) mean is also serendipitous because the ideal value
for y(0.05) is 1. The very weak positive correlation between the ν (1) mean and the y(0.5) mean
indicates a slight tradeoff between solver quality and solver speed: solver versions that quickly cut
the relative optimality gap in half were slightly more apt to wind up with a poorer final solution.
We defer our discussion of the interesting pattern in the 4 × 4 highlighted box on the right, along
with the gray boxes in the lower triangle, until Question 8.

5.4.5 Question 5. Which solver factors are most influential? One way to answer this question
is to use partition tree metamodels. We follow the approach in [30] and create a partition tree
with 10 splits for each summarized solver performance metric and for each problem in the
summary-by-problem-and-solver-design-point datafile. We then multiply the R2 for each tree by
the respective column contributions and categorize the resulting influence as very very strong
(VVS), very strong (VS), strong (S), moderate (M), weak (W), and very weak (VW). These
characterizations are determined by inverse powers of two, denoting contributions to R2 that
are > 0.50, > 0.25, > 0.125, > 0.0625, > 0.03125, and > 0.015625, respectively. This automated
heuristic method limits the number of factors that will be deemed influential without requiring
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Fig. 6. Numeric and graphical correlation summaries for a generalist, from the summary-by-solver-design-
point datafile. Numerical correlations are provided in the lower triangular region. In the upper triangular
region, white circles represent positive correlations, black circles represent negative correlations, and a circle’s
area represents the strength of the correlation.

detailed human-in-the-loop assessments by the analyst. Our results, broken out by problem,
appear in Table 4. Recall that the first six responses are related to the solution quality, while
the last ten are related to the speed at which the solution is found. The R2 values in Table 4 are
sufficiently high that at least one solver factor is deemed influential, either exhibiting VS or VVS
influence. If R2 were low for some other solver performance metric, we could have seen few (if
any) factors showing up with more than medium influence.

An inventory specialist would be interested in the SSCONT results from Table 4. For this exper-
iment, it is clear that γ1 was the most influential factor, with VVS effects for 12 of the 16 solver
performance metrics and VS or S for the remaining four. The factor γ2 is also very influential, with
medium to very strong effects on all but four of the responses. The factor η1 was much less influ-
ential, but had an impact on a few solvability metrics and several metrics related to the solver’s
speed. The factor η2 was the least influential, with none of the factors influencing any of the solu-
tion quality metrics, while contributing to only two of the ten speed-related metrics. The inventory
specialist’s next step might be to examine more closely the leaves of the partition trees to deter-
mine desirable settings for ASTRO-DF’s factors—particularly γ1 and γ2. One nice characteristic of
partition tree metamodels is that they make few assumptions about the nature of the influence.
For example, increasing an influential factor could result in increasing or diminishing returns on
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Table 4. Summary of Factor Influences on ASTRO-DF Performance Metrics

SSCONT SAN
Response η1 η2 γ1 γ2 R2 η1 η2 γ1 γ2 R2

ν (1) mean VVS VS 0.859 M M VVS 0.780
ν (1) stdev VVS VS 0.771 M M W VVS 0.896
y(0.05) VVS S 0.910 VVS VS 0.876
y(0.1) VW VVS VS 0.901 W VS VVS 0.909
y(0.2) M VS M 0.875 VW W S VVS 0.606
y(0.5) VVS 0.922 VVS VS 0.740
A mean S VVS S 0.908 W VS VVS 0.930
A stdev VVS W 0.724 M M VVS 0.948
τ (0.05) mean VVS S 0.876 VVS VS 0.910
τ (0.05) stdev S S VS 0.713 W VVS S 0.853
τ (0.1) mean VW VVS VS 0.909 W VS VVS 0.901
τ (0.1) stdev VVS S 0.880 S W S VS 0.789
τ (0.2) mean M VS M 0.606 VW W S VVS 0.875
τ (0.2) stdev W W S VS 0.713 S VS VS 0.904
τ (0.5) mean VVS 0.740 VVS VS 0.922
τ (0.5) stdev VVS W 0.600 VW VS VS 0.800

Classifications are determined by inverse powers of 2, and are categorized as very very strong (VVS), very strong
(VS), strong (S), medium (M), weak (W) and very weak (VW).

a solver performance metric, or there could be a “sweet spot” that is advantageous. A specialist in
charge of project management for the SAN problem could likewise draw insights from the SAN
results in Table 4.

