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ABSTRACT

Calibrating simulation models that take large quantities of multi-dimensional data as input is
a hard simulation optimization problem. Existing adaptive sampling strategies offer
a methodological solution. However, they may not sufficiently reduce the computational
cost for estimation and solution algorithm'’s progress within a limited budget due to extreme
noise levels and heteroscedasticity of system responses. We propose integrating stratification
with adaptive sampling for the purpose of efficiency in optimization. Stratification can exploit
local dependence in the simulation inputs and outputs. Yet, the state-of-the-art does not
provide a full capability to adaptively stratify the data as different solution alternatives are
evaluated. We devise two procedures for data-driven calibration problems that involve a large
dataset with multiple covariates to calibrate models within a fixed overall simulation budget.
The first approach dynamically stratifies the input data using binary trees, while the second
approach uses closed-form solutions based on linearity assumptions between the objective
function and concomitant variables. We find that dynamical adjustment of stratification
structure accelerates optimization and reduces run-to-run variability in generated solutions.
Our case study for calibrating a wind power simulation model, widely used in the wind
industry, using the proposed stratified adaptive sampling, shows better-calibrated parameters
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under a limited budget.

1. Introduction

Many simulation models, particularly those used to
emulate real engineering systems, have physically
unobservable parameters. This can be due to having
a simulation model that has simplified the real sys-
tem’s dynamics (similar to low-fidelity models), or due
to the environmental characteristics in which the real
system operates (for example, the geographical and
weather-related effects for a particular location and
time), or due to the need for removing the initial
transient state of the simulation to prepare the simu-
lated data for analysis in time-dependent simulation
outputs (for example, the warm-up period for
a steady-state analysis). Particularly, in the first two
examples, differences between simulated and real data
are addressed during the important practice of calibra-
tion (Sargent, 2010; Schruben, 1980).

Calibration of simulation experiments with real-
world observations is generally done through meta-
modeling approaches, typically with Bayesian models
(Kennedy & O’Hagan, 2001; Pousi et al., 2013).
However, these methods do not scale well with the
size of the data or the number of the calibration para-
meters (Jeong & Byon, 2024; Jeong et al., 2023). In the
simulation literature, the so-called direct model

calibration is one that formulates the problem as
a simulation optimization where the empirical loss is
minimized by searching for the optimal calibration
parameters over their feasible space (Tolk et al.,
2017) [Chapter 3]. Global search methods such as
simulated annealing (SA) or random search (RS), as
well as meta-heuristics such as the genetic algorithm
or particle swarm optimization are popular for such
problems (Guzman-Cruz et al., 2009; Juan Felipe
Parra & Arango-Aramburo, 2018; S. Liu et al., 2007;
Tahmasebi et al., 2012) with the downside of lacking
computational efficiency and convergence guarantees.
Efficient stochastic optimization methods have proven
effective for simulation model calibration using sto-
chastic gradient (B. Liu et al.,, 2022) or line search
methods (J. Yuan et al., 2012).

1.1. Calibration as a simulation optimization

In traditional calibration of stochastic simulations, the
discrepancy between the simulated and observed out-
put values is computed while the inputs are simulated
following an input probability model - a common
practice in calibrating epidemiological models
(Cheng et al, 2023). But in many simulation
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experiments, the output data as well as real (not simu-
lated) input data is used. We term these calibration
problems data-driven calibration given that the input
itself is directly queried from a real dataset of both
inputs and outputs of the real-world system.

For example, in wind power generation models,
a simulation model depends on unobservable para-
meters, such as the wake parameter that describes
the effect of wind decay in downstream turbines. The
wake parameter 6 can depend on a wind farm’s loca-
tion and other local characteristics. Suppose that
((xi,y:) :i=1,2,...,n) is a collection of observed
wind characteristic vectors x; € R' (inputs), and
observed generated wind power y; € R' (outputs)
from a particular wind farm over time, where p is the
number of turbines in the wind farm. The simulation
model generates, as output, the predicted power -
a vector-valued function h(6,x;) in R'. The calibra-
tion problem involves finding the wake parameter that
best matches simulated and real outputs, i.e.,

. N o 112
min 3 1H(0.5) 1 - 1)

The problem above is also known as the empirical risk
minimization (ERM). The simulation model, if accu-
rately tuned, can be used to make decisions about the
real system. However, if n is large, then enumerating all
n data points to evaluate the performance under each 60
will be very inefficient because each h(6, x;) evaluation
requires running the simulation. In this case, one
might resort to sampling, which renders ERM
a stochastic problem. Using randomly selected small-
scale data can alleviate the computational burden, so
long as we can accurately tune the simulation model
without utilizing all the observed data points. But when
data is noisy, small samples result in inaccurate infer-
ence about the calibration parameter. In many appli-
cations such as those involving reliability (e.g., in wind
power generation), using suboptimal calibration para-
meters to make decisions about the real system can
cause high-risk consequences.

1.2. Contributions

Viewing calibration as a simulation-optimization pro-
cess, where the expected discrepancy between the
model and real data is minimized, raises the question:
can one reduce the algorithm complexity, that is, the
overall simulation model runs to find a robust calibra-
tion parameter? Often, under a pre-specified compu-
tational budget, answering this question concerns
allocating effort for (i) exploration, (ii) exploitation,
and (iii) estimation in each iteration of the optimiza-
tion algorithm (Andradéttir & Prudius, 2009; Gao
et al., 2015). Better exploration of the calibration para-
meter space and finding near-optimal solutions

requires reducing the per-iteration budget, that is,
the cost of estimation, as much as possible. We will
formalize this discussion with a survey on adaptive
sampling stochastic optimization methods used
towards this goal in Section 2. But what is unique
about a calibration problem to obtain cheaper esti-
mates throughout the optimization process?

Ample input and output data in calibration con-
texts suggest a potential for stratified sampling -
a well-known variance reduction technique wherein
the input domain is divided into multiple disjoint sub-
regions, each of which with discerning distributional
behaviour of the outputs due to heteroscedasticity.
The benefit of partitioning the data comes from the
fact that the weighted average of conditional output
variances is at most as large as the unconditional
variance, that is, Eg[Var(A|B)] < Var(A) for any two
random variables A and B. All stratified sampling
research seeks to maximize this reduction in variance.
Meanwhile, when used within optimization, one has
to account for estimating the performance of many
alternatives for the calibration parameter. Since the
distribution of simulation outputs changes under
each 0, it is reasonable to consider that the optimal
partitioning for each 6 should also vary. Hence,
a priori partitioning of the input space (before starting
the optimization algorithm) may be suboptimal.
Therefore, the challenge of using stratified sampling
within optimization can involve, in addition to choos-
ing the sample size in each stratum, determining the
best stratification structure for each 6 evaluated during
optimization. With existing research addressing the
former Jain et al. (2023), in this paper we focus on
the latter and its integration within the optimization
algorithm. We explore whether or not there is effi-
ciency gains in choosing input sub-regions carefully
for each iteration if it can be done at a low cost.

To that end, in a survey of stratified sampling
techniques for estimation (Section 3), we investigate
the risks in allocating budget to each stratum due to
poor estimates of conditional variance of outputs,
which can be particularly concerning if the strata
boundaries keep changing during optimization. We
discuss that, for dynamic strata, post-stratified sam-
pling is a safe choice due to keeping the sampling
distribution independent of the stratification struc-
ture. That is, we adopt independent sampling from
the entire input space and then assign weights to each
sample based on the placement of strata. We further
leverage post-stratification variance as the metric
when dynamically choosing the strata.

Next, we present two approaches to finding effec-
tive stratification structures (Section 4). The first
method divides the data via binary trees (BT) for
a greedy optimization of an objective function differ-
ent from the standard trees. We propose an informa-
tion gain metric to evaluate the reduction in variance



achieved after splitting a node and use that to choose
the number of strata. The second method uses a linear
relationship between some transformation of auxiliary
or concomitant variables (ConV) and the outputs to
approximate closed-form boundaries. Sometimes,
rapidly computable conditional means of input (not
simulated) data as concomitant variables can be used,
reducing the small simulated sample risks on strata
misspecification. We extend the closed-form deriva-
tions for variables to simulated data and propose ideas
to choose the best concomitant variable and the num-
ber of strata in each iteration. Increased learning abil-
ity using all available data without needing new
simulation runs and faster computation are the advan-
tages of the second approach. Yet, it uses one conco-
mitant variable at a time and hence may be less flexible
than the first approach, which can stratify multiple
variables jointly.

Lastly, we conduct a thorough numerical experi-
ment (Section 5) with dynamically stratified adaptive
sampling with BT and ConV and compare their per-
formance with Bayesian optimization (BO), SA, and
RS on Monte Carlo and discrete-event simulation toy
examples. Further, implementation in a case study for
the wind power simulation model calibration proves
the effectiveness of the proposed methods in a real-
world application and provides insights on their sen-
sitivity and consistency. Comparisons are summarized
with emphasis on remaining gaps and open questions
for future research (Section 6).

2. Mathematical background and
contributions

In this section, we define the data-driven calibration
problem as a simulation optimization. We review its
computational challenges, to remedy which we focus
on a particular class of optimization algorithms that
uses adaptive sampling within trust regions. We then
list our contributions and gained insights that render
this algorithm more successful for calibration.

2.1. Problem formulation and standing
assumptions

Consider the random instances of data (X,Y) being
generated from an underlying joint probability distri-
bution and let (6, X) be the simulated random output
corresponding to the vector pair (X,Y). Then, defin-
ing the loss function €(h(6,X),Y) as a measure of
discrepancy between h(6,X) and Y, the objective
function becomes

I;éi(_r)l f(6) :=Exy[£(h(6,X),Y)]. (2)
The function f(6) is non-negative, and we assume that
it is nonconvex (due to nonconvexity of h(-, X)) but
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continuously differentiable with Lipschitz continuous
gradients, i.e., there exists a constant L < oo such that
[ Vef(6) = Vf (02) IS LI 6 — 6| for  any
01,0, € ©. For the remainder of this paper, we sim-
plify the random objective function notation with
F(0,(X,Y)) :=£(h(0,X),Y). The actual joint prob-
ability distribution in (2) is unknown. Thus, we esti-
mate the expected value at a particular 6 in (2) via
Sample Average Approximation (SAA) using
a random sample set S of size N from the available
dataset, i.e.,

FON) =5 S0 F6.(5.).

