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ABSTRACT

In recent years, high-dimensional data, such as waveform signals and images have become ubiqui-
tous. This type of data is often represented by multiway arrays or tensors. Several statistical mod-
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els, including tensor regression, have been developed for such tensor data. However, these

models are sensitive to the presence of arbitrary outliers within the tensors. To address the issue,
this article proposes a Robust Tensor-On-Tensor (RTOT) regression approach, which has the cap-
ability of modeling high-dimensional data when the data is corrupted by outliers. Through several
simulations and case studies, we evaluate the performance of the proposed method. The results
reveal the advantage of the RTOT over some benchmarks in the literature in terms of estimation
error. A Python implementation is available at https://github.com/Reisi-Lab/RTOT.git.

1. Introduction

In recent years, multi-dimensional arrays, or so-called ten-
sors, have played an important role in the analysis of many
real-world applications, such as manufacturing (Fang et al.,
2019; Wahba et al., 2019; Yan et al., 2019; Gahrooei et al.,
2021), healthcare (Zhou et al., 2013; Zhao et al., 2019; Zhou
and Kan, 2021), and agriculture (Kanning et al., 2018; Li
et al., 2020). The popularity of tensors is mainly due to their
capability to preserve structural information of high-dimen-
sional data compared with traditional vector forms. That is,
unlike vectors that break the spatial and temporal structure
of high-dimensional data (e.g., multichannel profiles and
images), tensors preserve these structures. Therefore, the
extension of classic data analytics methods from a vector to
tensors results in more accurate estimations when structured
high-dimensional data is available. For example, in semicon-
ductor manufacturing, a large number of correlated tem-
poral sensing data (profiles) may be represented by tensors
to estimate the yield or a quality characteristic of a wafer
(Gahrooei et al., 2021; Wang et al, 2021). As another
example, in prognostics, a set of thermal images collected
over time from a rotary machine can be represented by ten-
sors for the prediction of the remaining lifetime of a
machine (Fang et al, 2019). Also, Electroencephalography
(EEG) signals produce multichannel data that may be repre-
sented by tensors (Naskovska et al., 2017). Many tensor data
analytical methods have been developed in the past few
years, including tensor regression models, which are the
focus of this article.

Tensor regression takes many different variations depend-
ing on the form of the inputs or output. Scalar-on-tensor
regression models (Zhao et al, 2012; Fang et al., 2019)

KEYWORDS

Alternating direction
method of multipliers;
PARAFAC/CANDECOMP;
Tensor decomposition;
Robust principal component
analysis

estimate a scalar response given a tensor input. Tensor-on-
scalar techniques (Yan et al., 2019) take a set of scalar inputs
to estimate a tensor response. And, finally, tensor-on-tensor
models estimate a tensor response from a single or multiple
tensor inputs (Xue et al., 2017; Lock, 2018; Liu et al., 2020;
Gahrooei et al., 2021). These techniques have been used in
different applications, including prediction of neurological
disorders (Zhou et al, 2013), prediction and control of a
manufacturing turning process (Yan et al., 2019), and esti-
mation of the overlay errors in semiconductor manufactur-
ing (Gahrooei et al, 2021). The main challenge in
developing these techniques is dealing with a large number
of parameters (due to the high dimensionality of data) that
may result in severe overfitting while capturing the struc-
tural attributes of the data. For this purpose, tensor regres-
sion models include a low rankness constraint, for example,
by introducing a low-rank decomposition on the tensor of
parameters (Zhou et al., 2013). Among these decomposition
methods, the PARAFAC/CANDECOMP (CP) decompos-
ition (Harshman, 1970; Kolda and Bader, 2009), in which
the original tensor is represented as a linear sum of rank-1
tensors, is commonly used.

In addition to the challenges caused by high dimensional-
ity of data, the potential presence of outliers (i.e., gross cor-
ruption of observations (Candes et al, 2011)) in tensors is
another obstacle that needs to be overcome. These gross
outliers are common in many modern applications, such as
road traffic data and manufacturing processes, where some
measurements may be corrupted (Candes et al, 2011; Kaur
and Datta, 2019; Hu and Work, 2020; Hullait et al, 2021).
For example, according to Hullait et al. (2021) around 1-5%
of data collected from jet engines during the pass-off test is
contaminated by outliers. Similarly, Hu and Work (2020)
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Table 1. Summary of the literature and the relevance of this work.