Note that a generalist might be less interested in the specific problem and treat the choice of
problem as a noise factor (see Question 9). This corresponds to growing a tree from the summary-
by-solver-design-point datafile rather than growing two separate trees from the SAN and SSCONT
portions of the summary-by-problem-and-solver-design-point datafile. When growing a single
tree, the “Problem” (a qualitative factor) could be included as a potential explanatory variable;
this might be worthwhile to a generalist if the solver’s performance differs greatly across different
types of problems.

Other types of metamodels are possible. For example, stepwise regression can be used to fit
metamodels containing low-order polynomial terms. Remember, however, that statistical signifi-
cance is not the same as practical importance. With the very large datasets that can result from
a data farming experiment, the analyst should place a higher emphasis on parsimony. This may
mean removing many statistically significant terms from automatically generated models because
their relative impact is negligible.

5.4.6 Question 6: Are there any important interactions? Consider the plots in Figure 7. On the
left, Figure 7(a) shows the first three layers of the 10-split partition tree for 0.1-solvability. These
do not correspond to the first three splits. An interaction between γ1 and γ2 is revealed by the
difference in splitting on the left and right branches. The light and dark bars in each leaf indicate
the proportion of non-solved and solved runs, respectively, with dark bars being preferred. The
top level shows that the majority of the runs were able to achieve 0.1-solvability. The middle level
shows that larger γ2 values (slower rate of trust-region contraction) are associated with a greater
likelihood of finding good solutions. The third level shows that γ2 should not be too large, and that
if γ2 is small then it is very important for γ1 to be large, i.e., if the penalty of not succeeding is a
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Fig. 7. Two types of graphs for revealing interaction effects from two types of metamodels for different solver
performance metrics.

significant contraction, then a success should let the trust region recover its size with a significant
expansion.

On the right, Figure 7(b) is a graphical depiction of interaction effects from a regression meta-
model for the mean area under the curve (the mean ofA) after using stepwise regression, combined
with expert judgment, to obtain a parsimonious metamodel. The upper-right box shows that if γ1
is set to its low value (1.0), then increasing γ2 leads to a linear decrease in the A mean; if γ1 is set
to its high value (3.0), then increasing γ2 leads to a linear increase in the A mean. In other words,
the best setting for γ2 depends on the best setting for γ1, and vice-versa—i.e., there is an interac-
tion. Note, however, that because low values of the A mean are desirable and the two lines do not
cross, the better choice for γ1 is 1. The lower-left box is another snapshot of the multidimensional
metamodel. Here we see that after fixing the value of γ2, γ1 has a nonlinear (quadratic) effect on
the solver performance metric. If γ2 = 0.9, then the metric gets consistently worse as γ1 increases.
In contrast, if γ2 = 0.1, then the best setting for γ1 is around 2.0 where the curve achieves its
minimum value.

5.4.7 Question 7: What are the interesting regions and threshold values in the solver factor space?
As we have seen in Figure 7(a), the leaves of partition trees may themselves indicate interesting
regions. As we move from left to right across the leaves, the proportion of runs on which the
problem is solved to 0.1 optimality decreases. In particular, below a certain level for γ2 (the rate of
trust-region contraction), solving the problems accurately largely depends on choosing larger γ1
(the rate of trust-region expansion). While the latter observation aligns with a general guideline
of choosing γ2 = γ−1

1 , our results show that the choice of γ2 is more important (rather than
setting γ1 and taking the reciprocal), and the inverse relationship may not be accurate or of much
help, depending on the choice of γ2. Although this insight matters to a generalist, the findings
in Table 4 suggest that the importance of γ2 over γ1 is more problem-dependent; e.g., for the
SSCONT problem, all solver performance metrics are more sensitive to the choice of γ1 than γ2.