(xj.yj)ES

In other words, we consider each evaluation of the
objective function for a single data point as one simula-
tion replication, and the total evaluations throughout
the optimization are accounted for as the computa-
tional budget needed to reach an optimal solution.
Under the Big Data context, i.e., large n, the selection
of the points will be considered in an identically dis-
tributed and independent (i.i.d.) fashion. Most simu-
lation models h(0, ) are too complex to have direct
access to their derivatives with respect to 6. Although
direct gradients can be computable via techniques
such as infinitesimal perturbation analysis (Suri,
1987), in most instances, that requires additional pro-
gramming and analysis that may not be a feasible
option in many applications. Hence, we consider the
simulation model as a complete black-box and assume
that VgF(0, -) are unavailable, which makes this pro-
blem a derivative-free optimization (DFO) (Conn
et al., 2009).

2.2. Efficiency challenges for derivative-free
simulation optimization

DFO problems are much harder to solve due to the
needed extra effort to approximate gradients through
derivative-free methods. Therefore, the main chal-
lenge is: can we obtain good solutions with an opti-
mization algorithm in this setting given a fixed
computational budget? The answer to this question
involves the trade-off between exploration and
exploitation that, while primarily known in
Bayesian optimization, is a general challenge with
optimization algorithms evaluated in finite time. In
a deterministic viewpoint, exploitation refers to eval-
uating the objective function value at multiple &s
within a sub-region to track it locally. Expending
a lot of budget for exploitation leaves less budget
for the algorithm to explore other regions of the
search space. Using the objective function’s structure
to determine the number of 8’s is not a viable option
in DFO. Instead, DFO solvers expend budget to
approximate the gradients with interpolation or
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finite differencing, among other methods. In the
stochastic DFO, if the simulation outputs are very
noisy, the approximated gradient can be inaccurate,
and these methods can struggle to reach good solu-
tions. Hence, exploitation in a stochastic setting
involves both the number of &s visited to approx-
imate the gradient and estimating the objective func-
tion at each of those 0’s.

Trust-region (TR) methods are increasingly known
to be effective for non-convex DFO problems com-
pared to line search or stochastic gradient methods
due to their strict control of step size (tuned automa-
tically throughout the search) and their implicit use of
curvature by constructing a quadratic local model
(Y. X. Yuan, 2015). The performance of TR depends
on the quality of these local models as their high-
quality can consistently identify good steps and pro-
gress per iteration.

However, the challenge with building high-quality
models stems from the estimation error, which with
N Monte Carlo samples are inversely proportional
to v/N. Thus, given a fixed budget, having reliable
estimates that can help build better local models
(exploitation) comes at the cost of losing the budget
to take more steps (exploration). An efficient algo-
rithm appropriately determines the sample size at
each point within the local sub-region while keeping
enough budget for exploration. A successful strategy
for this trade-off adapts the choice of S(0) as
a function of 6 to the variability of F(6,-) and to
the precision stipulated for convergence, i.e., more
accurate models and function estimates as the algo-
rithm nears the optimal region (Byrd et al., 2012).
Recently, a TR-based algorithm that incorporates
adaptive sampling for the DFO problems, and
hence is appropriate for data-driven calibration,
has been developed, called ASTRO-DF (Adaptive
Sampling Trust-Region Optimization — Derivative-
Free) (Shashaani et al., 2016, 2018). In this paper, we
will use this algorithm as an instance of adaptive
sampling solvers and investigate on how to tailor it
for data-driven calibration. As discussed in
Section 1, our goal will be to integrate dynamic
stratification within this solver.

2.3. Adaptive sampling trust-region
optimization - derivative-free

ASTRO-DF is an almost surely convergent simulation
optimization solver for nonconvex problems that
builds a local model in each iteration via interpolation
and decides the number of simulation runs (samples)
based on a proxy for optimality gap. The adaptive
sample size guarantees the fastest proven sample com-
plexity of O(e *loge™!) to reach e-optimality (Ha
et al., 2024). Had the direct gradient observations

been available, the lower-complexity solver
(ASTRO - the derivative-based version of ASTRO-
DF) could be used (Vasquez et al., 2019).

To better understand the sampling mechanism, let
us briefly review the TR methods. For 6y as the iterate
(incumbent solution) at iteration k, a TR is defined as
a closed ball around 6, By = {0:|| 6 — 0|l < A},
where Ay is the TR radius. A local model My(-) is
then fitted to estimated objective function values at
multiple 0’s inside By. This model suggests a candidate

for the next incumbent, 6, by predicting where the
function will be minimized within Bj. The reduction

in the estimated objective function value at Orr1 is
then compared to the corresponding reduction in the
model. If sufficient reduction in the objective function

value is achieved at ékﬂ, then the candidate solution is

accepted, i.e., O = ékﬂ, and the TR expands. If
rejected, then 6 ; = 6O, the TR radius shrinks, and
a new model is constructed in a smaller neighbour-
hood around 6. For a complete listing of the new
variant of this algorithm that uses the new proposed
approaches for dynamic stratification, see Section 3.4.

In a (deterministic) DFO setting, the TR model
gradient (in Euclidean norm) is maintained in lock-
step with the TR radius, i.e., || VM(6k) ||= O(Ax)
(Conn et al, 2009). Then, proving that
limg_,oo Ax = 0 guarantees that the model gradient
converges to 0. Handling the stochasticity comes in
when one also needs to maintain a lock-step between
the model gradient and the true function gradient.
This is, in effect, what a high-quality model needs to
accomplish in every iteration. ASTRO-DF deals with
this challenge by choosing the optimal (i.e., most effi-
cient) sample size at each visited 6. Since the sequence
{Ax} shrinks as the algorithm nears optimality,
ASTRO-DF uses the fourth power (appropriately
selected to maintain model quality) of the TR radius
as the acceptable upper bound for the standard error
at each visited 0. The sample size is, therefore,
a stopping time of the form

2
Ny = min{n > M i \/ Var (f(6k, 1)) < Kj—)'z_k},
(3)

since with every added sample, the LHS (standard
error estimate) changes and eventually reduces while
the RHS (slightly deflated optimality gap proxy)
remains unchanged.

In (3), Ak is a deterministic sequence that increases
logarithmically with k, and « is a positive constant.
The deflation ensures that the acceptable standard
error threshold is stricter in the later iterations and is
essential for proving almost sure model quality guar-
antees (and hence algorithm convergence) (Ha &
Shashaani, 2023). Another role of Ay is lower bounding
the sample size so that even under early stopping due



to a poor estimate of the standard error, Ny increases
at least logarithmically to increase estimation accu-
racy. The algorithm first runs Ay i.i.d. replications to

obtain @(f (6k, Ak)) and, if needed, adds one sample
at a time. As a result, the adaptive sample size is small
during the initial iterations when the optimality gap is
large and increases in the later iterations when the
algorithm appears to have neared optimality.

Choosing Nj provides theoretical guarantees for
efficiency, but since there is no upper limit to the
stopping time, it can practically be very large due to
high noise in F(6, -). High level of noise is notoriously
present in data-driven calibration causing extremely
large sample sizes, which is undesirable under a finite
budget setting. Enhancing the algorithm with
a variance reduction technique such as stratified sam-
pling (leveraging the conditional behaviour of the out-
puts in input sub-regions) can help avoid such larger
sample sizes. However, a seamless incorporation of
stratified sampling with adaptive sampling is challen-
ging as which stratum to sample from in each recur-
sion of the stopping time induces more uncertainty to
the algorithm. There are also risks and opportunities
in selecting the strata themselves appropriately in each
iteration.

3. Stratified sampling for optimization

Stratified sampling groups similar data into strata such
that the output within each group is similar and
between any two groups is different. This helps learn
the heterogeneity in the data for estimation, which
leads to variance reduction (Ross, 2013). Intuitively,
to efficiently allocate overall samples to each stratum,
more points should be sampled from a stratum with
higher variance. This efficient allocation of the com-
putational budget can reduce the variance of the esti-
mators and expedite the optimization. The impact of
stratified sampling on the optimization routine is
influenced by (i) the allocation scheme used to deter-
mine the sample size of each stratum and (ii) the
stratification structure.

The allocation scheme depends on what sam-
pling strategy is utilized. Proportional allocation
sets the sample size of a stratum based on the prob-
ability of picking a point from that stratum. Optimal
allocation depends on the above probability and the
output variance in that stratum (Neyman, 1934). An
inaccurate estimate of these two values can reduce
the effectiveness of stratified sampling and produce
worse estimates of the performance. Thus, many
studies in the literature have averted to explore
different ways to solve the problem of sample size
allocation. Mathematical techniques like convex pro-
gramming (Huddleston et al., 1970), branch and
bound methods (Bretthauer et al., 1999), and delta

JOURNAL OF SIMULATION e 5

method (Glynn & Zheng, 2021) have been proposed
to determine the optimal allocation. Since optimal
allocation can be erratic if the variance cannot be
estimated accurately, a hybrid allocation scheme that
switches between proportional and optimal alloca-
tion as more insights are gained by running simula-
tion can also be used (Pettersson & Krumscheid,
2021). Another common method is an adaptive opti-
mal allocation that minimizes the variance within
each stratum (Etoré & Jourdain, 2010; Kawali,
2010). All these studies focus on applying stratified
sampling for simulations or statistical inference.
Within the optimization framework, the optimal
allocation has been implemented via batching
(Chen et al., 2018; Hassan et al.,, 2006; Zhao &
Zhang, 2014). One of the drawbacks of batching is
that the sample sizes can be larger than specified by
adaptive sampling and may result in inefficient bud-
get utilization.

