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Iteration complexity and finite-time efficiency of adaptive sampling trust-region 
methods for stochastic derivative-free optimization

Yunsoo Ha and Sara Shashaani 

Edward P. Fitts Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC, USA  

ABSTRACT 
ASTRO-DF is a prominent trust-region method using adaptive sampling for stochastic derivative- 
free optimization of nonconvex problems. Its salient feature is an easy-to-understand-and-imple-
ment concept of maintaining “just enough” replications when evaluating points throughout the 
search to guarantee almost-sure convergence to a first-order critical point. To reduce the depend-
ence of ASTRO-DF on the problem dimension and boost its performance in finite time, we present 
two key refinements, namely: (i) local models with diagonal Hessians constructed on interpolation 
points based on a coordinate basis; and (ii) direct search using the interpolation points whenever 
possible. We demonstrate that the refinements in (i) and (ii) retain the convergence guarantees 
while matching existing results on iteration complexity. Uniquely, our iteration complexity results 
match the canonical rates without placing assumptions on iterative models’ quality and their inde-
pendence from function estimates. Numerical experimentation on a testbed of problems and com-
parison against existing popular algorithms reveals the computational advantage of ASTRO-DF 
due to the proposed refinements.
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1. Introduction

We consider unconstrained Simulation Optimization (SO) 
problems of the form

min
x2Rd

f ÖxÜ :à E FÖx, nÜâ ä à
Ö

N
FÖx, nÜdPÖnÜ, (1) 

where f : Rd ! R is smooth (but nonconvex) and bounded 
below, and F : Rd ⇥ N! R is the stochastic function value 
defined on the probability space ÖN,F , PÜ: In particular, 
consider f ÖxÜ that is only observable with noise by a Monte 
Carlo simulation, which generates the random variable 
FÖx, nÜ, that can be decomposed into the true function value 
and the stochastic error EÖx, nÜ, i.e., FÖx, nÜ à f ÖxÜ á
EÖx, nÜ: The estimator of f ÖxÜ via sample average approxi-
mation and the estimated variance of FÖx, nÜ with n runs of 
the simulation can be obtained by

�FÖx, nÜ à n−1
Xn

ià1
FÖx, niÜ, and

r̂2
FÖx, nÜ à Ön − 1Ü−1Xn

jà1
FÖx, niÜ − �FÖx, nÜ
� �2

:

If derivative information is not directly available from the 
Monte Carlo Simulation, then Problem (1) becomes a 
Stochastic Derivative-Free Optimization (SDFO) problem. A 
SDFO algorithm produces, in one run, fXkg—a sequence of 
stochastic incumbents at each iteration k 2 N: This sequence 
can be viewed as a stochastic process defined on a filtered 

probability space ÖX,F k,PÜ, where F k denotes the r-alge-
bra increasing in k. The goal is designing an efficient SDFO 
algorithm to reach an ✏-stationary point, that is a point in 
the set fx : krf ÖxÜk  ✏g, with probability 1.

1.1. Adaptive sampling and trust regions

The number of function evaluations n at an incumbent Xk 
generated by the SDFO algorithm must guarantee estimation 
accuracy of
Pf �EÖXk, nÜj > ✏kg  ak,j (2) 

with the required accuracy threshold ✏k > 0 and exceedance 
probability ak 2 Ö0, 1Ü, where �EÖXk, nÜ :à �FÖXk, nÜ − f ÖXkÜ
denotes the estimation error. An insufficiently large n dur-
ing the optimization will threaten the convergence of the 
SDFO algorithm whereas an unnecessarily large n at every 
design point leads to exhausting the simulation budget 
before reaching a good solution. Therefore, choosing suffi-
ciently large n for each visited design point, that is, viewing 
the sample size as a function of Xk denoted by nÖXkÜ not 
only secures strong consistency, but also reinforces efficiency 
in finite-time and asymptotically.

There is emerging evidence (Gratton et al., 2018; Maggiar 
et al., 2018) that stochastic trust-region methods are effective 
at solving nonconvex SDFO, mainly due to their natural 
ability to self-tune step sizes and facility for curvature esti-
mation. ASTRO-DF—Adaptive Sampling Trust-region 
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Optimization Derivative-free—(Shashaani et al., 2016, 2018; 
Ha et al., 2021) is a class of trust-region optimization algo-
rithms suited for SDFO that deals with the challenge of 
choosing the right sample size using an adaptive sampling 
strategy. The sample size is decided on the fly as a stopping 
time random variable. For a visited incumbent Xk, using a 
random sample size NÖXkÜ that adapts to ✏k and ak at iter-
ation k in (2) based on the inferred estimation error from 
the collected observations can lead to convergence to a first- 
order stationary point almost surely. Given its versatile 
mechanics, guarantees in theory with few requirements, and 
promising results from straightforward implementation, cap-
italizing on adding new features to ASTRO-DF to make it 
more flexible for high-dimensional SDFO problems is favor-
able. To this end, the current article proposes refinements to 
the algorithm and establishes theoretical and finite-time effi-
ciency properties under those refinements.

The progress in ASTRO-DF relies on a local model that, 
due to the derivative-free setting, is constructed on function 
value estimates of points near the incumbent within a trust 
region of size Dk that implicitly controls the step size. The 
mechanism of derivative-free trust-region optimization dic-
tates that Dk eventually drops to zero to drive the algo-
rithm’s convergence. Approximately minimizing the local 
model within the trust region (a.k.a., the subproblem) pro-
vides a candidate for the next incumbent. The decreasing 
accuracy threshold for each point in iteration k, ✏k, is 
designed to decrease linearly with D2

k and the exceedance 
probability ak drops to zero in k due to the assurance that 
NÖXkÜ diverges almost surely. In fact, NÖXkÜ increases lin-
early with D−4

k as Dk decays to zero.

1.2. Summary of insights and contributions

Besides the rapid increase in sample size, which is common 
in SDFO, ASTRO-DF is vulnerable to some practical 
disadvantages:

1. OÖd2Ü number of points needed to build a quadratic 
model to capture the local curvature information is too 
costly, especially considering that an increasing number 
of oracle runs is required in each point with k. 
Furthermore, random choice of the design points causes 
practical inefficiency: to obtain a good model quality, 
the design points need to be “well-poised” (or well 
spread) in the trust region; this entails linear algebra 
cost of the order d6 for a quadratic model; see Chapter 
6 by Conn et al. (2009).

2. Even though ASTRO-DF converges to a stationary point 
almost surely, the probability of having a successful iter-
ation, which is the probability of finding a new incum-
bent at each iteration, can start off very small, tending 
to one as k!1: As a practical matter, frequently 
rejecting the candidate incumbent suggested by the 
model reduces the trust-region radius Dk too quickly, 
which in turn explodes the sample size leading to 
exhausted simulation budget before finding a good 

solution. In other words, full reliance on the local 
model can slow the algorithm’s progress.

To address these challenges, we propose two refinements. 
The first refinement is to use a fixed geometry for the 
design set based on the coordinate basis leading to a model 
with a diagonal Hessian (Coope and Tappenden, 2021). 
Such a fixed geometry was recently shown to be optimal 
among all designs of 2dá 1 many points (Ragonneau and 
Zhang, 2023). Selecting the points with this design, in add-
ition to eliminating a source of randomness inside the algo-
rithm, also eliminates the linear algebra cost of certifying 
that the design is well-poised and the row operations needed 
to solve the system of equations in the interpolation to con-
struct the model. More importantly, the order of approxi-
mated gradient’s deterministic error (bias) is reduced to 
OÖD2

kÜ, that is a central-difference like error, from OÖDkÜ, 
that is a forward-difference like error, in the original algo-
rithm (see Theorem 4.4).

The second refinement is to leverage the design points in 
a direct search manner. This refinement is motivated by 
observing that in each iteration of ASTRO-DF, the estimated 
function value at the candidate incumbent recommended by 
the local model can be worse than that of the points used to 
construct the model. Despite such a possibility, the original 
setup deems the iteration unsuccessful if the model candi-
date yields insufficient reduction, ignoring the readily identi-
fied points that obtain improvement, and starts over to 
build a model in a smaller neighborhood. In addition to 
smaller steps, this rejection will increase oracle calls, incur-
ring a considerable waste of simulation budget. A direct 
search strategy considers selecting design points whose esti-
mated function values provide sufficient reduction in the 
function value estimates as the next incumbent, enabling 
progress without extra cost and maintaining stability in step 
size and sample size in the early iterations.