Another possibility is a contour plot; an example that might be of interest to a generalist (i.e.,
one not broken out by application) is shown in Figure 8(a). This plot is based on the raw datafile,
but is identical to that based on the summary-by-solver-design-point datafile because it makes
use of the mean values at each point. We remark that for experiments involving large numbers
of factors, Questions 5 and 6 may indicate which pairs of factors to select for contour plots for
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Fig. 8. Contour plots. A generalist might be interested in plot (a), while plots in (b) and (c) might be of
interest to a specialist. The regions highlighted in (b) and (c) indicate where both solver performance metrics
are favorable for SAN.

specific solver performance metrics, since considering all possible pairs may be prohibitive. The
contour plots in Figures 8(b) and 8(c) depict metamodels of the mean and standard deviation of the
final relative optimality gap for the SAN problem and appear smoother than the plot in Figure 8(a)
because they are based on regression metamodels. The highlighted region in Figures 8(b) and 8(c)
is one where good results are obtained for both solver performance metrics. A specialist might be
interested in a follow-up experiment that focuses more closely around this region.

5.4.8 Question 8: Are any of the results counterintuitive? A counterintuitive finding can be ei-
ther a bug or a feature. Large-scale data farming experiments can expose behaviors that would
otherwise go unnoticed. On further inspection, one of two things might happen. First, if the find-
ing can be traced back to its cause and shown to be a bug (either a miscoding or an inappropriate
assumption), this bug can be corrected. This is part of the verification process. Alternatively, the
finding might withstand further scrutiny, and so change our intuition. This is part of the validation
process.

A few counterintuitive results appeared earlier. In Question 1, we remarked that some runs
yielded ν (1) values that were less than 0 or much greater than 1. The explanation for this is
twofold. Because the optimal solution is unknown, we rely on an estimate of the response mean
based on postreplications. This means that if several recommended solutions have similar near-
optimal objective function values, and the postreplications on the observed best solution improve
its estimated solution value, that can lead to small negative numbers reported for the final relative
optimality gap. On the other hand, a final relative optimality gap greater than 1 can occur if the
solver recommends a solution that it believes to be better than x0—based on its limited sampling at
said solution—when in fact the solution is worse. (More commentary on these situations is given
in [8].) The same reasoning explains why values of A outside of the interval [0, 1] are possible.

Another example of seemingly counterintuitive results is the 4 × 4 box in Figure 6 highlighted
for its interesting pattern. Before looking at the correlation plot, we anticipated that for any given
α , the τ (α) mean and the y(α) mean would be negatively correlated, because finding a satisfactory
solution quickly corresponds to low τ (α) and high y(α). We also anticipated that the strength
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Fig. 9. Heatmaps of the τ (α) for a generalist created from the summary-by-solver-design-point datafile. Each
row corresponds to a single design point, and the cell shadings reflect how often τ (α) satisfied certain con-
ditions. In (a), where little censoring occurs at the end of the run (threshold = 1), almost all the solver design
points are highly likely to reach 0.5-solvability early in the run. In (b), where a great deal of censoring occurs,
we observe how moving from left to right (increasing α ) increases how likely it is to achieve α-solvability
within a fixed budget threshold.

of the correlation would be highest when τ (·) and y(·) used the same α , rather than different
αs. The highlighted box shows patterns for τ (0.2) that differ in both the sign and the magnitude
of correlation from those of τ (0.5). However, upon further investigation we realized this was an
artifact of the different numbers of design points used to compute the correlations due to censoring.
We constructed the correlation plot in Figure 6 using all available data, but recall that when the
solver cannot α-solve the problem within the allowable budget in a run, then that run’s τ (α) is
a missing value and the run is not part of correlation computations between the τ (α) mean or
variance and the y(α1) for all α1.

