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Fig. 1: An immersive VR environment for human anatomy education with generative AI virtual assistants: (a) the user interacts

with the virtual assistant as an avatar representation, (b) interactions with abdominal organ 3D models, (c) the user interacts

with UI to answer quiz, and (d) configurations of a screen-based virtual assistant.

Abstract—Virtual reality (VR) and interactive 3D visualization
systems have enhanced educational experiences and environ-
ments, particularly in complicated subjects such as anatomy
education. VR-based systems surpass the potential limitations of
traditional training approaches in facilitating interactive engage-
ment among students. However, research on embodied virtual
assistants that leverage generative artificial intelligence (AI) and
verbal communication in the anatomy education context is under-
represented. In this work, we introduce a VR environment with a
generative AI-embodied virtual assistant to support participants
in responding to varying cognitive complexity anatomy questions
and enable verbal communication. We assessed the technical
efficacy and usability of the proposed environment in a pilot
user study with 16 participants. We conducted a within-subject
design for virtual assistant configuration (avatar- and screen-
based), with two levels of cognitive complexity (knowledge- and
analysis-based). The results reveal a significant difference in the
scores obtained from knowledge- and analysis-based questions
in relation to avatar configuration. Moreover, results provide
insights into usability, cognitive task load, and the sense of
presence in the proposed virtual assistant configurations. Our
environment and results of the pilot study offer potential benefits
and future research directions beyond medical education, using

∗The study was conducted while Vuthea Chheang was a postdoctoral
researcher at the University of Delaware. Email: chheang1@llnl.gov.

§Email: rlb@udel.edu.

generative AI and embodied virtual agents as customized virtual
conversational assistants.

Index Terms—Generative AI, virtual reality, human-computer
interaction, embodied virtual assistants, anatomy education

I. INTRODUCTION

Medical anatomy education, an essential aspect of medical

training, necessitates learning the structures and functions

of the anatomy in the human body. These skills are vi-

tal prerequisites for surgical procedures. Therefore, student

awareness of the variation in morphology and the locations of

anatomical structures hold significance. Traditionally, medical

students learn human anatomy through textbooks, lectures, and

dissection of cadavers. However, these approaches have several

limitations, such as lack of interactivity, cost, and ethical

considerations of cadaveric dissections [1]. Traditional meth-

ods of assessing anatomy knowledge encompass a range of

approaches, including spotter, written, and oral examinations

[2]. For example, anatomy education and assessment have

been enhanced by Anderson’s modified Bloom’s taxonomy,

namely Bloom-Anderson principles [3]. The adoption of this

taxonomy for anatomy education has a twofold function: first,

it considers the cognitive complexity of assignment questions;
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second, it provides valuable feedback to learners in the context

of anatomy education [2], [4].

In recent years, VR has emerged as a viable alternative to

traditional anatomy education approaches [5]–[7]. VR enables

students to immerse themselves in an engaging and inter-

active virtual environment where they can interact with 3D

anatomy models. In addition, VR allows medical students to

conveniently learn via virtual training without worrying about

ethical reservations [8], [9]. VR also empowers learners to

leverage virtual forums, gamification, peer learning, and virtual

laboratories, fostering collaborative and learner-centered envi-

ronments that align seamlessly with the principles of Bloom’s

taxonomy [10].

However, most VR-based systems for anatomy education

rely on pre-programmed, fixed scenarios that may not adapt

well to meet individual learning needs. Here, the support of

generative artificial intelligence (AI), such as ChatGPT [11],

can be exceptionally advantageous. Compared to conventional

virtual assistants, which can be rigid based on predefined rules

and templates, generative AI technologies, including chatbots

and embodied virtual assistants, have the ability to generate

more natural and engaging dialogues that resemble human-

human interactions. Although chatbots previously relied on

pattern matching and string processing [12], [13], current

chatbots use AI, natural language processing (NLP), large-

language models (LLMs), and knowledge-based algorithms

[14]. These novel technologies empower chatbots to provide

more accurate, in-context, personalized, and swift responses to

user input while replicating human-human conversations and

adapting to the context, levels, and interests of users [15],

[16]. Moreover, generative AI leverages large-scale data and

information from various sources, including scientific articles,

textbooks, and datasets. It generates rich and diverse content

to enhance communication and understanding.