The stratification structure can be determined by
partitioning the data based on an input variable such
that output data in each stratum exhibits similar
probabilistic characteristics. Consequently, we can
assume a separate conditional distribution for the
outputs in each stratum. This problem has been
widely analysed for one-time stratification (for infer-
ence) using heuristics like clustering (Farias et al.,
2020; Tipton, 2013; Zhao & Zhang, 2014), genetic
algorithms (Keskintiirk & Er, 2007), binary trees
(Jain et al., 2021, 2022), etc. A drawback of these
heuristics and greedy search methods is their reliance
on the data used to build the structure, being suscep-
tible to poor performance if the data is noisy or
insufficient. Another approach is to use
a theoretically derived closed-form solution to divide
the data via concomitant variables (Dalenius, 1950).
Concomitant variables are traditionally simulated
input data with known mean and variance. If the
concomitant variables are correlated to the outputs,
the strata boundaries that minimize the variance can
be determined by solving implicit equations derived
given their conditional distributions (Dalenius &
Gurney, 1951; Taga, 1967). However, the closed-
form boundaries’ equations are only solvable if the
concomitant variables follow a well-known probabil-
ity distribution (Sethi, 1963; Singh & Sukhatme,
1969). Otherwise, iterative fixed-point methods
(Cochran, 1977; Sethi, 1963), convex optimization
(Brito et al., 2010; de Moura Brito et al., 2017), and
dynamic programming (Khan et al., 2008) have been
used to solve these equations. Using these approaches
for optimization can be computationally expensive
given that they will be invoked at every iteration of
the algorithm. In addition, they are only applicable
when the number of strata and the stratification
variable are known a priori, both of which may also
vary from one iterate to another during optimization.
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3.1. Notations and definitions

Consider a stratification structure Z, which divides the
input space into Z; disjoint sets (Xx 1, X2, -, Xk z)
such that X := U, 7 X, is the whole input space.
For a sample Sy := S(6) of size Ny formed by sub-
samples Sk, = {(xj,5j) € Sk : xj € X} of size N,
in each stratum (i.e., Ny = Zf": 1 Nk 2), the estimated
stratified sampling mean is

Zy ~
Furat (O, NelZi) = profa(6), (4)
z=1

where pr, =E[1(X € X,)] is the probability of
drawing a sample whose input lies in stratum z, and

ﬂ(@k) is the sample average in stratum z, i.e.,

FO) =5 S F6 (5.

k2 (%.9;) €S2

Throughout this article, we assume py , = |ﬁ,‘|z‘ given

the big data setting. The variance of the stratified
sampling estimator is

Zy

Var(fstrat(eka Nk|Ik)) = Z

z=1

2 2
pk,zak.z
Nk,z 7

where of _ := E[(F(6, (X,Y)) — £(6k))°|X € Xy.] is
the variance of outputs in stratum z with
f-(6k) :=E[F(bk, (X,Y))|X € Xi.] as its mean. The
estimated mean and variance of the stratified sampling
estimator depend on the stratification structure 7 and
the set of sampled points Si. The reduction in the
variance of the stratified sampling estimator given Z
depends on how the samples are allocated to each
stratum.

3.2. Review: Proportional vs. optimal allocation

For ease of exposure, let Ny be a deterministically
growing sample size instead of a stopping-time sample
size chosen adaptively for the remainder of this sec-
tion. In proportional allocation, Ni;, = px .Nx whereas
in optimal (or Neyman) allocation Ny , = wy .Ni, with
weights computed as

Pk 20k z

— .
Zz/k:1 Dk 2Ok z

Wiz =

5

Optimal allocation results in the lowest variance if
0k, 's are known for all z with

2
. 1 [

Var(fos(Ok, Nk | Zx)) = ﬁk (ZP&Z‘”@Z) and
z=1

Z
- 1
Var(fps(6k, Nk | Zx)) = ﬁkzpk,zai,p
z=1

for the optimal and proportional estimator, respec-
tively. However, since estimates of the conditional
variance oy, in each stratum, i.e.,

1

D DR GCACS AT AC

(%5,5;) €Sk 2

2
O, =

(5)

ought to be used instead, optimal allocation is
subject to risks due to inaccurate 0y.’s, which is
more prominent in the early iterations. On the
other hand, when using proportional allocation,
the sample size of stratum z depends only on py_,
which can be more rapidly estimated using all the
available input data. The maximum reduction in
variance with optimal allocation is mostly effective
in the later iterations for another reason too. Let
N’ be the theoretical optimal sample size of stra-
tum z, Var,, be the variance of optimal allocation,

Ni. be the estimated sample size of stratum z with
optimal allocation and Vare be the corresponding
variance  without stratification such that
Ny =3, Nk, =3, Ni.. Increased variance due
to under-or over-estimating the optimal allocation
sample sizes can be characterized as

Z O 2
1 S (Ng = N
Vare: > Varop (1 oy M) 7

Ni &= Nk,

which is more significant when N is small (Cochran,
1977). For early iterations of optimization with small Nj
(where the algorithm trajectory is most vulnerable for
progress), using proportional allocation is almost as good
as the reduction with optimal allocation (Pettersson &
Krumscheid, 2021). In fact, one can be more confident to
obtain any reduction in the variance with proportional
allocation than with the optimal allocation (Asmussen &
Glynn, 2007, p. 151). In summary, using proportional
allocation for the purpose of optimization reduces the
run-to-run variability of the algorithm.

3.3. Allocation schemes with adaptive sampling

Section 3.2 discusses batch-based allocation. However,
in implementation of stratified sampling in combina-
tion with adaptive sampling rules such as those in
ASTRO-DF, we need to allocate each sample sequen-
tially, one at a time. First, (3) is replaced by the stan-
dard error on the LHS with the standard error of the
stratified sampling estimator. Next, if the standard
error exceeds the optimality gap, it is necessary to
determine from which stratum should an additional
point be sampled. A selective randomized method
proposes selecting a random stratum to sample from
using the probability mass function



7tk -(n) = Pr{selecting stratum z after n samples}
Vk.z(n) 1 {Vk,z(”) > %}

S v () v (n) > %3

(6)

where n, is the current number of n samples that
belong to stratum z and

V(1) = { W;i(:)’

with Wy, as the estimate of wy, using #n, samples. The
expected sample size in stratum z for a fixed iterate 6
conditional on the stopping time is

for optimal allocation
for proportional allocation,

[Nk,z|Nk = le] =E

zselections in pilot runs+

Mg
> 1 x P{zselected on nth run}
n=Ar+1

N

~ B+ Y Efmiz(n)].

n=Ax+1

The approximation reveals the complication with analys-
ing the sample size of each stratum. Although v , has less
variability in proportional allocation than in optimal allo-
cation, even proportional allocation can result in instability
simply because (Ni1,Ni2,...,Niz) is a multinomial
random vector with each mode’s probability changing
sequentially with every new sample added following (6).
In summary, when using adaptive sampling, both alloca-
tion schemes are subject to the changing sampling distri-
bution with every added sample. It can cause unstable
updating of 8 in the optimization process.

3.4. Post-stratification for stratified adaptive
sampling with changing strata in optimization

Stratified adaptive sampling has been explored using
optimal allocation and its extensions for stochastic
gradient methods (Espath et al., 2021; B. Liu et al,
2022) and Nelder Mead (Aguiar et al., 2022) Jain et al.,
2021, 2022 examined how robust is the implementa-
tion of stratified adaptive sampling for TR methods.
However, stratified sampling requires the stratification
structure to be known a priori to sample points from
each stratum independently. Consequently, most
existing studies use a constant stratification structure,
i.e., 7y = 17 for all k, to maintain a consistent sampling
framework throughout the search. Even with the fixed
structure, stratified sampling with optimal (or propor-
tional) allocation faces increased stochasticity when
the sampling distribution changes in the optimization
process, as discussed in Section 3.3. To overcome these
vulnerabilities, one can use post-stratification, which
first samples randomly from the entire population.
Then the estimation follows similar to stratified
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sampling with proportional allocation using N ., the
number of sampled points that are within each stra-
tum. Central limit theorems for proportional alloca-
tion apply to post-stratification (Asmussen & Glynn,
2007), and its finite-time performance in queuing
simulations has been on par with variance reduction
obtained using control variates (Wilson et al., 1984).
The  post-stratified ~ sampling  estimator

foost(Bk, Nk|Zy) is evaluated via (4) to obtain each

fz(ek); its variance is then exactly computed
(Cochran, 1977) as

Zy
N 1
Var(fpost (O, Ni|Zx)) = ﬁkzpk,zai,z
—1
z “
=5 (1= prz)op
Nl% z=1 i

1
+ O<N_,§> (7)

The first term in (7) is the variance of the proportional
allocation, and the second term is the increase in variance
because the post-stratification does not account for the
stratification structure. Post-stratification is not an allo-
cation scheme as the allocation happens automatically.
Importantly,  this  reduces variability  since
(Nk1,Nk2, ..., Nkz) is now a multinomial random
vector with each mode’s probability determined by py ,
and hence fixed. From (5), the reduced variability man-
ifests in more stable estimates for the conditional var-
iance in each stratum. In other words, under adaptive
sample sizes, 0y, obtained via post-stratification is
a better estimate for oy, than that obtained via the
proportional allocation.

When we want to let the stratification structure Z
change with the decision variable 6, post-
stratification will again be more appropriate since it
does not necessitate a priori knowledge of the stratifi-
cation structure when drawing samples. Therefore, we
can construct the stratification structure using the
pilot simulations and estimating the post-stratified
variance estimator (7). This means A; in (3) needs to
be significantly larger than in the standard ASTRO-DF
to start, but ultimately, it can save a budget for
exploration later in the search. In Section 4, we will
present two approaches for constructing the strata
from the learning yielded by the A pilot samples.