Constructing the correlation plot was useful to us, because it alerted us to the censored data issue.
In such cases, the analyst should be aware that some correlations will not be easily interpretable.
In our experiment, the grayed-out rectangles in the lower triangle correspond to situations where
between 16.3% and 63.5% of the runs had missing τ data. In contrast, if we had used sufficiently
large budgets that all the runs were solved to α = 0.05, then y(α) ≡ 1 for all α ≥ 0.05 and all
correlations between a τ (α1) mean or standard deviation with a y(α2) would equal zero.

How, then, should we assess the joint behavior of the y(α) and τ (α)? Both are important, and
both provide different information than can be gleaned from the ν (1) and A means and standard
devations alone. A better way of showing the relationships involving censored data is via the use
of heatmaps, such as those shown in Figure 9. Each row in the heatmaps corresponds to a single
design point in the summary-by-solver-design-point file. The columns specify conditions on at
least one solver factor or metric, and the color of each cell corresponds to the proportion of runs
for which the conditions are satisfied for the solver performance metric of interest (light=low,
dark=high).

Heatmaps such as that in Figure 9(a) are useful when few, if any, τ (α) values are censored for a
particular α . The columns correspond to different budget thresholds for this α . In these situations—
especially if α is near zero—it may be of interest to calculate how likely the solver is to achieve
a specified performance without exceeding smaller thresholds (proportions) of the normalized
budget. We calculated these values for thresholds of 0.1 to 1.0 in steps of 0.1. This may help the
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analyst determine whether or not a smaller budget would suffice; in our experiment, all the solver
design points are 0.5-solvable after expending only a small portion of their budget. Conversely, if
many τ (α) values are censored for a particular α , then a heatmap such as that in Figure 9(b) is
more informative. The columns correspond to different α for a particular threshold. It may help
the analyst determine whether or not accepting a larger α would mitigate the censoring issues
without requiring larger budgets, which could be of particular interest if (near) real-time solutions
are needed. Note that in either heatmap, we do not need all of the rows to exhibit good performance,
just some of the rows.

5.4.9 Question 9: Which solver factor configurations are most robust, leading to consistently good
performance for a solver metric of interest? Although this is one of the later questions, answering
it is very important in the context of simulation optimization. Both generalists and specialists
seek settings for the solver factors that produce consistently good solver performance metrics
across a range of problems, regardless of the problem-specific factors or data characteristics. This
can be accomplished by incorporating two types of factors into the experiments: decision factors
that are controllable, and noise factors that are controllable within the simulation experiment,
but not controllable or controllable only at great cost in a more general setting. In our context,
the noise factors for a specialist could consist of problem-specific factors in Table 3; the noise
factors for a generalist could be as limited as a list of different problems, factors that describe
problem characteristics such as dimensionality and convexity, or a mixture of general and
problem-specific factors. The experiment design can be constructed by including all factors
(solver factors, the categorical problem factors, and problem-specific factors) in a single design
for greater efficiency, or by crossing separate designs for decision and noise factors, to facilitate
decision-factor comparisons without requiring metamodels.