Figure 1. Fraction of 60 problems from SimOpt library (Eckman et al., 2021; 
Eckman et al., 2023) solved to 0.1-optimality with 95% confidence intervals 
from 20 runs of each algorithm shows a clear advantage in finite-time perform-
ance of ASTRO-DF-C.
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We name ASTRO-DF with coordinate direct search 
refinements as ASTRO-DF-C. These refinements lead to sig-
nificantly better performance (see Figure 1) compared with 
the state-of-the-art SDFO algorithms. As exhibited in 
Figure 2, the boost in finite-time performance of ASTRO- 
DF-C is intuitive: direct search increases the probability of 
finding a new incumbent and prevents the trust-region size 
from becoming too small (see Section 5 for improvements 
in terms of objective function values). As k!1, the suc-
cess probability will match that in ASTRO-DF, since the 
models become progressively better approximations of the 
function and are more likely to suggest better incumbents 
than the points identified with the coordinate basis.

1.3. Organization of the article

After a review of the existing body of work for SDFO in 
Section 2, we detail ASTRO-DF-C in Section 3. Importantly, 
and as we show in Section 4, gains in finite-time perform-
ance are realized without compromising guarantees on con-
vergence. We augment ASTRO-DF-C’s convergence results 
with proof of ✏−2 order of the number of iterations to reach 
✏-optimality in expectation. This result is obtained despite 
the relaxed requirements on quality and independence of 
local models from function estimates that was a necessity to 
prove iteration complexity in earlier work (Blanchet et al., 
2019). Section 5 explores extensive numerical experiments 
on a convex and a nonconvex problem, both considered 
expensive to solve in the derivative-free setting. We will 
summarize our findings and future needs in Section 6.

2. Preliminaries

In this section, we introduce notations used in the article, 
review the existing literature for SDFO, and provide essen-
tial definitions.

2.1. Notation and terminology

We use bold font for vectors; x à Öx1, x2, :::, xdÜ 2 Rd 

denotes a d-dimensional vector of real numbers. Let ei 2 Rd 

for i à 1, :::, d denote the standard unit basis vector in Rd:

We use calligraphic fonts for sets and sans serif fonts for 
matrices. A{ denotes the complement of the set A: BÖx; DÜ à
fx á s 2 Rd : ksk2  Dg denotes the closed ball of radius D >
0 with center x: For a sequence of sets fAng, the set 
fAn i:o:g denotes limsupn!1An: For two functions f ÖxÜ and 
gÖxÜ, we say f ÖxÜ à OÖgÖxÜÜ if there exist positive numbers ✏
and M such that jf ÖxÜj  MgÖxÜ for all x with jxj < ✏: We 
use a ^ b :à minfa, bg and a _ b à maxfa, bg: We use capital 
letters for random scalars and vectors. For a sequence of ran-
dom vectors fXkg, k 2 N, Xk !

w:p:1X denotes convergence 
almost surely as k!1. We say Xn à OpÖ1Ü when the ran-
dom sequence fXng is stochastically bounded, i.e., given ✏ > 0 
there exist n✏ 2 N and c✏ > 0 such that PfjXnj > c✏g < ✏ for 
all n � n✏: A random function F : Rd ⇥ N! R defined on 
the probability space ÖN,F ,PÜ is strongly uniformly bounded 
if a constant jEb 2 R bounds FÖx, nÜ with probability 1 for all 
x 2 Rd: The term “iid”, abbreviates independent and identi-
cally distributed.

2.2. Literature review

In the artificial intelligence era, derivative-free optimization 
has received much attention for allowing the user to specify 
the objective function involved in non-explicit forms. As a 
result, derivative-free optimization has a wide range of 
applications such as hyper-parameter tuning (Ghanbari and 
Scheinberg, 2017; Ruan et al., 2020; Cakmak et al., 2021), 
reinforcement learning (Flaxman et al., 2004; Salimans et al., 
2017; Choromanski et al., 2018; Fazel et al., 2018), simula-
tion-based optimization (Chang et al., 2013; Xu and Nelson, 
2013), game theory (Zhang et al., 2023), and quantum com-
puting (Menickelly et al., 2023). An essential characteristic 
of SDFO is that the function evaluations are only accessible 
via a black-box simulation with stochastic error. Running 
this noisy simulation can be expensive. Hence, one of the 
persistent aims in this field is to improve the efficiency of 
the algorithms (Shashaani et al., 2018; Paquette and 
Scheinberg, 2020; Jin et al., 2021).

Efficiency guarantees of an algorithm for SDFO are sec-
ondary to the convergence guarantees that imply the iterates 
produced by the algorithm stabilize towards a stationary 
point in some probabilistic sense. An adaptive sampling 

Figure 2. Slower rate of trust-region radius decay in the early iterations of the search as a result of using direct search allows for larger step size, and hence, better 
progress. The mean and 95% confidence interval of trajectory of Dk exhibits this behavior for two problems.

IISE TRANSACTIONS 3



strategy, which adapts the number of required function eval-
uations at each design point to the inferred closeness to 
optimality, leads to almost sure convergence to a stationary 
point. The intuition behind adaptive sampling is that more 
accurate estimates are needed in near-optimal regions to 
guarantee we can identify better incumbents.

In the existing literature, the efficiency of SDFO algo-
rithms is typically evaluated through a complexity analysis 
that assesses the costs required to achieve a near-optimal 
solution. The costs can take different forms, such as the 
number of iterations known as “iteration complexity” or 
number of function evaluations or simulation runs known 
as “work complexity”. Work complexity is a more appropri-
ate metric for gauging the computational load of SDFO 
algorithms, as the number of function evaluations could 
vary per iteration for the almost sure convergence. The 
existing body of work that analyzes SDFO algorithms has 
little known work complexity guarantees but has focused on 
attaining the canonical rate of expected iteration complexity 
EâT✏ä à OÖ✏−2Ü, where 

T✏ à fk 2 N : krf ÖXkÜk  ✏g

is the first iteration reaching ✏-optimality. The complexity of 
SDFO problems proliferates with the problem dimension, 
due to the necessity of the derivative estimator using only 
expensive, noisy simulations. The method for the derivative 
approximation and the sample size of each design point are 
the key factors in the complexity and finite-time perform-
ance. The two suggested refinements for ASTRO-DF here 
aim for solving higher dimensional derivative-free problems 
more efficiently.

Recall, an algorithm for SDFO needs function estimates, and 
the accuracy of the estimates is important for convergence. 
Hence, we review the existing literature based on assumptions 
on the stochastic error at x 2 Rd, namely EÖx, nÜ, whose 
expectation may or may not be zero. Importantly, in our litera-
ture review we primarily focus on algorithms that are devised 
for a nonconvex function f of the form of an expected value, as 
specified in (1). Although the body of literature for convex set-
tings is vast, we find two recent studies (Hu et al., 2023; Xu and 
Zheng, 2023) that address convex settings for simulation opti-
mization with derivative-free algorithms worthy of note. We 
also exclude literature on optimization over discrete-space vari-
ables. The remainder of this section returns to non-convex sto-
chastic optimization.

2.2.1. Strong uniform boundedness of jEÖx, nÜj
Several methods for approximating gradients, such as a 
finite difference and Gaussian smoothing, are analyzed with 
bounds for the number of design points to obtain suffi-
ciently accurate estimates (Berahas Cao, Choromanski and 
Scheinberg, 2021). The expected iteration complexity of 
OÖ✏−2Ü is obtained in the generic line search that converges 
to an L2-ball centered around a stationary point with a 
radius depending on the uniform upper bound on jEÖx, nÜj
(Berahas Cao and Scheinberg, 2021). This optimal neighbor-
hood can be large in more noisy settings impacting the abil-
ity to attain a satisfactory solution.

2.2.2. One-sided sub-exponential EÖx, nÜ
The Adaptive Line search with Oracle Estimations algorithm 
(ALOE) (Jin et al., 2021) in this setting converges to an 
optimal neighborhood with high probability tail bound for 
the iteration complexity PfT✏  tg � 1 −OÖe−tÜ: The size of 
the optimal neighborhood depends on the upper bound of 
E EÖx, nÜâ ä: The trust-region method with this assumption on 
the stochastic errors has recently been developed (Cao et al., 
2022) exhibiting the same iteration complexity. One-sided 
sub-exponentiality is a weaker assumption than sub-expo-
nentiality of EÖx, nÜ as it only requires for the stochastic 
error not to be too large in the sense that E i.e., 
E e−kÖEÖx, nÜ−EâEÖx, nÜäÜâ ä  ekr=2 for some r > 0 and some small 
enough k > 0:

2.2.3. Zero-mean finite-variance EÖx, nÜ
The Trust Reign Optimization with Random Models 
(STORM) algorithm (Chen et al., 2018) using this assump-
tion converges to a stationary point almost surely with the 
expected iteration complexity OÖ✏−2Ü (Blanchet et al., 2019). 
The convergence and complexity analysis for STORM relies 
on sufficiently replicating the function value at any given 
point x such that given ✏ > 0, Pf �EÖXk, NÖXkÜÜj > ✏g  aj
for small enough a: Moreover, in order to meet the condi-
tion for any k 2 N, STORM necessitates an extra assump-
tion, namely that the function estimates and local models 
are independent. This implies that the information obtained 
in previous iterations cannot be reused in the current iter-
ation, resulting in inefficiencies. ASTRO-DF assumes zero- 
mean stochastic errors with bounded vth moment for 2 
v  8; hence, ensuring finite variance. Under these assump-
tions, ASTRO-DF converges to a stationary point almost 
surely following Pf �EÖXk, NÖXkÜÜj > ✏g  ak,j where ak ! 0 
as k!1:

2.2.4. Decaying EâjEÖx, nÜjä with distance to stationarity 
and bounded variance

A backtracking Armijo line search method (Paquette and 
Scheinberg, 2020) achieves OÖ✏−2Ü as the expected iteration 
complexity if the bias converges to zero as ÖD4

k _
krf ÖXkÜk4Ü! 0 while VarÖEÖx, nÜÜ (in addition to the vari-
ance of the gradient error if its observations are directly 
available) is finitely bounded for all x: The function and gra-
dient estimates are also assumed to be accurate with a high 
probability as in STORM.