This work presents an immersive VR environment designed

to support human anatomy education using generative AI

conversational assistance (see Fig. 1). We integrated generative

AI services (ChatGPT-3.5, OpenAI) into the VR environment,

enhanced the embodied virtual avatar representation and real-

ism with lip synchronization, and proposed a new framework

to tackle the conversational communication between the user

and the virtual assistant using several connected services. The

proposed environment has the potential to offer students a

more interactive, adaptive, and informative learning experi-

ence by offering an embodied virtual assistant. To assess the

feasibility of the proposed environment, we developed two

different configurations of interaction (avatar- and screen-

based virtual assistants) with two levels of cognitive complex-

ity (knowledge- and analysis-based) and compared them in a

within-subjects pilot user study (n = 16). Our contributions are

as follows:

• An immersive VR environment to support the human

anatomy education, enabling users to communicate ver-

bally and interact with generative AI-based embodied

virtual assistants.

• Results of a pilot user study (n = 16) that provides insights

into user performance, usability, task load, and sense of

presence in the VR environment.

• An exploratory analysis aimed at identifying potential

features, benefits, limitations, and research directions.

II. RELATED WORK

This section provides an overview of previous research on the

general use of chatbots for education, with specific focus on

VR and virtual assistants in the anatomy education context.

A. Chatbots

Chatbots represent sophisticated computer programs that em-

ulate human-like conversations. They adeptly analyze user

inputs and formulate contextually appropriate responses in

natural language text. They serve as digital platforms that facil-

itate concurrent interactions between humans and computers.

Chatbots are widespread in many applications, including e-

Commerce, education, healthcare, and entertainment [17]. The

development of chatbots has become increasingly accessible

and versatile. Chatbots such as BERT [18], GPT [19], and

Llama [20] have pioneered advancements in NLP, while newer

iterations extend their ability in context understanding. These

chatbots can assist in the classroom by addressing uncer-

tainties, promoting learning, and providing medical education

materials [15].

Instructors can benefit from their help with scheduling,

student concerns, and technological support [16]. Chatbots

also provide flexible learning help at the convenience of

learners, regardless of time or location [14]. In the context

of medical education, Termbot [15] offers a convenient way

for students to practice medical terminologies. For nursing, AI

chatbots are helpful in courses to practice communication, as

well as evaluation and intervention skills with patients [16].

Besides, ChatGPT can enable physicians to quickly generate

discharge summaries by entering specific facts, concepts, and

suggestions [21]. Specifically, ChatGPT has recently been

tailored to develop a medical safety LLM framework [22].

This framework involved evaluating ChatGPT’s antimicrobial

advice across eight hypothetical infection scenarios assessing

its suitability, consistency, safety, and stewardship. Finally,

within the realm of VR, generative AI with virtual assistants

has been used in different applications, including offering sup-

port and guidance to individuals with neurological disorders

and their caregivers [23], and as an assistive tool for spinal

cord surgeries [24].

B. VR-based Anatomy Education Systems

VR and augmented reality (AR) technologies have shown

potential in improving medical anatomy education [25]–[29].

Kurt et al. [30] discuss various medical anatomy training

approaches, highlighting that cadaver training is restrained by

model availability, ethical concerns, and health risks. As an

alternative, VR-based training that simulates real-life events

sounds appealing. VR-based training can reduce risks, training

time, and cost while engaging students.
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A survey by Preim [1] emphasizes the importance of

learning perspectives, compelling scenarios, and encouraging

strategies in anatomy education. Erolin et al. [31] introduced

3D anatomical models for VR anatomy instruction. In their

pilot study, most participants found the models easy to interact

with and gave positive feedback. Nakai et al. [32] explored

the potential of VR-based anatomy courses covering nervous,

musculoskeletal, and cardiovascular systems for medical stu-

dents. They created a VR environment that allows users to ma-

nipulate organ anatomy. The findings suggested that the study

might provide many 3D models and real-time collaboration.