After the solver experiments have been conducted, a loss function can quantify how well
the solver performed with respect to a particular solver performance metric. Squared-error loss
relative to an ideal outcome (a.k.a. the target value) is often useful; outcomes close to the target
contribute little to the overall loss, while those far from the target contribute a great deal. For
example, the ideal (though unachievable) value for A is A∗ = 0. A squared error loss of the form
lossA = (A−A∗)2, described in Section 2.2, means that the expected loss of a given solver version (ag-
gregated over the noise factor space) decomposes into the form E[lossA] = (E[A] −A∗)2 +Var(A).
This is one reason why we considered both the means and standard deviations when summarizing
our solver performance metrics. Metamodels fit to the mean and standard deviation of A, for
instance, can be used to determine if there are solver factor settings that yield results consistently
near zero. Similarly, the ideal value for ν (1) is ν (1)∗ = 0, which might be achievable for sufficiently
large computing budgets. Table 5 summarizes the characteristics of low-order polynomial
metamodels fit to the mean, standard deviation, and loss associated with ν (1) for specialist and
generalist perspectives. It also provides the configurations that are predicted to provide the best
performance for each criterion, and the avoidable loss associated with using the non-low loss
configurations. For the SAN problem, the most impactful terms involved γ1 and γ2: the configura-
tions projected to yield the best terminal solution on average suggested a higher value for γ1 (fast
expansion of step size), whereas the setting γ1 = 1 was predicted to be better for minimizing the
variability of the terminal solution. Metamodels for the SSCONT specialist differed and had lower
explanatory power. A low expansion rate γ1 was best for all three metamodels. The only other im-
pactful factor wasγ2, where an interaction effect leads to tradeoffs between achieving a good mean
(high γ2) or a low variance (low γ2). The generalist metamodels also had low explanatory power,
i.e., robustness across these two problems is difficult to achieve. Consequently, this illustrates that
a SAN specialist would benefit from choosing solver settings from a data farming experiment
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Table 5. Performance of Polynomial Metamodels for Identifying Good Parameter Settings

Criterion Metamodel Best for Criterion
to # terms Configuration Predicted Predicted Avoidable

User Minimize R2 M Q I-2 (γ1, γ2, η1, η2) Value Loss Loss
Specialist Mean(ν (1)) 0.79 2 2 1 (1.74, 0.51, ·, ·) 0.000 [-0.024, 0.001] [0.005, 0.036]
(SAN) Stdev(ν (1)) 0.58 4 2 1 (1.0, 0.50, 0.1, 0.5) -0.010 -0.020 0.005

Loss(ν (1)) 0.93 4 3 2 (1.63, 0.49, 0.1, 0.5) -0.025 -0.025 -
Specialist Mean(ν (1)) 0.35 2 0 1 (1.0, 0.9, ·, ·) 0.103 0.158 0.257
(SSCONT) Stdev(ν (1)) 0.34 2 1 0 (1.0, 0.1, ·, ·) -0.017 -0.099 -

Loss(ν (1)) 0.38 2 0 0 (1.0, 0.1,·, ·) -0.099 -0.099 -
Generalist Mean(ν (1)) 0.40 2 0 1 (1.0, 0.9, ·, ·) 0.065 0.005 -

Stdev(ν (1)) 0.26 1 0 0 (1.0, ·, ·, ·) 0.052 [0.005, 0.415] [0, 0.410]
Loss(ν (1)) 0.26 2 0 1 (1.0, 0.9, ·, ·) 0.005 0.005 -

Potential terms are main (M) and quadratic (Q) for each of the four solver factors, as well as the six two-way
interaction terms (I-2). The ‘Predicted Loss’ evaluates the user’s ‘Low Loss’ metamodel at the given configuration; the
‘Avoidable Loss’ predicts the loss incurred if ‘Low Loss’ configuration differs.

rather than relying on default values specified by a generalist. The improvement can be dramatic:
for the SAN problem, the confirmation runs showed that the recommended configuration yielded
a loss of only 0.0077, which was only 66.5% of the loss at the center point (2.0, 0.5, 0.3, 0.7) and
less than 0.05% of the loss at a particularly bad configuration in the region (3.0, 0.9, 0.1, 0.9).

