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ABSTRACT
Decision trees built with data remain in widespread use for nonparametric prediction. Predicting probability
distributions is preferred over point predictions when uncertainty plays a prominent role in analysis and
decision-making. We study modifying a tree to produce nonparametric predictive distributions. We find the
standard method for building trees may not result in good predictive distributions and propose changing
the splitting criteria for trees to one based on proper scoring rules. Analysis of both simulated data and
several real datasets demonstrates that using these new splitting criteria results in trees with improved
predictive properties considering the entire predictive distribution.
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1. Introduction

Binary trees that partition continuous response variables based
on predictor variables have been proven useful for nonparamet-
ric regression (Breiman et al. 1984). Nonparametric regression is
a general class of regression models that does not assume a para-
metric form for the relationship between predictors and depen-
dent variables; binary trees can be considered an instance of
them. After the tree is statistically learned via training data, any
new data point maps to a leaf (terminal node) in the tree based
on the predictors’ values. The resulting output for prediction is
typically a statistic measuring the center of responses (in the
training data) that belong to the same node (Hastie, Tibshirani,
and Friedman 2009). However, this statistic yields a decidedly
deterministic forecast. In contrast, for many applications, such
as weather and finance, it makes sense to predict probabilistically
to communicate the stochastic nature of the system.

Goal of prediction. A probabilistic prediction has two major
goals: (i) to have the observations be consistent with the predic-
tive distribution, and (ii) to concentrate (sharpen) the prediction
as much as possible given the predictor variables (Gneiting,
Balabdaoui, and Raftery 2007). Thus, a reliable predictive dis-
tribution communicates both the magnitude of the prediction
and the amount of uncertainty. The user could then convert
the predictive distribution into a prediction. The best prediction
might be a measure of center (mean), but it might be another
feature of the predictive distribution based on the use case. For
example, when predicting the number of power outages in a
region after a storm, a 95% upper bound would provide a picture
of high-risk areas (quantile). In another scenario, one might
wish to find the probability that an online article does not meet a
view target (tail probability). In yet another scenario, predicting
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the variance of power consumption in a neighborhood can be
critical to understanding potential load imbalance risks (second
moment). In all of these examples, the nature of the prediction
cannot be gleaned from the sample mean.

1.1. Probabilistic Predictions with Trees

Given a tree, one can generate a nonparametric predictive dis-
tribution for each terminal node using that node’s empirical
cumulative distribution function (ECDF). This suggestion by
Meinshausen (2006) is an input for the popular quantile regres-
sion forests. But there is no guarantee that standard trees learned
from data will have good predictive properties.

The “standard” tree is built through a recursion where at each
terminal node, potential splits of the tree are considered, and the
split that most reduces the sum of squared errors (SSE) is chosen.
Section 2 of this article will demonstrate that even in simple
conditions, trees built by splitting based on the SSE criteria
do not necessarily possess good predictive properties. There
have been other criteria designed for splitting rules beyond
this typical approach. Splitting rules for classification were well-
dissected by Taylor and Silverman (1993) and Breiman (1996),
which covered the Gini criteria and entropy. There appears
to be less extensive literature on splitting rules for continuous
prediction in nonparametric regression. Other splitting crite-
ria such as log-rank (LeBlanc and Crowley 1993), likelihoods
(Su, Wang, and Fan 2004; Zeileis, Hothorn, and Hornik 2008),
and treatment difference models (Su et al. 2009; Athey and
Imbens 2016) are specialized and/or rely on parametric frame-
works. Athey, Tibshirani, and Wager (2019) offer a fully non-
parametric method for predicting a quantity, not a predictive
distribution.

© 2024 American Statistical Association and the American Society for Quality
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1.2. Summary of Contributions and Insights

This article offers novelty by suggesting splitting criteria for
trees based on scoring rules. Scoring rules assess predictions
and have a lengthy history in statistics, information theory, and
convex analysis (Gneiting and Raftery 2007). A scoring rule
S(F, y) takes a predictive distribution F (throughout the article
this means the cumulative distribution function) and a realized
quantity y and converts it into a scalar score. We will consider
negatively oriented scoring rules, where the smaller the score
is, the better we have done. A proper scoring rule encourages
the predictor to provide the true distribution, which means
one makes careful assessments and is honest about uncertainty
(Garthwaite, Kadane, and O’Hagan 2005). Scoring rules tend
to reward both goals of probabilistic prediction, though the
respective importance is often hidden from the user.

The novel splitting criteria are as follows. Consider splitting
a current terminal node into two smaller terminal nodes with
data {y1, . . . , yl} and {yl+1, . . . , yl+r}, to the left and right subsets,
respectively. Then we choose the split that minimizes

l∑

i=1
S
(̂
FL, yi

)
+

r∑

i=1
S
(̂
FR, yl+i

)
, (1)

where F̂L and F̂R are the predictive ECDFs of y relating to
the left and right side of the split. As discussed earlier, finding
an optimal split in a standard tree is through minimizing SSE,
which is itself a scoring rule. Despite the relative simplicity of
this formulation of splitting rules, the authors have found no
reference to this mechanism with respect to building trees. The
closest attempts in this direction have been studies on quantile-
based loss functions (Bhat, Kumar, and Vaz 2015), density
forecasts (Iacopini, Ravazzolo, and Rossini 2022), or gradient
forests (Athey, Tibshirani, and Wager 2019).

By considering scoring rules other than SSE, we aim to
improve the predictability of trees. But perhaps the most promis-
ing advantage of our proposed method is the application-
dependent choice of a scoring rule. In different applications,
probabilistic properties other than the mean behavior can be of
importance. For example, interval scores that encourage narrow
and consistent predictive intervals can be beneficial if a user rou-
tinely uses only predictive intervals from the predictive distribu-
tion (Christoffersen 1998), or in reliability applications and pre-
diction of high-risk (extreme) events. Two-moment scores are
more useful when mean and variance are both of importance, or
with datasets that possess significant heteroscedasticity. While
the aforementioned scoring rules might need to be justified for
the context, continuously ranked probabilistic scores (CRPS) are
strictly proper scoring rules that are already understood as a
better fit in weather forecasting (Taillardat et al. 2016; Vogel et al.
2018). See Section 3 for a modest background on these scoring
rules and their computational costs.