Kurul et al. [33] studied the impact of immersive VR on

anatomy training in physical therapy. Their findings emphasize

the value of VR as an alternative training tool. Falah et

al. [34] created a VR environment to teach students about

medical procedures and anatomical structures. Their solution

lets users modify medical data into 3D representations and

adjust object sizes in the virtual world. Izard et al. [35] found

that VR effectively improves anatomical comprehension in a

similar study employing the cranium anatomy. To enhance

medical students’ learning experience, Saalfield et al. [36]

developed a tutoring system that allows teachers to assist

students in learning human skull anatomy in a shared virtual

environment. Schott et al. [37] proposed a multi-user VR/AR

environment for liver anatomy education utilizing clinical

examples. According to the study, the prototype could help

surgery education in small learning groups and classrooms.

Overall, most of these systems used 3D anatomical models

for information visualizations in VR/AR, but they lacked the

use of AI or LLMs to make these experiences more learner-

centered or self-paced. Our work leverages the power of VR

for information visualization by leveraging generative AI and

LLMs to offer more genuine interactions with learners.

C. Embodied Virtual Assistants

Anatomy education in VR environments entails a complex

and resource-intensive process. It may require a suitable en-

vironment and competent instructors to teach human anatomy

effectively. The psychological implications of virtual assistants

have been a focus of active research [38]–[43]. Kim et al. [44]

conducted a study investigating different levels of embodi-

ment in virtual assistants controlled by human-in-the-loop.The

study suggested that gesturing and locomotion of the avatar

increased trust between the user and the interactive virtual

assistant. Haesler et al. [45] conducted a study using Amazon

Alexa, comparing a voice-only version with an embodied

avatar version to perform simple everyday tasks. The results

showed that the participants preferred the embodied avatar

over the voice-only version. In a separate study, Kim et al.

[46] analyzed the reduction of task loads with Amazon Alexa

and findings indicated that using a voice assistant reduced the

number of tasks; however, users still expressed uncertainty

regarding tasks outside their visual range. On the other hand,

the embodied version instilled more confidence in users re-

garding task completion, thereby fostering greater trust and

collaboration between the assistant and the user [47]. These

studies collectively indicate that users tend to place more trust

in tasks they can visually confirm, highlighting the importance

of visual representation in virtual assistants.

Compared to previous work, our VR environment offers a

unique advantage by integrating a generative AI-based virtual

assistant, ChatGPT, OpenAI, as a companion to support learn-

ing human anatomy. The embodied virtual assistant enables

users to engage in verbal conversations and receive responses

to their information queries, resulting in greater confidence and

participation. Moreover, it can be used as a source of guidance

and to provide users with detailed information. Therefore, the

user can seek clarification, ask follow-up questions, and re-

ceive personalized explanations to facilitate the understanding

of complex medical knowledge as a replacement for a human-

in-the-loop assistant or a human trainer.

III. MATERIALS AND METHODS

The research questions (RQs) to guide our work are the

following:

RQ1 How do configurations of avatar- and screen-based

virtual assistants influence user performance in anatomy

education?

RQ2 To what extent do subjective measures, such as

usability, task load, and presence, associate with virtual

assistant configurations?

RQ3 What are the advantages, limitations, and potential

research directions of using generative AI for anatomy

education?

In the following sections, we describe participants, apparatus,

study procedure, and study design. Specifically, Fig. 1 to Fig. 3

elaborate more about our pilot user study.

A. Participants

We conducted a priori power analysis to evaluate the sample

size with analysis of variance (ANOVA) for interaction effects

(repeated measures, within factors). Utilizing the G*Power

statistical analysis software, we calculated the effect size

η2
p
= 0.14 for two factors, resulting in a sample size of 16 [48].