In contrast with the related work in the literature, our 
assumptions in this article for the nature of stochastic error 
are that it has zero mean and exhibits a sub-exponential tail 
for all x 2 IRd: We formalize this in Assumption 2. The 
sub-exponential family includes random variables with heavy 
tails, such as those with lognormal distribution, that do not 
necessarily have finite moment-generating functions. In 
addition, no restriction on the expected absolute value 
(absolute integrability) is required. This implies that our 
framework and results are more general and pertain to a 
larger range of stochastic systems. Although we assume 
zero-mean stochastic error, the roadmap to an extension of 
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our work with biased random observations that converges to 
a neighborhood of stationarity seems evident and left for 
future research.

2.3. Definitions

We now introduce several definitions in all of which, we 
start with a center point x (later, the incumbent Xk) and the 
trust-region radius D (later, Dk that changes with k).

Definition 2.1. (stochastic polynomial interpolation models) 
Given x 2 Rd and D > 0, let UÖxÜ à Ö/0ÖxÜ, /1ÖxÜ, :::, /qÖxÜÜ
be a polynomial basis on Rd. With p à q and the design set 
X :à fx0, x1, :::, xpg ⇢ BÖx; DÜ, we can find b à
Öb0, b1, :::, bpÜ such that MÖU,XÜb à �FÖX , NÖXÜÜ, where 

MÖU,XÜ à

/1Öx0Ü /2Öx0Ü � � � /qÖx0Ü
/1Öx1Ü /2Öx1Ü � � � /qÖx1Ü

..

. ..
. ..

. ..
.

/1ÖxpÜ /2ÖxpÜ � � � /qÖxpÜ

2

6666664

3

7777775
,

�FÖX , NÖXÜÜ à

�FÖx0, NÖx0ÜÜ
�FÖx1, NÖx1ÜÜ

..

.

�FÖxp, NÖxpÜÜ

2

666664

3

777775
, 

assuming that the so-called Vandermonde matrix MÖU,XÜ is 
invertible. We note x0 :à x. For the matrix MÖU,XÜ to be 
nonsingular, the set X should be poised in BÖx; DÜ. Then, the 
function M : BÖx; DÜ! R, defined as MÖxÜ à

Pp
jà0 bj/jÖxÜ

is a stochastic polynomial interpolation model of f on 
BÖx; DÜ. Let G à b1b2 � � � bdâ ä> be the subvector of b and H 
be a symmetric matrix of size d ⇥ d with elements uniquely 
defined by bdá1 bdá2 � � � bp

⇥ ⇤>. Then, the stochastic 
quadratic model M : BÖx; DÜ! R, is 

MÖxá sÜ à b0 á s>Gá 1
2 s>Hs: (3) 

Definition 2.2. (stochastic quadratic models with diagonal 
Hessians) A special case of (3) is when the Hessian has only 
diagonal values, i.e., 

H à
H1 0

. .
.

0 Hd

2

64

3

75 2 Rd⇥d: (4) 

In the stochastic quadratic interpolation model with diag-
onal Hessian, p à 2d, the model (3) contains 2d á 1 
unknowns, and 2d á 1 function value estimations are needed 
to uniquely determine the G and H, letting the interpolation 
set be 
X cb à fx0, x0 á e1D, :::, x0 á edD, x0 − e1D, :::, x0 − edDg

contained in BÖx0; DÜ. Since the coordinate basis is used to 
generate the interpolation set, b is guaranteed to exist. Hence, 
Hi à bdái <1 for all i à 1, 2, :::, d. In this case, 

UÖxÜ :à Ö1, x1, x2, :::, xd, x2
1, x2

2, :::, x2
dÜ, and MÖ�Ü is said to be 

a stochastic quadratic model with diagonal Hessian.

Definition 2.3. (stochastic fully linear models) Given x 2 Rd 

and D > 0, a function M : BÖx; DÜ! R obtained following 
Definition 2.2 is a stochastic fully linear model of f on 
BÖX; DÜ if rf is Lipschitz continuous with constant jL, and 
there exist positive constants jeg and jef dependent on jL but 
independent of x and D such that almost surely 

krf ÖxÜ −rMÖxÜk  jegD and
jf ÖxÜ − MÖxÜj  jef D

28x 2 BÖx; DÜ:

Definition 2.4. (Cauchy reduction) Given x 2 Rd, D > 0, 
and a function M : BÖx; DÜ! R obtained following 
Definition 2.2, sc is called the Cauchy step if 

MÖxÜ − MÖxá scÜ � 1
2 krMÖxÜk krMÖxÜk

kr2MÖxÜk ^ D
✓ ◆

: (5) 

We assume that krMÖxÜk=kr2MÖxÜk à á1 when 
kr2MÖxÜk à 0. The Cauchy step is obtained by minimizing 
the model MÖ�Ü along the steepest descent direction within 
BÖx; DÜ, and hence, easy and quick to obtain.

Definition 2.5. (filtration and stopping time) A filtration 
fF kgk�1 over a probability space ÖX,P,F Ü is defined as an 
increasing family of r-algebras of F , i.e., F k ⇢ F ká1 ⇢ F for 
all k. We interpret F k as “all the information available at 
time k.” A filtered space ÖX,P, fF kgk�1,F Ü is a probability 
space equipped with a filtration. A map N : X!
f0, 1, 2, :::,1g is called a stopping time with respect to filtra-
tion F if the event fN à ng :à fx : NÖxÜ à ng 2 F , i.e., it 
is F -measurable for all n <1:

3. ASTRO-DF with coordinate direct search

Let us first briefly review ASTRO-DF. Each iteration of 
ASTRO-DF consists of four steps:

1. Constructing a local model by interpolating function 
value estimates (with adaptive sample sizes) on a ran-
domly selected poised (or well spread) design set and 
repeatedly shrinking the trust region and updating the 
model if the model gradient is too small relative to the 
trust-region size.

2. Recommending a candidate incumbent that approxi-
mately minimizes the model.

3. Evaluating the reduction in the function value after esti-
mating it at the candidate incumbent.

4. Updating the trust-region radius and incumbent, i.e., 
accepting the candidate and expanding the trust-region 
radius if reduction in the function value is sufficient 
(relative to the model reduction) or rejecting the candi-
date and shrinking the trust-region radius otherwise. 
See (Shashaani et al., 2018) for more extensive details.
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The refinements in ASTRO-DF-C are in the first and last 
step as well as in the sample size lower bound for the  simu-
lation budget. In step 1, instead of random selection of the 
design set that would also require ensuring its well-poised 
geometry in the trust region, the algorithm selects interpol-
ation points along the coordinate basis. The repeated shrink-
age and updating, which is known as the criticality step in 

the DFO literature (Conn et al., 2009), is removed as 
an inner loop and transferred to step 4 and acceptance 
criteria. In step 4, accepting a new incumbent is 
augmented using a direct search strategy. The details of 
these refinements and their consequences are described 
below and the complete steps of ASTRO-DF-C are listed in 
Algorithm 1.

Algorithm 1 ASTRO-DF-C: ASTRO-DF with Coordinate Direct Search
Required: Initial guess x0 2 Rd, initial and maximum trust-region radius D0, Dmax > 0, model “fitness” and certification 

thresholds g 2 Ö0, 1Ü and l > 0, sufficient reduction constant h > 0, expansion and shrinkage constants c1 > 1 and 
c2 2 Ö0, 1Ü, sample size lower bound kk, and adaptive sampling constant j > 0:

1: for k à 0, 1, 2, ::: do
2: Model Construction: Select the design set X k à Xi

k
�  2d

ià0 ⇢ BÖXk; DkÜ following Equation (3) and estimate �FÖXi
k, NÖXi

kÜÜ, 
where 

N Xi
k

� �
à min n � kk :

r̂ Xi
k, n

� �
ÅÅÅ
n
p  jD2

kÅÅÅÅÅ
kk
p

( )

, (6) 

for i à 0, 1, :::, 2d (X0
k à Xk) and construct the model MkÖXk á sÜ via interpolation.