We describe the algorithmic structure for building score-
based trees and pruning them in Section 4 along with an impor-
tant structural property of proper scoring rules: monotonic
improvement. Asymptotic analysis of splits in Section 5 provides
a more general insight into scoring rules’ necessary conditions
for consistency. By examining synthetic and real datasets in
Section 6, we show that different scoring rules return substan-
tially different trees in real, practical examples. Our experiments

confirm that when data is not completely summarized by the
mean value, trees built with non-SSE scoring rules provide
better predictions. Additionally, non-SSE trees can improve the
SSE performance beyond traditional trees, and interval scores
and CRPS achieve good prediction no matter what the goal of
probabilistic prediction is. Section 7 closes the article with some
remarks on extensions to this approach.

2. An Illustration

This section will motivate the use of scoring rules to guide
the splitting of tree models from a strictly statistical perspec-
tive. Throughout, we use script fonts for sets, the notation
[a] := {1, 2, . . . , a} for some positive integer a, and yn

p→ y
for convergence in probability of a random sequence yn to a
random variable y. Let {(xi, yi)}n

i=1 be the available data with
xi = (x1

i , x2
i , . . . , xp

i ) representing the p independent variables
as potential predictors (features), and yi representing the (real-
valued) response that we wish to predict for unseen data. We
denote J = {1, 2, . . . , n} as the index set of the whole data. We
also use the notations F̂A and ȳA for the ECDF and sample mean
of y values whose indices are in the set A (of cadinality |A|),
that is,

F̂A(z) = 1
|A|

∑

i∈A
I(yi ≤ z), and ȳA = 1

|A|
∑

i∈A
yi. (2)

The SSE criterion cannot distinguish splits if the predictor
variable x impacts the distribution of the response variable y
but leaves the mean of y unperturbed. Conversely, other scoring
rules, which consider the entire distribution, can easily find
these splits. To show this effect, we use an obvious shift of
behavior in a small toy example where predictors x1, . . . , xn ∼
Unif(−1, 1) and the response variable is distributed as

yi ∼
{

Normal(µ = 1, σ = 2) if xi ∈ [−1, 0],
Exponential(λ = 1) if xi ∈ (0, 1]. (3)

Say we do not know the split occurs at 0 but wish to build a
tree of depth 1 to give good predictions. For any split (k, s), the
traditional SSE score after split is

SSE(k, s) =
∑

i∈L(k,s)

(
yi − ȳL(k,s)

)2

︸ ︷︷ ︸
S(̂FL(k,s) ,yi)

+
∑

i∈R(k,s)

(
yi − ȳR(k,s)

)2

︸ ︷︷ ︸
S(̂FR(k,s) ,yi)

=
n∑

i=1

(
yi − ȳJ

)2 − |L(k, s)|
(
ȳJ − ȳL(k,s)

)2

− |R(k, s)|
(
ȳJ − ȳR(k,s)

)2

=
n∑

i=1

(
yi − ȳJ

)2

︸ ︷︷ ︸
S(̂FJ ,yi)

− |L(k, s)||R(k, s)|
n

(
ȳL(k,s) − ȳR(k,s)

)2

︸ ︷︷ ︸
reduction in SSE after split

, (4)

which shows the SSE score will always reduce as a result of the
split. In (4), (k, s) denotes the split using the kth predictor based
on its values less or greater than s. L(k, s) = {i ∈ J : xk

i ≤ s}
and R(k, s) = {i ∈ J : xk

i > s} denote the index subsets to the
left and right of the (k, s) split. The optimal split is then given
by (kSSE, sSSE) = arg mink∈[p],s∈R SSE(k, s). Clearly, this criteria
depends only on the sample means on each side of the split. If
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Figure 1. Splits resulting from the simulated experiment (3). In this one-dimensional example, k is always 1. The left panels show the criteria versus the split point. The
center (right) panels show the histogram from the data below (above) the selected split overlaying the true density when x ∈ [−1, 0] (x ∈ (0, 1]).

the sample means on each side are relatively close, SSE gives no
information to guide the split; this criterion would likely be poor
for splitting in our setting.

We can alternatively use scoring rules such as CRPS with a
simple implementation of

CRPS(k, s) = 1
2|L(k, s)|

∑

i∈L(k,s)

∑

j∈L(k,s)
|yi − yj|

︸ ︷︷ ︸
∑

i∈L(k,s) S(̂FL(k,s),yi)

+ 1
2|R(k, s)|

∑

i∈R(k,s)

∑

j∈R(k,s)
|yi − yj|

︸ ︷︷ ︸
∑

i∈R(k,s) S(̂FR(k,s),yi)

, (5)

to guide the split, yielding (kCRPS, sCRPS) =
arg mink∈[p],s∈R CRPS(k, s). Compared to SSE, this criterion
analyzes the difference between all of the values as opposed to
just the sample means. We will discuss CRPS and its properties
further in Section 3. See Gneiting and Raftery (2007) for a
thorough description of CRPS.

Returning to our toy example, by changing s in the [−1, 1]
range, one can investigate where each of these criteria suggests
the splitting must occur. Figure 1 illustrates the best split corre-
sponding to each criterion and the density of data below and
above that split value (overlaid by the known density) on a
random dataset generated from (3) with n = 1000. The SSE
criterion is noisy, with no particular behavior where the true
split is known. The CRPS criterion also has some noise, but
the trend focuses on the minimizer near 0. In this experiment,
constructing the tree by minimizing a proper score is superior
to using the standard splitting criteria.

With the promise of this experiment, we propose the idea
of constructing the tree by minimizing a criterion based on

proper scoring rules. These criteria are used to find the split that
minimizes the total score C(k, s):

C(k, s) :=
∑

i∈L(k,s)
S
(̂
FL(k,s), yi

)
+

∑

i∈R(k,s)
S
(̂
FR(k,s), yi

)
. (6)

While the proposed framework is broad, we work with several
famous scores. Of course, the use of each score depends on
the application, but the main point is to investigate whether
contracting the trees with proper scores results in more reliable
trees.

Remark 1. The training data is used for (a) constructing the
ECDF and (b) calculating the scores. However, both of these
steps are at the service of fitting a model to the data at hand, such
that the fitted model can best mimic that data. Using separate
sets of data or cross-validation for fitting, that is, a training
dataset to decide the splits and a separate validation dataset to
calculate F̂ for each split, will fail to minimize the score (loss) in
the training dataset. We note double purposes with the training
data does not lead to overfit; in a traditional tree, too, the same
data that provides a predictive distribution, is used to compute
the score at the fitting step. To avoid overfitting, we control
its root cause, that is, model complexity (Hastie, Tibshirani,
and Friedman 2009, sec. 2.9), by carefully choosing the tree
parameters and by a pruning mechanism via cross-validation;
see Sections 4.2 and 4.3.