Some additional remarks related to the solver parameter tuning: If a metamodel suggests con-
figurations that are not among the original design points, as is often the case, confirmation runs
should be made. If the results of these confirmation runs are consistent with the metamodels, all
is well. If not, the analyst has several choices. First, they can use this new configuration if they
deem sufficient improvement has occurred. Second, they can refit metamodels that incorporate
the new data, or fit metamodels of a different type. For example, some of the predictions in Table 5
are negative, indicating that polynomial metamodels may be struggling to adequately fit values
near zero. This issue might be mitigated if metamodels were fit to logarithmic transformations of
the response criteria, or if different types of metamodels (e.g., partition trees, logistic regression,
Gaussian process metamodeling) were used. They can run additional replications of the existing
design if they wish to distinguish finer gradations in performance. For example, withm = 10 repli-
cations, the y(·) metrics can take on only m + 1 potential values (0, 0.1, 0.2, . . . , 1.0); a larger m
may be needed to differentiate configurations with underlying means of, say, 0.98 and 0.96. Finally,
they might use the information they have gained to run a second experiment before settling on a
suitable configuration.

Many of the graphical methods discussed in previous sections can also be used. For example, the
comparative box plots in Figure 5(a) clearly show that design point 15 is the most robust; contour
plots such as those in Figures 8(b) and 8(c) can be used if a solver performance metric’s mean and
standard deviation are the two solver performance metrics of interest. For more details on robust
design in the simulation context, see [40] and [42]. Besides using the aforementioned loss function
to capture the robustness of a solver version, one can use VaR(A) or CVaR(A).

5.4.10 Question 10: Are there any Configurations that Perform well w.r.t. Multiple solver
performance metrics? We presented multiple solver performance metrics and discussed them
throughout this paper. The mean and variance of the final relative optimality gap ν (1), together
with the mean α-solvabilities for various αs, measure the quality of the solver’s solutions; the
means and variances of the area under the progress curve, A, and α-solve times, τ (α), measure
the speed at which better and better solutions are identified.
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Fig. 10. Parallel plot for a generalist. Each of the 98 traces represents summarized output for eight solver
performance metrics from a single row of the summary-by-problem-and-solver-design-point datafile. The
minimum and maximum values for each solver performance metric are the lowest and highest in this datafile,
respectively. Low values are desirable for the first four solver performance metrics involving ν (1) and A,
while high values are desirable for the last four. Traces corresponding the highest observed y(0.05) mean are
indicated with dark solid lines and come from the SAN problem. The dashed line indicates a solver design
point that performs well for SSCONT.

Clearly there are multiple performance measures of interest to either generalists or specialists
who decide to conduct data farming to tune solver factors. We have shown in multiple ways that
our primary solver performance metrics capture different aspects of the solution quality and the
speed at which it is achieved: no solver configuration dominates on all measures (Figure 1(b));
correlations may mean that improving one solver performance metric is detrimental to another
(Figure 6); and the sets of most influential factors or interactions differ across the solver perfor-
mance metrics (Table 4). Robust analysis provides a quantitative approach for making tradeoffs
among means and standard deviations of quantitative solver performance metrics. Assigning
weights to loss functions, if feasible, can similarly help identify solver factor settings that are
robust (in terms of minimizing a weighted multi-objective loss) across different performance
measures [44]. Heatmaps could include columns for more solver performance metrics, potentially
with their own sets of thresholds.

A few other approaches are worth mentioning. One is to add user-specified constraints for
multiple solver performance metrics, and create a new column in the appropriate raw or summary
datafile indicating whether a particular row simultaneously satisfies all of the constraints. To
the extent that metamodels can do a reasonable job of capturing the relationship between
solver factors and such a binary response, this will help set solver factor defaults or provide
guidance about modifying the defaults in different settings. We can also explore this graphically,
as with the parallel plot in Figure 10 based on the summary-by-problem-and-solver-design-point
datafile. Eight solver performance metrics are shown, with the y-axis scaled separately for
each metric between its minimum and maximum in the raw datafile. We used coded numeric
values so we could include the problem in this plot. Each trace in the plot corresponds to one
of the 98 design points. Highlighting the lines that fall within the highest observed y(0.05) in
Figure 10 reveals that these design points yield good performance on the other seven measures
as well. Note also that they all correspond to the SAN problem. The dashed line indicates a
design point that works well on all measures for SSCONT. A second is to identify a Pareto
front, providing a set of solver parameter settings from which the generalist or specialist can
choose, depending on which solver performance metrics they deem most important. If the
solver factors are continuous, then spreading the choices in the factor space will keep the
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computational requirements manageable and provide the decision maker with a set of distinct
alternatives [6, 46].