3: Subproblem: Approximate the kth step by minimizing the model in the trust region, Sk à argminkskDk MkÖXk á sÜ, and 
set ~Xká1 à Xk á Sk:

4: Candidate Evaluation: Use adaptive sampling rule (6) to estimate �FÖ~Xká1, ~N ká1Ü: Define the best design point X̂ká1 à
argminx2X knXk

�FÖx, NÖxÜÜ, its sample size N̂ ká1 à NÖX̂ká1Ü, incumbent’s sample size N̂ k à NÖXkÜ, direct search reduc-
tion R̂k à �FÖXk, N̂ kÜ − �FÖX̂ká1, N̂ ká1Ü, subproblem reduction ~Rk à �FÖXk, N̂ kÜ − �FÖ~Xká1, ~N ká1Ü, and model reduc-
tion Rk à MkÖXkÜ − MkÖ~Xká1Ü:

5: Update: Set  

ÖXká1, Nká1, Dká1Ü à
ÖX̂ká1, N̂ ká1, c1Dk ^ DmaxÜ if R̂k > Ö~Rk _ hD2

kÜ,
Ö~Xká1, ~N ká1, c1Dk ^ DmaxÜ else if ~Rk � gRk and lkrMkÖXkÜk � Dk,
ÖXk, N̂ k, Dkc2Ü otherwise,

8
<

:

and k à ká 1:
6: end for

3.1. Model construction

In ASTRO-DF-C, the point selection is deterministic and the 
local model MkÖ�Ü is constructed with 2d new points along the 
coordinate basis at the trust-region boundary in each iteration 
to obtain a diagonal Hessian model. As mentioned in Section 1, 
the suggested design set has several advantages. First, the model 
gradient error for all points within a trust region has a similar 
upper bound, but with fewer design points. We will also show 
in Theorem 4.4 that the deterministic part of the gradient error 
(bias) at the center point improves to OÖD2

kÜ from OÖDkÜ:
Second, the design set via coordinate basis is optimal in the 
sense that it minimizes the constant of well-poisedness in a ball, 
saving the linear algebra cost to make a well-poised set 
(Ragonneau and Zhang, 2023). Since the coordinate basis auto-
matically provides a well-poised geometry, the computational 
cost of ensuring well-poisedness, which also depends on the 
problem dimension, e.g., OÖd2Ü operations for a linear model 
and OÖd6Ü for a quadratic model (Conn et al., 2009) 
[Algorithms 6.1-6.3], is completely eliminated. Lastly, when 
using the predetermined design set, the Vandermonde matrix 

MÖU,YÜ in Definition 2.1 exhibits a unique structure that 
reduces the matrix inversion cost to OÖd2Ü from OÖd3Ü:

In addition to the coordinate-basis selection of the points, 
ASTRO-DF-C also skips the criticality step in the model 
construction (Shashaani et al., 2018). The criticality step is a 
loop within each iteration that enforces additional shrinkage 
of the trust region until krMkÖXkÜk is smaller than a factor 
of the trust-region radius Dk: Every time the trust-region 
radius is shrunk due to this criticality check, more points 
may be needed in the contracted region to fit a new local 
model, which hurts the work complexity in each iteration. 
Instead, ASTRO-DF-C only checks the criteria 
lkrMkÖXkÜk � Dk once at the time of updating the trust 
region for the next iteration to determine whether to accept 
the model candidate ~Xká1 if the interpolation candidate 
X̂ká1 fails to pass its sufficient reduction test.

3.2. Updating the next incumbent

The next incumbent is determined upon estimating the 
function at the subproblem’s minimizer. If the best among 
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2d á 2 points (2d interpolation points, one incumbent point, 
and one model candidate point) is one of the 2d interpol-
ation points that satisfies a reduction of at least hD2

k in the 
estimated function value, that point becomes the next 
incumbent; otherwise, the model candidate is accepted if the 
decrease in the estimated function value is at least g times 
the reduction in the model and the model satisfies 
lkrMkÖXkÜk � Dk: Figure 3 visualizes the above procedure.

Bypassing model construction and choosing the incum-
bent from the coordinate-basis design points directly turns 
this process into a direct search, somewhat similar to algo-
rithms such as NOMAD (Audet et al., 2021). Direct search 
is a numerical optimization procedure that, unlike trust 
region or line search methods that use derivative informa-
tion, only relies on function evaluations of a design set to 
determine whether to move to a new incumbent. In 
ASTRO-DF, choosing a design point that outperforms the 
model candidate point, albeit with a threshold of sufficient 
reduction, as the next incumbent will increase the probabil-
ity of success (see Theorem 4.7). The threshold of sufficient 
reduction is necessary because a model candidate point is 
considered qualified if the model improves the function esti-
mate by a factor of D2

k, provided that the model is certified. 
In the absence of a model, one needs an alternative criterion 
to maintain the quality of the next incumbent. However, 
interestingly, the inclusion of direct search makes it a possi-
bility that we accept a point with a reduction less than gRk 
if gRk > hD2

k: Meanwhile, ASTRO-DF would reject such a 
point. This renders acceptance criteria for the new incum-
bent less strict. The resulting improved probability of suc-
cess takes effect in the early iterations, hence helping the 
finite-time performance. As the iterations progress, the 
model tends to approximate the function more accurately in 
smaller neighborhoods, which reduces the likelihood of the 
model candidate point underperforming the interpolation 
points.

3.3. Simulation budget

The deterministic lower bound sequence for the sample sizes, 
i.e., fkk, k 2 Ng now grows logarithmically instead of linearly 
with k. This leads to a slower growth in the minimum sample 
size and savings of the simulation budget throughout. Other 
than the slower rate of decrease in kkT the stopping time 
sample size (6) is identical to the original version of ASTRO- 
DF, continuously adding an independent new simulation run 
at Xk until the standard error falls below the slightly deflated 
(with 

ÅÅÅÅÅ
kk
p

) fourth power of the trust-region radius.

4. Convergence and complexity analysis

This section presents the convergence and complexity ana-
lysis of ASTRO-DF-C. We first list the assumptions and 
useful results concerning ASTRO-DF. The needed assump-
tions to obtain the convergence and complexity results are 
standard and not restrictive, allowing for the use of the 
Bernstein inequality to bound the tail of sums of subexpo-
nential random variables that are not independent of one 
another.

Assumption 1. (function) The function f is twice continu-
ously differentiable in an open domain X, rf is Lipschitz 
continuous in X with constant jLg > 0, and r2f is Lipschitz 
continuous in X with constant jL > 0:

For the sake of clarity in notation, we henceforth replace 
EÖXi

k, njÜ with Ei
k, j, NÖXi

kÜ with Ni
k, and �EÖXi

k, Ni
kÜ with �Ei

k:

For the center point Xk, we interchangeably use X0
k:

Assumption 2. (stochastic error) The Monte Carlo oracle 
generates iid random variables FÖXi

k, njÜ à f ÖXi
kÜ á Ei

k, j with 
Ei

k, j 2 F k, j, where F k :à F k, 0 ⇢ F k, 1 ⇢ ::: ⇢ F ká1 for all k. 
The design set is fXi

kgià0, 1, :::, p 2 F k−1. Then the stochastic 
errors Ei

k, j are independent of F k−1, EâEi
k, jjF k, j−1ä à 0, and 

Figure 3. Updating of the incumbent is through one of three possible cases. ASTRO-DF only has Case 2 and Case 3. However, the direct search provides a new pos-
sibility for success by using the existing function estimates that are lower than that of the model minimizer, provided they satisfy a minimum reduction of hD2

k : The 
functionality of the algorithmic constants in this process and in updating the next trust region is also illustrated.
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there exists r2 > 0 and b > 0 such that for a fixed n, 

1
n
Xn

jà1
E jEi

k, jj
mjF k, j−1

h i
 m!

