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Iteration complexity and finite-time efficiency of adaptive sampling trust-region
methods for stochastic derivative-free optimization
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Edward P. Fitts Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC, USA

ABSTRACT

ASTRO-DF is a prominent trust-region method using adaptive sampling for stochastic derivative-
free optimization of nonconvex problems. Its salient feature is an easy-to-understand-and-imple-
ment concept of maintaining “just enough” replications when evaluating points throughout the
search to guarantee almost-sure convergence to a first-order critical point. To reduce the depend-
ence of ASTRO-DF on the problem dimension and boost its performance in finite time, we present
two key refinements, namely: (i) local models with diagonal Hessians constructed on interpolation
points based on a coordinate basis; and (ii) direct search using the interpolation points whenever
possible. We demonstrate that the refinements in (i) and (ii) retain the convergence guarantees
while matching existing results on iteration complexity. Uniquely, our iteration complexity results
match the canonical rates without placing assumptions on iterative models’ quality and their inde-
pendence from function estimates. Numerical experimentation on a testbed of problems and com-
parison against existing popular algorithms reveals the computational advantage of ASTRO-DF
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due to the proposed refinements.

1. Introduction

We consider unconstrained Simulation Optimization (SO)
problems of the form

minf(x) := E[F(x, &)] = J

xcR?

F(x, £)dP(¢), (1)

where f : R? = R is smooth (but nonconvex) and bounded
below, and F: R? x £ — R is the stochastic function value
defined on the probability space (E,F,P). In particular,
consider f(x) that is only observable with noise by a Monte
Carlo simulation, which generates the random variable
F(x, &), that can be decomposed into the true function value
and the stochastic error E(x,&), ie., F(x, &) =f(x)+
E(x,&). The estimator of f(x) via sample average approxi-
mation and the estimated variance of F(x, ) with n runs of
the simulation can be obtained by

F(x,n) = n‘lzn:F(x, &), and
i=1

6x(x,n) = (n— 1)_1§:(F(x, &) — F(x, n))z.

If derivative information is not directly available from the
Monte Carlo Simulation, then Problem (1) becomes a
Stochastic Derivative-Free Optimization (SDFO) problem. A
SDFO algorithm produces, in one run, {X;}—a sequence of
stochastic incumbents at each iteration k € N. This sequence
can be viewed as a stochastic process defined on a filtered

probability space (Q,Fy,P), where Fj denotes the o-alge-
bra increasing in k. The goal is designing an efficient SDFO
algorithm to reach an e-stationary point, that is a point in
the set {x : || Vf(x)|| < €}, with probability 1.

1.1. Adaptive sampling and trust regions

The number of function evaluations n at an incumbent X
generated by the SDFO algorithm must guarantee estimation
accuracy of

P{|E(Xg, n)| > ex} < o, (2)

with the required accuracy threshold € > 0 and exceedance
probability oy € (0,1), where E(Xy,n):=F(Xy,n)—f(Xk)
denotes the estimation error. An insufficiently large n dur-
ing the optimization will threaten the convergence of the
SDFO algorithm whereas an unnecessarily large n at every
design point leads to exhausting the simulation budget
before reaching a good solution. Therefore, choosing suffi-
ciently large n for each visited design point, that is, viewing
the sample size as a function of X denoted by n(Xy) not
only secures strong consistency, but also reinforces efficiency
in finite-time and asymptotically.

There is emerging evidence (Gratton et al., 2018; Maggiar
et al., 2018) that stochastic trust-region methods are effective
at solving nonconvex SDFO, mainly due to their natural
ability to self-tune step sizes and facility for curvature esti-
mation. ASTRO-DF—Adaptive Sampling Trust-region
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Optimization Derivative-free—(Shashaani et al., 2016, 2018;
Ha et al., 2021) is a class of trust-region optimization algo-
rithms suited for SDFO that deals with the challenge of
choosing the right sample size using an adaptive sampling
strategy. The sample size is decided on the fly as a stopping
time random variable. For a visited incumbent X}, using a
random sample size N(Xj) that adapts to €, and oy at iter-
ation k in (2) based on the inferred estimation error from
the collected observations can lead to convergence to a first-
order stationary point almost surely. Given its versatile
mechanics, guarantees in theory with few requirements, and
promising results from straightforward implementation, cap-
italizing on adding new features to ASTRO-DF to make it
more flexible for high-dimensional SDFO problems is favor-
able. To this end, the current article proposes refinements to
the algorithm and establishes theoretical and finite-time effi-
ciency properties under those refinements.

The progress in ASTRO-DF relies on a local model that,
due to the derivative-free setting, is constructed on function
value estimates of points near the incumbent within a trust
region of size Ay that implicitly controls the step size. The
mechanism of derivative-free trust-region optimization dic-
tates that Ay eventually drops to zero to drive the algo-
rithm’s convergence. Approximately minimizing the local
model within the trust region (a.k.a., the subproblem) pro-
vides a candidate for the next incumbent. The decreasing
accuracy threshold for each point in iteration k, e, is
designed to decrease linearly with A; and the exceedance
probability o drops to zero in k due to the assurance that
N(Xj) diverges almost surely. In fact, N(Xj) increases lin-
early with A;* as Ay decays to zero.

1.2. Summary of insights and contributions

Besides the rapid increase in sample size, which is common
in SDFO, ASTRO-DF is vulnerable to some practical
disadvantages:

1. O(d?) number of points needed to build a quadratic
model to capture the local curvature information is too
costly, especially considering that an increasing number
of oracle runs is required in each point with k.
Furthermore, random choice of the design points causes
practical inefficiency: to obtain a good model quality,
the design points need to be “well-poised” (or well
spread) in the trust region; this entails linear algebra
cost of the order d® for a quadratic model; see Chapter
6 by Conn et al. (2009).

2. Even though ASTRO-DF converges to a stationary point
almost surely, the probability of having a successful iter-
ation, which is the probability of finding a new incum-
bent at each iteration, can start off very small, tending
to one as k— oco. As a practical matter, frequently
rejecting the candidate incumbent suggested by the
model reduces the trust-region radius Ax too quickly,
which in turn explodes the sample size leading to
exhausted simulation budget before finding a good

solution. In other words, full reliance on the local
model can slow the algorithm’s progress.

To address these challenges, we propose two refinements.
The first refinement is to use a fixed geometry for the
design set based on the coordinate basis leading to a model
with a diagonal Hessian (Coope and Tappenden, 2021).
Such a fixed geometry was recently shown to be optimal
among all designs of 2d + 1 many points (Ragonneau and
Zhang, 2023). Selecting the points with this design, in add-
ition to eliminating a source of randomness inside the algo-
rithm, also eliminates the linear algebra cost of certifying
that the design is well-poised and the row operations needed
to solve the system of equations in the interpolation to con-
struct the model. More importantly, the order of approxi-
mated gradient’s deterministic error (bias) is reduced to
O(A}), that is a central-difference like error, from O(Ay),
that is a forward-difference like error, in the original algo-
rithm (see Theorem 4.4).

The second refinement is to leverage the design points in
a direct search manner. This refinement is motivated by
observing that in each iteration of ASTRO-DF, the estimated
function value at the candidate incumbent recommended by
the local model can be worse than that of the points used to
construct the model. Despite such a possibility, the original
setup deems the iteration unsuccessful if the model candi-
date yields insufficient reduction, ignoring the readily identi-
fied points that obtain improvement, and starts over to
build a model in a smaller neighborhood. In addition to
smaller steps, this rejection will increase oracle calls, incur-
ring a considerable waste of simulation budget. A direct
search strategy considers selecting design points whose esti-
mated function values provide sufficient reduction in the
function value estimates as the next incumbent, enabling
progress without extra cost and maintaining stability in step
size and sample size in the early iterations.
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Figure 1. Fraction of 60 problems from SimOpt library (Eckman et al., 2021;
Eckman et al, 2023) solved to 0.1-optimality with 95% confidence intervals
from 20 runs of each algorithm shows a clear advantage in finite-time perform-
ance of ASTRO-DF-C.
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Figure 2. Slower rate of trust-region radius decay in the early iterations of the search as a result of using direct search allows for larger step size, and hence, better
progress. The mean and 95% confidence interval of trajectory of A, exhibits this behavior for two problems.

We name ASTRO-DF with coordinate direct search
refinements as ASTRO-DF-C. These refinements lead to sig-
nificantly better performance (see Figure 1) compared with
the state-of-the-art SDFO algorithms. As exhibited in
Figure 2, the boost in finite-time performance of ASTRO-
DEF-C is intuitive: direct search increases the probability of
finding a new incumbent and prevents the trust-region size
from becoming too small (see Section 5 for improvements
in terms of objective function values). As k — oo, the suc-
cess probability will match that in ASTRO-DF, since the
models become progressively better approximations of the
function and are more likely to suggest better incumbents
than the points identified with the coordinate basis.