3. Background on Scoring Rules

A scoring rule takes a distribution and an observed value and
returns a score, often used to assess the closeness between the
predictive distribution and reality. Gneiting and Raftery (2007),
Dawid (2007), and Carvalho (2016) provide reviews, sum-
maries, and applications of scoring rules. Here we employ them
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to compare two or more alternative predictive distributions.
However, there are other usages of scoring rules such as elicita-
tion of distributions (Garthwaite, Kadane, and O’Hagan 2005),
missing value imputation (Hasan et al. 2021), and Bayesian
utility theory (Bernardo and Smith 2006).

Let S(G, y) represent the score when distribution G is used
and y is an observed continuous quantity. Moreover, let

ES(G, F) := Ey∼FS(G, y), (7)

denote the expected score of any distribution G for data that are
randomly distributed following F. Scoring rules are negatively
oriented, where smaller is better, and their most important prop-
erty is propriety. A scoring rule is proper if for any distribution G,

ES(F, F) ≤ ES(G, F), (8)

and a scoring rule is strictly proper if for all G ̸= F the inequality
is strict. One interpretation of propriety is that if we choose a
distribution to predict a quantity, the long-run average score is
best minimized by selecting the true distribution. The function
ES(F, F) is sometimes referred to as the information measure of
S (Grünwald and Philip Dawid 2004). For us, it measures the
ability of a set of data to predict other elements in that particular
set of data, or self-similarity.

We now discuss a few options for scoring rules. The CRPS is
given by

SCRPS(F, y) =
∫ ∞

−∞

(
F(z) − I(y ≤ z)

)2 dz

= Ez∼F|z − y| − 1
2
Ez∼F,z′∼F|z − z′|.

This is a strictly proper scoring rule and the one used in
Section 2. Sometimes probabilistic predictions are summarized
with their mean and variance. Scores that are only based on the
mean and variance then can be used to evaluate the goodness
of the predictions. The Dawid-Sebastiani score (Dawid and
Sebastiani 1999) (DSS) is one example, given by

SDSS(F, y) = (µF − y)2

σ 2
F

+ ln(σ 2
F ),

where µF is the expected value corresponding to F and σ 2
F

is the variance corresponding to F. This has evident connec-
tions to the log-likelihood of a normal distribution, that is,

ln
(

exp
(−(µF−y)2

2σ 2
F

)
/
√

2πσ 2
F

)
, but normality is not required to

employ this scoring rule. DSS is a proper scoring rule, but it is
not a strictly proper scoring rule. This score can be used, for
example, if the only important aspects of the distribution can
be distilled down to the mean and variance. A further reduction
would simply be the SSE scoring rule:

SSSE(F, y) = (µF − y)2,

(standard trees) which ignores the variance and is especially
limiting when the variance is heterogeneous across different
subregions of data. Lastly, we consider two scoring rules related

to two-sided and one-sided intervals. Suppose that we are inter-
ested in (1−α)×100% prediction intervals for some 0 ≤ α ≤ 1.
The two-sided 1 − α interval score is defined as

SIS2(F, y) = qF
(

1 − α

2

)
− qF

(α

2

)

+

⎧
⎪⎨

⎪⎩

2
α

(
qF

(
α
2
)
− y

)
if y < qF

(
α
2
)

2
α

(
y − qF

(
1 − α

2
))

if y > qF
(
1 − α

2
)

0 otherwise,
where qF(1 − α) = inf {z ∈ R : 1 − α ≤ F(z)} is the (1 − α)th
quantile of F. The definition of the quantile is important to
maintaining the propriety of the scoring rule. While two-sided
intervals are reported for many estimates, risk analysis often
focuses on a single upper bound. One-sided intervals are also
useful for positive data when the lower bound for a two-sided
interval is close to zero. An upper bound interval score (IS1) has
the form

SIS1(F, y) = qF(1−α)+
{

1
α (y − qF(1 − α)), if y > qF(1 − α)

0 otherwise.
A use case of IS1 is when forecasting potential crop yield where
we want to find upper bounds to locate high-risk areas. This
list of scoring rules is purposefully not exhaustive but presents
various circumstances where each can be used. We will use each
of these scoring rules to illustrate ideas throughout this article.

4. Building a Tree via Scoring Rules

We now formalize the proposed methodology to build a predic-
tion tree based on data consisting of p predictors and a response
for each of n observations.

Trees are typically built recursively (Breiman et al. 1984).
Thus, the process used to find the first split, that is, node t =
0, is mirrored for all subsequent splits. We let Jt be the set
of indices of data points that lie in node t (i.e., satisfy the
intersection of splitting rules of node t’s parent and grandparents
recursively until reaching the root note). A split (s, k) creates two
index sets, namely Lt(k, s) =

{
i ∈ Jt : xk

i ≤ s
}

and Rt(k, s) ={
i ∈ Jt : xk

i > s
}

. We propose to choose (k, s) by evaluating the
predictive distributions resulting from the split via a scoring rule
of interest, that is, the total score similar to (6), which can be
rewritten as

Ct(k, s) = |Lt(k, s)|ES
(̂
FLt(k,s), F̂Lt(k,s)

)

+ |Rt(k, s)|ES
(̂
FRt(k,s), F̂Rt(k,s)

)
. (9)

In line with the definition of expected score in (7), here we
assume that the y data in node t follows its ECDF. Our splitting
rule is selecting a predictor k and split value s that minimize
Ct(k, s) for a chosen scoring rule; we denote this rule for node
t by (kt , st).

There is an important property of scoring rules that makes
our splitting criteria particularly attractive over alternatives. A
tree recursively grown with SSE has a key feature of monotonic-
ity. This means, as computed in (4), the SSE is nonincreasing
after splitting:

∑

i∈Lt(k,s)
(yi − ȳLt(k,s))

2 +
∑

i∈Rt(k,s)
(yi − ȳRt(k,s))

2 ≤
∑

i∈Jt

(yi − ȳJt )
2

for all k ∈ [p], s ∈ Sk
t ,
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Algorithm 1 PredictiveTree ({(xi, yi)}n
i=1, max tree depth D, min node size N)

1: Create a terminal node with indices in J containing all data and set depth d = 1.
2: while d ≤ D do
3: for nodes t ∈ {2d − 1, . . . , 2d+1 − 2} labeled terminal do
4: if terminal node has at most N data points then
5: Label node as leaf and go to next terminal node.
6: else
7: Find (kt , st) = arg mink∈[p],s∈Sk

t
Ct(k, s), where Ct(k, s) is defined in (9).