The study was approved by the University of Delaware’s

Institution Review Board (#2136140−1). The inclusion criteria

were participants over the age of 18 with normal to corrected

vision, with no known prior history of motion or cyber

sickness. Out of the 20 registrants, four participants were

excluded due to vision (one individual), motion sickness (two

individuals), and VR discomfort (one individual). Thus, 16

participants from the University of Delaware were successfully

recruited in our study. The demographic information of the

participants are provided in Table I.

B. Apparatus

Fig. 2 shows an overview of the system architecture for

the proposed VR environment designed for human anatomy

education, featuring generative AI virtual assistants. The VR

environment was developed using Unity game engine (version

2019.4.34f1). Customization of 3D models, including the

living room, and the incorporation of additional models from
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Fig. 2: System architecture of our proposed VR environment with the generative AI-based embodied virtual assistant.

TABLE I: Participant background and characteristics (n = 16).

Characteristics Value Mean

Age [20 – 35] 26± 4.97
Gender

Male 6 (37.50%)
Female 10 (62.50%)

Education
Bachelor’s program 6 (37.50%)
Master’s program 3 (18.75%)
Doctoral program 7 (43.75%)

Medical anatomy knowledge
Not much 5 (12.50%)
Basic 11 (87.50%)

Health centered classes
No 8 (50.00%)
Yes 8 (50.00%)

VR experience
Never used before 6 (37.50%)
Used a few times 3 (18.75%)
Used several times 5 (31.25%)
Regular use 2 (12.50%)

Handedness
Left 2 (12.50%)
Right 14 (87.50%)

Sketchfab, alongside OpenHELP organ models, were integral

to the VR environment’s development [49]. Participants were

asked to navigate the VR system and engage with the 3D

model by grasping, resizing, and rotating them to understand

their functionalities during the training session. We used

the Valve Index VR headset, controllers, lighthouses, and its

components within the VR setup.

To enhance user interactions within the VR environment, we

utilized the capabilities of the Virtual Reality Toolkit (VRTK).

This toolkit enabled us to implement fundamental interactions

such as teleportation, object manipulation, and interactions

with the user interface (UI). Moreover, we used the VR

questionnaire toolkit [50] to develop the UI for the VR quiz.

We integrated ChatGPT (OpenAI, USA) to provide services

as an intelligent conversational agent for answering questions.

We also used an AI-based library (Avatar SDK, Itseez3D

Inc., USA) to create a photo-realistic model for the virtual

assistant’s avatar presented in the user study. This virtual avatar

was animated to provide gestures with facial expressions, fur-

ther enhancing user engagement. We leveraged the Microsoft

Azure Speech service to enable natural interactions, utilizing

text-to-embodiment capabilities for text-to-speech and speech-

to-text. Text-to-embodiment refers to the conversion of text

responses from generative AI into the virtual avatar’s voice

and facial expressions and vice versa, e.g., participant’s speech

to text.

C. Study Procedure

Fig. 3 presents an overview of the study procedure. To ac-

commodate potential learning curves, we counterbalanced the

order of the conditions and the level of cognitive complexity.

We walked each participant through the study’s procedure.

Ensuring their full understanding of the consent form was

a priority before requesting their signature. The participants

were given the opportunity to become familiarized with the

VR headset and controllers and learn how to interact with the

virtual assistant in the training environment. They received

guidance on asking questions to the virtual assistant by press-

ing a button on the controller while posing their query, then

releasing it to allow the system to process and respond. Ad-

ditionally, they learned the distinctions in responses between

the avatar and the text screen. The study commenced upon

participants’ confidence on the technology.

To start the study, participants found themselves in a virtual

living room environment with a virtual cadaver, a screen

displaying a question with multiple-choice answers, and their

initial virtual assistant. Interacting within this environment,

they could teleport around the room, move the screens around,

and manipulate the organs within the cadaver. When ready,

participants selected the “Next” button to receive their first

question. They were informed they could ask the virtual

assistant as many questions as they wished to arrive at the

answer to the multiple-choice question, with no pressure to

provide a correct response. The only condition was that they

could not ask the virtual assistant the entire question directly.