1.3. Organization of the article

After a review of the existing body of work for SDFO in
Section 2, we detail ASTRO-DF-C in Section 3. Importantly,
and as we show in Section 4, gains in finite-time perform-
ance are realized without compromising guarantees on con-
vergence. We augment ASTRO-DF-C’s convergence results
with proof of €72 order of the number of iterations to reach
e-optimality in expectation. This result is obtained despite
the relaxed requirements on quality and independence of
local models from function estimates that was a necessity to
prove iteration complexity in earlier work (Blanchet et al.,
2019). Section 5 explores extensive numerical experiments
on a convex and a nonconvex problem, both considered
expensive to solve in the derivative-free setting. We will
summarize our findings and future needs in Section 6.

2. Preliminaries

In this section, we introduce notations used in the article,
review the existing literature for SDFO, and provide essen-
tial definitions.

2.1. Notation and terminology

We use bold font for vectors; x = (x1,%2,....%4) € R4
denotes a d-dimensional vector of real numbers. Let e € R?
for i=1,...,d denote the standard unit basis vector in R%.

We use calligraphic fonts for sets and sans serif fonts for
matrices. A" denotes the complement of the set A. B(x;A) =

{x+s€R?:|s|, < A} denotes the closed ball of radius A >
0 with center x. For a sequence of sets {A,}, the set
{A, i.0.} denotes limsup, , .A,. For two functions f(x) and
g(x), we say f(x) = O(g(x)) if there exist positive numbers ¢
and M such that |[f(x)| < Mg(x) for all x with |x| <e. We
use a A b := min{a, b} and a vV b = max{a, b}. We use capital
letters for random scalars and vectors. For a sequence of ran-

dom vectors {X;},k €N, kaiilX denotes convergence
almost surely as k — oo. We say X,, = O,(1) when the ran-
dom sequence {X,} is stochastically bounded, i.e., given ¢ > 0
there exist n. € N and ¢, > 0 such that P{|X,| > ¢} < € for
all n > n.. A random function F : RY x & — R defined on
the probability space (2, F,P) is strongly uniformly bounded
if a constant kg, € R bounds F(x, &) with probability 1 for all
x € RY. The term “iid”, abbreviates independent and identi-
cally distributed.

2.2. Literature review

In the artificial intelligence era, derivative-free optimization
has received much attention for allowing the user to specify
the objective function involved in non-explicit forms. As a
result, derivative-free optimization has a wide range of
applications such as hyper-parameter tuning (Ghanbari and
Scheinberg, 2017; Ruan et al, 2020; Cakmak et al., 2021),
reinforcement learning (Flaxman et al., 2004; Salimans et al.,
2017; Choromanski et al., 2018; Fazel et al., 2018), simula-
tion-based optimization (Chang et al., 2013; Xu and Nelson,
2013), game theory (Zhang et al., 2023), and quantum com-
puting (Menickelly et al.,, 2023). An essential characteristic
of SDFO is that the function evaluations are only accessible
via a black-box simulation with stochastic error. Running
this noisy simulation can be expensive. Hence, one of the
persistent aims in this field is to improve the efficiency of
the algorithms (Shashaani et al, 2018; Paquette and
Scheinberg, 2020; Jin et al., 2021).

Efficiency guarantees of an algorithm for SDFO are sec-
ondary to the convergence guarantees that imply the iterates
produced by the algorithm stabilize towards a stationary
point in some probabilistic sense. An adaptive sampling
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strategy, which adapts the number of required function eval-
uations at each design point to the inferred closeness to
optimality, leads to almost sure convergence to a stationary
point. The intuition behind adaptive sampling is that more
accurate estimates are needed in near-optimal regions to
guarantee we can identify better incumbents.

In the existing literature, the efficiency of SDFO algo-
rithms is typically evaluated through a complexity analysis
that assesses the costs required to achieve a near-optimal
solution. The costs can take different forms, such as the
number of iterations known as “iteration complexity” or
number of function evaluations or simulation runs known
as “work complexity”. Work complexity is a more appropri-
ate metric for gauging the computational load of SDFO
algorithms, as the number of function evaluations could
vary per iteration for the almost sure convergence. The
existing body of work that analyzes SDFO algorithms has
little known work complexity guarantees but has focused on
attaining the canonical rate of expected iteration complexity
E[T] = O(e?), where

Te={k e N: [[Vf(Xy)|| <€}

is the first iteration reaching e-optimality. The complexity of
SDFO problems proliferates with the problem dimension,
due to the necessity of the derivative estimator using only
expensive, noisy simulations. The method for the derivative
approximation and the sample size of each design point are
the key factors in the complexity and finite-time perform-
ance. The two suggested refinements for ASTRO-DF here
aim for solving higher dimensional derivative-free problems
more efficiently.

Recall, an algorithm for SDFO needs function estimates, and
the accuracy of the estimates is important for convergence.
Hence, we review the existing literature based on assumptions
on the stochastic error at x € RY, namely E(x,¢&), whose
expectation may or may not be zero. Importantly, in our litera-
ture review we primarily focus on algorithms that are devised
for a nonconvex function f of the form of an expected value, as
specified in (1). Although the body of literature for convex set-
tings is vast, we find two recent studies (Hu et al., 2023; Xu and
Zheng, 2023) that address convex settings for simulation opti-
mization with derivative-free algorithms worthy of note. We
also exclude literature on optimization over discrete-space vari-
ables. The remainder of this section returns to non-convex sto-
chastic optimization.

2.2.1. Strong uniform boundedness of |E(x, &)|

Several methods for approximating gradients, such as a
finite difference and Gaussian smoothing, are analyzed with
bounds for the number of design points to obtain suffi-
ciently accurate estimates (Berahas Cao, Choromanski and
Scheinberg, 2021). The expected iteration complexity of
O(e7?) is obtained in the generic line search that converges
to an L,-ball centered around a stationary point with a
radius depending on the uniform upper bound on |E(x, ¢)|
(Berahas Cao and Scheinberg, 2021). This optimal neighbor-
hood can be large in more noisy settings impacting the abil-
ity to attain a satisfactory solution.

2.2.2. One-sided sub-exponential E(x, &)

The Adaptive Line search with Oracle Estimations algorithm
(ALOE) (Jin et al, 2021) in this setting converges to an
optimal neighborhood with high probability tail bound for
the iteration complexity P{T. < t} > 1 — O(e™"). The size of
the optimal neighborhood depends on the upper bound of
E[E(x, £)]. The trust-region method with this assumption on
the stochastic errors has recently been developed (Cao et al.,
2022) exhibiting the same iteration complexity. One-sided
sub-exponentiality is a weaker assumption than sub-expo-
nentiality of E(x,&) as it only requires for the stochastic
error not to be too large in the sense that E ie,
E[e~#E® O-EEx D] < ¢#9/2 for some ¢ > 0 and some small
enough 4 > 0.

2.2.3. Zero-mean finite-variance E(x, &)

The Trust Reign Optimization with Random Models
(STORM) algorithm (Chen et al., 2018) using this assump-
tion converges to a stationary point almost surely with the
expected iteration complexity O(e™2) (Blanchet et al., 2019).
The convergence and complexity analysis for STORM relies
on sufficiently replicating the function value at any given
point x such that given € >0, P{|E(Xi, N(Xx))| > ¢} <a
for small enough o. Moreover, in order to meet the condi-
tion for any k € N, STORM necessitates an extra assump-
tion, namely that the function estimates and local models
are independent. This implies that the information obtained
in previous iterations cannot be reused in the current iter-
ation, resulting in inefficiencies. ASTRO-DF assumes zero-
mean stochastic errors with bounded vth moment for 2 <
v < 8; hence, ensuring finite variance. Under these assump-
tions, ASTRO-DF converges to a stationary point almost
surely following P{|E(Xx, N(Xx))| > €} < o, where o — 0
as k — oo.

2.2.4. Decaying E[|E(x, ¢)|] with distance to stationarity
and bounded variance

A backtracking Armijo line search method (Paquette and
Scheinberg, 2020) achieves O(¢™2) as the expected iteration
complexity if the bias converges to zero as (A}V
|Vf(Xi)||*) — 0 while Var(E(x, ¢)) (in addition to the vari-
ance of the gradient error if its observations are directly
available) is finitely bounded for all x. The function and gra-
dient estimates are also assumed to be accurate with a high
probability as in STORM.

In contrast with the related work in the literature, our
assumptions in this article for the nature of stochastic error
are that it has zero mean and exhibits a sub-exponential tail
for all x € IRY. We formalize this in Assumption 2. The
sub-exponential family includes random variables with heavy
tails, such as those with lognormal distribution, that do not
necessarily have finite moment-generating functions. In
addition, no restriction on the expected absolute value
(absolute integrability) is required. This implies that our
framework and results are more general and pertain to a
larger range of stochastic systems. Although we assume
zero-mean stochastic error, the roadmap to an extension of



our work with biased random observations that converges to
a neighborhood of stationarity seems evident and left for
future research.

2.3. Definitions

We now introduce several definitions in all of which, we
start with a center point x (later, the incumbent Xj) and the
trust-region radius A (later, Ay that changes with k).