8: Create two terminal nodes whose sets of indices are Lt(kt , st) and Rt(kt , st).
9: Index the two new nodes 2t + 1 and 2t + 2 and set t = t + 1.

10: end if
11: end for
12: Set d = d + 1.
13: end while

where Sk
t is the set of all values that the kth predictor takes while

being in node t. Arbitrary splitting rules will not always have
this monotonicity property. However, Theorem 1 proves that our
proposed splitting criteria have a monotonic feature analogous
to SSE.

Theorem 1. Let Jt contain a subset of indices in the tth node
of the tree, with y values to the left and right of any split (k, s)
assumed to follow the corresponding ECDF, that is, F̂Lt(k,s) and
F̂Rt(k,s). If S is a proper scoring rule, then

∑

i∈Lt(k,s)
S
(̂
FLt(k,s), yi

)
+

∑

i∈Rt(k,s)
S
(̂
FRt(k,s), yi

)
≤

∑

i∈Jt

S
(̂
FJt , yi

)

for all possible (k, s).

That is, any splitting of the data will either reduce the total score
or keep it unchanged.

We note, Theorem 1 states that the tree improves the score on
the training data after every split. See supplemental material B
for the proof. For a recursive algorithm, such a guarantee to
improve the objective by considering more splits prevents the
algorithm from getting stuck without finding the best possible
tree.

4.1. Score-based Trees

The regression tree via scoring rules, as listed in Algorithm 1
is constructed starting at the root node with t = 0, contain-
ing the whole data. At each level d of the tree, all the nodes
in that level that were labeled terminal are considered to be
further split using the splitting criteria Ct(k, s), unless they
contain fewer than N (pre-specified parameter) data points, at
which point those nodes are labeled as leaves and excluded
from having offsprings. Ultimately, the leaves will provide the
probabilistic predictions for data points that satisfy the same
recursive criteria that form them. This process repeats up to a
pre-specified depth of D in the tree. N and D are hyperparame-
ters that classically control the tree-based models’ complexity.
Each node t that is split will generate two new nodes 2t + 1
and 2t + 2 with index sets J2t+1 := Lt(kt , st) and J2t+2 :=
Rt(kt , st).

4.2. Parameters and Implementation Specifics

Through standard mechanisms (Hastie, Tibshirani, and Fried-
man 2009, p. 308) in trees, the maximum depth D ensures
terminal nodes will not be split when they have a certain num-
ber of parents. With abundant data, deeper trees could make
the defining halfspaces in the leaves more complicated and in
some sense, less interpretable. D best scales logarithmically with
n (Klusowski 2020), specifically D ≈ p

p+2 log n, to allow more
splits if we have more data.

Besides the choice of D, because our tree will use ECDFs of
y as predictive distributions, it is important to ensure that we
have at least. say, N data points in each node. One rule of thumb
for N is the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky,
Kiefer, and Wolfowitz 1956; Massart 1990). This inequality sug-
gests that N ≥ log(2/α)

2ε2 can guarantee at least ε-accurate ECDF
with 1 − α confidence. For example, 95% confidence at an
accuracy of 10% gives at least 66 samples. In SSE-based trees,
however, N is often chosen to be smaller (∼ 10 (Bertsimas,
Dunn, and Mundru 2019)). This can be explained by non-SSE-
based trees tend to successfully assess the distributional behavior
of the data at the cost of forcing larger terminal nodes. But
larger terminal nodes could mean smaller trees, which may be
advantageous for generalization (Athey, Tibshirani, and Wager
2019). Importantly, N is not a termination criterion for the entire
tree; it prevents a certain branch of the tree from growing more
than what we have data for. In all classical tree building literature,
both N and D are used to mitigate risks of overfitting. If the
tree is too deep, it will tightly track the training data. On the
other hand, if a node is too small, it yields too crude ECDF and
error-prone statistical information. Controlling the node size
with maximum depth D is not guaranteed because while deeper
trees ultimately result in smaller nodes, with a shallow tree one
can still have terminal nodes that do not have enough data points
in them. Hence, ensuring at least N data points in leaves becomes
necessary.

A different parameter to set is related to searching among the
split values of each variable for the best split. Given that this
algorithm is likely to be used on tall datasets with potentially
sizeable Sk

t sets in a terminal node k, cycling through all unique
values of Sk

t (to consider them as a potential split value) leads
to a slowdown in the algorithm. Thus, for each predictor, one
can opt for a search through a set of 1/ℓ quantiles Qk

t (ℓ) =



630 S. SHASHAANI ET AL.

{qk
t (ℓ), qk

t (2ℓ), . . . , qk
t (1 − ℓ)} of each predictor k in node t

instead. For example, when ℓ = 0.05, then for each predictor
only 20 split values will become candidates to identify the split.
For discrete predictors with 10 unique values or less, as well as
the categorical predictors, all the possibilities will be considered
in the search for best splits. In the experiments, DSS and IS1
have computational time comparable with SSE but CRPS is
computationally more expensive.

As the last practical consideration, given that CRPS requires
O(n2) operations in (5) and expensive for larger datasets, it is
more appropriate for implementation of CRPS-based trees to
use an alternative computation of CRPS with O(n log n) com-
plexity with the approximation SCRPS(̂FJ , y) ≈ 2

n2
∑n

i=1(y(i) −
y)(nI(y < y(i))− i+ 1

2 ) that uses the order statistics y(i)’s (sorted
samples) for computation (Zamo and Naveau 2018).

4.3. Pruning Probabilistic Trees

The tree in Algorithm 1 is grown to depth D symmetrically.
However, given the greediness of optimal splits, the best tree
structure that divides the data into partitions may not be sym-
metric depending on the identified first optimal split. Trees
tend to overfit, and the tree size (i.e., the number of terminal
nodes in the tree with depth D) is controlled by a complexity
(regularization) parameter κ . Smaller trees are understood to
provide better accuracy and interpretability power. Pruning is
done after growing a full tree (post-pruning) or simultaneously
(pre-pruning), which implies stopping the growth at a node. Pre-
pruning is more cost-effective, and its common approaches are
listed in the supplementary material Section A for the reader’s
reference.