2 bm−2r2, 8m à 2, 3, :::, 8k:

The above is known as the Bernstein condition. Furthermore, 
for a given incumbent at iteration k, there exists a large c0 >
0 such that for all kk  n  Ni

k, 

lim sup
c!1

sup
c0tc

P
Pn−1

jà1 jE
i
k, jj > c − tjjEi

k, nj à t
n o

P
Pn−1

jà1 jE
i
k, jj > c − t

n o <1: (7) 

In other words, the ratio above is OÖ1Ü uniformly for 
all t 2 âc0, cä:

The criteria in (7) intuitively mean we cannot have 
extreme positive dependence between the latest observed 
error’s magnitude and the previous total observed error 
magnitudes. That is, the probability of the event 
Ö
Pn−1

jà1 jEi
k, jj > c − tÜ \ ÖjEi

k, nj 2 BÖtÜÜ
n o

cannot be much 

larger than Pf
Pn−1

jà1 jEi
k, jj > c − tgPfjEi

k, nj 2 BÖtÜg, where 
PfjEi

k, nj 2 BÖtÜg is to be understood as the probability of 
jEi

k, nj lying in some open interval containing t, for any t < c 
larger than c0: For correctness, when PfjEi

k, nj 2 BÖtÜg is not 
possible, the conditional probability is simply understood as 
zero. Ko and Tang (2008) show that this assumption allows a 
wide range of dependence structures. Importantly, this 
assumption enables characterization of the tail probability of 
a sequence of dependent random variables that each have a 
sub-exponential tail behavior for the Bernstein inequality 
bounds to be applicable. The criteria for the stochastic error 
in Assumption 2 are less stringent than boundedness or sub- 
Gaussian behavior. See (Ha et al., 2023) for more details.

Assumption 3. (model) There exists some constant jfcd 2
Ö0, 1ä such that for all k, 

MkÖXkÜ − MkÖXk á SkÜ � jfcdâMkÖXkÜ − MkÖXk á Sc
kÜä, 

where Sc
k is the Cauchy step. Additionally, there exists jH 2

Ö0,1Ü such that kHkk  jH for all k with probability 1.

Assumption 4. (sample size) The “lower-bound sequence” fkkg
on the adaptive sample sizes satisfies kk à OÖÖ log kÜ1á✏kÜ for 
some ✏k 2 Ö0, 1Ü:

4.1. Useful existing results

In this section, we introduce several useful results to obtain 
the almost sure convergence and complexity of ASTRO-DF 
with coordinate direct search. The first result implies that the 
estimation error with adaptive sampling is sufficiently small 
eventually (for large enough iterations) with probability 1.
Theorem 4.1. (Theorem 2 by Ha et al. (2023)) Let 
Assumptions 2 and 4 hold. Then for any c > 0 and suffi-
ciently large k, j�Ei

kj  cD2
k almost surely. In other words, 

P j�Ei
kj � cD2

k i:o:
n o

à 0:

For a sketch of this proof, observe that the subexponen-
tial behavior of the stochastic error specified in Assumption 
2 makes it possible to apply the Bernstein inequality for the 
average of stochastic error absolute values. Thus,

P
1

Nk

XNk

jà1
jEi

k, jj > cjF k−1

8
<

:

9
=

;

X

n�kk

exp −n c2

2Öcbá r2Ü

 !

, 

since Nk � r2kk
2j2D2

k 
from (6) for large enough k. The logarith-

mic kk here then renders this probability summable in k. 
Invoking the Borel–Cantelli Lemma then completes the 
proof.

Remark 1. Bernstein’s inequality implies that Pfj�Ei
kj �

cD2
kjF kg  ak−1á✏k for any c > 0 and some a > 0; i.e., the 

estimate is sufficiently accurate with a probability that tends 
to one as k!1: In contrast to the assumption of probaba-
bilisitcally accurate estimates with a fixed probability and 
fixed accuracy threshold (Chen et al., 2018), the estimators’ 
property here is ensured as a result of the adaptive sampling 
rule.

The second existing result characterizes the stochastic 
model error with estimation error when the stochastic 
model is constructed by Definition 2.2.

Lemma 4.2. (Lemma 2.9 by Shashaani et al. (2018) and 
Proposition 3.1 by Ragonneau and Zhang (2023)) Let 
Assumption 1 hold and let MkÖ�Ü be a stochastic quadratic 
interpolation model with diagonal Hessian of f on BÖXk; DkÜ. 
Let mkÖ�Ü be the corresponding deterministic polynomial inter-
polation model of f on BÖXk; DkÜ. Then for all x 2 BÖXk; DkÜ, 

jMkÖxÜ − mkÖxÜj  Ö2d á 1Ü max
ià0, 1, :::, 2d

j�FÖXi
k, nÖXi

kÜÜ − f ÖXi
kÜj:

Remark 2. A direct observation from Lemma 4.2, Theorem 
4.4, and Appendix A is that 
Pfkrf ÖxÜ −rMkÖxÜk � Öceg á jegÜDk and
jf ÖxÜ − MkÖxÜj � Öcef á jef ÜD2

kjF kg  a0k−1á✏k , 

for some a0 > 0, ceg > 0, and cef > 0 and for all x 2
BÖXk; DkÜ: In other words, the stochastic model is probabil-
istically fully linear with a probability that goes to one as 
k!1: Again, despite the resemblance to the assumption 
of probabilistically fully linear models with fixed probability 
(Chen et al., 2018), this result is ensured without overbur-
dening the computation, as we will see in the obtained com-
plexity results.

4.2. Model quality

To prove consistency, we first look at the model quality 
with the suggested design set in Definition 2.2. In general, 
the stochastic polynomial interpolation model satisfies that 
the model gradient norm is eventually OÖDkÜ-accurate for 
any point within the trust region of size Dk with probability 
1 (Shashaani et al., 2018). The following theorem gives a 
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bound on the stochastic model error that holds for any 
point within the trust region.

Theorem 4.3. Let Assumptions 1 and 2 hold, and MkÖxÜ be 
a stochastic quadratic model of f on BÖXk; DkÜ with diagonal 
Hessian built on �FÖXi

k, nÖXi
kÜÜ à f ÖXi

kÜ á �Ei
k, for i à

0, 1, :::, 2d on iteration k. With rMkÖxÜ à Öx − XkÜ>Hk á Gk 

and jeg1 à 5
ÅÅÅÅ
2d
p

2 ÖjLg á jHÜ, we can uniformly bound the 
model gradient error for all points x in BÖXk; DkÜ by 

krMkÖxÜ −rf ÖxÜk  jeg1Dk á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
P2d

ià1
�Ei

k − �E0
k

⇣ ⌘2
r

Dk
:

Proof. With a stochastic quadratic models with diagonal 
Hessian, the theorem holds following the same steps of 
Appendix B by Shashaani et al. (2018).                         j

We next investigate the model gradient error at the cur-
rent iterate as a special case. At the center point, we can get 
a tighter upper bound, as with a central finite difference. 
Theorem 4.4 shows the deterministic part of the model gra-
dient error at the incumbent is OÖD2

kÜ:

Theorem 4.4. Let Assumptions 1 and 2 hold, and the interpol-
ation model MkÖxÜ of f be a stochastic quadratic model with 
diagonal Hessian constructed using �FÖXi

k, nÖXi
kÜÜ à f ÖXi

kÜ á
�Ei

k, for i à 0, 1, :::, 2d. Then, with jeg2 à
ÅÅ
d
p

6 jL, we can uni-
formly bound the model gradient error at the center point by 

kGk −rf ÖXkÜk  jeg2D
2
k á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Pd

ià1
�Ei

k − �Eiád
k

⇣ ⌘2
r

2Dk
:

Proof. We begin by decomposing Gk à rf ÖXkÜ á EgÖXkÜ á
egÖXkÜ, where Eg

k :à Gk − gk and eg
k :à gk −rf ÖXkÜ are the 

stochastic model error and deterministic model error, respect-
ively, and gk is the deterministic model gradient. Then we 
can obtain Gk by finding b such that ~MÖU,X kÜb à ~F , where 

~MÖU,X kÜ à

1 0 0 � � � 0 0 0 � � � 0
1 Dk 0 � � � 0 D2

k=2 0 � � � 0
1 0 Dk � � � 0 0 D2

k=2 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 0 0 � � � Dk 0 0 � � � D2
k=2

1 −Dk 0 � � � 0 D2
k=2 0 � � � 0

1 0 −Dk � � � 0 0 D2
k=2 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 0 0 � � � −Dk 0 0 � � � D2
k=2

2

66666666666666666664

3

77777777777777777775

;

~F à

�FÖX0
k, N0

kÜ
�FÖX1

k, N1
kÜ

..

.