After obtaining an answer, participants selected it from

the multiple-choice options and clicked the “Submit” but-

ton. Subsequently, they were presented with another question

featuring a different cognitive level within the same virtual

assistant configuration. Upon completing tasks with their first

virtual assistant configuration, participants took a break and

completed a short mid-questionnaire on a computer. Following
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Fig. 3: Overview of the study procedure. The order of the conditions (marked with ∗) was counterbalanced.

this, they repeated the process of answering two questions

with varying levels of cognitive complexity using the other

virtual assistant configuration. Once this phase concluded,

participants were again given a break to complete a post-

questionnaire. Lastly, they had the opportunity to ask any

questions and provide qualitative feedback.

D. Study Design

Our study was designed as a 2× 2 within-subject experiment

(2 configurations × 2 levels of cognitive complexity). Each

participant was randomly assigned to start with either the

avatar or the screen configuration during the study. They

were then presented with two questions of varying cognitive

complexity levels for each virtual assistant configuration. We

ensured that the opportunity to initiate with either the avatar

or the screen was evenly distributed among all participants.

This random assignment and counterbalancing helped mitigate

potential bias resulting from a learning effect.

1) Independent Variables: In our study, we defined the vir-

tual assistant configuration and difficulty level as independent

variables.

a) Configuration: Within the virtual environment, we

introduced two types of generative AI virtual assistants: avatar

and screen (see also Fig. 1).

• Avatar: an embodied avatar equipped with audio and

lip synchronization, seamlessly integrated with Microsoft

Azure text-to-speech and generative AI services to re-

spond to questions.

• Screen: a screen displayed text responses generated by

generative AI service alongside the participant’s question.

b) Level of Cognitive Complexity: We had four ques-

tions categorized in two sets.

• Knowledge-based: These questions required no analytical

thinking or in-depth understanding and fell under the

foundational or first level of Bloom’s taxonomy, namely

“knowledge” or “remembering”.

• Analysis-based: These questions demanded more in-depth

analysis, corresponding to the fourth level of Bloom’s

taxonomy, namely “analysis”.

These four multiple-choice, scenario-based questions focus

on diagnosing medical conditions based on specific symptoms

and involved anatomical structures. It includes how different

symptoms, such as chest pain, difficulty breathing, abdominal

pain, and neurological problems, can be linked to specific

organs or systems of the human body, such as the heart, lungs,

digestive organs, and nervous system. The goal is to determine

the most likely affected area or organ responsible for the pre-

sented symptoms. Each configuration contains one knowledge-

based and one analysis-based questions. The configuration and

the order of questions were counterbalanced.
2) Dependent Variables: Throughout the study, we

recorded the participant’s selected answer, task completion

time, and the number of interactions with the virtual assistant

as the dependent variables. All this data was automatically

logged into a CSV file for further analysis.

• Task Completion Time: the duration between the partici-

pant posing the question and submitting the answer.

• Number of Interactions: the number of times the partici-

pant requests information from the virtual assistant.

• Score: a variable indicating whether their answer to the

question was correct or incorrect.

3) Questionnaires: As part of our evaluation, we gathered

not only performance data but also valuable insights into

participants’ subjective experiences through the administration

of standardized questionnaires. These questionnaires were de-

signed and administered using the Qualtrics survey platform.

The following are the specific dimensions we assessed:

• Usability: We assessed usability using the System Us-

ability Scale (SUS) questionnaire [51], which comprises

ten questions with a 5-point Likert-scale from “strongly

disagree” to “strongly agree”. The final SUS score was

calculated on a scale from 0 to 100 (0 – 50: not accept-

able, 51 – 67: poor, 68: okay, 69 – 80: good, 81 – 100:

excellent) [52].

• Task Load: To gauge the subjective task load experienced

by participants, we employed the NASA Task Load

Index (NASA TLX) questionnaire [53]. This question-

naire consists of six questions assessing mental demand,

physical demand, temporal demand, performance, effort,

and frustration.