Unlike the common approach, which is growing the tree to
its full size and then cutting back subtrees to combine some of
the predictions, we explore stopping the tree growth at the nodes
whose split does not dramatically improve the prediction quality.
There have been setbacks about this approach for potentially
missing a very good split that follows a seemingly weak split
in the tree (James et al. 2013). However, we adopt this pruning
approach to avoid unnecessary computation and obtain smaller
trees, albeit with varying sensitivity levels across different scor-
ing rules, which we will explore.

For each terminal node t with more than N data points,
the optimal split leads to two new terminal nodes that by the
monotonicity property satisfy

|J2t+1|ES(̂FJ2t+1 , F̂J2t+1) + |J2t+2|ES(̂FJ2t+2 , F̂J2t+2)

≤ |Jt|ES(̂FJt , F̂Jt ).

Let (t := |Jt|ES(̂FJt , F̂Jt ) −
(
|J2t+1|ES(̂FJ2t+1 , F̂J2t+1)

+|J2t+2|ES(̂FJ2t+2 , F̂J2t+2)
)

be the reduction is score after split-
ting in node t.

By expecting that (t gradually decreases as the tree becomes
deeper, we propose a heuristic to accept the split on node t if the
point-average reduction in the score as a result of it is at least
κ ∈ [0, 1] factor of the point-average reduction in the score as
a result of the split in the root node (the first optimal split), that
is, (t/nt > κ(0/n where nt = |Jt|. Equivalently, we accept the
best split at node t if

ES(̂FJt , F̂Jt ) −
( n2t+1

nt
ES(̂FJ2t+1 , F̂J2t+1 ) + n2t+2

nt
ES(̂FJ2t+2 , F̂J2t+2 )

)

> κ
(

ES(̂FJ , F̂J ) −
( n1

n ES(̂FJ1 , F̂J1 ) + n2
n ES(̂FJ2 , F̂J2 )

))
.

(10)

Note, with κ = 0, Algorithm 1 remains the same. As κ increases,
the size of the tree becomes smaller. If κ = 1, we only have a root
node in the tree.

5. Near-Optimality of the Empirical Split

This section explains some of the theoretical behavior of our
trees learned from finite data. Our treatment will be decidedly
less general than comparative work on the asymptotic behavior
of trees (Gordon and Olshen 1980; Toth and Eltinge 2011;
Scornet et al. 2015). This section’s goal is to explain the impact
of finite data on the new splitting criteria based on scoring rules.
With some loss of generality, this section will only consider the
behavior of a single split and keeps the available dataset used
for splitting fixed (not random). Here we answer the following
question in a general setting: given that our split is based on finite
data, how does this compare to the prediction if one chooses the
split optimally?

Say that we have a collection of realizations (x1, y1), . . . ,
(xn, yn) which are assumed to be from some joint distribution.
Throughout the analysis, we fix this dataset that has an optimal
split (yielding lowest total score when used to predict unseen tar-
gets y). Denote the potential splits by regions A1, . . . , At , . . . , AT ;
these are a collection of half-spaces of the form {x : xk ≤ s}. The
potential splits are considered to be nonrandom for simplicity.
In this section, we replace (k, s) splits with A regions to ease the
exposure, and use L(A; n) and R(A; n) to reflect the dependence
on n. Our chosen split is dictated by

Ân = arg min
A∈{A1,...,AT}

∑

i: xi∈A
S
(̂
FL(A;n), yi

)
+

∑

i: xi∈Ac
S
(̂
FR(A;n), yi

)
,

where L(A; n) and R(A; n) are the subsets of n data points with
their predictors lying on either side of the split that defines sub-
region A. Let FL(A;∞) and FR(A;∞) represent the true condi-
tional distributions of y for data whose predictors lie on either
side of the split that defines sub-region A. It makes sense to judge
a split A via the following criteria

g(A) := ES
(̂
FL(A;n), FL(A;∞)

)
Pr (x ∈ A)

+ ES
(̂
FR(A;n), FR(A;∞)

)
Pr

(
x ∈ Ac) .

This represents the expected score for a new prediction of unob-
served data after the split is finished. An oracle would choose the
split such that

g∗ := g(A∗
n) = min

A∈{A1,...,AT}
g(A),

where the oracle split choice that yields g∗ is denoted by A∗
n.

Clearly, we would like g
(

Ân
)

to be as close as possible to g∗. In
the spirit of the generality of this article, we now state a condition
for general scoring rules.

Theorem 2. Let P be a class of every distribution of a random y
given x ∈ A for all subsets A of the predictor space, {y1, . . . , yn}
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be independent draws from a mixture of two distributions
F, G ∈ P defined on nonoverlapping support sets AF and AG,
with nF as the number drawn from F and nG as the number
drawn from G where n = nF + nG. Denote the corresponding
empirical predictive distributions by F̂n and Ĝn. Setting the
mixture distribution M := nF

n F̂n + nG
n Ĝn given nF and nG, it

holds true that g(Ân)
p→ g∗ as n → ∞ if as n → ∞ for all

F, G ∈ P , F ̸= G,

ES
(
M, F̂n

) p→ ES (M, F) . (11)

Theorem 2 states that the predictive distributions (ECDFs in
subregions, given a fixed dataset) of a score-based tree approach
the highest accuracy (smallest score) when predicting increas-
ingly large sets of unseen data. The implication of (11) is that the
score must obey consistency (in the second argument) for the
target variable. For the special cases of scoring rules used in this
article, the next corollary shows this requirement is met in some
reasonably well-behaved probability space P . The tricky part of
showing this result for a given scoring rule is that F̂n appears on
both sides of the score. Thus, we cannot directly invoke the law
of large numbers. See supplemental materials B for the proofs.

Besides providing the result in full generality, we next offer
specific conditions for the scoring rules introduced in Section 3.

Corollary 1. If S is chosen to be CRPS or DSS, then assuming
that for all subregions of predictor space A, the distribution of
a random y conditioned on x ∈ A is such that E(y2) is finite,
we get g(Ân)

p→ g∗ as n → ∞. If S is chosen to be IS1 or
IS2, then assuming that for all subsets of predictor space, A, the
distribution of a random y conditioned on x ∈ A is such that the
CDF for y is strictly increasing near α/2 and 1−α/2 for IS2 and
1 − α for IS1, we get g(Ân)

p→ g∗ as n → ∞.