Once the stratification structure is ready, we let the
automatic allocation of samples to each stratum be
executed, while we only take i.i.d. samples from the
input space and leverage the adaptive sampling (to
decide when to stop taking more samples) with less
effort. If the standard error of the post-stratified esti-
mator is more than the RHS in (3), one point is
randomly sampled from the entire data that will lie
in one of the strata depending on the stratification
structure. Then, the estimates are updated, and the
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adaptive sampling rule is examined again, and this
process repeats until (3) is satisfied. Algorithm 1 out-
lines the implementation of ASTRO-DF for a given
stratification structure Zj, and the details of post-
stratified adaptive sampling are summarized in
Algorithm 2. The output of Algorithm 2 will be
denoted depending on whether the input is 6 (iter-

ate), 92 (interpolation points), or ékﬂ (candidate
solution).

Algorithm 1 ASTRO-DF with Dynamic Post-Stratification

1: Input: Initial solution 6, and TR radius Ay, maximum budget T, and
success threshold n>0.

2: initialization: Set calls = 0 and iteration k = 0.

3: while calls <T do .

4:  Estimate foo5t (Ok, Nk|Zk) and Var(foost (6k, Nk|Zx)) via Alg. 2.

5. Set calls = calls + N.

6:  Select 2d points using the coordinate basis in By, i.e.,
{Gk + Ake,-};; . )

7:  Estimate interpolation points’ function value with N samples via
Alg. 2.

8 Setcalls = calls + 2% N;. :

9:  Construct model My(6) by interpolation and find 6+, its
minimizer in By. _ P ~

10: Esltimate foost (Bk+15 Nix1 | Zi+1) and Var(foost (Bk4-1, N1 | Zi+1)) via
Alg. 2.

11:  Set calls = calls + Nk+1.

12:  Compute the success ratio g

13: if py>nthen _

14: Set 9k+1 = 9k+1 and Agyq > Ay

_ Fpost (BN \Zk)*?posx(égﬂ N1 [Tier)
My (6c)—Mi(Bit-1)

15: else

16: Set Ok11 = 6k and Ayq < Ay
17: end if

18: Setk=k+1.

19: end while

20: output: Terminal solution 6 and terminal performance

£(80) ~ BIF(01, (X, 1))

Algorithm 2 Post-Stratified Adaptive Sampling

_

: Input: Available dataset X, iterate 6, TR radius Ay, minimum sample
size Ay, and constant k> 0.

: Compute A, = Ao (log k)"

: Run Ay i.i.d. simulations to obtain F(6k, (x;,¥)) Vj =1,2,..., A. Set
Nk = )\k-

4: Generate a stratification structure 7 with Z strata via Alg. 3 or Alg. 4.

5: Compute foost (Bk, Nk|Z ), Var(Foost (6k, Ne|Zx)) with Ny = 32 Ny,

using Zj—— »
6: whiley/ Var(fpos: (6, Ni|Zx)) > K\/—;- do
k

7:  Take an i.i.d. sample and identify stratum z that it belongs to
based on Zy.

8  SetNy;=Ngz+Tand Ny =N +1.

9: Update fz(ek), fpost(ek, Nk‘l—k), and Var(fpost(ek, Nk‘Ik)).

10: end while

11: output: Sample size Ny and estimates

Foost (Bks Nk [ Z4), Var (Foose (6, Ne | Z)).

w N

4. Dynamic construction of strata

An important aspect of Algorithm 1 is determining the
stratification structure 7. Constructing a stratification
structure involves determining three things:

(i) number of strata,
(ii) stratification variable (when there are multiple
input variables), and
(iii) strata boundaries (split values).

A fixed structure can be built if physics-based (i)-(iii) are
known a priori. In many practices, these will not be known,
and while asynchronous or static stratification still has an
advantage for variance reduction, not getting (i)—(iii) right
in implementation may barely benefit the optimization if
not slowing it down (Jain et al., 2022). The question is, can
we do better than selecting the strata without consideration
for the local conditional behaviour of the objective func-
tion? Especially for heteroscedastic problems, fixed strata
may not be optimal at every iteration as the conditional
output distribution can greatly vary at different &'s.
Synchronous or dynamic stratification may thus be bene-
ficial in building the optimal strata for each 6 that is
evaluated during optimization if the computational cost
of doing so is not too expensive.

Several methods have been proposed to build
a dynamic structure via greedy search (Etoré et al.,, 2011;
B. Liu et al., 2022; Pettersson & Krumscheid, 2021) that
address (ii) and (iii) but assume there is always a fixed
number of strata across iterations. More strata means more
quantities that need to be estimated (mean and variance of
each stratum). Obtaining maximal reduction in variance
requires large samples in each stratum to accurately esti-
mate their statistics. For too many strata, the budget utili-
zation can thus be extremely high.

In this work, we propose two ways to determine the
stratification structure by finding solutions to (i)-(iii)
simultaneously such that

Iy = arg min Var (fpost(ek,Nk = )Lk|I)).
7

Strata Structure

We propose two methods for stratification: a greedy
search with a new variant of binary trees enabling
more complex strata, and a closed-form solution
with only one stratification variable at a time but
with applicable to either real or simulated data.

4.1. Stratification via binary trees

The first stratification method we present greedily
divides the data with binary trees to minimize the
estimated variance. The first step is to decide the
stratification variable and the corresponding split
point. Let z be the current leaf that is to be split
and X', X?,... X? be the possible options for stra-
tification variable with Rng, (X') as the set of all
possible values that the ¢-th variable can take in leaf
z. Splitting value will divide leaf z into two candi-
date leaves defined for sets of (all not samples of)
input data X . = {X € Xk, X' <x} and
Xizrew) = {X € Xiz 0 X'>x} to the left and right
of the splitting criteria, respectively. We denote the
sample size and the estimated variance in the left
and right candidate leaf after splitting as
Nz i) Nicz () 6,%7z’l(t,x), and 6£7Z7r(t7x), respectively.



Then, the optimal stratification variable and the corre-
sponding split point are determined by minimizing the
variance of proportional allocation estimated after split-
ting, i.e.,
(X;.%,) =  argmin
t=12,....px€Rng, (X*) (8)

&l%,z,l(t,x) Qk”,Z?l(t?x) + a'l%,z,r(t,x) Qk@r(t,x) :

In (8), weights Qe = 2 =aleal ang
Qkzr(tn) = Nkf\,i'k(”) = % are used from samples
collected so far (i.e., with |Sx| = A pilot samples) in
place of probabilities  py i) = lX"l‘—XI(‘”)‘ and
Drzr(tx) = W because finding the probabilities

using the entire available data for every possible
x € Rng; (X') can be computationally expensive.

We denote the optimal left and right splits from solving
(8) with I* and r*. This optimization can be solved sequen-
tially as the binary tree grows to provide an ultimate
stratification via greedy search. The optimal stratification
variable at each leaf can be different, and it depends on the
current iterate 6 and the set of points sampled during that
iteration. The split variables and values X _, x; , determine
strata boundaries, which can change with 6 and the
sample size. Upon accepting a split, we update the indexing
of the strata (leaves) by setting the index of the left candi-
date leaf as z and the index of the right candidate leaf as
Zi + 1 and finally incrementing the total strata by 1, ie.,
Zy = Zx + 1. This means the old z-th leaf is now replaced
with the left candidate leaf, and the right candidate leaf is
added to the list of leaves and will not be considered for
further splitting.

The next step is to determine when the algorithm
should stop splitting the data or, in other words, the
number of strata; each leaf of the tree will be a stratum
at the end. One approach is to pre-select the maximum
number of strata. Too many strata means many quan-
tities to be estimated, and too few strata can mean we
lose substantial variance reduction. The best choice for
Zy can differ from one iterate to another, and pre-
selecting it is subjective. A natural solution can be
cross-validation, whereby the prediction error that
falls below a certain threshold would stop the stratifi-
cation process. The issues with this approach are cut-
ting the small sample of data used for constructing the
tree even shorter to form cross-validation folds in
addition to ad-hoc choice of the prediction error
threshold, which could rely on problem-dependent
hyperparameters. These issues can result in
a suboptimal stratification structure, affecting the esti-
mates and the optimization process. Instead, we pre-
sent an approach that determines the necessity of
splitting a leaf by assessing the extent of variance
reduction achieved through the proposed split based
on information gain (Quinlan, 1986).
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Consider 7 as the stratification structure built so far.
Before splitting, we will collect a statistic from each leaf
z=1,2,---,7Z. Let (Af]% = Va\r(fpost(ek,Nkﬂk) be the
estimated variance of the post-stratified estimator given
the current structure 7, and the new variance of the post-
stratified estimator if this leaf was selected for splitting
using the criteria returned by (8) be evaluated as

)

Note, we use true probabilities in (9) for correct esti-
mation of the reduced variance as they can be com-
puted using the whole data once the split point is
known. Since the strata are non-overlapping,
Pkz = Pz +pk,z,r* and Nk,z = Nk,z,l* + Nk,z,r*- We
define

& - 7

6k(z) =

) Pl
Ok

as the proportion of variance reduced when node z is
split. Now, the question is whether this reduction in
variance is enough to split the node. To answer that,
we define

Gi(z) := —6k(2) In(0k(2)), (10)

which can be viewed as the information gained by
splitting the node z at 0. Assuming that the split
leads to a reduction in the estimated variance,
0r(z) € (0,1), and hence the maximum theoretical
value of Gi(z) = 1/e. This information gain value is

prev

computed for each leaf. Let G, be the gain from the
most recent accepted split. Then, the leaf selected for
splitting is the one that maximizes Gi(z) subject to
providing a gain that is at least as good as the previous

. rev. .
gain G}, i.e.,

max Gk(2),
2=1,2,--,7
subject to: Gi(z) > Gb™". (11)

The selected leaf is then indexed appropriately, and its
gain updates the value of Girev. If (11) has no feasible
solutions, the splitting stops, and the tree and stratifi-
cation structure is finalized. We also use another
hyperparameter (r) common for binary trees that
removes leaves with less than a certain number of
data points sampled as shown in Algorithm 3.
Generally, Gi(z) is initially small, then it reaches the
maximum value after the first few splits and starts
reducing after that. The algorithm stops when Gi(z)
is close to the maximum value because finding a split
that results in more gain is difficult after that. Note,



10 P.JAIN ET AL.

another advantage of using the information gain strat-
egy for splitting is that we can select which of the
leaves provides the best split rather than splitting
leaves in the order of their indexing.