5.5 Discussion
We have seen that a wealth of information can be gleaned from the data produced by a design
of experiments over solver factors. The “Top Ten” questions can help to guide the analysis about
what to look for when evaluating solver performance and how to visualize the results. From even
just a rudimentary experiment that farmed four factors controlling trust-region expansions and
contractions, we gained new insights into the behavior of ASTRO-DF on two SO problems. This
included observing that on these problems, rapid progress and run-to-run consistency are not
mutually exclusive qualities and that the settings of the expansion rate γ1 and contraction rate γ2
have a strong influence on the solver’s progress, with there being an interaction between them.
We found that, depending on the problem, one of these factors may be more influential than the
other, but thresholds at which to expand or contract the trust region (i.e., η1 and η2) are less critical
in both problems.

As stated earlier, our goal for this article was to propose and illustrate a data farming approach
for investigating solver performance, rather than to present a definitive study of ASTRO-DF.
Consequently, we conducted a small experiment involving only four solver factors and only two
problems to illustrate the methods. This can serve as a template for future studies of ASTRO-DF
or other solvers by generalists, as well as future applications by specialists. Two points are
particularly important. First, the ability to use large-scale space-filling experiment designs breaks
the so-called “curse of dimensionality” and fundamentally changes the types of studies that can
be conducted. Efficient designs, such as those referenced in Section 5.3, enable generalists and
specialists to include dozens or hundreds of factors in their studies, rather than a handful or fewer.
Second, adopting this new mindset fundamentally changes the types of insights that can be gained.
Solver benchmarks can be based on massive sensitivity analyses of solver parameters, rather than
default configurations alone. Solver generalists can seek robust parameter settings, and provide
better guidance to users about when and how to modify these settings, by identifying the I/O
relationship between factors and solver performance metrics. Solver specialists can employ data
farming not just to tune parameters for their particular application, but to develop insights and
guidance about real-world circumstances that might lead them to change these parameters with-
out needing to perform additional experiments. We assert that insights from these types of studies
can be much broader than those obtainable from tuning a limited number of hyperparameters.

The analysis carried out in this section was for a non-adaptive experiment, wherein the factors
of interest and their ranges were specified up front, a design was generated, and a common
number of runs were performed at each design point. However, the data-farming approach
can and arguably should be applied as an iterative process. There is an emerging interest is
producing tuning algorithms that adjust the algorithm hyperparameters during the course
of the optimization, as knowledge about local or global behavior of the problem is collected.
The goal of these so-called online tuners or parameter control methods [25] is well within the
potential capabilities that our proposed framework offers. It is often good practice to start with
a preliminary design that includes many factors and, from the results, identify those that most
influence solver performance. In early stages of solver development, this approach assists in
verifying the implementation by subjecting the solver to a massive sensitivity analysis, where
the analysis questions are much more likely to uncover bugs in the code than a trial-and-error
approach or more limited experimentation. In later stages, solver factor ranges can be refined or
a crossed design (where solver factors deemed unimportant could be relegated to the noise factor
design) can help to focus the investigation on the important ones. The initial design can also be
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refined by adding stacks to fill under-covered regions of the solver factor space and additional
runs can be performed at design points with highly variable solver performance metrics.