Definition 2.1. (stochastic polynomial interpolation models)
Given x € RY and A > 0, let ®(x) = (¢y(x), P, (%), o Og(%))
be a polynomial basis on R%. With p = q and the design set
X = {x"x!, . %"} C B(x;A), we can find B=
(Bo> By - B,) such that M(®, X)p = F(X,N(X)), where

[ (2% r(x) by(+)
¢ (x")  y(xt) - g{)q(xl)
M(®, X) = . . . N
_¢1(xp> by (xF) ¢q(xp)
[ F(x% N(x°))
_ F(x',N(x"))
F(X,N(X)) = . ,
_F(xpﬁ(x"))

assuming that the so-called Vandermonde matrix M(®, X) is
invertible. We note x° := x. For the matrix M(®, X) to be
nonsingular, the set X should be poised in B(x;A). Then, the
function M : B(x;A) — R, defined as M(x) = 25:0 Bii(x)
is a stochastic polynomial interpolation model of f on

B(x;A). Let G=[B,f,---f,]" be the subvector of p and H
be a symmetric matrix of size d x d with elements uniquely
defined by [Bar1 Baiz ﬁp}T. Then, the stochastic
quadratic model M : B(x; A) — R, is

1
M(x+s) :ﬁo—l—sTG—i—EsTHs. (3)

Definition 2.2. (stochastic quadratic models with diagonal
Hessians) A special case of (3) is when the Hessian has only
diagonal values, i.e.,

H, 0
H= , e R™ (4)
0 Hy
In the stochastic quadratic interpolation model with diag-
onal Hessian, p =2d, the model (3) contains 2d+1
unknowns, and 2d + 1 function value estimations are needed
to uniquely determine the G and H, letting the interpolation
set be

Xy = {a%x" +e'A, .., x° + A, x" — elA, .., x° — e?A}
contained in B(x°;A). Since the coordinate basis is used to

generate the interpolation set, B is guaranteed to exist. Hence,
Hi=f4;<oo for all i=12,..,d In this case,

IISE TRANSACTIONS (&) 5

O(x) := (1,X1,%2, ... Xgs X1, X3, ..., X3), and M(-) is said to be
a stochastic quadratic model with diagonal Hessian.

Definition 2.3. (stochastic fully linear models) Given x € R?
and A >0, a function M : B(x; A) — R obtained following
Definition 2.2 is a stochastic fully linear model of f on
B(X; A) if Vf is Lipschitz continuous with constant i, and
there exist positive constants K., and K dependent on kp but
independent of x and A such that almost surely

IVf(x) — VM) < kg and
[f (x) = M(x)| < ks A’Vx € B(x; A).

Definition 2.4. (Cauchy reduction) Given x € RY, A >0,
and a function M :B(x;A) — R obtained following
Definition 2.2, s° is called the Cauchy step if

M(x) — M(x + ) > %HVM(x)H (M(&))':'A A). (5)

We assume that ||VM(x)|/||V*M(x)|| = +oco when
|[V2M(x)|| = 0. The Cauchy step is obtained by minimizing
the model M(-) along the steepest descent direction within
B(x; A), and hence, easy and quick to obtain.

Definition 2.5. (filtration and stopping time) A filtration
{Fk}is, over a probability space (Q,IP,F) is defined as an
increasing family of o-algebras of F, i.e., Fx C Fry1 C F for
all k. We interpret Fi as “all the information available at
time k.” A filtered space (Q,P,{Fi}isy»F) is a probability
space equipped with a filtration. A map N:Q —
{0,1,2,...,00} is called a stopping time with respect to filtra-
tion F if the event {N =n} :={w: N(w) =n} € F, ie, it
is F-measurable for all n < oo.

3. ASTRO-DF with coordinate direct search

Let us first briefly review ASTRO-DF. Each iteration of
ASTRO-DF consists of four steps:

1. Constructing a local model by interpolating function
value estimates (with adaptive sample sizes) on a ran-
domly selected poised (or well spread) design set and
repeatedly shrinking the trust region and updating the
model if the model gradient is too small relative to the
trust-region size.

2. Recommending a candidate incumbent that approxi-
mately minimizes the model.

3. Evaluating the reduction in the function value after esti-
mating it at the candidate incumbent.

4. Updating the trust-region radius and incumbent, i.e.,
accepting the candidate and expanding the trust-region
radius if reduction in the function value is sufficient
(relative to the model reduction) or rejecting the candi-
date and shrinking the trust-region radius otherwise.
See (Shashaani et al., 2018) for more extensive details.
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The refinements in ASTRO-DF-C are in the first and last
step as well as in the sample size lower bound for the simu-

the DFO literature (Conn et al, 2009), is removed as
an inner loop and transferred to step 4 and acceptance

criteria. In step 4, accepting a new incumbent is
augmented using a direct search strategy. The details of
these refinements and their consequences are described
below and the complete steps of ASTRO-DEF-C are listed in
Algorithm 1.

lation budget. In step 1, instead of random selection of the
design set that would also require ensuring its well-poised
geometry in the trust region, the algorithm selects interpol-
ation points along the coordinate basis. The repeated shrink-
age and updating, which is known as the criticality step in

Algorithm 1 ASTRO-DEF-C: ASTRO-DF with Coordinate Direct Search

Required: Initial guess xy € RY, initial and maximum trust-region radius Ag, Ap.x > 0, model “fitness” and certification
thresholds # € (0,1) and u > 0, sufficient reduction constant 6 > 0, expansion and shrinkage constants y; > 1 and
7, € (0,1), sample size lower bound /4, and adaptive sampling constant x > 0.

1: for k=0,1,2,... do

2:  Model Construction: Select the design set X' = {X} fjo C B(Xk; Ay) following Equation (3) and estimate F(X}, N(X})),

where
‘ . &(Xi,n) _ KkA;
N(X,) = > ——2< R 6
( k) mln{n_ k \/ﬁ _\/E ()

fori=0,1,...,2d (Xg = X}) and construct the model My (Xy + s) via interpolation.

3:  Subproblem: Approximate the kth step by minimizing the model in the trust region, Sy = argminjg<a Mi(Xi +s), and
set Xk-&-l = Xy + Sk-

4:  Candidate Evaluation: Use adaptive sampling rule (6) to estimate F (XHI,N k+1). Define the best design point XkH =
argminge v,\ x, F(x, N(x)), its sample size N1 = N(Xgy1), incumbent’s sample size Ny = N(X;), direct search reduc-
tion Ry = F(Xj, Ni) — F(X41,Niy1), subproblem reduction Ry = F(Xi, Ni) — F(Xj1,Niy1), and model reduc-

tion R = My(Xx) — Mi(Xii1)-
5:  Update: Set

(Xt Niy 1571 Ak A Amax) 3 Rie > (R V 0AY),

(Xkt15 Nks 1, Agr) =
(Xk N Axy,)

and k=k+1.
6: end for

3.1. Model construction

In ASTRO-DE-C, the point selection is deterministic and the
local model M(+) is constructed with 2d new points along the
coordinate basis at the trust-region boundary in each iteration
to obtain a diagonal Hessian model. As mentioned in Section 1,
the suggested design set has several advantages. First, the model
gradient error for all points within a trust region has a similar
upper bound, but with fewer design points. We will also show
in Theorem 4.4 that the deterministic part of the gradient error
(bias) at the center point improves to O(A7) from O(Ay).
Second, the design set via coordinate basis is optimal in the
sense that it minimizes the constant of well-poisedness in a ball,
saving the linear algebra cost to make a well-poised set
(Ragonneau and Zhang, 2023). Since the coordinate basis auto-
matically provides a well-poised geometry, the computational
cost of ensuring well-poisedness, which also depends on the
problem dimension, e.g., O(d*) operations for a linear model
and O(d®) for a quadratic model (Conn et al, 2009)
[Algorithms 6.1-6.3], is completely eliminated. Lastly, when
using the predetermined design set, the Vandermonde matrix

Xk 15 Niy 1571 Ak A Amay) — else if Ri > Ry and | VMi(X)|| > Ay,

otherwise,

M(®,)) in Definition 2.1 exhibits a unique structure that
reduces the matrix inversion cost to O(d?*) from O(d?).

In addition to the coordinate-basis selection of the points,
ASTRO-DF-C also skips the criticality step in the model
construction (Shashaani et al., 2018). The criticality step is a
loop within each iteration that enforces additional shrinkage
of the trust region until |V My (Xy)|| is smaller than a factor
of the trust-region radius A;. Every time the trust-region
radius is shrunk due to this criticality check, more points
may be needed in the contracted region to fit a new local
model, which hurts the work complexity in each iteration.
Instead, ASTRO-DF-C  only checks the criteria
U|VMi(Xy)|| > Ax once at the time of updating the trust
region for the next iteration to determine whether to accept
the model candidate Xy, if the interpolation candidate
X k+1 fails to pass its sufficient reduction test.