Algorithm 3 Determining Strata (multi-D) using Binary Trees at Iteration k

1: Input: Current iterate 6, minimum leaf size threshold 7, and loss
values computed at (x;,y;) € Sk where |Sy| = .

2: Initialization:

3:  Compute the first split by solving (8) to get X 1 -, Xk 1, and

compute G(1).

4:  Set GErev = Gk(1), X1 = Xk,H* and Xy, = Xy

5: Set Ty = {Xk1, X2} Sk1 = Skarand Sk = S

6: Set Z, = 2 and update 67 following (5).

7: while true do

8 forze{1,2,...,Z: |Sk;|>21} do

9: Compute optimal split in z-th leaf by solving (8) to get

Xk,z./* ) Xk.z,r*-
10: If min{|Sk |, |Skzr|}>T, compute G(z) via (10), else set
Gk Z) = —0Q.
11: end for
12: if there is an acceptable split, i.e., optimization (11) has a solution
then
13: Set the leaf that solves (11) as Pt and remove Xy poie from Zy.

14: Set Gl;:rev = Gk(ZSDIi‘), Xk‘zsp\il = Xkyzsph[’l* and
Xz1 = Xk,z‘l’"‘,r*-
15: SetZy =TIy U {Xk_zspm, Xy z,41 }, Sy it = Sk‘zspli(_[o,
Skz41 = Sy it pr-
16: Set Zy = Z + 1 and update 67 following (5).
17: else
18: break
19: end if
20: end while
21: Output: Stratification structure Z, with Zx many strata and samples

{Sk,z}fk:r

4.2. Stratification using concomitant variables

Trees can partition the input space with multiple vari-
ables simultaneously. Yet, their drawback is the greedy
heuristic search that can have intense computation at
every iteration and sensitivity to smaller subsets of A
pilot samples that estimate the leaf statistics. They are
susceptible to producing less effective strata in the early
iterations where the pilot run is small. They fall short of
the attractive feature of asynchronous strata using large
quantities of data (without running simulations).

We propose a second method to construct strata that
will, to the extent possible, use large quantities of data while
still enjoying dynamic stratification. To motivate this
method, we review the two properties of an ideal stratifica-
tion variable. First, since the basis of stratification is con-
ditioning the simulation output, input variables are helpful
given that their distributional behaviour can be inferred in
each defined stratum without much burden. Second,
a good stratification variable is one with a strong correla-
tion (linear dependence) with the simulated output. In fact,
it is possible to derive closed-form boundaries for input
variables with known or partially known distributions that
are linearly dependent on the stochastic objective function
values. Variables that are auxiliary to the stochastic objec-
tive function value and are generated during a simulation
run can hence be used in service of variance reduction; we
term these variables, the concomitant variables.

Concomitant variables’ use for constructing strata bound-
aries is reminiscent of control variates and exploiting their
linear dependence with the random output of interest
(Wilson et al., 1984). Jain and Shashaani (2023) use the
derived closed-form boundaries using optimal allocation
for a queuing problem whose total cost one wishes to
minimize. Simulated data considered for this purpose
either have known distributions (service times) or
unknown distributions (waiting times). In both cases, the
amount of data is limited because it is what the simulation
runs will generate, but the waiting time appears to be
a better concomitant variable given its more direct linear
relationship with the total cost.

In this paper, we extend this viewpoint (by using pro-
portional allocation instead of optimal allocation for stabi-
lity) to the data-driven calibration with two new
considerations: a) besides the simulation-generated data,
we have a vast amount of real (not simulated) input data
that can be used rapidly without running simulations to
construct the strata; and b) to choose among real or
simulated variables the most linearly dependent with the
objective function, we include a number of their nonlinear
transformations as potential candidates to serve as the
concomitant variable. If the concomitant variable is chosen
to be among the real input data, then it would provide the
same boundaries given a number of strata for any visited 6.
But dynamic stratification will be due to the choice of the
variable and the number of strata that can change from one
iterate to another. We next describe different parts of the
new approach, as laid out in Algorithm 4.

Algorithm 4 Determining Strata (1-D) using Concomitant Variables at
Iteration k

1: Input: Current iterate 8, maximum number of strata Znax, l0ss
computed at (x;,y;) € Sk where |Sk| = A, and thresholds e= 107

and p= 107",

2: Initialization: Collect candidate concomitant variables from linear/
nonlinear transformation of real or simulated data {C},C,...,CL}.
SetZ=1.

3:fori=1,2,...,rdo _

4:  Fit a weighted regression model F(6y, (X,Y))aj + B, C, + E}.
5:  Estimate Var(E}) and Corr(Cj, E).

6: end for

7: Find Gy := C where

8:forZ=2,...,Zmxdo

9:  if distribution of Cy is known then

10: Look up ¢; <¢; < -+ <¢z_7 and set ¢g = —00, ¢z = 0.

11:  else

12: Set g = —00,¢z = ooand ¢y, ¢y, -+, Cz1" as Z — 1 quantiles
of data.

13: repeat

14: Setc, =¢,/ Vz=1,2,...,Z—1.

15: Estimate y, = E[Ck|c,-1 < G <¢] Vz=1,2,...,Z-1.

16: Setc,) = (U, +Mypq)/2 Vz=1,2,...,Z—1.

17 until] (&)%)l <€

18: endif

19: SetZy; = {Xk_z}f:1, where Xy, = {X: G(X) € [¢z,¢z11)}-

20: end for

21: Determine Zy =  argmin
bootstrapping. Z € [2,Zmay]

22: output: concomitant variable C; with Z, many strata and structure
Iy =Tiz,.

\7a\r (irpost (Gk N Ak |Ikz)) via

Boundaries on a concomitant variable: Suppose
C=C(X) is the concomitant variable used for



stratification — a linear/nonlinear transformation of
a real variable in our dataset or a simulated variable
generated alongside the simulated outputs of interest.
Optimal stratification structure involves the
boundaries

cp<c<... <Czk,

that minimize the variance of the stratified sampling
estimator to obtain the stratification structure Zy. ¢
and ¢z, are the two extreme values for C, typically
considered to be +o0o. Leveraging post-stratification,
boundaries that minimize the variance can be derived
using the following theorem:

Theorem 4.1 (Dalenius and Gurney (1951)Suppose
the linear regression relation F = o 4+ fC + E holds
with E[E] =0, Var(E) = 02, and Cov(C,E) =0.
Suppose also that we have a total of n samples and
want Z strata on C. Then, we can minimize the post-
stratified estimator’s variance to order n~! by choos-
ing the strata boundaries

E[Clc,-1 < C<¢] +E[Clc, < C<g,
. = [Cle.-1 < C<c] +E[Clc, < C+1]VZ

2
=1,2 Z—1.

DL I

(12)

While the closed-form equation (12) is recursive and
appears complex, under known probability distribu-
tion of C, ¢, quantities can be exactly computed and
are accessible in look-up tables for several distribu-
tions (Sethi, 1963). The standard normal case for C is
relevant in simulation studies, providing good approx-
imations for standardized variables that are aggregated
statistics common in many discrete-event models. If
the concomitant variable has an unknown distribu-
tion, we can solve for the optimal boundaries using
a (relatively fast) convergent fixed-point iterative
method (Burden & Faires, 1989); see Step 12-Step 17
in Algorithm 4 During these steps, if C is among the
simulated data, then the conditional means are esti-
mated with 14 < n pilot runs. Big data has less lever-
age in this case, similar to the binary tree approach. If
C is among the real data, its conditional means can be
approximated with rapid population statistics to com-
pute boundaries. In both cases, strata are exactly or
approximately computed for a fixed number of strata.

Choosing the concomitant variable. During opti-
mization, there may be different variables at different
iterations that provide the most linear relationship
with the outputs, i.e., C such that

F(Ok, (X,Y)) = ax + B Ck + Ex,

where Ej is the stochastic residual satisfying the
assumptions in Theorem 4.1. One can use transfor-
mations of the original real or simulated variables to
find the desired linear relationship (either through
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some descriptive data analysis or by using expert
knowledge about the model). In this paper, we pro-
pose gathering a list of transformed variables as
candidates for the concomitant variable and fitting
a weighted least squares linear regression model for
each candidate; see Step 3-Step 7 in Algorithm 4 The
weighted least squares regression is preferred over
ordinary least squares to account for the outliers,
heterogeneous variance, and the erratic behaviour
of the simulations (Holland & Welsch, 1977). We
choose a Cj that yields the smallest ratio of variance

@(Ek) / V;(Fk); if the residual has a smaller var-
iance than the response, then inference about the
mean of the residual will be more precise that the
same inference about the mean of the response
(Smith, 1991). Importantly, making an inference
about the population by training a regression
model using the samples has the risk of incorrectly
estimating the regression coefficients ay, 8. The var-
iance of the residuals is independent of the stratifica-
tion structure yet affected by this erroneous
estimation. We emphasize that these operations are
relatively fast given the use of A; samples for fitting
a whole bunch of regression lines. This is in contrast
to the geometric number of operations in the binary
tree to find the optimal stratification structure.