The proposed framework can also be used in ways other than what we have demonstrated.
While the analyses can help to build a deeper understanding of how a solver’s factors affect its
empirical performance, they can also shed light on questions about the design of the solver itself.
Such questions could be of practical importance, such as the need (or lack thereof) for particu-
lar operations within the solver, or theoretical importance, such as how a solver’s factors might
need to change adaptively throughout a run to ensure convergence. Specifically, for trust-region
methods like ASTRO-DF, a generalist might wish to assess the benefits of various designs for sam-
pling solutions within the trust region or to determine whether the thresholds η1 and η2 should be
updated over time.

A specialist may instead be interested in using the framework for tuning the solver, which refers
to finding solver parameter settings that deliver good performance on a given problem or class of
problems. If the user needed to solve only a single problem, then a small design over solver factors
could even be conducted within the solver, in a preliminary phase, by running a few pilot runs with
a fraction of the budget before committing to a configuration of solver factors. If the user instead
needed to solve a sequence of similar problems, then a larger offline design of experiments could
help identify solver factor configurations that are robust to variations in the problem factors. The
task of finding the best configuration of solver factors could be carried out by fitting a metamodel
to one or more solver performance metrics, e.g., the mean and standard deviation of the final
relative optimality gap ν (1), and optimizing.

6 Conclusion
We introduce a data-farming framework for systematically studying the performance of SO solvers
as a function of their parameters, which we term solver factors. In particular, we explore how a
design over solver factors can be used to investigate their influences on multiple solver perfor-
mance metrics measuring the rate of improvement in the recommended solutions and the quality
of the solution ultimately recommended. The framework offers a flexible and powerful means of
exploring important questions of interest to a range of stakeholders, from solver developers to end
users, from solver generalists to specialists. Moreover, the framework leverages efficient designs
to allow users to holistically investigate solver performance under different parameter settings in
a way that goes beyond hyperparameter tuning or benchmarking solvers with default parame-
ters. We advocate for solver developers to embrace DOE as a tool for testing and improving their
solvers prior to deployment, and for specialists to embrace it to improve the timeliness of efficacy
associated with repeatedly optimizing their simulation applications.

In this article, we focused on solver factors that remain fixed throughout the solver’s process
of finding better and better solutions. However, the framework permits the study of solver factors
that change adaptively and can help devise schedules or conditions for updating them that yield
strong solver performance. Categorical factors that fundamentally alter the operations of a solver,
such as the type of local model (linear versus quadratic) constructed within a trust-region solver,
can also be varied. Although we varied only solver factors in this article, the framework can be
extended in several noteworthy directions by incorporating other experiment parameters as fac-
tors in the design. For example, the initial solution x0 and the budget T could be varied to assess
how the solver’s long-term behavior is affected; e.g., does it converge to different local optima
when starting in different regions? In addition, factors of the simulation model can be varied, as
is typically done in data farming experiments, to illuminate how robust a solver is at finding good
solutions when the simulation model is subject to misspecification. This poses an additional level
of uncertainty, called input uncertainty, that must be factored into the solver performance metrics.
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More broadly, a solver can be tested over a large set of problems exhibiting different properties,
including the dimension or geometry of the feasible region and the structure of the objective func-
tion, as proposed by [48]. The ultimate goal of such a study would be to develop guidelines for
users when setting the factors of a solver that is to be run on a specific problem.

Further research in this space will be accompanied by enabling the creation and execution of
designs in the SimOpt testbed [10]. This will involve developing a graphical user interface for users
to first set up a design—by selecting the problems and solvers and the factors they wish to include—
and then run the designed experiment. (Within SimOpt, such experiments can be accelerated by
using multithreading to perform solver runs in parallel.) The final product will be an output file
containing the specifications of each design point and the solver performance metrics discussed
in this article. This file can then be loaded into a user’s preferred statistical software package for
subsequent analysis. We also aim to add more solvers and problems to the library to enable more
wide-ranging experiments. Ultimately, we hope to encourage a fuller study of well-established
solvers to see what more can be learned about them and what guidance can be provided to end
users.
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