• Presence: We also evaluated the sense of presence within

the virtual environment using igroup Presence Ques-

tionnaire (IPQ) [54], [55]. This questionnaire has 14

questions categorized as general presence, spatial pres-

ence, involvement, and experienced realism. Responses

are recorded on a 7-point Likert scale, ranging from

“strongly disagree” to “strongly agree”.

4) Semi-structured Interviews: After the completion of

all previous tasks, we solicited qualitative feedback from

participants through semi-structured interviews. Participants

were asked the following questions:

• What is your feedback on the VR environment and

configurations of the virtual assistant?
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TABLE II: Summary of descriptive results of user performance.

Variable Task Completion Time (s) Number of Interactions Scores

Avatar 159.23 (149.25) [26.38] 5.96 (11.87) [2.10] 0.59 (0.49) [0.08]
Knowledge-based 117.74 (72.61) [18.15] 5.31 (11.22) [2.80] 0.75 (0.44) [0.11]
Analysis-based 200.72 (192.59) [48.14] 6.62 (12.83) [3.20] 0.43 (0.51) [0.12]

Screen 159.06 (152.94) [27.03] 3.65 (2.74) [0.48] 0.50 (0.50) [0.09]
Knowledge-based 177.50 (200.57) [50.14] 4.31 (3.36) [0.84] 0.56 (0.51) [0.12]
Analysis-based 140.62 (85.96) [21.49] 3.00 (1.82) [0.45] 0.43 (0.51) [0.12]

All entities are in the following format: mean value (standard deviation) [standard error].
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Fig. 4: Results of user performance (n = 16), including (left) task completion time, (middle) number of interactions with the

virtual assistant, and (right) score.

• Do you have any questions or suggestions?

IV. RESULTS

In the following sections, we present the results for both

descriptive and statistical analysis of user performance, ques-

tionnaire outcomes, and general feedback.

A. User Performance Results (RQ1)

We used RStudio with the R programming language to conduct

a thorough statistical analysis. Our selected method, a two-

way ANOVA for dependent variables, enabled us to examine

the variables in depth. As we explore our analysis further,

a summary of descriptive results related to objective user

performance measures is shown in both tabular (Table II) and

graphical (Fig. 4) formats.

1) Task Completion Time (TCT): We found no significant

differences between the configuration, level of cognitive com-

plexity and their interaction effect on task completion time.

On average, participants responded faster to knowledge-based

questions in the avatar configuration. In the screen configura-

tion, knowledge-based questions were responded more slowly.

The results show that participants spent more time interacting

with the avatar when tackling analysis-based questions, while

the screen configuration led to more extended task durations

for knowledge-based questions. Descriptive results for total

completion time, however, showed only a minimal difference

between the avatar (M = 159.23 s, SD = 149.25) and screen

(M = 159.06 s, SD = 152.94) configurations. It indicates that

both configurations are comparable to assist the user in solving

the tasks.

2) Number of Interactions: Descriptive results show that all

tasks in the avatar configuration require more interactions and

requests with the virtual assistant, particularly in the context

of analysis-based questions. The results could indicate that

users need more explanation through verbal communication

with the virtual avatar compared to the display screen.

3) Score: On average, participants scored higher in solving

questions within the avatar configuration than in the screen

configuration. Regarding the level of cognitive complexity,

there was a significant difference between configurations (F(1,

15) = 4.62, p = 0.046, η2
p

= 0.07). Subsequent pairwise t-

tests indicated a statistically significant difference between

knowledge-based and analysis-based questions (t = -1.78, df =

15, p = 0.04) within the avatar configuration (see Fig. 4). This

finding shows that participants who engaged with knowledge-

based questions in the avatar configuration obtained higher

scores and completed tasks more swiftly compared to analysis-

based questions. This finding aligns with the Bloom’s taxon-

omy about the level of cognitive complexity as well, because

knowledge-based questions are less cognitively demanding.