Choosing the number of strata. The last challenge
is finding the number of strata. We decide the number
of strata by determining Zj to find the lowest variance.
In other words, if 7, ; denotes the stratification struc-
ture with Z strata, we find

Zx = argmin @(fpost(elﬂNk = Ak|Ik,Z)),

Z €2, Zimay)
(13)

where Zy.x is the user-defined upper limit on the
number of strata; Cochran (1977) proves that
Zmax = 6 for regression models with R*<0.95. To
evaluate the variance given Z strata, we use #po0t boOt-
straps of A, simulated data to evaluate the variance for
each Z and identify one that consistently yields the
smallest variance.

5. Experimental results

We compare the proposed stratification methods
(BT and ConV) to the corresponding trust-region-
based method without stratification (NS) and
a number of widely used global optimization meth-
ods, including Bayesian Optimization (Frazier,
2018), Simulated Annealing (Prudius &
Andradoéttir, 2012), and Random  Search
(Andradottir, 2006). Our numerical analysis spans
Monte Carlo examples with various variance struc-
tures (heterogeneity) and input dimensions, queu-
ing simulations, and a data-driven calibration case
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study with real data from an offshore wind farm.
In all of these problems, the objective (loss) func-
tion is the mean squared error (MSE) as in ERM
cases (1), quantifying the discrepancy of the simu-
lated and observed data. By minimizing this MSE,
we aim to calibrate the simulation model h(6, X) by
finding the optimal parameter value 6. Each solver
is run 20 independent times (20 macroreplica-
tions), given a fixed computational budget, to
obtain a distribution of the optimal calibrated
parameter values, starting from the same initial
point, 8. In each macroreplication, common ran-
dom numbers (CRN) are used across solvers to
enable reproducibility and sharper comparison.
For BO, a combination of RBF and white kernel
is used with expected improvement as the acquisi-
tion function. The RBF kernel is effective for build-
ing surrogate models in BO because it can
approximate any function given enough data and
is infinitely differentiable, ensuring that the surro-
gate model is very smooth. The scale parameter of
the RBF kernel is tuned by maximizing the log-
marginal likelihood. For NS, the initial sample size
is set to 80 to scale adaptively based on the var-
iance of the estimates. In BT, we use the minimum
leaf size threshold =5 while building the trees
and for ConV, the maximum number of strata
used is Zy.x = 4.

For the trust-region methods, we make compari-
sons from these large-scale experiments by reporting
intermediate recommended solutions at different bud-
get points to track the optimization trajectory. Aligned
with the SimOpt library platform (Eckman et al.,
2023), we post-process these solutions; the objective
function value at these intermediate solutions is esti-
mated using a validation set that is 30% of the total
data sampled independent from the modeling set that
generates the optimization trajectory. The post-
estimated objective function values for each macro-
replication of each solver are then aggregated to obtain
the mean and 95% confidence intervals (CI) to obtain
progress curves per expended budget.

We first present the results for some numerical
examples in Section 5.1, followed by the results for
queuing calibration in Section 5.2. In Section 5.3, we
present the wind case study and present an in-depth
analysis of the two stratification approaches. Finally,
in Section 5.4, we discuss the scenarios in which each
proposed method may perform better than the others.

5.1. Numerical examples: Static Monte Carlo
simulations

To compare the proposed methods with the existing
global search methods, we consider the following
numerical examples with different characteristics:

(1) Example 1: Quadratic model with heterogeneous

noise.

e Physical system:
Y=(X -2+ (X, -2 +¢ with
e~N(0, XX, —2).

e Computer model:

h(6,X) = (X; — 0 + (X, — 0)°.
(2) Example 2: Highly nonlinear model with homo-
geneous noise.

e Physical system:
Y=(X -2+ (X, -2 46 with
e~N(0,1).

e Computer model:

h(6,X) = (X1 — 0) + (X, — 6)*.
(3) Example 3: Highly nonlinear model with homo-
geneous noise and significant difference in scale
of one variable against another.

e Physical system:
Y =1000(X; —2)° + (X2 —2)° +¢  with
e~N(0,1).

e Computer model:

h(6, X) = 1000(X; — 0)° + (X, — 6).
(4) Example 4: Homogeneous noise with interaction

terms.
e Physical system: Y =2X,X;+¢€ with
e~N(0,1).

e Computer model: h(0,X) = 0X,X,.

In all the examples above, X = (Xi,X,) where
X,~U(0,4), X,~U(0,4), and the optimal parameter
value 6" minimizes || h(0,X) — Y ||3. A dataset of
1,000 data points in each macroreplication is gener-
ated and divided into modeling and validation sets
with CRN. The optimal parameter for all the examples
is 2, and the total budget for all solvers is 1,000 simula-
tion runs. Utilizing the entire dataset to evaluate the
objective function for a single 6 would exhaust the
entire budget. Therefore, to enable a comparison
with BO, instead of using the entire data for evaluation
in each round, we chose a random sample of 50 points
for each objective function evaluation. We use the
same 50 samples in SA and RS as well. Additionally,
in the BO implementation, given that the calibration
parameter is one-dimensional, the initial surrogate
model is built using a set of 10 randomly selected
design points following the recommendation in
Loeppky et al. (2009), which leads to 10 total BO
iterations. SA and RS each ran for 20 iterations. For
BT, X; and X, are considered for stratification. The set
of potential concomitant variables considered for
ConV are {X;, X5, X7, X2, X3, X3 }. Since these conco-
mitant variables are chosen from raw data, the
approach is denoted as ConV-R.

Figure 1 illustrates how the final solutions vary
across the 20 independent runs for each algorithm.
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(c) Example 3.

(d) Example 4.

Figure 1. Distributions (box plots) of the calibrated parameter values from 20 independent runs of the algorithms in numerical
examples. The red dot and the numerical value along each box display the mean value. BT and ConV perform similarly and better
than other solvers in mean value and more concentrated distribution. BT exhibits less variability in examples 1 and 2.

Given the limited budget, BT and ConV-R consis-
tently identify the optimal parameter value with mini-
mal variability. In contrast, NS (the same adaptive
solver but without stratification) and the global search
methods exhibit high variability and sometimes fail to
return near-optimal solutions. The high variability
implies high risk of these solvers, in the sense that,
even if the mean calibrated value is close to the opti-
mal parameter value, a single run of these solvers is
more likely to produce a suboptimal solution com-
pared to the proposed approaches. While global meth-
ods are expected to converge to the optimal solution
with a sufficient computational budget, this experi-
ment shows that the proposed methods can achieve
near-optimality faster and more consistently.
Additionally, the local search method without stra-
tification is also prone to high variability or slow con-
vergence compared to the dynamically stratified BT
and ConV. BT shows slightly less variability between
the two proposed methods in Example 1 and better
mean and variance in Example 2. This evidence sug-
gests that BT may be more robust in the presence of
heterogeneous noise and more extreme nonlinearity.
However, for the latter case, ConV may perform better

with the additional pre-processing to nonlinearly
transform X; and X,.

5.2. Calibrating a queuing model: Discrete-event
simulation example

In this example, we use calibration to determine the
optimal interarrival rate in a simple M/M/1 queue
given synthetic data comprising mean service time,
mean waiting time, and mean sojourn time. We mini-
mize the discrepancy of the simulated mean waiting
time h(6,X) (using interarrival rate 6) and the
observed mean waiting time Y.

The distinction of this example with the static
simulations in the previous section is that for ConV
method, here we can aggregate a sequence of random
variables generated over time and apply Central Limit
Theorem (CLT) via standardized mean service time
and standardized mean sojourn time as potential con-
comitant variables (Wilson et al., 1984). The advan-
tage of this transformation is that the ConV method
can leverage a lookup table for the optimal strata
boundaries of the standardized variables (Jain &
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Shashaani, 2023; Sethi, 1963; Wilson et al., 1984) and
bypass any additional computation (Step 12-Step 17
in Algorithm 4). As a result, more precision and less
clock-time computation in ConV method compared
to the BT method may be achieved.

In the experiment, we use a synthetic dataset of
10,000 observations. Each macroreplication starts at
the same starting point 6y = 1.5 and has a total budget
of 10,000 simulation runs; similar to the previous
section, 30% of the dataset in each macro-replication
is randomly held for post-processing. The length of
the discrete-event queuing simulation is 200 with
a warm up period of 50 to obtain a steady state. The
service rate is 2, and the optimal interarrival rate (used
to generate the waiting and sojourn times in the data-
set) is 1. The standardized mean service time and
standardized mean sojourn time are utilized as strati-
fication variables for ConV-R. For BT, the mean ser-
vice time and mean sojourn time are used for
stratification. While implementing BO, SA, and RS
for comparison, a random sample of 200 points was
used in each objective function evaluation.

Figure 2a illustrates the evolution of the objective
function across 20 macroreplications as the percentage
of expended simulation budget increases. The perfor-
mance of ConV-R is better than BT as it achieves
a lower MSE with minimal variability across macro-
replications. This superior performance is anticipated,
given that the asymptotic normality of the stratifica-
tion variables simplifies the implementation of ConV-
R and allows for the use of exact strata boundaries
derived from theoretical principles without relying on
assumptions or error-prone estimations. Importantly,
we observe in Figure 2b that the mean of optimal
solutions recommended by BT is closer to the optimal
parameter; however, the outlier optimal solutions (in
the boxplot) and larger variability correspond to
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(a) 95% CI of progress curves generated from the pro-
posed approaches for the queuing calibration reveals
that ConV-R performs significantly better than BT
with lower optimal loss and much less variability.

significantly worse objective function values, which is
depicted by Figure 2a. The very small variability of the
optimal loss values returned by ConV’s distribution of
optimal solutions suggests that despite their variabil-
ity, they all yield similar small loss values. Another
important observation from Figure 2b is the poor
performance of other solvers, above all the NS (same
adaptive solver but without stratification) in calibrat-
ing the queuing model.