3.2. Updating the next incumbent

The next incumbent is determined upon estimating the
function at the subproblem’s minimizer. If the best among
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O ¥, 0 n 1 Algorithm’s constants | Case 1: Success, Ag,; < ;A (expand) |
® Function estimates HA2
® Model minimizer R i Xis1 < Kiar
Local model built on function estimates | 11k
Ry
I Case 2: Maybe success (expand or shrink) |
2
q 5 R e e T If Ak < 2lIVM(Xi0) :
R k k . R k s
NRy - - Xi+1 < Xiv1
A P _ _ Otherwise: Xy 41 < Xx
—— . Ry Ry
Xk Xk+1 Xk+1 [ Case 3: No success, Ay.q < VA (shrink) I
Which of the three candidates is the next incumbent? OA%2] _ _ _ ____
Ry: reduction in the function estimate at X, . /L = Xi+1 < Xk

Ry highest function estimate reduction to give Xj41.

Figure 3. Updating of the incumbent is through one of three possible cases. ASTRO-DF only has Case 2 and Case 3. However, the direct search provides a new pos-
sibility for success by using the existing function estimates that are lower than that of the model minimizer, provided they satisfy a minimum reduction of GAﬁ. The
functionality of the algorithmic constants in this process and in updating the next trust region is also illustrated.

2d + 2 points (2d interpolation points, one incumbent point,
and one model candidate point) is one of the 2d interpol-
ation points that satisfies a reduction of at least 0A; in the
estimated function value, that point becomes the next
incumbent; otherwise, the model candidate is accepted if the
decrease in the estimated function value is at least 5 times
the reduction in the model and the model satisfies
UV M (Xy)|| > Ag. Figure 3 visualizes the above procedure.

Bypassing model construction and choosing the incum-
bent from the coordinate-basis design points directly turns
this process into a direct search, somewhat similar to algo-
rithms such as NOMAD (Audet et al.,, 2021). Direct search
is a numerical optimization procedure that, unlike trust
region or line search methods that use derivative informa-
tion, only relies on function evaluations of a design set to
determine whether to move to a new incumbent.
ASTRO-DF, choosing a design point that outperforms the
model candidate point, albeit with a threshold of sufficient
reduction, as the next incumbent will increase the probabil-
ity of success (see Theorem 4.7). The threshold of sufficient
reduction is necessary because a model candidate point is
considered qualified if the model improves the function esti-

In

mate by a factor of A, provided that the model is certified.
In the absence of a model, one needs an alternative criterion
to maintain the quality of the next incumbent. However,
interestingly, the inclusion of direct search makes it a possi-
bility that we accept a point with a reduction less than #Ry
if nRx > 0A;. Meanwhile, ASTRO-DF would reject such a
point. This renders acceptance criteria for the new incum-
bent less strict. The resulting improved probability of suc-
cess takes effect in the early iterations, hence helping the
finite-time performance. As the iterations progress, the
model tends to approximate the function more accurately in
smaller neighborhoods, which reduces the likelihood of the
model candidate point underperforming the interpolation
points.

3.3. Simulation budget

The deterministic lower bound sequence for the sample sizes,
ie., {4 k € N} now grows logarithmically instead of linearly
with k. This leads to a slower growth in the minimum sample
size and savings of the simulation budget throughout. Other
than the slower rate of decrease in AT the stopping time
sample size (6) is identical to the original version of ASTRO-
DF, continuously adding an independent new simulation run
at Xj until the standard error falls below the slightly deflated
(with /) fourth power of the trust-region radius.

4. Convergence and complexity analysis

This section presents the convergence and complexity ana-
lysis of ASTRO-DF-C. We first list the assumptions and
useful results concerning ASTRO-DF. The needed assump-
tions to obtain the convergence and complexity results are
standard and not restrictive, allowing for the use of the
Bernstein inequality to bound the tail of sums of subexpo-
nential random variables that are not independent of one
another.

Assumption 1. (function) The function f is twice continu-
ously differentiable in an open domain Q, Vf is Lipschitz
continuous in Q with constant kp, > 0, and V>*f is Lipschitz
continuous in Q with constant k; > 0.

For the sake of clarity in notation, we henceforth replace

E(X}, &) with Ej , N(X}) with Nj, and E(X},N}) with Ej.

For the center point Xy, we interchangeably use X.

Assumption 2. (stochastic error) The Monte Carlo oracle
generates iid random variables F(X},&;) = f(X}) +E;<>j with
E}U € Frj» where Fi = Fio C Fi1 C ... C Frya for all k.
The deszjgn set is {X}},o, bonp € Fiat- Then the stochastic
errors Ey ; are independent of Fy_, E[E; |Fkj-1] =0, and
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there exists 6> > 0 and b > 0 such that for a fixed n,

1< . m!
-> E[|E;(j|m|fk,j—l} <5 V"6 Ym = 2,3, ..., Vk.
n< ?

=1

The above is known as the Bernstein condition. Furthermore,
for a given incumbent at iteration k, there exists a large cy >
0 such that for all Jx < n < N,

—1 : :
P{Y B > e~ tllBL,| =t}
LS Bl > et}

In other words, the ratio above is O(1) uniformly for
all t € [co, c].

The criteria in (7) intuitively mean we cannot have
extreme positive dependence between the latest observed
error’'s magnitude and the previous total observed error
magnitudes. That 1is, the probability of the event

{(2;1:—11 Bl >c=t)N(|E, | € B(t))} cannot be much
larger than ]P’{Z;:ll |Ey,jl > c— t}P{|E} ,| € B(t)}, where
P{|E; ,| € B(t)} is to be understood as the probability of
|E; ,| lying in some open interval containing ¢, for any t < ¢

<oo. (7)

limsup sup
c—oo  ¢o<t<c

larger than co. For correctness, when P{|E} ,| € B(t)} is not
possible, the conditional probability is simply understood as
zero. Ko and Tang (2008) show that this assumption allows a
wide range of dependence structures. Importantly, this
assumption enables characterization of the tail probability of
a sequence of dependent random variables that each have a
sub-exponential tail behavior for the Bernstein inequality
bounds to be applicable. The criteria for the stochastic error
in Assumption 2 are less stringent than boundedness or sub-
Gaussian behavior. See (Ha et al., 2023) for more details.

Assumption 3. (model) There exists some constant Kpq €
(0,1] such that for all k,

Mi(Xx) = Mi(Xi + Sk) > repea[Mi(Xx) — Mi (X + Sp)],

where S, is the Cauchy step. Additionally, there exists Ky €
(0,00) such that |Hk|| < kn for all k with probability 1.

Assumption 4. (sample size) The “lower-bound sequence” {;}
on the adaptive sample sizes satisfies Jx = O((logk)'*) for
somee) € (0,1).

4.1. Useful existing results

In this section, we introduce several useful results to obtain
the almost sure convergence and complexity of ASTRO-DF
with coordinate direct search. The first result implies that the
estimation error with adaptive sampling is sufficiently small
eventually (for large enough iterations) with probability 1.

Theorem 4.1. (Theorem 2 by Ha et al (2023)) Let
Assumptions 2 and 4 hold. Then for any ¢ >0 and suffi-

ciently large k, E;| < cA;j almost surely. In other words,

IP’{|E;{\ > A i.o.} =0.

For a sketch of this proof, observe that the subexponen-
tial behavior of the stochastic error specified in Assumption
2 makes it possible to apply the Bernstein inequality for the
average of stochastic error absolute values. Thus,

Ni 2

1 ; c
P{— E . Fr— < -Nn—_—71,
Nk;| k,]| > C| k-1 =~ Z eXp < n2(Cb+02)>

n>Ak
0’2).k
K2A
mic A here then renders this probability summable in k.
Invoking the Borel-Cantelli Lemma then completes the
proof.

since Ny > from (6) for large enough k. The logarith-

Remark 1. Bernstein’s inequality implies that IP’{\EH >
cA|Fi} < ok7'*% for any ¢ > 0 and some o > 0; i.e., the
estimate is sufficiently accurate with a probability that tends
to one as k — oo. In contrast to the assumption of probaba-
bilisitcally accurate estimates with a fixed probability and
fixed accuracy threshold (Chen et al., 2018), the estimators’
property here is ensured as a result of the adaptive sampling
rule.

The second existing result characterizes the stochastic
model error with estimation error when the stochastic
model is constructed by Definition 2.2.

Lemma 4.2. (Lemma 2.9 by Shashaani et al. (2018) and
Proposition 3.1 by Ragonneau and Zhang (2023)) Let
Assumption 1 hold and let My (-) be a stochastic quadratic
interpolation model with diagonal Hessian of f on B(Xy; A).
Let my(-) be the corresponding deterministic polynomial inter-
polation model of f on B(Xy; Ax). Then for all x € B(Xy; Ay),
[Mi(x) = mi(x)] < (2d + 1) max |F(Xj, n(X3)) = f(Xi)].

i=0,1,...,

Remark 2. A direct observation from Lemma 4.2, Theorem
4.4, and Appendix A is that

P{[|Vf(x) = VMi(x)[| > (cog + ko) Ax and
[f (%) = Mi(x)| > (co + 1 )AF | F i} < ok,

for some o >0, ¢, >0, and ¢y >0 and for all x €
B(Xk; Ax). In other words, the stochastic model is probabil-
istically fully linear with a probability that goes to one as
k — oco. Again, despite the resemblance to the assumption
of probabilistically fully linear models with fixed probability
(Chen et al., 2018), this result is ensured without overbur-
dening the computation, as we will see in the obtained com-
plexity results.