The moment condition of Corollary 1 gives guarantees that
the CRPS/DSS score is well-behaved. For the interval and upper
bound score, the condition shifts from a moment-based condi-
tion to one that guarantees convergence of the sample quantile.
This condition can be modified for discrete data.

These results are intended to verify the intuition that these
scores based on ECDFs lead to splits that, even though we
have no proof for them to be the correct optimal splits, their
resulting tree scores will be close enough to the scores in the
optimal trees with high probability. Thus, the scoring rule choice
will impact the ultimate tree that is constructed, no matter
how much data is present. The choice of scoring rule thus,
cannot be ignored and can have a large impact on the result-
ing prediction. One example of this was in Section 2, but our
analysis of real data in Section 6 confirms this result. Table 2
in supplemental material Section D also shows, using synthetic
datasets, that certain scoring rules fall short of finding the
boundaries in the data where the probabilistic behavior changes
especially if the change happens less obviously and beyond mean
values.

6. Numerical Experiments

In this section, we examine the new tree construction meth-
ods using different scoring rules with experiments on synthetic

datasets and real public datasets. As a baseline for comparison,
we use standard trees with SSE criteria. All approaches are
implemented under our own Python package scoreTree,
publicly available at https://github.com/sshashaa/scoreTree. The
code is also provided as an online supplementary material and
the README file provides instructions to replicate examples
from the article.

6.1. Synthetic Datasets

Two synthetic datasets for one-dimensional continuous feature
space in [0, 1] are designed with response behavior in four
regions described in Table 1. The easy dataset exhibits easy-
to-distinguish behavior of the response in each subregion, evi-
denced by significant differences in the first and higher central
moments. The conjecture is that SSE should easily separate these
regions using the first moment. On the other hand, the hard
dataset entails more similarly behaving responses in the first
two moments everywhere, making it harder for SSE-based trees
to predict when there is difference in behavior. Although real-
world data may not be in a tree structure, the synthetic datasets
mimic the heteroscedasticity and responses that follow a mixture
of distributions.

We construct trees with several scoring rules (Build ∈
{SSE, CRPS, DSS, IS1}) and evaluate their performance under
a varied number of training data sizes n and different choices
of the pruning parameter κ introduced in (10). The benchmark
procedure is summarized in Algorithm 2. For each dataset pre-
sented in Table 1, samples of size n ∈ {200, 400, 800, 1600} are
generated as training datasets and thresholds κ ∈ {0.0, 0.1, 0.3,
0.5, 0.8} are implemented with each tree. For the comparisons,
for each experiment (i.e., for each combination of Build, n, and
κ), we generated one test set of 1,000 observations (to evaluate
its performance). Each tree is evaluated with both in-sample (I)
and out-of-sample (O) errors via different scoring rules denoted
by Eval ∈ {SSE, CRPS, DSS, IS1} using training and test sets,
respectively. Data is repeatedly (r = 30 independent times)
divided into an equal-sized training set for all experiments with
common random numbers (CRN). CRN helps us see the effect
of different trees and their performances on the same sets of data
for training and testing, reducing the variability for comparison.
Consequently, the predictive distributions are approximated by
the data points that lie in the terminal node t(j; Build, κ , b)

as indicated in Line 5 of Algorithm 2 for the bth data repli-
cate, the trees constructed with Build score, and pruned with
threshold κ . In-sample and out-of-sample errors, represented by
{IEval

b (Build, κ)}b=1,2,...,r and {OEval
b (Build, κ)}b=1,2,...,r , are eval-

uated with Eval score to summarize the results (Lines 7–8 in
Algorithm 2). Since the responses are nonnegative, we only use
the upper interval score IS1 with α = 0.2 (implying that, when
fitting a tree we penalize a prediction that is worse than the 0.8-
quantile of the predictive distribution). For all trees, D = 4,
N = 50, ℓ = 0.05 following the rules of thumb described in
Section 4.2.

Our first comparison validates whether the tree built with
a scoring rule of interest (Eval) yields better probabilistic pre-
dictions (lower scores) on out-of-sample data than trees con-
structed with the same data but with different scoring rules. We

https://github.com/sshashaa/scoreTree
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Table 1. Synthetic datasets with logNormal(lgN) distributions of y on x subregions.

Regions −1 < x < −0.5 −0.5 < x < 0 0 < x < 0.5 0.5 < x < 1 Sub-region boxplots

Ea
sy

da
ta

se
t y Dist. lgN(2,1/2) lgN(3,1/3) lgN(4,1/4) lgN(5,1/5)

E[y] 7.9 21.1 56.1 153.4
E[y2] 82.4 494.0 3359.4 24372.0
E[y3] 1210.3 12894.8 213981.9 4012557.9

Ha
rd

da
ta

se
t y Dist. lgN(1/2,0.5) lgN(1/3,0.6) lgN(1/4,0.3) lgN(1/5,0.3)

E[y] 1.99 1.80 1.31 1.26
E[y2] 5.04 4.73 1.88 1.76
E[y3] 15.66 17.50 2.90 2.75

Algorithm 2 ScoreTreeExperiment(bootstrapped datasets ℓb, b = 1, 2, . . . , r)
1: for Bootstrap ℓb, b = 1, 2, . . . , r do
2: for Pruning parameter κ ∈ {0, 0.1, 0.3, 0.5, 0.8} do
3: for Scoring rule Build ∈ {SSE, CRPS, DSS, IS1} do
4: Train a tree with the Build score, ℓb data, and pruning parameter κ .
5: Return t(j; Build, κ , b), terminal node containing jth data point ∀j ∈ ℓb.
6: for Scoring rule Eval ∈ {SSE, CRPS, DSS, IS1} do
7: Compute IEval

b (Build, κ) := ∑
j∈ℓb

SEval
(

F̂Jt(j;Build,κ ,b)
, yj

)
.