5.3. Wind case study: Wake model calibration

Recall the example we started with in Section 1. The
wake effect causes the wind speed reaching the down-
wind turbines to be less than the wind speed at the
upwind turbines, affecting the power generated by
these turbines (You, Byon, et al., 2017a, 2017b). Jensen
wake model (Jensen, 1983) is a simple but widely used
wake model extendable to a multi-turbine setting (Katic
et al,, 1986) that assumes that wake propagates linearly
in the downwind direction, as shown in Figure 3. The
value of the wake decay coefficient (6 in Figure 3)
impacts the performance of the Jensen wake model.
Though a value of 8 = 0.04 is widely assumed for off-
shore wind farms (Barthelmie et al., 2010; Katic et al.,
1986), some recent studies have shown that this value
does not necessarily depict the wind speed reduction
observed in actual wind farms (Go¢men et al., 2016;
You, Liu, et al., 2017b). Thus, it is essential to determine
the value of this wake decay coefficient for each wind
farm separately. The wake model simulates the wind
speed at each turbine in the wind farm. The power
curve for the turbines is generated via B-splines using
the data at one of the upwind turbines (Lee et al., 2013;
You, Liu, et al.,, 2017). This power curve is used to
estimate the power generated at each turbine.
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(b) Distribution of the calibrated parameter values

from 20 independent runs of the algorithm for the

queuing calibration. The red dot and the numerical

value along the boxplot display the mean value. BT

and ConV-R are more accurate with smaller variances.

Figure 2. Comparison of the performance of solvers for the queuing model calibration.
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Figure 3. Linear propagation of wake as modeled by the
Jensen wake model, where r, is the rotor radius and ug is the
free-stream wind speed (excerpted from Jensen (1983)).

In our case study, data is collected from an offshore
wind farm with 30+ turbines. The data includes infor-
mation about wind conditions, such as the 10-min
average wind speed (WS) and direction, turbulence
intensity (TI), etc. Along with this, it also consists of
a 10-min average power generated by each turbine. In
the analysis, the power generated by each turbine is
normalized by dividing it by the maximum possible
power that can be generated, referred to as nominal
power (Byon et al., 2011). For a given combination of
input wind condition X (WS, TL etc.) and the wake
decay coefficient 0, Jensen’s wake model estimates the
power generated by turbines h(6; X). This simulated
power is then compared to the observed power at
turbines Y to get F(6, (X,Y)), the objective function
value, the loss function measuring the discrepancy
between observed power and model predicted ones.

5.3.1. Implementation

A modeling set comprising 70% data used for optimi-
zation is sampled independently for each macro-
replication. Each macro-replication starts at the same
initial point 8, = 0.1, the initial TR radius Ay = 0.08
and the minimum sample size 1o = 80, and runs for
a total of 10,000 simulations (budget). In our first
proposed approach, the input variables WS and TI
are used as the stratification variables for dividing
the data via binary trees (BT).

In our second proposed approach, two cases are
considered for stratification with concomitant variables:
using real data (ConV-R) or the simulated data (ConV-
S). In the first method, we consider five alternatives to
stratify the data using input WS and TI along with
nonlinear transformations WS?, TI?, and WS>. With
unknown joint probability distribution of TT and WS,
the strata boundaries are determined by solving the
iterative method using the population X'. Based on the
stratification boundaries, the real data is divided into
non-overlapping sets Xj,, z=1,2,...,Z, and the
probabilities are py, = |Xk.|/|X|. For a given 8, the
Jensen model simulates the wind speeds reaching each
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turbine, providing the mean estimated wind speed at

the turbines WS;. The model also provides the simu-
lated power at each turbine using this simulated wind
speed and the power curve. Thus, another possibility of
a concomitant variable is the mean estimated power at

the turbines h(6, X). For stratification using simulated
data (ConV-S), we consider these two variables along

with their nonlinear transformations WSZ, 12 (6, X),

and VV\Si When using these simulated variables for
stratification, the strata boundaries are determined by
using the iterative method with A; points, and the
probabilities are estimated as py, = Ax;/Ax. For both
ConV — R and ConV — S at each iteration, the variable
with the lowest residual variance is chosen as the con-
comitant variable. Thus, we do mnot choose
a concomitant variable a priori; the algorithm identifies
it adaptively.

5.3.2. Results

Figure 4a compares how the expected progress varies
during optimization for the no stratification case (NS)
and the solvers with dynamic stratification all under
ASTRO-DF optimization algorithm. The main advan-
tage of using the proposed stratified adaptive methods
is a significant improvement in performance initially
to reach better solutions. All of the three proposed
approaches provide comparable results. BT and
ConV-R exhibit more similar performance, which is
interesting given that ConV-R uses only one variable at
a time for stratification. Another observation is that
they both reach better solutions compared to ConV-S,
which is expected as ConV-S builds the stratification
structure with a small sample of noisy simulated data.
The second advantage is depicted by Figure 5a-c
where the 95% CI widths of BT, ConV-R, and ConV-
S are smaller, indicating reduced variability or uncer-
tainty (risk) in the performance of the optimization
algorithm.

Figure 4b compares the performance of BT and
ConV against the global search algorithms (BO, SA,
and RS) and the non-stratified version of the adaptive
local solver (NS). The stratification methods show
much lower variability. Although the mean calibrated
parameter values for BT and ConV are similar, BT
exhibits more variability (larger interquartile range

Recall that ConV-R and ConV-S dynamically identify
the best concomitant variable throughout iterations.
Table 1 summarizes the mean frequency with which
a concomitant variable is chosen for the baseline case
6 = 0.1, Ag = 0.08, and Ay = 80. For ConV-R, TI and
its squared transformation are often picked for stratifi-
cation. In the literature, the wake decay coefficient has
been shown to correlate well with TI (Barthelmie et al.,
2015; Duc et al., 2019; Pefia et al., 2016). Thus, consis-
tently choosing TI by the algorithm indicates that it is
aptly choosing the best stratification variable. In ConV-
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(a) Progress of the mean objective function value dur-
ing optimization over 20 macro-replications for 6y =
0.1, Ag = 0.08, and A\g = 80. The x-axis represents the
number of simulations.
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(b) Distribution of the calibrated parameter values
from 20 independent runs of the algorithm for the wind
case study. The red dot and the numerical values along
the boxplot displays the mean value.

Figure 4. Comparison of the performance of solvers for the wake model calibration. BT and ConV perform better than the global

solvers.
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no-stratification (NS), computed over 20 macro-replications.

Table 1. Mean frequency with which a particular variable is picked for stratification across 20 macro-replications. Note that
these values are for 6, = 0.1,A¢ = 0.08, and Ay = 80. The distribution can change with the changes in these initial

settings (the value in the parenthesis is the standard error).

ConV-R Variables Ws Tl ws? T2 ws?
Frequency 0.05(0.05) 11.20(2.36) 0.35(0.30) 24.50(3.48) 3.00(1.55)

ConV-S Variables ws? h (64, X) WS2 (64, X) ws}
Frequency 2.00(1.05) 0.30(0.22) 0.20(0.14) 32.50(2.51) 1.10(0.45)

S, the mean of the squared simulated power at each
turbine is chosen almost every time. The loss function is

mathematically more correlated with h2(6;,X) than
any other variable. Hence, choosing it consistently
again indicates that the proposed method can deter-
mine the best stratification variable.

Figures 6 and 7 show how the stratification struc-
ture changes during optimization when using BT
and ConV-R, respectively. Unlike stratification with
concomitant variables, binary trees can divide the
data based on multiple variables (TI and WS), as
shown in Figure 6a-c. While computationally more
intensive, this method is more flexible in choosing

the stratification variable and deciding the number
of strata. Recall that in BT, real data corresponding
to Ay pilot simulations is used for stratification, and
in ConV-R, the entire data is used for stratification.
If the number of strata and the stratification variable
are the same, ConV-R will generate the same struc-
ture irrespective of 0y as seen in Figure 7 where the
strata design for 6y = 0.100 and 6y = 0.049 is the
same. However, the number of strata and the strati-
fication variable depends on 0, which makes the
stratification dynamic in ConV-R. Additionally, the
choices for the stratification structure throughout
the optimization are finite (for each possible
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Figure 6. Evolution of the stratification structure, within BT, during optimization for a single macro-replication after approximately
0%, 50%, and 100% budget is utilized. The points denote the actual data.
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Figure 7. Evolution of the stratification structure, within ConV-r, during optimization for a single macro-replication after
approximately 0%, 50%, and 100% budget is utilized. The points denote the actual data.

concomitant variable and each possible number of
strata), which can reduce the run-to-run variability
of the algorithm compared to other cases where
there may be virtually infinite choices for the strati-
fication structure.

Next, we compare the robustness of the proposed
methods with a Box-Wilson Central Composite Design
(CCD). A CCD provides enough information to estimate
the main effects and interactions with significantly fewer
designs than a full-factorial design (Hill & Hunter, 1966).
We test the proposed methods’ sensitivity by varying the
algorithm’s three most critical hyperparameters, 6y, Ao,
and Ay. Considering 8y = 0.1, Ay = 0.08, and Ay = 80
as the baseline case, the robustness is analysed by fixing
two parameters and perturbing the third between two
relatively extreme values. We consider the following
parameter values for the analysis: 6, = {0.02,0.2},
Ap ={0.04,0.16}, and Ao = {40, 80}. Detailed hyper-
parameter tuning is beyond the scope of this paper; the
ranges selected are reasonable for each parameter in the
context of this problem and the objective of this sensitivity
analysis study is to examine whether the performance of
the proposed algorithms would significantly vary for dif-
ferent starting conditions. Figure 8 depicts the error bars
of each solver’s terminal objective function values
obtained from 20 macro-replications, considering var-
ious designs. In summary, efficient dynamic stratification
diminishes the reliance of TR algorithms on hyperpara-
meters, enhancing their robustness.