4.2. Model quality

To prove consistency, we first look at the model quality
with the suggested design set in Definition 2.2. In general,
the stochastic polynomial interpolation model satisfies that
the model gradient norm is eventually O(Ag)-accurate for
any point within the trust region of size Ay with probability
1 (Shashaani et al, 2018). The following theorem gives a
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bound on the stochastic model error that holds for any
point within the trust region.

Theorem 4.3. Let Assumptions 1 and 2 hold, and M (x) be
a stochastic quadratic model of f on B(Xy; Ax) with diagonal
Hessian  built on F(Xi,n(X})) =f(X})+E,, for i=
0,1,...,2d on iteration k. With VM(x) = (x — X;) ' Hi + Gy
and Ke = @(KLg+KH), we can uniformly bound the
model gradient error for all points x in B(Xy; Ax) by

2
2d (mi 7O
Zi:l(Ek_Ek)
A '

IVMi(x) = Vf ()| < reeqr Ak +

Proof. With a stochastic quadratic models with diagonal
Hessian, the theorem holds following the same steps of
Appendix B by Shashaani et al. (2018). ]

We next investigate the model gradient error at the cur-
rent iterate as a special case. At the center point, we can get
a tighter upper bound, as with a central finite difference.
Theorem 4.4 shows the deterministic part of the model gra-
dient error at the incumbent is O(A?).

Theorem 4.4. Let Assumptions 1 and 2 hold, and the interpol-

ation model My(x) of f be a stochastic quadratic model with
diagonal Hessian constructed using F(Xi,n(X})) = f(Xi) +
E;(, for i=0,1,...,2d. Then, with Ke» = \/?EKL, we can uni-
formly bound the model gradient error at the center point by

2
d ol pitd
\/Zil (Ek - Ex )

2A;

1Gk = V(X < KA} +

Proof. We begin by decomposing Gy = Vf(Xy) + E¥(Xx) +
ef(Xy), where Ej := Gy —g, and € := g, — Vf(X) are the
stochastic model error and deterministic model error, respect-
ively, and g, is the deterministic model gradient. Then we

can obtain Gy by finding f such that M(@, X)p = F, where

1 0 0 - 0 0 0
1 A, 0 -+ 0 A2 0
1 0 A - 0 0 A2 -+ 0
M(®@,x)=|1 0 0 -+ A 0 0 A2 |;
1 =Ay, 0 -+ 0 A2 0 - 0
1 0 —A -~ 0 0 AJj2 - 0
1 0 0 -Ax 0 0 A;)2
[ F(X),ND)
| F(XNg)
F= ‘
| FOXG N
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As a result, the ith element of the gradient estimate is
obtained by

Xi + eA) —f(Xx —eA)  Ep—E;°
iG], =LKt ete) ~f(Xe—eid) | By — By )
' 2A 2/
By Taylor’s theorem,
Vd
llgr = Vi (Xi)ll < ?KLAZ,

with (8) like the central finite difference (Berahas
Cao, Choromanski and Scheinberg, 2021; Coope and
Tappenden, 2021). Hence, we obtain [Ei]i:(E;(—

E;:rd)/2Ak for any i € {1,...,d}, which implies that ||Ef|| =

VI (B, — B /(280). As a result
Gk = V(X < llgx = VF(Xi) | + |Gk — &l

d i Sitd\2
- @K AL \/Zi:l(Ek —-E.")
=6 Tk 20, '
|
4.3. Convergence
For the remainder of this article, we define the
set L = {k € N : iteration k is successful}.
Theorem 4.5. Let Assumptions 1-4 hold. Then,

w.p.1
Ar—0 as k— oo.

Proof. If K is finite, the trust-region radius tends to
zero due to shrinkage over infinitely many unsuccessful
iterations, making the statement of the theorem hold
trivially. Thus, we consider that K is infinite. The candidate
incumbent can be one of the points among the design sets
or the trust-region subproblem minimizer. Let us define two

different sets Ky :=KN{keN: X} = Xk+1} and s, :=
Kn{keN: Xy, =X} Then we have, for any k € Ky,

Ry = F(Xi, Ni) = F(Xi41, Nio1) = Mi(Xk) — M(Xq1) > 0AF,
and for any k € Iy,
Ry = F(Xg, Ni) = F(Xp1, Nigr) > n(Mi(Xy) = Mi(Xg11))

d A [ A
> e 2k (—" A Ak)
2 p \pKH

1
> (—”Kﬂd (— A 1> ) A2,
2 \HKH

o' Z Ai < Z(f(xk) — f(Xkt1) + Ex — Exi1)

kek kek

Then, for any k € K,

o0

< flxo) = f*+ Y _(|Exl + [Exa]);

k=0
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where 0 = <%ﬁd (H%H/\ 1) A 9). Let K = {ki, ks, ...}, ko =
—1, and A_; =A¢/y,. Then from the fact that A; <

yly’;_k"_lAk. for k =k; + 1,...,k;;; and each i, we obtain

<AL ZV

1+1

ZAZ 71A2 Zl’zkk Y

k=ki+1 k=k;+1

Then, we have

00 2 o0 2 A2 f(xo) _f* JrE/ -
> A <y A <D ( + )

1_V2 Vz

) _(IEx| + |Ex11]). By Theorem 4.1, there

must exist a sufficiently large Ka such that |Ex| + |Ex1| <

where E| i =

caA} for any given cy >0 and every k > Ks. Then we

obtain

2 (A “4E) g +E
ZA2+ ZAZ VA (/2 +f(x0) f G/KA 1 Ka, oo>,
2

k=K

and By, =Yk [Exl + |Exa| < Yook, caA;. As a result,

we get
ZAz V% (A flxo) - I+E61<A )(1_ i ZCAI)_l .
& 73 0 1-950
)
Therefore, Ay —"P1 0 as k — oo. [ ]

Now we prove the almost sure convergence of ASTRO-
DF-C.

Theorem 4.6. Let Assumptions 1-4 hold.
Then, | Vf(X)|| 2230 as k — oc.
Proof. Let us define the set
V= {3 a subsequence {k;}
o (Ao () ) A (hr <)
s.t. < ,
640~ \awy ") )T

where ' =671 (1 = n)Kpa((pn) ™' A1). Then, we have

P{V} = 0. The proof trivially follows from Lemma 5.2 in
Shashaani et al. (2018) by considering that {u[|Gy || > Ay}
is now in the set V, which was ensured by the criticality
step by Shashaani et al. (2018). We also have |Gy -
Vf (Xp)|| 2250 as k — co. The proof follows from that of
Lemma 5.4 by Shashaani et al. (2018), considering that we
always use Ay for iteration k. Now we will prove that

Algorithm 1 obtains lim inf||Vf(X;)|| =250 as k — oo with

Gk — VF(Xi)[| 220 as k — oo and Theorem 4.5. For the
purpose of arriving at a contradiction, suppose the set

Dy = {w : Ixpe(), ke(w) > 0 s.t.
1G]l = remg () Vi > kg ()}

has positive measure. Due to the assumptions of the theorem,
we can find a set D of sample paths such that P{D;} = 1, and
such that for each w € Dy, Ax(w) — 0 and w € V°. Let w €
D, N'Dy. Then either ||Gy(w)|| < (11 2ry) ™ Aw)™" Ax(w) or
pr(w)>n for large enough k. Since Ay goes to zero almost
surely, || Gy (o) < (' (2x) ™
large enough k. Therefore, for any w € Dy N Dy, it must be true
that p;(w) >n for large enough k. In other words, the iterations
in sample path w € D;ND; are eventually successful.

Now let Ki(w) > 0 be such that K;(w) — 1 is the last unsuc-
cessful iteration in sample-path w € Dy N Dy, that is, k is a
successful iteration if k > Ki(w). Next, Ay > Ak, (w)vk,(w) con-
tradicts the observation Ax(w)— 0. We conclude that
P{D,} =0 and that liminf; . [|Gx|| = 0 almost surely. This
along with the fact that |Gy — Vf(Xp)|| & 0 as k — oo,
implies lim infy,» ||Vf(Xk)|| =0 almost surely. Then, the
almost sure convergence of ASTRO-DF-C follows from
lim infy_. ||Gk|]| =0 almost surely, and Theorem 4.5. The
proof is completed by trivially following steps in Theorem 5.5 in
Shashaani et al. (2018) and considering that Ry > GAi. |

Ap) "' Ar(w) cannot be true for

Now we prove that ASTRO-DF-C has a higher probabil-
ity of success compared with ASTRO-DF. Although this
result is not utilized in our current complexity results, it
demonstrates that the progress achieved by integrating a
coordinate direct search is at least as good as the progress
made without that feature, thereby supporting its positive
impact on the finite-time performance of the algorithm.

Theorem 4.7. Let Assumptions 1-4 hold. Then for a given

incumbent X, € R in iteration k, having a successful iter-
ation with ASTRO-DF-C is at least as probable as having a
successful iteration with ASTRO-DF.