�FÖX2d
k , N2d

k Ü

2

666664

3

777775
:

As a result, the ith element of the gradient estimate is 
obtained by

Gkâ äi à
f ÖXk á eiDkÜ − f ÖXk − eiDkÜ

2Dk
á

�Ei
k − �Eiád

k
2Dk

: (8) 

By Taylor’s theorem,

kgk −rf ÖXkÜk 
ÅÅÅ
d
p

6 jLD
2
k, 

with (8) like the central finite difference (Berahas 
Cao, Choromanski and Scheinberg, 2021; Coope and 
Tappenden, 2021). Hence, we obtain âEg

käi à Ö�E
i
k − 

�Eiád
k Ü=2Dk for any i 2 f1, :::, dg, which implies that kEg

kk àÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPd
ià1 Ö�E

i
k − �Eiád

k Ü
2

q
=Ö2DkÜ: As a result,

kGk −rf ÖXkÜk  kgk −rf ÖXkÜká kGk − gkk


ÅÅÅ
d
p

6 jLD
2
k á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPd
ià1Ö�E

i
k − �Eiád

k Ü
2

q

2Dk
:

j

4.3. Convergence

For the remainder of this article, we define the 
set K à fk 2 N : iteration k is successfulg:

Theorem 4.5. Let Assumptions 1-4 hold. Then, 
Dk !

w:p:1
0 as k!1:

Proof. If K is finite, the trust-region radius tends to 
zero due to shrinkage over infinitely many unsuccessful 
iterations, making the statement of the theorem hold 
trivially. Thus, we consider that K is infinite. The candidate 
incumbent can be one of the points among the design sets 
or the trust-region subproblem minimizer. Let us define two 
different sets Kds :à K \ fk 2 N : Xká1 à X̂ká1g and Ktr :à
K \ fk 2 N : Xká1 à ~Xká1g: Then we have, for any k 2 Kds,

R̂k à �FÖXk, NkÜ − �FÖX̂ká1, N̂ ká1Ü à MkÖXkÜ − MkÖX̂ká1Ü � hD2
k, 

and for any k 2 Ktr,
~Rk à �FÖXk, NkÜ − �FÖ~Xká1, ~N ká1Ü � gÖMkÖXkÜ − MkÖ~Xká1ÜÜ

�
gjfcd

2
Dk
l

Dk
ljH
^ Dk

✓ ◆

�
gjfcd

2l
1

ljH
^ 1

✓ ◆✓ ◆
D2

k:

Then, for any k 2 K,

h0
X

k2K
D2

k 
X

k2K
Öf ÖXkÜ − f ÖXká1Ü á �Ek − �Eká1Ü

 f Öx0Ü − f ⇤ á
X1

kà0
Öj�Ekjá j�Eká1jÜ, 
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where h0 à gjfcd
2l

1
ljH
^ 1

⇣ ⌘
^ h

⇣ ⌘
: Let K à fk1, k2, :::g, k0 à

−1, and D−1 à D0=c2: Then from the fact that Dk 
c1c

k−ki−1
2 Dki for k à ki á 1, :::, kiá1 and each i, we obtain

Xkiá1

kàkiá1
D2

k  c2
1D

2
ki

Xkiá1

kàkiá1
c2Ök−ki−1Ü

2  c2
1D

2
ki

X1

kà0
c2k

2 à
c2

1
1 − c2

2
D2

ki
:

Then, we have

X1

kà0
D2

k 
c2

1
1 − c2

2

X1

ià0
D2

ki
<

c2
1

1 − c2
2

D2
0

c2
2
á

f Öx0Ü − f ⇤ á E00,1
h0

 !

, 

where E0i, j à
Pj

kàiÖj�Ekjá j�Eká1jÜ: By Theorem 4.1, there 
must exist a sufficiently large KD such that j�Ekjá j�Eká1j <
cDD2

k for any given cD > 0 and every k � KD: Then we 
obtain

XKD−1

kà0
D2

k á
X1

kàKD

D2
k <

c2
1

1 − c2
2

D2
0

c2
2
á

f Öx0Ü − f ⇤ á E00, KD−1 á E0KD,1
h0

 !

, 

and E0KD ,1 à
P1

kàKD
j�Ekjá j�Eká1j <

P1
kàKD

cDD2
k: As a result, 

we get
X1

kàKD

D2
k <

c2
1

1 − c2
2

D2
0

c2
2
á

f Öx0Ü − f ⇤ á E00, KD−1
h0

 !

1 − c2
1

1 − c2
2

cD

h0

 !−1

<1:

(9) 
Therefore, Dk !wp1 0 as k!1: j

Now we prove the almost sure convergence of ASTRO- 
DF-C.

Theorem 4.6. Let Assumptions 1-4 hold. 
Then, krf ÖXkÜkÉÉ!w:p:1 0 as k!1:

Proof. Let us define the set 

V :à
(

9 a subsequence fkjg

s:t:
Dkj

kGkjk
 g0

2jef
^ l

 ! !
\ q̂k < gÖ Ü

)

, 

where g0 à 6−1Ö1 − gÜjfcdÖÖljHÜ−1 ^ 1Ü: Then, we have 
PfVg à 0: The proof trivially follows from Lemma 5.2 in 
Shashaani et al. (2018) by considering that lkGkjk � Dkj

�  

is now in the set V, which was ensured by the criticality 
step by Shashaani et al. (2018). We also have kGk − 
rf ÖXkÜkÉÉ!wp1 0 as k!1: The proof follows from that of 
Lemma 5.4 by Shashaani et al. (2018), considering that we 
always use Dk for iteration k. Now we will prove that 
Algorithm 1 obtains lim infkrf ÖXkÜkÉÉ!wp1 0 as k!1 with 
kGk −rf ÖXkÜkÉÉ!wp1 0 as k!1 and Theorem 4.5. For the 
purpose of arriving at a contradiction, suppose the set 

Dg à fx : 9jlbgÖxÜ, kgÖxÜ > 0 s:t:
kGkk � jlbgÖxÜ 8 k > kgÖxÜg

has positive measure. Due to the assumptions of the theorem, 
we can find a set Dd of sample paths such that PfDdg à 1, and 
such that for each x 2 Dd, DkÖxÜ! 0 and x 2 Vc: Let x 2
Dg \ Dd: Then either kGkÖxÜk<Ög0Ö2jef Ü−1^lÜ−1 DkÖxÜ or 
q̂kÖxÜ>g for large enough k. Since Dk goes to zero almost 
surely, kGkÖxÜk<Ög0Ö2jef Ü−1^lÜ−1DkÖxÜ cannot be true for 
large enough k. Therefore, for any x2Dg\Dd, it must be true 
that q̂kÖxÜ�g for large enough k. In other words, the iterations 
in sample path x2Dg\Dd are eventually successful.

Now let KsÖxÜ > 0 be such that KsÖxÜ − 1 is the last unsuc-
cessful iteration in sample-path x 2 Dg \ Dd, that is, k is a 
successful iteration if k � KsÖxÜ: Next, Dk � DKgÖxÜ_KsÖxÜ con-
tradicts the observation DkÖxÜ! 0: We conclude that 
PfDgg à 0 and that lim infk!1 kGkk à 0 almost surely. This 
along with the fact that kGk −rf ÖXkÜk !wp1 0 as k!1, 
implies lim infk!1 krf ÖXkÜk à 0 almost surely. Then, the 
almost sure convergence of ASTRO-DF-C follows from 
lim infk!1 kGkk à 0 almost surely, and Theorem 4.5. The 
proof is completed by trivially following steps in Theorem 5.5 in 
Shashaani et al. (2018) and considering that R̂k � hD2

k: j

Now we prove that ASTRO-DF-C has a higher probabil-
ity of success compared with ASTRO-DF. Although this 
result is not utilized in our current complexity results, it 
demonstrates that the progress achieved by integrating a 
coordinate direct search is at least as good as the progress 
made without that feature, thereby supporting its positive 
impact on the finite-time performance of the algorithm.

Theorem 4.7. Let Assumptions 1-4 hold. Then for a given 
incumbent Xk 2 Rd in iteration k, having a successful iter-
ation with ASTRO-DF-C is at least as probable as having a 
successful iteration with ASTRO-DF.

Proof. Let us define two events
Rk :à fx 2 X : kÖxÜ is successful with X̂ká1ÖxÜjXkÖxÜ à xkg,
Sk :à fx 2 X : kÖxÜ is successful with ~Xká1ÖxÜjXkÖxÜ à xkg:

Then pk,s :àPfSkgàPfSkjRkgPfRkgá
PfSkjR{k gPfR{k g, is the probability of having successful 
iteration k with ASTRO-DF. In contrast, ASTRO-DF-C 
sequentially compares X̂ká1ÖxÜ and ~Xká1ÖxÜ: If the iteration 
k is unsuccessful with X̂ká1ÖxÜ, ~Xká1ÖxÜ will still be consid-
ered as the next incumbent, i.e., pk,ràPfRkgáPfSkjR{k g, 
where pk,r is the probability of having successful iteration k 
with ASTRO-DF-C. As a result, pk,r�pk,s: j

Remark 3. Since the sequence fXkg is dependent on previ-
ous steps, we cannot directly compare ASTRO-DF with 
ASTRO-DF-C using Theorem 4.7. Nonetheless, Theorem 4.7
implies that, given an incumbent Xk, ASTRO-DF-C has a 
higher likelihood of achieving success, preventing Dk from 
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becoming too small too quickly. This enables the algorithm 
to save significant budget due to Nk à OÖD−4

k Ü:

4.4. Complexity

While the iteration complexity and work complexity of ASTRO- 
DF has been extensively studied by Ha et al. (2023), our focus in 
this section is on the refinements and their impact on the com-
plexity analysis. Specifically, we will examine how these refine-
ments affect the algorithm’s computational efficiency.