Figure 8a investigates the influence of initial solu-
tion 6y on the performance of the solvers. With
a favourable starting point, 8y = 0.02 (where we spec-
ulate that the objective function is at a steep region),
the performance across all cases is about the same.
This observation aligns with expectations, as the
proximity of the starting point to the true optimum
allows the algorithms to reach the optimal solution
with minimal exploration. Conversely, for 8, = 0.2,
where the starting point is considerably far from the
true optimum and at a more flat region, NS exhibits
significantly worse performance than using dynamic
strata, highlighting that changing strata effectively can
lead to robust exploration and, thus, better
performance.

Figure 8b illustrates the effect of the initial TR
radius, Ag. A larger A, facilitates early exploration
and demands that the solvers execute efficient exploi-
tation. Failure to accomplish this may lead to the
algorithm becoming trapped in a suboptimal region.
This is particularly evident in the case of NS, where its
performance deteriorates with increasing Ao. In con-
trast, dynamic strata enhance early exploitation to
a certain degree, enabling the solvers to attain
improved solutions. Stratification with concomitant
variables shows some sensitivity to the initial TR
radius, degrading their performance for larger A,
values. The enhanced flexibility provided by BT,
allowing the selection of multiple stratification



18 P.JAIN ET AL.

%1073

5.2

5.2

x10°3

& Ns

i BT
ConV-R

I conv-s

x10°

527

Terminal Estimated Loss

# ﬁ} tl #

ﬁ} %{ J ﬁ} Yy

0.02 0.1 0.2 0.04
%
(a) Influence of 6.

(b) Influence of Ag.

0.08 0.16 40 80 120
A A

0 0
(c) Influence of Ag.

Figure 8. Effect of different hyperparameters on the performance of the solvers. Implementing stratification reduces the
algorithm’s dependence on the choice of the hyperparameters (baseline setting: 8, = 0.1, A9 = 0.08, and Aq = 80).

variables simultaneously, may contribute to improved
early exploitation, potentially explaining its perfor-
mance for Ay = 0.16.

Figure 8c demonstrates how the initial sample size,
Ao, influences the solver’s performance. A small A,
allows the algorithm more budget for exploration but
can lead to imprecise estimates and, consequently, poor
exploitation. As Ay increases, the performance of all
solvers generally improves, but for a limited budget
setting, a large Ay may not be preferable. Stratified
sampling becomes crucial in this context as it provides
more accurate estimates for smaller sample sizes. This
capability allows solvers employing dynamic stratified
sampling to outperform others, even when A, is small.

5.4. Discussion

While adaptive sampling in NS efficiently allocates
the simulation budget for each 0 based on its uncon-
ditional output variance and proximity to optimal-
ity, stratified sampling further enhances efficiency
by reducing output variance with conditioning and
allowing the sample size stopping conditions to be
met earlier. The effectiveness of stratified sampling
depends on the stratification structure, which opti-
mally partitions the input space to minimize output
variance. Since output variance structure can signif-
icantly vary from one system (calibration parameter)
to another - heteroscedasticity (with respect to 0),
the proposed dynamically stratified adaptive sam-
pling procedure aims to learn about the local var-
iance structure of the output to maximize efficiency.
Any optimal budget allocation during optimization
can enhance exploitation by improving estimation
error with fewer samples (simulation runs) at each
evaluation. Thrifty exploitation ensures ample bud-
get is saved for exploration and allows the algorithm
to run for more iterations. Therefore, a dynamically
stratified adaptive sampling procedure increases the
solver’s ability to more thoroughly explore the deci-
sion space.

In our experiments, the benefit of stratification
is evident across all examples, consistently outper-
forming the non-stratified approach and the global
solvers, as the recommended parameter values
using dynamically stratified adaptive sampling are
almost always closer to the true optimal and more
consistent (less risky) across independent solver
runs. Such advantages are notable, especially
because the stratification procedure is not very
time-consuming as the additional time needed for
stratification is negligible compared to each simu-
lation run. For example, in our queuing experi-
ments, the average clock time to solve with NS
(no stratification) was 142.0 s, while that of the
BT and ConV solvers was 146.1 and 147.8 s,
respectively. The rewards in finite-time solution
performance easily justifies the added ~4%
increase in clock time. The computational overhead
for stratification becomes more negligible when the
simulation runtime is longer, such as wind power
simulation.

Which dynamic stratification method should one
choose? The answer to this question is contingent
upon the structural characteristics of the problem.
We highlight the following observations that can aid
in incorporating these dynamically stratified adaptive
sampling procedures within a solver:

(1) While in most cases the two approaches per-
form similarly, Example 2 in Section 5.1 sug-
gests that BT may perform better than ConV
in extreme nonlinearity or interactions
(dependencies) in input variables.

(ii) For ConV to work well in these situations,
additional pre-processing to find a good non-
linear transformation of the input variables
may be necessary. This is because ConV relies
on a linear mapping between what it will use as
the concomitant variable and the objective
(loss) function value F. At the minimum, the
squared transformations of the input variables
should be considered in calibration problems



with MSE-like loss functions. How to find
more linearly related concomitant variables
inexpensively and whether that effort may be
worthwhile is an open research question.

(iii) ConV has another restriction in only choosing
one variable to stratify each time. At the time of
writing this paper, we are unsure of whether that
restriction necessarily translates to a weakness
since in more extensive experimentation that
we did not include in this paper, ConV per-
formed competitively with BT for higher-
dimensional and more inter-dependent input
spaces or cases where multiple stratification vari-
ables held significance. An explanation for this
observation may be that by the parsimony prin-
ciples (Goloboff, 2003), finding the single input
variable that is the major contributor to hetero-
geneity of output variance in the input space for
a fixed 0 may be sufficient and less prone to
statistical errors and biases when forming the
strata. This point is visible in the wind power
calibration case study in Figure 4b, where the
BT boxplot of optimal solutions is wider com-
pared to ConV and we see in Figure 6 that BT
sometimes stratifies with more than one input
variable.

(iv) Our sensitivity analysis with real data suggests
that BT can have a slightly more robust perfor-
mance compared to ConV with respect to the
solver’s starting conditions (initial solution, mini-
mum sample size, initial step size); yet a more
extensive experimental design to make a general
judgement on sensitivity is left for future
research.

(v) ConV becomes efficient when the distribution
of the stratification variable is either known or
can be approximated, as seen in Section 5.2
where the distribution of standardized mean
service time and the standardized mean sojourn
time can be approximated. For most of the
time-dependent simulations, it is easy to use
CLT to approximate the distribution of vari-
ables, and for these cases, stratification with
concomitant variables can be very effective.

(vi) In using ConV, if the concomitant variables are
chosen from the real (not simulated) input data,
establishing strata requires minimal computa-
tion. More importantly, using all of the real data
does not affect the simulation budget and sig-
nificantly reduces the inherent noise when sta-
tistics from each strata is used to estimate the
objective function or the sample size.

6. Conclusion

In data-driven calibration, the presence of abundant
data with many covariates can help match the model
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outputs and observed outputs by tuning the model
parameters. To reduce computation, using subsamples
of data makes the problem stochastic and apt for simu-
lation optimization, in which a vast amount of joint
information can aid using stratified sampling to reduce
estimation error at each visited calibration parameter.
However, stratified sampling within simulation optimi-
zation is challenging. We propose using post-
stratification to lower the instability of sampling distri-
butions throughout the optimization. This stability
enables a more tailored design of strata that, if done at
a low cost, has the potential to save exploitation sam-
pling efforts for more exploration in the search.

We further propose two ways for dynamic stratifica-
tion. The first approach determines strata boundaries by
hierarchically dividing the data using binary trees that are
grown only until enough information can be gained. This
approach may be computationally expensive but is flex-
ible as it can concurrently use multiple-stratification vari-
ables. In the second approach, concomitant variables help
form strata. If these variables exhibit a positive correlation
with the simulation output, they can be employed to
establish optimal strata boundaries through closed-form
equations. Using pilot simulation runs, we propose meth-
ods to find the best concomitant variables (that can be
nonlinear transformations of real inputs or generated
data during each simulation run) and the number of
strata for this purpose. However, the strata can be formed
with less dependence on limited runs and less computa-
tion by leveraging population statistics or looking up
exact values by studentizing variables that store aggre-
gated information. A comparison case study on the real-
world data for a wind power model calibration and some
static and time-dependent simulation examples illustrates
faster progress and less run-to-run solver variability.
Effective stratification further reduces the solver’s reliance
on hyperparameters, making it more robust.

While both approaches show similar performance in
many cases, choosing one approach over the other hinges
on the nature of the relationship between stratification
variables and the simulation output, the significance of
multiple stratification variables, the availability of infor-
mation regarding the distribution of these variables, and
the presence of noise in simulations. As a rule of thumb,
if there is evidence for heterogeneous noise and non-
linear relationships that may take time to unravel, then
binary trees may be more beneficial. On the other hand,
if, from expert opinion or descriptive analysis, we can
find or form a concomitant variable that is linearly
dependent on the response, it may single-handedly help
partition the input space to tackle heteroscedasticity at
a low computational cost. Among choices for concomi-
tant variables, choosing the real data instead of simulated
data may be more effective, particularly when simulation
outputs are too noisy.

The present study centres on minimizing variance,
which is the goal of stratified sampling in estimation



20 P.JAIN ET AL.

and inference. However, in optimization, variance
may only need to be reduced so much to help with
the progress. In other words, the cost of maximal
variance reduction may waste too much of the com-
putational budget. Therefore, future work will view
stratified sampling for optimization with a different
objective in mind: making better local approximations
that guarantee just enough accuracy to economize
budget expenditure in the early iterations.
Particularly for a class of adaptive simulation optimi-
zation solvers, this road-map can lead to proven lower
sample complexity that can be fundamental to the
theory and application of simulation optimization
solvers for digital twins (Goodwin et al., 2022; Santos
et al., 2022). Deriving closed-form equations for
simultaneously utilizing multiple concomitant vari-
ables for stratification is also an unexplored area for
future research. Furthermore, stratification with con-
comitant variables requires pre-processing to identify
the appropriate function of the concomitant variable
that has a linear relationship with the output. This
aspect is left for future research.
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