Proof. Let us define two events

Ry :={w € Q: k(w) is successful with ~)A(;<+1((x))|Xk(co) = x}
Sk i={w € Q: k(w) is successful with Xy i1(0)|Xi(w) = x4}

Then pk,S:ZP{Sk}ZP{Sk|Rk}P{Rk}+
IP’{S;J’RE }IP’{R,E }, is the probability of having successful
iteration k with ASTRO-DF. In contrast, ASTRO-DF-C
sequentially compares Xy, (®) and X;, (). If the iteration
k is unsuccessful with Xy, (®), Xi.1(w) will still be consid-
ered as the next incumbent, i.e., pk,r:IP{Rk}+IP’{Sk|R,E =

where py, is the probability of having successful iteration k
with ASTRO-DEF-C. As a result, pi, > pis. |

Remark 3. Since the sequence {X;} is dependent on previ-
ous steps, we cannot directly compare ASTRO-DF with
ASTRO-DF-C using Theorem 4.7. Nonetheless, Theorem 4.7
implies that, given an incumbent X, ASTRO-DF-C has a
higher likelihood of achieving success, preventing A from



becoming too small too quickly. This enables the algorithm

to save significant budget due to Ny = O(A;*).

4.4. Complexity

While the iteration complexity and work complexity of ASTRO-
DF has been extensively studied by Ha et al. (2023), our focus in
this section is on the refinements and their impact on the com-
plexity analysis. Specifically, we will examine how these refine-
ments affect the algorithm’s computational efficiency.

The following lemma proves that when Ay is too small
relative to ||Vf(Xy)|, the iteration k becomes successful
almost surely for sufficiently large k.

Lemma 4.8. Let Assumptions 1-4 hold and € > 0 be given.
Then there exists a constant ¢y, > 0 such that with probability 1

(A < ciwe) N (IVF(Xi)| > €) for sufficiently large k = k € K.

Proof. Let the solver sample path @ be fixed. Define a con-
stant cg as

1 Kfcd(l —7’]) 1
= — AL | —Ke |-
& 2d+2< 2u UKH of

We can find Kg(w) > 0 such that k> Kg(w) implies
|Ex(w)| < cgAf(w), which also holds for all design points
visited during iteration k by Theorem 4.1. Then Theorem
4.4 states for k > Kg(w),

Vd vd

16k(@) = Vf(Xi(w))]| < 7

(10)

KLAZ( )+ ceAk (o).

Let ¢, be such that

1 d
- - + £ KLAmax +—=
Clb

\/_
\/_
Then, if Ax(®) < cpe, we get

[G(@)]| = [|Vf (Xi(@))[| = [|Gi(w) = Vf (Xi())]|

1 @KLAmax + \/TjCE> Ak(w) > l_liAk(w))

cn 6
where we have used ||Vf(Xk(w))| > e
This result confirms that the model quality is eventually
good whenever the trust region becomes sufficiently small. To
complete the proof we need to show the model will lead to suc-

cess; a sufficient condition for that is Ri(w) > nRy(w). For
ease of exposition we drop  in the final step of the proof:

’1 Rk ‘F(Xk+l)Nk+l) — Mi(Xi41)
Ry Mi(Xk) = Mi(Xg11) : N
< IE(Xici)| + If K1) — mi(Xiar)| + [mic (K1) = Mic(Xjei)|
= Kfed
= #KH/\I)Ak
Bty (2d+ 1)cg
— K -
()
(11)
[ |
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Remark 4. In the proof of Lemma 4.8, the trust region lower
bound constant ¢, depends on the coefficient of the toler-
able estimation error cp, specified in (10). The statement of
the lemma conveys that if Ax(w) < cppe and |V (Xi(w))]| >
e for any given ¢ > 0 and any k > Kg(w), then the trust
region will expand. So while € can be chosen to be large
such that Ay will not become too small to reach it, it does
not cause any problem in the future complexity results.
ASTRO-DF-C leads to a larger ¢ since in (11) and (10), we
now have 2d instead of (d+ 1)(d+2)/2—1 points. This
means that compared to ASTRO-DF where cp = O(d™?)
and ¢p = O(d), this refined version will have cg = O(d™")

and ¢p = O(\/E) Given that . and ky = O(dlogd) are in
our control (Appendix A and B), we can choose u such that

cg >0, ie, u7t > ( 2KH Ko A 2Kef). Nevertheless, the iter-

ation complexity will be discussed for small enough e.

Relying on Lemma 4.8, we now show the almost sure
iteration complexity. This is stronger than the claim that the
random variable €T, is O,(1).

Theorem 4.9. Let Assumptions 1-4 hold. Then for sufficiently
small € >0, ¢ >0, and a positive integer valued random
variable K,

P{e*T. < cr + K} = 1.

Proof. Let f* := min,_paf(x) > —0o be the optimal function
value, w be fixed and Kg(w) be the one defined in Lemma 4.8.
We can find from Theorem 4.6 some Kj,(w) such that for all
k > Ku(w), we have that f(Xx(w)) < fi 4+ 1, where f; is the
highest function value among the stationary points. Without
loss of generality, given @ € Q, let €(w) € (0,1) be small
enough such that except for a set of probability 0, the set
Ki(w) = {Kp(w) <k < T(w) : Ar(w) < cpe} is nonempty
for all € < ey(w), where ¢ is defined in Lemma 4.8 and
Ki(w) :== (Kp(w) V Kg(w)). This implies that Ax(w) > p,cpe
for all Ki(w) < k < T,(w). For the remainder of the proof we
will use the notation fi(w):=f(Xk(w)) for simplicity.
Following the steps in the proof of Theorem 4.5 we have
0> k> K'e(0)A(0) < figw)(©) = f
kek

o0

+ Y (Edo)l + (@),

k=K},(w)

from which we obtain

00 N2 0
— "2 i
k=K (o) =145
% Fry)(@) =" + B 09,00 ()
< 2 Ama_xz + 7 >
1—73 0

where E} (@) =Y (|[Ex(0)|+|Exs1()|) and k; is the ith
successful iteration after Ki(w). Then, by the definition of
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Ki(w), we have |Ex(w)|<cgAj(w) for any k> Kj(w),
which implies E;(é<w)’oo(w) <2 ZZO:K,F((D) A;(w). As a result,

we obtain with small enough cg,

2

2ykc > y =+l
(1—(1%;)9/) > Ai(w)<1_1y2 (Amaxz+fT)~ (12)
2

k=Kp(w) 2

Now we can write

00 T (w)-1
D A)> Y A(0) > P, (Tdw) - Ky(w)).
k=Kj () k=K (o)

Then by (12), for all € < ¢(w), we have €T.(w) < cr+
EKp (o). [ |

Note that Theorem 4.9 implies that limsup, , €*T.(w) <
cr for all w € Q, that is, €T, is bounded by a fixed value in
the limit, almost surely.

Remark 5. A closer look in the proof of Theorem 4.9 suggests
that ASTRO-DF-C has better iteration complexity than
ASTRO-DF in the constant terms. This is because (dropping
o for ease of exposition) we have Ay > y,cpe for all K < k <
T. with small enough e. If for all k < K, there exists Cj, > 0
(which is random and defined for sample path w) such that
Ax > 7,Cpe, then ZZ‘:_OI A} > 2 (T, — Kg) + V%C’lszEez.
A larger value of C'y, leads to a larger lower bound on the
trust-region size, resulting in a smaller sample size (Ni) and a
larger step size. This explains why the probability of having a
successful iteration k is paramount. The two refinements play
a crucial role in increasing cp, as stated in Remark 4 and
Theorem 4.7. Additionally, under certain regularity condi-
tions of random variable Ky such as finite first moment,
Theorem 4.9 becomes equivalent to E[T.] = O(¢?); this is
similar to the results proven in Blanchet et al (2019).
However, we attain this canonical rate without the assump-
tions of probabilistically-fully-linear models and independ-
ence, or using renewal theory (as used by Paquette and
Scheinberg (2020) and Blanchet et al. (2019)).

5. Numerical results

In this section, we evaluate and compare simulation opti-
mization solvers on problems from the SimOpt library
(Eckman et al., 2023).

The SimOpt library includes the MRG32k3a (L’Ecuyer
et al., 2002) pseudorandom-number generator and common
random numbers for all solvers to manage uncertainties
during search and evaluation and enable efficient compari-
sons. The SimOpt solver library includes various solvers like
Nelder-Mead, Random Search, ALOE (Jin et al, 2021),
ADAM (Kingma and Ba, 2017), STRONG (Chang et al,
2013), and STORM (Chen et al., 2018). The SimOpt prob-
lem library consists of optimization problems where the
simulation oracle provides the objective function value at
specific points. Due to limited information on the objective

function’s structure, stochastic simulation oracles are pre-
ferred over deterministic problems with added stochastic
error, as the latter leads to artificial solution-dependent esti-
mators. The evaluation of solvers in the SimOpt library
involves two main procedures. First, we run m macrorepli-
cations for each solver and problem. The solver aims to
solve the problem during each macroreplication until a pre-
defined budget is exhausted. At each x, the objective func-
tion is estimated by conducting n replications using sample
average approximation, which varies depending on the
solver used (adaptive solvers use a random sample size
N(x)). Second, we conduct / post-replications at the inter-
mediate incumbents of each macroreplication to estimate
the objective function without optimization bias. In our
experiments, we test the performance of the solvers using
m = 20 macroreplications and 7 = 200 post-replications.