B. Questionnaire Results (RQ2)

In the following sections, we present the subjective results ob-

tained from our questionnaires, offering insights into usability,

task load, and presence within our virtual environment.
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1) Usability: The results of the usability assessment using

the SUS questionnaire yielded an average score for avatar

(M = 75.16, SD = 10.55) and screen (M = 76.72, SD =

13.53) (see Fig. 5). No significant differences were observed

between the main effects and their interaction effect. Both

configurations scored higher than 68, indicating above-average

usability [52] and highlighting their potential usability benefits.

2) Task Load: The subjective task load was evaluated using

an unweighted (raw) NASA-TLX questionnaire. Descriptive

results, as shown in Fig. 5, demonstrated no significant

differences in task load between configurations for all load

dimensions (i.e., mental demand, physical demand, temporal

demand, performance, effort, and frustration). Notably, mental

demand (avatar: M = 43.75, SD = 24.32; screen: M = 44.06,

SD = 24.71) emerged as the highest-rated load dimension,

closely followed by effort (avatar: M = 35.31, SD = 18.83;

screen: M = 37.50, SD = 20.00). This implies the proposed

environment mainly impacts mental demand as participants

engage with the virtual assistant to solve questions.

3) Presence: The sense of presence in the immersive

VR environment was assessed using an IPQ questionnaire.

Notably, no significant differences were observed among the

configurations. Descriptive results indicated average scores for

general presence (avatar: M = 5.25, SD = 1.00; screen: M

= 5.50, SD = 0.89), spatial presence (avatar: M = 3.95, SD

= 0.36; screen: M = 3.86, SD = 0.37), involvement (avatar:

M = 4.27, SD = 0.32; screen: M = 4.34, SD = 0.35), and

experienced realism (avatar: M = 4.62, SD = 0.46; screen:

M = 4.70, SD = 0.41). Descriptively, general presence and

experienced realism garnered the highest scores, followed by

involvement and spatial presence (see Fig. 6).

C. Qualitative Participant Feedback (RQ3)

Participants offered open-ended feedback expressing their ex-

periences about the difference between the two configurations

of the study. Two participants preferred the avatar for height-

ened immersion. But there were suggestions regarding the

improvement of voice synchronization in avatar condition.

Participants also noted the need to pre-plan their questions, as

delayed inquiries sometimes led to conversation interruptions

by the system. Additionally, some participants occasionally

forgot to release the talk button, causing the virtual assistant’s

on-screen response to be overridden by new text reacting to

their continued speech.

V. DISCUSSION

The proposed VR environment was evaluated in a pilot

study to assess the feasibility and usability of a generative AI-

based question-answering prototype with embodied and non-

embodied virtual assistants.

RQ1 focused on the impact of the two virtual assistant

configurations on user performance. We found that participants

scored significantly higher when answering knowledge-based

as compared to analysis-based questions in the avatar config-

uration. The fact that we did not find significant differences

on screen leads us to believe that participants might have had

an easier time keeping track of the virtual assistant’s answers

for the analysis-based questions in the screen than the avatar

configuration.

Trends in descriptive results of the number of interactions,

the tasks in avatar configuration require more interactions with

the virtual assistant. This is supported by the fact that the

participants had more interactions with the virtual assistant in

the avatar than the screen with the analysis-based questions.

Additionally, regarding user feedback, the participants did

not show a clear preference for either the screen or the

avatar. It could also indicate that they found benefits in both

scenarios for different types of questions. As such, we can

gain additional insights by gathering more information on the

benefits of the screen compared to the avatar configuration,

specifically considering the levels of cognitive complexity.
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Knowing what makes each configuration helpful will allow

us to combine the two configurations in a way that will be

best for user performance in anatomy education.

RQ2 pertained to the impact of subjective measures on the

virtual assistant configuration. There was no clear significance

regarding usability, task load, or presence. Generally, it seemed

that the participants were experiencing higher mental demand

than physical demand. Additionally, the participants appeared

to score higher for general presence than spatial presence.