The following lemma proves that when Dk is too small 
relative to krf ÖXkÜk, the iteration k becomes successful 
almost surely for sufficiently large k.

Lemma 4.8. Let Assumptions 1-4 hold and ✏ > 0 be given. 
Then there exists a constant clb > 0 such that with probability 1 
ÖDk < clb✏Ü \ Ökrf ÖXkÜk > ✏Ü for sufficiently large k) k 2 K:

Proof. Let the solver sample path x be fixed. Define a con-
stant cE as

cE à
1

2dá 2
jfcdÖ1 − gÜ

2l
1

ljH
^ 1

✓ ◆
− jef

 !

: (10) 

We can find KEÖxÜ > 0 such that k � KEÖxÜ implies 
j�EkÖxÜj  cED

2
kÖxÜ, which also holds for all design points 

visited during iteration k by Theorem 4.1. Then Theorem 
4.4 states for k � KEÖxÜ,

kGkÖxÜ −rf ÖXkÖxÜÜk 
ÅÅÅ
d
p

6 jLD
2
kÖxÜ á

ÅÅÅ
d
p
ÅÅÅ
2
p cEDkÖxÜ:

Let clb be such that

1
clb
>

1
l
á

ÅÅÅ
d
p

6 jLDmax á
ÅÅÅ
d
p
ÅÅÅ
2
p cE:

Then, if DkÖxÜ < clb✏, we get
kGkÖxÜk � krf ÖXkÖxÜÜk − kGkÖxÜ −rf ÖXkÖxÜÜk

>
1

clb
−

ÅÅÅ
d
p

6 jLDmax á
ÅÅÅ
d
p
ÅÅÅ
2
p cE

 !

DkÖxÜ >
1
l

DkÖxÜ, 

where we have used krf ÖXkÖxÜÜk > ✏:
This result confirms that the model quality is eventually 

good whenever the trust region becomes sufficiently small. To 
complete the proof we need to show the model will lead to suc-
cess; a sufficient condition for that is ~RkÖxÜ > gRkÖxÜ: For 
ease of exposition we drop x in the final step of the proof:

1 −
~Rk
Rk

����

���� à
�FÖ~Xká1, ~N ká1Ü − MkÖ~Xká1Ü

MkÖXkÜ − MkÖ~Xká1Ü

����

����

 j
�EÖ~Xká1Üjá jf Ö~Xká1Ü − mkÖ~Xká1Üjá jmkÖ~Xká1Ü − MkÖ~Xká1Üj

jfcd
2l

1
ljH
^ 1

⇣ ⌘
D2

k


cE á jef á Ö2d á 1ÜcE

jfcd
2l

1
ljH
^ 1

⇣ ⌘ à 1 − g:

(11) 
j

Remark 4. In the proof of Lemma 4.8, the trust region lower 
bound constant clb depends on the coefficient of the toler-
able estimation error cE, specified in (10). The statement of 
the lemma conveys that if DkÖxÜ < clb✏ and krf ÖXkÖxÜÜk >
✏ for any given ✏ > 0 and any k > KEÖxÜ, then the trust 
region will expand. So while ✏ can be chosen to be large 
such that Dk will not become too small to reach it, it does 
not cause any problem in the future complexity results. 
ASTRO-DF-C leads to a larger cE since in (11) and (10), we 
now have 2d instead of Öd á 1ÜÖd á 2Ü=2 − 1 points. This 
means that compared to ASTRO-DF where cE à OÖd−2Ü
and clb à OÖdÜ, this refined version will have cE à OÖd−1Ü
and clb à O

ÅÅÅ
d
p� �

: Given that jef and jH à OÖd log dÜ are in 
our control (Appendix A and B), we can choose l such that 
cE > 0, i.e., l−1 >

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2jHjef

p
^ 2jef

⇣ ⌘
: Nevertheless, the iter-

ation complexity will be discussed for small enough ✏:
Relying on Lemma 4.8, we now show the almost sure 

iteration complexity. This is stronger than the claim that the 
random variable ✏2T✏ is OpÖ1Ü:

Theorem 4.9. Let Assumptions 1-4 hold. Then for sufficiently 
small ✏ > 0, cT > 0, and a positive integer valued random 
variable K, 
Pf✏2T✏  cT á ✏2Kg à 1:

Proof. Let f ⇤ :à minx2Rd f ÖxÜ > −1 be the optimal function 
value, x be fixed and KEÖxÜ be the one defined in Lemma 4.8. 
We can find from Theorem 4.6 some KhÖxÜ such that for all 
k � KhÖxÜ, we have that f ÖXkÖxÜÜ < f ⇤st á 1, where f ⇤st is the 
highest function value among the stationary points. Without 
loss of generality, given x 2 X, let ✏0ÖxÜ 2 Ö0, 1Ü be small 
enough such that except for a set of probability 0, the set 
KlbÖxÜ à fK0EÖxÜ  k < T✏ÖxÜ : DkÖxÜ < clb✏g is nonempty 
for all ✏  ✏0ÖxÜ, where clb is defined in Lemma 4.8 and 
K0EÖxÜ :à ÖKhÖxÜ _ KEÖxÜÜ: This implies that DkÖxÜ � c2clb✏
for all K0EÖxÜ  k < T✏ÖxÜ: For the remainder of the proof we 
will use the notation fkÖxÜ :à f ÖXkÖxÜÜ for simplicity. 
Following the steps in the proof of Theorem 4.5 we have

h0
X

k2K
k � K 0EÖxÜD2

kÖxÜ  fK 0EÖxÜÖxÜ − f ⇤

á
X1

kàK 0EÖxÜ
Öj�EkÖxÜjá j�Eká1ÖxÜjÜ, 

from which we obtain 

X1

kàK 0EÖxÜ
D2

kÖxÜ
c2

1
1 − c2

2

X1

ià0
D2

ki
ÖxÜ

<
c2

1
1 − c2

2
Dmax2á

fK0EÖxÜÖxÜ− f ⇤ áE0K 0EÖxÜ,1ÖxÜ
h0

 !

, 

where E0i, jÖxÜà
Pj

kàiÖj�EkÖxÜjá j�Eká1ÖxÜjÜ and ki is the ith 
successful iteration after K0EÖxÜ: Then, by the definition of 
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K0EÖxÜ, we have j�EkÖxÜj cED
2
kÖxÜ for any k�K0EÖxÜ, 

which implies E0K0EÖxÜ,1ÖxÜ 2cE
P1

kàK 0EÖxÜ
D2

kÖxÜ: As a result, 
we obtain with small enough cE,

1 − 2c2
1cE

Ö1 − c2
2Üh
0

 !
X1

kàK 0EÖxÜ
D2

kÖxÜ<
c2

1
1 − c2

2
Dmax2 á f ⇤st − f ⇤ á1

h0

✓ ◆
: (12) 

Now we can write 

X1

kàK 0EÖxÜ
D2

kÖxÜ >
XT✏ÖxÜ−1

kàK 0EÖxÜ
D2

kÖxÜ > c2
2c2

lb✏
2ÖT✏ÖxÜ − K0EÖxÜÜ:

Then by (12), for all ✏  ✏0ÖxÜ, we have ✏2T✏ÖxÜ < cTá
✏2K0EÖxÜ: j

Note that Theorem 4.9 implies that limsup✏!0 ✏
2T✏ÖxÜ 

cT for all x 2 X, that is, ✏2T✏ is bounded by a fixed value in 
the limit, almost surely.

Remark 5. A closer look in the proof of Theorem 4.9 suggests 
that ASTRO-DF-C has better iteration complexity than 
ASTRO-DF in the constant terms. This is because (dropping 
x for ease of exposition) we have Dk � c2clb✏ for all KE  k <
T✏ with small enough ✏: If for all k < KE, there exists C0lb > 0 
(which is random and defined for sample path x) such that 
Dk � c2C0lb✏, then 

PT✏−1
kà0 D2

k > c2
2c2

lb✏
2ÖT✏ − KEÜ á c2

2C02lbKE✏2:
A larger value of C0 lb leads to a larger lower bound on the 
trust-region size, resulting in a smaller sample size ÖNkÜ and a 
larger step size. This explains why the probability of having a 
successful iteration k is paramount. The two refinements play 
a crucial role in increasing clb, as stated in Remark 4 and 
Theorem 4.7. Additionally, under certain regularity condi-
tions of random variable KE such as finite first moment, 
Theorem 4.9 becomes equivalent to EâT✏ä à OÖ✏−2Ü; this is 
similar to the results proven in Blanchet et al. (2019). 
However, we attain this canonical rate without the assump-
tions of probabilistically-fully-linear models and independ-
ence, or using renewal theory (as used by Paquette and 
Scheinberg (2020) and Blanchet et al. (2019)).