We use the following standard parameters: ;= 1000, =
0.5,9; =0.75, and 7y, =1.5. To determine A, for each
macroreplication, we employ a process that generates ran-
dom design points for the problem of interest, and the max-
imum distance between them is calculated and set as Ap.x.
For each sample path, we tune Ay by a pilot run as one of
three possibilities, 0.05Amax X (0.1,1,10) using 1% of the
total budget for each. We also tune the value of the scaling
parameter x at the first iteration for each sample path by
setting x = F(Xo, No)/A}. Hence, K also has three possibil-
ities based on Ay. This tuning approach enables us to adjust
the scaling of Ay, Amax, and x in response to the behavior of
the optimization algorithm. ASTRO-DF algorithm utilizes
local models with linear interpolation and implements a
strategy of reusing design points from previous iterations by
following the AffPoints algorithm presented by Wild et al
(2008), enabling the reuse of design points as extensively as
possible. For details see (Eckman et al., 2021).

As presented in Section 1, Figure 1 displays the solvabil-
ity profiles for 60 problems from the SimOpt library. A solv-
ability profile of a solver depicts the proportion of tested
problems solved within a certain relative optimality gap.
ASTRO-DEF-C solver solved more than 80% of the problems
within 30% of the budget, significantly outperforming the
contenders. Next, we will examine each refinement and its
corresponding effect.

5.1. Effect of diagonal Hessian

Ha et al. (2021) compare (i) ASTRO-DF with full Hessian,
(ii) ASTRO-DF with diagonal Hessian following Definition
2.2, and (iii) ASTRO-DF that integrates both linear and fully
quadratic models through a heuristic approach that utilizes
linear models when far from first-order optimality and
quadratic models otherwise. Experimenting with these three
versions on three problems from the SimOpt library indi-
cated that the diagonal Hessian version was capable of the
fastest progress with robustness (lower variance). In the
remainder of this section, we include a 20-dimensional
problem to further investigate the algorithm behavior in
higher dimensions.



5.2. Effect of direct search

We investigate the effect of using a direct search within
ASTRO-DF after having implemented the first refinement
that yields diagonal Hessian quadratic models using coord-
inate basis placements of interpolation points. In addition to
a broad comparison of the new solver on 60 problems as
illustrated in Figure 1, we conduct experiments for two prob-
lems, namely, the Stochastic Activity Network (SAN) prob-
lem, which is a convex 13-dimensional problem, and a
20-dimensional Rosenbrock function with multiplicative
error,

19
Fx, &) = Z [IOO(XH'I - &)’ + (Gxi— 1),
i1

where & ~ N(1,0.1) for all i € {1,...,19} (Kim and Zhang,
2010). The reason why this function has become a popular
choice for evaluating optimization algorithms is attributable,
in part, to the fact that its global minimum is located within
a long, narrow valley that displays a parabolic shape (highly
nonconvex). This characteristic makes the problem particu-
larly challenging.

Along with Figure 2, Figure 4 now shows the solver’s
finite time performance in terms of the progress made per
iteration with mean and 95% confidence interval after run-
ning the algorithms 20 times. In SimOpt and typical simula-
tion experiments, a fixed total simulation budget is given;
hence, the number of iterations completed varies from run
to run and solver to solver. We display the first 100

—— ASTRO-DF-C
ASTRO-DF

A

%

Function Estimates

o o o v > D

0 20 40 60 80 100
Iteration k

(a) 20-D Noisy Rosenbrock
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iterations for the two versions of ASTRO-DF. For both
problems, ASTRO-DF exhibits a slower rate of progress
than ASTRO-DEF-C after the first few iterations while reveal-
ing a slightly faster progress leading up to that point. This
phenomenon arises from the fact that, although ASTRO-DF
can attain more accurate local models by employing larger
sample sizes and smaller trust regions in the first 20 or so
iterations, the step size becomes excessively small thereafter.
When evaluating progress relative to the expended budget,
the disparity in the trajectory between the two algorithms
during the initial iterations is notably less significant, as will
be detailed in Figure 6.

To see per-iteration simulation expenses, see Figure 5. As
shown in Figure 5(b), ASTRO-DF can only have about 70
iterations with a 30,000 budget, whereas ASTRO-DEF-C
reaches 100 iterations with the same budget on the SAN
problem. The evident cause of less progress in ASTRO-DF
than in ASTRO-DEF-C is the rapid reduction of Ay to find
new incumbents that provide satisfactory reduction. This
rapid reduction of step size forces larger budget per iteration
- a faster increase in the expended budget after iteration 20.
Notably, the small variation in the budget spent during the
initial 20 iterations is due to the fact that the deterministic
lower bound of the sample size, A, provides small enough
standard error as in the adaptive sampling rule (6) within
these initial 20 iterations.

Lastly, Figure 6 shows the mean progress with 95% confi-
dence for each problem as a function of the expended
budget. In both cases, significantly better solutions are

& | — ASTRO-DF-C
ASTRO-DF

4‘)0

Function Estimates
o

~0

0 20 40 60 80 100
Iteration k

(b) 13-D Stochastic Activity Network

Figure 4. Better progress of ASTRO-DF-C is evident in the mean function estimates and 95% confidence intervals on both problems.
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Figure 5. The total budget spent per iteration is lower due to savings from using direct search with 95% confidence intervals from 20 macroreplications.
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Figure 6. Mean value and 95% confidence interval of objective function trajectory per spent budget for both problems exhibits significant finite-time improvement

with direct search.

reached by ASTRO-DF-C. Especially for the SAN problem,
we observe that direct search remarkably accelerates the
convergence with less uncertainty (narrower confidence
intervals). In the Rosenbrock function, the improvement,
while significant, is not as pronounced. We attribute consist-
ently better solutions with direct search in this non-convex
noisy problem to a better exploration of the feasible region
(more chances of success means visiting more points) with
no additional cost, besides the saving of budget and a slower
rate of Ax decay.

6. Conclusion and future work

This article proposes efficient procedures and theoretical
advancements for solving SDFO to first-order optimality in
finite time. Trust regions are a class of algorithms with
growing popularity for their volatile mechanics and stability
in this context. However, expensive function approximations
with locally certified models have caused a shortage of
implementable trust-region algorithms for SDFO that serve
higher dimensions robustly and efficiently. Our approach of
integrating adaptive sampling strategies with local approxi-
mations via coordinate-basis designs and leveraging inter-
mediate direct search steps addresses this limitation. The
resulting algorithm is implemented and experimented on a
testbed of SDFO problems and maintains almost sure con-
vergence guarantees. Crucially, we also prove canonical
complexity rates in almost sure sense and in expectation
without requiring practically hard assumptions. The gain in
finite-time performance is apparent with justifiable faster
progress in the early iterations of the search.

A future research direction is on the exploration of the
work complexity or total oracle runs and the dimension-
dependent constants. Additionally, reusing history and
allowing the design set geometry to vary may be beneficial.
Although ASTRO-DF-C effectively utilizes information by
incorporating direct search, the data (visited points) from
previous iterations is not carried over to subsequent

iterations. Therefore, there might be potential to enhance
efficiency by systematically reusing the design points and
replications while retaining the benefits of ASTRO-DF-C.
Other research areas include handling higher dimensions
with techniques such as random subspaces, in which one
generates a sequence of incumbents to random embedding
constructions in lower dimensions without losing much
information (Dzahini and Wild, 2022; Cartis and Roberts,
2023).

Acknowledgments

The authors acknowledge the helpful discussions with Dr. Raghu
Pasupathy that led to the improvement of the manuscript.

Funding

Generous support from the National Science Foundation Grant
CMMI-2226347 is gratefully acknowledged.

Notes on contributors

Dr. Yunsoo Ha is currently a Postdoctoral Researcher at the National
Renewable Energy Laboratory within the Artificial Intelligence,
Learning, and Intelligent Systems (ALIS) group. He earned his PhD
degree from Edward P. Fitts Department of Industrial and Systems
Engineering at North Carolina State University. His research revolves
around Machine Learning, Quantum Computing, and Stochastic
Optimization. More precisely, his focus lies in crafting stochastic opti-
mization algorithms tailored to address real-world challenges.

Dr. Sara Shashaani is an Assistant Professor and Bowman Faculty
Scholar in Edward P. Fitts Department of Industrial and Systems
Engineering at North Carolina State University. Her research interests
lie in the intersection of Monte Carlo simulation, applied probability,
and stochastic optimization. She is an active member of the INFORMS
Simulation Society and INFORMS Computing Society. She is also the
co-creator of SimOpt: the open-source testbed and benchmarking plat-
form for simulation optimization algorithms.



ORCID

Yunsoo Ha
Sara Shashaani

http://orcid.org/0000-0002-9421-4768
http://orcid.org/0000-0001-8515-5877

Data availability statement

The data and computer code that support the findings of this study are
openly available in GitHub at https://github.com/sshashaa/astro-df.git.