8: Compute OEval
b (Build, κ) := ∑

j/∈ℓb
SEval

(
F̂Jt(j;Build,κ ,b)

, yj
)

.
9: end for

10: end for
11: end for
12: end for

evaluate the paired difference of scores for out-of-sample scores:

ODb(Eval, Build, κ) := OEval
b (Eval, κ) − OEval

b (Build, κ),
∀b = 1, 2, · · · , r (12)

between trees constructed with Eval and Build scores using the
Eval score, where negative values validate that trees yield better
predictions if trained with the same scoring rule that evaluates
them (based on the goal of prediction).

Figure 2 shows one instance of these comparisons with Build
= SSE and Eval = CRPS for the hard dataset and two choices
κ ∈ {0, 0.5} for pruning. We observe that as the training data
size increases, SSE-based trees fail to provide good predictions
when the goal is to have a good CRPS performance, since the
paired difference confidence interval is negative. This weakness
of SSE-based trees is statistically significant with pruning. See
Table 1 in the supplemental material for a complete statistical
test for all pairs of Eval and Build scores. This complete statistical
test suggests that we can generally validate that Eval trees are
better than Build trees when compared in Eval score. However,
for the hard dataset, some scores struggle more than others. An
interesting observation is the effect of pruning in helping the fit
when using different scores on both datasets. For example, for
the hard dataset, we observe that even a small pruning of κ = 0.1
can impact the validation of DSS- and IS1 trees.

Figure 2. Boxplots of the paired difference of CRPS scores between CRPS trees and
SSE trees on out-of-sample predictions for the hard dataset suggest that with the
growing size of training data, CRPS trees provide better predictions than SSE trees.

Different scoring rules will best function under varying
intensities of pruning. Figure 3 shows a CRPS tree trained
with different pruning parameters for one instance of the hard
dataset. As expected, the higher pruning values lead to a smaller
tree (solid lines); yet the same pruning parameter may lead to
different tree sizes when used with different scores. The best
pruning value for SSE may not be the same as that for CRPS. To



TECHNOMETRICS 633

Figure 3. A CRPS tree at D = 4 with κ = 0 (dashed lines) and κ = 0.5 (solid lines).

Table 2. The optimal pruning κ∗(Score) for each scoring rule and each data size.

Easy dataset Hard dataset

n : Data size 200 400 800 1600 200 400 800 1600

Score
SSE 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.3
CRPS 0.1 0.1 0.1 0.0 0.8 0.8 0.8 0.5
DSS 0.1 0.1 0.1 0.1 0.8 0.3 0.1 0.1
IS1 0.1 0.1 0.1 0.0 0.8 0.8 0.8 0.3

compare each tree with its counterparts built via other scores,
we first find the best pruning value for each score via cross-
validation (using out-of-sample results):

κ∗(Score) := arg min
κ

1
r

r∑

b=1
OScore

b (Score, κ),

given a data size. These values are summarized in Table 2. These
values suggest that for the easy dataset, κ∗ = 0.1 is generally a
good value across training data sizes and scoring rules, except
SSE which does not appear to benefit from pruning (aligned
with evidence from the hypothesis test results in Table 1 of the
supplementary material).

There are more irregularities in the hard dataset. All scoring
rules favor pruning, some less than others when sufficient train-
ing data is available. However, for the small data size, all scoring
rules provide their best performance with the smallest tree that
is pruned with κ = 0.8. DSS shows different behavior than the
other scores for the hard dataset. Besides these observations,
while not visible in Table 2, the variance of the optimal κ

performance for IS1 is noticeably larger than the other scores.
Another noteworthy point is that for the in-sample results, the
κ∗ = 0.0 for all scores and all data sizes implies that without
pruning, the trees are subject to overfit, especially for the hard
dataset.

To alleviate the interactive effect of pruning and scores,
we compare the best version of each score-based tree using
their corresponding optimal pruning value. We construct a
confidence interval for the paired difference of optimal scores

Figure 4. Confidence intervals of OD∗(Eval, SSE) and corresponding estimated
success probabilities EPS(Eval, SSE) (labels on each interval) from 30 replications
with CRN, for varying training data sizes (y axis) of the easy and hard dataset.

OD∗
b(Eval, Build) := OEval

b (Eval, κ∗(Eval)) (13)
− OEval

b (Build, κ∗(Build)), ∀b = 1, 2, . . . , r

defined similar to (12). We also estimate the estimated probability
of success, EPS(Eval,Build), defined as the fraction of replications
with the Eval-based tree leading to better Eval scores than Build-
based trees, that is,

EPS(Eval, Build) := 1
r

r∑

b=1
I{OD∗

b(Eval, Build) ≤ 0}. (14)

Figure 4 summarizes paired difference of optimal Eval scores for
Eval- and SSE-based treesand corresponding estimated success
probabilities of the Eval-based trees.

In most cases, especially for the hard dataset, the out-
performance of CRPS-, DSS-, and IS1-based trees over SSE-
based trees is statistically significant. The percentage of times
that an SSE-based tree is worse than its counterparts is also
notably high across cases. This result confirms that non-SSE-
based trees can achieve better probabilistic predictions when the
data is not completely summarized by mean values (a property
synthesized in the hard dataset). We also observe that the length
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Figure 5. Confidence intervals of OD∗(Eval, Build) and corresponding estimated success probabilities EPS(Eval, Build) (labels on each interval) of non-SSE Build scoring
rules for varying training data sizes of the easy and hard dataset.

of the confidence intervals often decreases with sample size. This
can be explained by the fact that estimates of mean, quantiles,
and variance for the purpose of fitting trees is noisier with
smaller training data.

In a follow-up experiment, to see whether there is a score
that unanimously outperforms other scores, we investigated
OD∗(Eval, Build) confidence intervals and success probabilities
for building trees with CRPS, DSS, and IS1 scores. Figure 5
summarizes these results.

A number of observations from Figure 5 are noteworthy:

(a) In the easy dataset, all scoring rules provide relatively similar
probabilistic predictions; while IS1 barely ever improves
trees regardless of the goal of prediction (negative CI’s and
large probabilities in IS1 column), there is less evidence to
say the same for CRPS and DSS.

(b) In the hard dataset, CRPS- and IS1-based trees provide
similar performance to one another. But compared to DSS-
and SSE-based trees, they are more likely to provide better
predictions and their improved performance is statistically
significant as the data size increases. DSS-based tree only
show better performance compared to SSE-based trees, but
do so with statistical significance invariably across data sizes.
Non-SSE trees almost always lead to better SSE scores (posi-
tive CI’s and small probabilities in SSE row). The same holds
for DSS score when the data size is not too small. Good
CRPS and IS1 scores are not achievable with SSE- and DSS-
based trees.