5. Numerical results

In this section, we evaluate and compare simulation opti-
mization solvers on problems from the SimOpt library 
(Eckman et al., 2023).

The SimOpt library includes the MRG32k3a (L’Ecuyer 
et al., 2002) pseudorandom-number generator and common 
random numbers for all solvers to manage uncertainties 
during search and evaluation and enable efficient compari-
sons. The SimOpt solver library includes various solvers like 
Nelder–Mead, Random Search, ALOE (Jin et al., 2021), 
ADAM (Kingma and Ba, 2017), STRONG (Chang et al., 
2013), and STORM (Chen et al., 2018). The SimOpt prob-
lem library consists of optimization problems where the 
simulation oracle provides the objective function value at 
specific points. Due to limited information on the objective 

function’s structure, stochastic simulation oracles are pre-
ferred over deterministic problems with added stochastic 
error, as the latter leads to artificial solution-dependent esti-
mators. The evaluation of solvers in the SimOpt library 
involves two main procedures. First, we run m macrorepli-
cations for each solver and problem. The solver aims to 
solve the problem during each macroreplication until a pre- 
defined budget is exhausted. At each x, the objective func-
tion is estimated by conducting n replications using sample 
average approximation, which varies depending on the 
solver used (adaptive solvers use a random sample size 
NÖxÜ). Second, we conduct l post-replications at the inter-
mediate incumbents of each macroreplication to estimate 
the objective function without optimization bias. In our 
experiments, we test the performance of the solvers using 
m à 20 macroreplications and l à 200 post-replications.

We use the following standard parameters: l à 1000, g à
0:5, c1 à 0:75, and c2 à 1:5: To determine Dmax for each 
macroreplication, we employ a process that generates ran-
dom design points for the problem of interest, and the max-
imum distance between them is calculated and set as Dmax:
For each sample path, we tune D0 by a pilot run as one of 
three possibilities, 0:05Dmax ⇥ Ö0:1, 1, 10Ü using 1% of the 
total budget for each. We also tune the value of the scaling 
parameter j at the first iteration for each sample path by 
setting j à �FÖX0, N0Ü=D2

0: Hence, j also has three possibil-
ities based on D0: This tuning approach enables us to adjust 
the scaling of D0, Dmax, and j in response to the behavior of 
the optimization algorithm. ASTRO-DF algorithm utilizes 
local models with linear interpolation and implements a 
strategy of reusing design points from previous iterations by 
following the AffPoints algorithm presented by Wild et al. 
(2008), enabling the reuse of design points as extensively as 
possible. For details see (Eckman et al., 2021).

As presented in Section 1, Figure 1 displays the solvabil-
ity profiles for 60 problems from the SimOpt library. A solv-
ability profile of a solver depicts the proportion of tested 
problems solved within a certain relative optimality gap. 
ASTRO-DF-C solver solved more than 80% of the problems 
within 30% of the budget, significantly outperforming the 
contenders. Next, we will examine each refinement and its 
corresponding effect.

5.1. Effect of diagonal Hessian

Ha et al. (2021) compare (i) ASTRO-DF with full Hessian, 
(ii) ASTRO-DF with diagonal Hessian following Definition 
2.2, and (iii) ASTRO-DF that integrates both linear and fully 
quadratic models through a heuristic approach that utilizes 
linear models when far from first-order optimality and 
quadratic models otherwise. Experimenting with these three 
versions on three problems from the SimOpt library indi-
cated that the diagonal Hessian version was capable of the 
fastest progress with robustness (lower variance). In the 
remainder of this section, we include a 20-dimensional 
problem to further investigate the algorithm behavior in 
higher dimensions.
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5.2. Effect of direct search

We investigate the effect of using a direct search within 
ASTRO-DF after having implemented the first refinement 
that yields diagonal Hessian quadratic models using coord-
inate basis placements of interpolation points. In addition to 
a broad comparison of the new solver on 60 problems as 
illustrated in Figure 1, we conduct experiments for two prob-
lems, namely, the Stochastic Activity Network (SAN) prob-
lem, which is a convex 13-dimensional problem, and a 
20-dimensional Rosenbrock function with multiplicative 
error, 

FÖx, nÜ à
X19

ià1
100Öxiá1 − nix2

i Ü
2 á Önixi − 1Ü2

h i
, 

where ni ⇠ N Ö1, 0:1Ü for all i 2 f1, :::, 19g (Kim and Zhang, 
2010). The reason why this function has become a popular 
choice for evaluating optimization algorithms is attributable, 
in part, to the fact that its global minimum is located within 
a long, narrow valley that displays a parabolic shape (highly 
nonconvex). This characteristic makes the problem particu-
larly challenging.

Along with Figure 2, Figure 4 now shows the solver’s 
finite time performance in terms of the progress made per 
iteration with mean and 95% confidence interval after run-
ning the algorithms 20 times. In SimOpt and typical simula-
tion experiments, a fixed total simulation budget is given; 
hence, the number of iterations completed varies from run 
to run and solver to solver. We display the first 100 

iterations for the two versions of ASTRO-DF. For both 
problems, ASTRO-DF exhibits a slower rate of progress 
than ASTRO-DF-C after the first few iterations while reveal-
ing a slightly faster progress leading up to that point. This 
phenomenon arises from the fact that, although ASTRO-DF 
can attain more accurate local models by employing larger 
sample sizes and smaller trust regions in the first 20 or so 
iterations, the step size becomes excessively small thereafter. 
When evaluating progress relative to the expended budget, 
the disparity in the trajectory between the two algorithms 
during the initial iterations is notably less significant, as will 
be detailed in Figure 6.

To see per-iteration simulation expenses, see Figure 5. As 
shown in Figure 5(b), ASTRO-DF can only have about 70 
iterations with a 30,000 budget, whereas ASTRO-DF-C 
reaches 100 iterations with the same budget on the SAN 
problem. The evident cause of less progress in ASTRO-DF 
than in ASTRO-DF-C is the rapid reduction of Dk to find 
new incumbents that provide satisfactory reduction. This 
rapid reduction of step size forces larger budget per iteration 
– a faster increase in the expended budget after iteration 20. 
Notably, the small variation in the budget spent during the 
initial 20 iterations is due to the fact that the deterministic 
lower bound of the sample size, kk, provides small enough 
standard error as in the adaptive sampling rule (6) within 
these initial 20 iterations.

Lastly, Figure 6 shows the mean progress with 95% confi-
dence for each problem as a function of the expended 
budget. In both cases, significantly better solutions are 

Figure 4. Better progress of ASTRO-DF-C is evident in the mean function estimates and 95% confidence intervals on both problems.

Figure 5. The total budget spent per iteration is lower due to savings from using direct search with 95% confidence intervals from 20 macroreplications.
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reached by ASTRO-DF-C. Especially for the SAN problem, 
we observe that direct search remarkably accelerates the 
convergence with less uncertainty (narrower confidence 
intervals). In the Rosenbrock function, the improvement, 
while significant, is not as pronounced. We attribute consist-
ently better solutions with direct search in this non-convex 
noisy problem to a better exploration of the feasible region 
(more chances of success means visiting more points) with 
no additional cost, besides the saving of budget and a slower 
rate of Dk decay.

6. Conclusion and future work

This article proposes efficient procedures and theoretical 
advancements for solving SDFO to first-order optimality in 
finite time. Trust regions are a class of algorithms with 
growing popularity for their volatile mechanics and stability 
in this context. However, expensive function approximations 
with locally certified models have caused a shortage of 
implementable trust-region algorithms for SDFO that serve 
higher dimensions robustly and efficiently. Our approach of 
integrating adaptive sampling strategies with local approxi-
mations via coordinate-basis designs and leveraging inter-
mediate direct search steps addresses this limitation. The 
resulting algorithm is implemented and experimented on a 
testbed of SDFO problems and maintains almost sure con-
vergence guarantees. Crucially, we also prove canonical 
complexity rates in almost sure sense and in expectation 
without requiring practically hard assumptions. The gain in 
finite-time performance is apparent with justifiable faster 
progress in the early iterations of the search.

A future research direction is on the exploration of the 
work complexity or total oracle runs and the dimension- 
dependent constants. Additionally, reusing history and 
allowing the design set geometry to vary may be beneficial. 
Although ASTRO-DF-C effectively utilizes information by 
incorporating direct search, the data (visited points) from 
previous iterations is not carried over to subsequent 

iterations. Therefore, there might be potential to enhance 
efficiency by systematically reusing the design points and 
replications while retaining the benefits of ASTRO-DF-C. 
Other research areas include handling higher dimensions 
with techniques such as random subspaces, in which one 
generates a sequence of incumbents to random embedding 
constructions in lower dimensions without losing much 
information (Dzahini and Wild, 2022; Cartis and Roberts, 
2023).
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