References

Audet, C., Digabel, S.L., Montplaisir, V.R. and Tribes, C. (2021)
NOMAD version 4: Nonlinear optimization with the MADS algo-
rithm. arXiv preprint arXiv:2104.11627.

Berahas, A.S., Cao, L., Choromanski, K. and Scheinberg, K. (2021) A
theoretical and empirical comparison of gradient approximations in
derivative-free  optimization.  Foundations of Computational
Mathematics, 22(2), 507-560.

Berahas, A.S., Cao, L. and Scheinberg, K. (2021) Global convergence
rate analysis of a generic line search algorithm with noise. SIAM
Journal on Optimization, 31(2), 1489-1518.

Blanchet, J., Cartis, C., Menickelly, M. and Scheinberg, K. (2019)
Convergence rate analysis of a stochastic trust-region method via
supermartingales. INFORMS Journal on Optimization, 1(2), 92-119.

Cakmak, S., Wu, D. and Zhou, E. (2021) Solving Bayesian risk opti-
mization via nested stochastic gradient estimation. IISE
Transactions, 53(10), 1081-1093.

Cao, L., Berahas, A.S. and Scheinberg, K. (2022) First- and second-
order high probability complexity bounds for trust-region methods
with noisy oracles. arXiv:2205.03667.

Cartis, C. and Roberts, L. (2023) Scalable subspace methods for deriva-
tive-free nonlinear least-squares optimization. Mathematical
Programming, 199, 461-524.

Chang, K.-H., Hong, LJ. and Wan, H. (2013) Stochastic trust-region
response-surface method (STRONG)—a new response-surface
framework for simulation optimization. INFORMS Journal on
Computing, 25(2), 230-243.

Chen, R., Menickelly, M. and Scheinberg, K. (2018) Stochastic opti-
mization using a trust-region method and random models.
Mathematical Programming, 169(2), 447-487.

Choromanski, K., Iscen, A., Sindhwani, V., Tan, J. and Coumans, E.
(2018) Optimizing simulations with noise-tolerant structured explor-
ation, in 2018 IEEE International Conference on Robotics and
Automation, IEEE Press, Piscataway, NJ, pp. 2970-2977.

Conn, AR, Scheinberg, K. and Vicente, L.N. (2009) Introduction to
Derivative-Free Optimization. 1st edition, SIAM, Philadelphia, PA.
Coope, 1.D. and Tappenden, R. (2021) Gradient and diagonal Hessian
approximations using quadratic interpolation models and aligned

regular bases. Numerical Algorithms, 88, 767-791.

Dzahini, K.J. and Wild, S.M. (2022) Stochastic trust-region algorithm
in random subspaces with convergence and expected complexity
analyses. arXiv.2207.06452.

Eckman, D.J., Henderson, S.G. and Shashaani, S. (2023) Diagnostic
tools for evaluating and comparing simulation-optimization algo-
rithms. INFORMS Journal on Computing, 35(2), 350-367.

Eckman, D.J., Henderson, S.G., Shashaani, S. and Pasupathy, R. (2021)
SimOpt. https://github.com/simopt-admin/simopt (accessed 1 May
2020).

Fazel, M., Ge, R, Kakade, S. and Mesbahi, M. (2018) Global conver-
gence of policy gradient methods for the linear quadratic regulator,
in Proceedings of the 35th International Conference on Machine
Learning, PMLR (Proceedings of Machine Learning Research),
Stockholm, Sweden, pp. 1467-1476.

Flaxman, A.D., Kalai, A.T. and McMahan, H.B. (2004) Online convex
optimization in the bandit setting: Gradient descent without a gradi-
ent. arXiv:cs/0408007.

IISE TRANSACTIONS 15

Ghanbari, H. and Scheinberg, K. (2017) Black-box optimization in
machine learning with trust region based derivative free algorithm.
arXiv.1703.06925.

Gratton, S., Royer, C.W., Vicente, LN. and Zhang, Z. (2018)
Complexity and global rates of trust-region methods based on prob-
abilistic models. IMA Journal of Numerical Analysis, 38(3), 1579-
1597.

Ha, Y., Shashaani, S., and Pasupathy, R. (2023). On common random
numbers and the complexity of adaptive sampling trust-region
methods. optimization-online.org/?p=23853.

Ha, Y., Shashaani, S. and Tran-Dinh, Q. (2021) Improved complexity
of trust-region optimization for zeroth-order stochastic oracles with
adaptive sampling, in Proceedings of the 2021 Winter Simulation
Conference, IEEE Press, Piscataway, NJ, pp. 1-12.

Hu, J., Song, M. and Fu, M.C. (2023) Quantile optimization via mul-
tiple timescale local search for black-box functions. arXiv preprint
arXiv:2308.07607.

Jin, B., Scheinberg, K. and Xie, M. (2021) High probability complexity
bounds for line search based on stochastic oracles. in Advances in
Neural Information Processing Systems, 34, 9193-9203.

Kim, S. and Zhang, D. (2010) Convergence properties of direct search
methods for stochastic optimization, in Proceedings of the 2010
Winter  Simulation ~Conference, IEEE Press, Piscataway, NJ,
pp. 1003-1011.

Kingma, D.P. and Ba, J. (2017) Adam: A method for stochastic opti-
mization. arXiv:1412.6980.

Ko, B. and Tang, Q. (2008) Sums of dependent nonnegative random
variables with subexponential tails. Journal of Applied Probability,
45(1), 85-94.

L’Ecuyer, P., Simard, R., Chen, EJ. and Kelton, W.D. (2002) An
object-oriented random number package with many long streams
and substreams. Operations Research, 50(6), 1073-1075.

Maggiar, A., Wachter, A., Dolinskaya, 1.S. and Staum, J. (2018) A deriva-
tive-free trust-region algorithm for the optimization of functions
smoothed via Gaussian convolution using adaptive multiple impor-
tance sampling. SIAM Journal on Optimization, 28(2), 1478-1507.

Menickelly, M., Ha, Y. and Otten, M. (2023) Latency considerations
for stochastic optimizers in variational quantum algorithms.
Quantum, 7, 949.

Paquette, C. and Scheinberg, K. (2020) A stochastic line search method
with expected complexity analysis. SIAM Journal on Optimization,
30(1), 349-376.

Ragonneau, T.M. and Zhang, Z. (2023) An optimal interpolation set
for model-based derivative-free optimization methods. arXiv:2302.
09992.

Ruan, Y., Xiong, Y., Reddi, S., Kumar, S. and Hsieh, C.-J. (2020)
Learning to learn by zeroth-order oracle. arXiv:1910.09464.

Salimans, T., Ho, J., Chen, X., Sidor, S. and Sutskever, 1. (2017)
Evolution strategies as a scalable alternative to reinforcement learn-
ing. arXiv:1703.03864.

Shashaani, S., Hunter, S.R. and Pasupathy, R. (2016) ASTRO-DF:
Adaptive sampling trust-region optimization algorithms, heuristics,
and numerical experience, in Proceedings of the 2016 Winter
Simulation Conference, IEEE Press, Piscataway, NJ, pp. 554-565.

Shashaani, S., Hashemi, E.S.,, and Pasupathy, R. (2018) ASTRO-DEF: A class
of adaptive sampling trust-region algorithms for derivative-free stochastic
optimization. SIAM Journal on Optimization, 28(4), 3145-3176.

Wild, S.M., Regis, R.G. and Shoemaker, C.A. (2008) ORBIT:
Optimization by radial basis function interpolation in trust-regions.
SIAM Journal on Scientific Computing, 30(6), 3197-3219.

Xu, J. and Zheng, Z. (2023) Gradient-based simulation optimization
algorithms via multi-resolution system approximations. INFORMS
Journal on Computing, 35(3), 633-651.

Xu, W.L. and Nelson, B.L. (2013) Empirical stochastic branch-and-
bound for optimization via simulation. IIE Transactions, 45(7), 685-
698.

Zhang, D., Ji, L, Zhao, S. and Wang, L. (2023) Variable-sample
method for the computation of stochastic Nash equilibrium. IISE
Transactions, 55(12), 1217-1229.


https://github.com/simopt-admin/simopt

	Iteration complexity and finite-time efficiency of adaptive sampling trust-region methods for stochastic derivative-free optimization
	Abstract
	Introduction
	Adaptive sampling and trust regions
	Summary of insights and contributions
	Organization of the article

	Preliminaries
	Notation and terminology
	Literature review
	Strong uniform boundedness of |E(x,ξ)|
	One-sided sub-exponential E(x,ξ)
	Zero-mean finite-variance E(x,ξ)
	Decaying E[|E(x,ξ)|] with distance to stationarity and bounded variance

	Definitions

	ASTRO-DF with coordinate direct search
	Model construction
	Updating the next incumbent
	Simulation budget

	Convergence and complexity analysis
	Useful existing results
	Model quality
	Convergence
	Complexity

	Numerical results
	Effect of diagonal Hessian
	Effect of direct search

	Conclusion and future work
	Acknowledgments
	Funding
	Orcid
	References