In our final investigation of this section, we compare the
trees’ ability to find the correct splits. While the main purpose of
score-based trees is to produce better probabilistic predictions,
identifying the correct subregions will render their suitability
more convincing. As expected, the non-SSE trees more success-
ful discern the subregions; Figure 3 shows, for example, that

Table 3. The optimal pruning κ∗(Score) for each scoring rule and each data size.

Yield dataset Divvy dataset

n : Data size 5000 10,000 5000 10,000

Score
SSE 0.0 0.1 0.8 0.8
CRPS 0.0 0.0 0.0 0.0
DSS 0.0 0.0 0.8 0.5
IS1 0.0 0.0 0.8 0.3

Figure 6. Confidence intervals of OD∗(Eval, SSE) and corresponding estimated
success probabilities EPS(Eval, SSE) (labels on each interval) from 30 replications
with CRN, for varying training data sizes (y axis) of the Yield and Divvy dataset.

the CRPS-based tree is able to identify correct splits (within a
±0.02 margin of error). If the tree is not sufficiently pruned,
many incorrect splits will be contained in the tree structure (dash
lines). But even in a sufficiently small tree, the split values can
be incorrect if other scoring rules are used for splitting. For a
more comprehensive comparison in this regard, see Table 2 in
supplementary material Section D. Table 2 shows that (i) all true
split points are more likely to be recovered by non-SSE trees,
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(ii) SSE- and DSS-based trees find several inaccurate splits on
average, while CRPS-based trees find the fewest inaccurate splits
of all, and (iii) among non-SSE trees, the most difficult subregion
are more likely identified by IS1 than DSS, and most likely
identified by CRPS. A direct implication of correct identification
of split values is the improved interpretability of data. In many
applications such as in health outcome predictions, these correct
split values lead to correct clustering of patients with distri-
butionally similar outcomes and more accurate personalized
predictions (Mao et al. 2022).

6.2. Real Datasets

We next investigate the score-based trees on two real datasets;
see supplementary material Section E for their detailed descrip-
tions. The first is the Yield data from the Ethiopian Annual
Agricultural Surveys with 174,028 rows × 5 predictors, and ∼
94K unique response values. The second is the Divvy bikeshare
data from the city of Chicago with 1.3M rows × 9 predictors and
∼ 3.4K unique response values. Our analysis again entails r =
30 replications, with CRN and training data of sizes n = 5000
and n = 10,000, and computed κ∗ for each score (see Table 3).
For all trees, we set D = 4, N = 250, ℓ = 0.05.

We note that Table 3 indicates that the best results are
obtained without pruning the trees in almost all cases for the
Yield dataset. A possible explanation for the superior prediction
performance on the Yield dataset with larger trees could be
attributed to its heterogeneous behavior, particularly evident in
the tails, as illustrated in Figure E.1 of supplementary material.

We compare the Eval-score of optimal Eval-based trees with
those of the optimal SSE-based trees in Figure 6. Similar to the

synthetic data, we make our comparisons with (i) probability of
success computed by (14) and (ii) paired difference confidence
intervals computed using (13). Figure 6 illustrates that non-SSE
trees provide statistically better predictions than SSE trees. In all
cases, non-SSE trees outperform the SSE trees more resound-
ingly with larger training data.

In a subsequent experiment, we examine the confidence
intervals and success probabilities of OD∗(Eval, Build) when
constructing trees using CRPS, DSS, and IS1 scores to determine
whether one of these scoring rules consistently outperforms
others. Figure 7 provides the summary of the results. In almost
all cases, non-SSE trees lead to enhanced SSE scores (SSE rows
in Figure 7). In the Divvy dataset, CRPS-based trees demon-
strate superior performance compared to other tree types, while
those based on DSS and IS1 exhibit similar performance. In the
Yield dataset, while CRPS-based trees are not very sensitive to
the sample size, the performance of DSS- and IS1-based trees
improves with larger sample sizes. We note that if the prediction
goal is to obtain good CRPS scores, then CRPS-based trees are
unbeatable (CRPS rows in Figure 7).

In the supplementary material Section E, we provide addi-
tional experiment results with the minimum node size N = 100
(Figures E.2 and E.3). These additional results aim to deepen
our understanding of the sensitivity exhibited by each score-
based tree. While the results are robust for changing values of
N for the Divvy dataset, the performance of the SSE-based trees
is affected by decreasing N, as illustrated in Figure E.3 (fully
negative confidence intervals and high success probability in the
SSE row of the Yield dataset comparing SSE-based trees with
CRPS- and DSS-based trees). This experiment underscores that
smaller terminal nodes in SSE-based trees can yield competitive

Figure 7. Confidence intervals of OD∗(Eval, Build) and corresponding estimated success probabilities EPS(Eval, Build) (labels on each interval) of non-SSE Build scoring
rules for varying training data sizes of the Yield and Divvy datasets.
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SSE scores comparable to those derived from the remaining
trees. This is not surprising because more data improves the
empirical estimates of quantiles and higher moments and sub-
sequently enhances the quality of trees trained with non-SSE
scoring rules.

7. Concluding Remarks

In this article, we discuss that standard mechanisms for regres-
sion trees are not designed to grow a tree with the goal of
creating good nonparametric predictive distributions. We aim
to build a tree with generally good predictive distribution and
conclude that fitting regression trees to training data by using
proper scoring rules other than SSE as the split criteria can
improve predictive properties. This is because, unlike SSE that
summarizes the predictive distribution with its mean value,
other proper scoring rules will focus on various other summary
statistics (quantiles, higher moments, etc) that are of importance
depending on the application and heterogeneity in the data.
Since the recursive partitioning of the proposed trees is dictated
by the scoring rule, when the scoring rule is chosen to align with
the goal of prediction or based on some knowledge about the
data, the resulting tree produces improvements over SSE-based
trees. The type of score can also affect the additional compu-
tation for computing other summary statistics in the predictive
distributions, but if chosen well, it can lead to not only better
predictions, but potentially also better interpretation on the
partitions created for the data (finding the correct split points).
Our near-optimal analysis and numerical results conclusively
show unanimous gain in using scoring-based trees. By exten-
sion, trees with proper scoring rules can provide a significant
improvement when used as based learners and in ensemble
settings such as forests. We leave these important extensions for
future research.
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