These preferences could be influenced by various factors,

including the study location, experience with virtual assistants

and VR, and potential distractions that prevented participants

from forgetting their surroundings. Regarding usability, both

configurations could qualify as relatively easy to use, which

could add to our belief that each configuration has clear poten-

tial benefits. Therefore, combining both configurations could

provide a full option for interacting with the environment.

RQ3 concerned the limitations and potential research di-

rections of using generative AI for anatomy education. In-

tegrating generative AI virtual assistant could adapt to users

and provide personalized support [11]. It has the potential to

offer an engaging, immersive learning experience, enhancing

motivation. The generative AI-based virtual assistant can query

a vast database of information and provide comprehensive

information and resources according to the student’s needs.

However, evaluating the quality and accuracy of responses

remains a crucial aspect that requires further investigation.

The results of this experiment indicate that generative AI ap-

pears more effective at providing direct answers, and the par-

ticipants achieved higher scores on knowledge-based questions

when cognitive complexity was low. However, analysis prob-

lems require more cognitive engagement, interpretation, and

complex comprehension and may not be solved easily by the

generative AI. Such questions involve human-like reasoning,

complex judgment, and sometimes subjective interpretation.

This shows that cognitive complexity, as measured by Bloom’s

taxonomy, is correlated with generative AI’s ability to support

learners. Generative AI may not solve analysis problems eas-

ily that demand human-like thinking, complicated judgment,

and subjective interpretation, which require higher cognitive

involvement, interpretation, and complex comprehension.

Limitations and Future Work: Our pilot study was con-

ducted with 16 participants. Although enough for this study

design to show sufficient power, it is still relatively small.

During the study, we noticed that the way a participant

phrased a question could impact the response they received.

It correlates with other studies showing that virtual assistants

could be biased, particularly when asked to find a relationship

between items [56]. For AI-generated contents, there is a con-

cern regarding generating somewhat inaccurate or misleading

responses, the lack of transparency and unclear information

on the data source used, and other related consequences,

as noted in previous work [11]. Hence, future work should

investigate the conversations’ transcripts and the responses’

accuracy. Regarding the verbal conversation using speech-to-

text, some of our participants had problems being understood.

A problem arose for participants with an accent and when

they spoke too quickly. Consequently, these factors could have

affected the participants’ correctness scores and experience.

The varying levels of experience for users using VR or virtual

assistant, such as ChatGPT was found to be a challenge

as well. Participants with little experience were less likely

to interact with the environment and look around, which

impacted how different they felt the two configurations were.

For future studies, levels of experience should be considered

as a covariate, or a balance of the groups based on their level

of prior VR/virtual assistant experiences would be beneficial.

For future work, experience with a larger sample size

and further development and integration with visual/object

input and output, e.g., ChatGPT-4, could provide an extensive

learning environment. Furthermore, providing tools to monitor

learning progress and assessments may prove advantageous.

Incorporating new modalities [57] and advanced techniques

such as visual/acoustic emotion recognition [58]–[60], gaze

engagement tracking [61], and body gesture analysis [62],

[63] could improve the representation of virtual assistants.

Additionally, it would be interesting to study the learning

effects in a collaborative VR environment [64], [65].

VI. CONCLUSION

In this paper, we have developed an immersive VR environ-

ment featuring a generative AI-based embodied virtual assis-

tant designed for human anatomy education. This environment

was evaluated in a pilot user study involving 16 participants

with no prior knowledge of the subject. The evaluation results

demonstrated the impact of virtual assistant configurations on

user performance. While there were small differences between

the avatar and screen-based configurations in terms of the

number of interactions, a significant difference emerged in the

cognitive complexity level of questions associated with the

avatar-based configuration. Additionally, we reported subjec-

tive measure results from usability, task load, and sense of

presence. The combination of both virtual assistant configura-

tions has the potential to offer a comprehensive solution for

assisting and enhancing the learning experience. Moreover, our

findings provide insights into potential benefits, limitations,

and future research directions concerning the utilization of

embodied virtual agents and generative AI conversational

chatbots in education.
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