Tensor Decomposition

Tensor Regression

Not Robust Decomposes a tensor into a low-rank tensor and a tensor of
identically distributed noise (Kolda and Bader, 2009)
Robust Decomposes a tensor into a low-rank tensor (£), a sparse

tensor of contamination (S) and noise. The sparse tensor S
captures the contamination beyond overall noise in the data

(Hu and Work, 2020; Li et al., 2019; Xue
et al., 2017; Goldfarb and Qin, 2014; Candes
et al,, 2011; Huang and Ding, 2008)

Estimates an output tensor ) given an input tensor (or
tensors) X' by assuming a linear model without considering
contamination within data, e.g., (Zhao
et al., 2012; Lock, 2018; Gahrooei et al., 2021; Wang
et al., 2021).

This work: Trains a model under the scenario that output
tensors in the training data may contain contaminated
observations beyond general noise.

—normal - outlier

0.95

0.9

0.85

0 50 100 150 200
Time (ms)

Figure 1. Example of normal and abnormal 1 curves. The goal is to construct a
model that predicts 4 curves given a set of other curves acquired by sensors of
an engine.

reported about 1.2% contamination in traffic data. To iden-
tify and isolate corrupted observations within a tensor,
robust tensor recovery and decomposition techniques have
been previously developed that decompose a tensor, X, into
a summation of a low-rank and sparse tensors (i.e.,
X =L+ S) by imposing low-rankness and sparsity penal-
ties such as nuclear-norm and L; regularization on the
decomposition components, £ and S (Huang and Ding,
2008; Goldfarb and Qin, 2014; Xue et al., 2017; Hu and
Work, 2020) Nevertheless, these recovery techniques identify
the corruptions based on the spatio-temporal structure of a
tensor and are not applicable to a tensor regression setting,
as they do not consider the input-output correlations when
performing decomposition. More specifically, in a tensor-
on-tensor regression setting, robust tensor recovery
approaches may erroneously consider observations in the
output tensor as outliers, even though they are explainable
by the input tensor. Table 1 summarizes the literature
and the position of this article in relevance to the existing
literature.

Let us consider the problem of estimating the A-curve (an
indicator of vehicle exhaust emission) of a vehicle engine
from several sensor readings. This problem can be formu-
lated as a tensor-on-tensor regression (Gahrooei et al,
2021). Figure 1 illustrates several examples of A-curves (each
curve corresponds to an output of a sampled engine), in
which the solid curves represent the normal ones and
dashed curves show the ones with outliers. One approach to
constructing a model to estimate the A-curve is to omit cor-
rupted curves and construct the model only based on pre-
sumably normal ones. Nevertheless, this approach eliminates
potential useful information that otherwise could have

improved the model performance. Alternatively, one can
study A-curves and decompose a curve as a summation of
normal and outlier parts (£ and S), then, uses the normal
part of the curves for model constructions. However, this
decomposition is unsupervised and ignores the input-output
relations. That is, the decomposition of the A-curve may
depend on the other sensor readings (curves) that are the
predictors of the output A-curve. These challenges motivate
us to develop a robust tensor-on-tensor regression approach
that performs modeling and outlier isolation simultaneously.
This proposed approach learns the model by automatically
separating the outliers.

Existing tensor regression approaches (Zhao et al., 2012;
Lock, 2018; Gahrooei et al., 2021; Wang et al., 2021) produce
biased models when the training data contains samples in
which the output tensors are grossly corrupted (some entries
of the tensor are contaminated), as they assume the elements
of error tensor are identically distributed. In the situations
where the data contains outliers (similar to the A-curve
example), or large arbitrary noise, this assumption is not valid,
resulting in biased predictions. Our approach decomposes the
error terms into two terms, one that captures the sparse cor-
ruptions with arbitrary distributions and the other captures
the noise. This approach significantly improves the flexibility
of the tensor models and allows for more accurate predictions.
In addition, the proposed approach allows for the use of cor-
rupted or faulty historical data, which increases the training
data size and improves the model generalizability.

In this article, we develop a regression model to predict a
tensor of arbitrary dimensions Pri; X Ppip X -+ X Priy
from another tensor of arbitrary dimensions P; X P, X - -+ X
Py, particularly when the output tensor (responses) is cor-
rupted by gross outliers. We assume the input tensors are
not contaminated by gross outliers without loss of general-
ity. This assumption is reasonable because the output should
not be explainable by the gross corruptions within the input,
and therefore, the input corruptions should be removed via
existing pre-processing schemes. To further explain this
point, please note that the input tensor is an independent
random variable (tensor variable) and the corrupted entries
within the input tensor (of a sample) can be identified by
investigating the correlation structure of that tensor. On the
other hand, the output tensor depends on the input one.
Therefore, the corrupted elements within an output tensor
should be identified by investigating both the correlation
structure within the tensor and its relationship with the
input. To further justify why outlier detection should be done



simultaneously with the regression when the output tensor is
corrupted, let us consider the following scenario: Let X’ be an
input tensor and B; and B, be a dense and a highly sparse
(but structured) tensors, respectively. For example, B; is a ten-
sor with a few blocks of non-zero values. Now, assume Y =
(X, By); + (X.By), + S + &, where (X, B); is contract tensor
product of X and B (see Section 2) and S is a sparse tensor of
corruptions. If we apply existing algorithms for separating
outliers within the output tensor, (X,B5;);, +S is mostly
extracted as outliers, because B, is highly sparse and existing
techniques for outlier detection in tensors rely on global cor-
relation structures. This will reduce the predictive power of
the subsequent regression model.

To estimate the parameters of a tensor-on-tensor regres-
sion model where the noisy output tensor data is contami-
nated by gross outliers, we combine the Alternating
Direction Method of Multipliers (ADMM) with the Block
Coordinate Descent algorithm (BCD) algorithms. When
solving the problem, we take advantage of the contract ten-
sor product from Lock (2018), tensor nuclear norm, and CP
decomposition. To evaluate the performance of the proposed
method, we provide a simulation study containing 27 differ-
ent scenarios and two case studies. The case study estimates
the lambda curve (an indication of the polluting perform-
ance of a vehicle engine) based on a collection of other
operational sensor measurements taken on the engine
(Gahrooei et al., 2019).

The rest of this article is organized as follows: Section 2
introduces some notations and multi-linear algebra used in
the article. Section 3 reviews the tensor-on-tensor regression.
Section 4 discusses the formulation of robust tensor-on-tensor
and the optimization algorithm for robust parameter estima-
tion. Section 5 provides the simulation results using synthetic
data. Section 6 reports the results of case studies. Finally,
Section 7 summarizes the article.

2. Notations and preliminaries of multilinear
algebra

In this section, we introduce notations and basic tensor alge-
bra used in this article. Throughout the article, we denote a
scalar by a lower case letter, for example, a; a vector or a
matrix by boldface lower and upper case letter, for example,
a and A, respectively; and a tensor by a calligraphic letter,

for example, A. Given a tensor B € RP Pz xPrxPro-xPro

we denote the mode-j matricization of B by BY e RP*F,
where P_j =Py X Py X --+ X Pj_y X Pjy; X --- X Ppyy. This
matricization is obtained by augmenting the jth mode fibers,
where tensor fibers are defined by fixing all but one index
of a tensor. We also denote the operator vec(-) as vectoriza-
tion operator which unfolds the input tensor into its corre-
sponding column vector. The Frobenius norm of a tensor X
is the square root of the sum of the squares of all its ele-
ments, denoted as ||X||;, which can be calculated as

||X]|; = ||XY|;. The nuclear norm of a tensor X is
denoted by ||X||, and is computed as the weighted sum the
nuclear norm of the tensor matricizations along all modes:
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|X], = 27, XD, where m is the order of the tensor.
The nuclear norm of a matrix is computed as the sum of the
singular values of that matrix. Following Lock (2018), the con-
tract tensor product is defined as

<X’ y)K, (P1>P2> s PL> Q15 G2 s GM)

I, Ix
= E e E XP};PZ,-u,PL»il,iz,-u,iKyil,iz)m,iK,Lh,qZ)m,qM’

ij=1 ix=1

where X € Rpl><P2><<--><PL><II><12><---><IK and ye

RIEXXIex QuxQxxQu Ngte that for X € R”* and Y e R™*<,
(X.Y), =XY.

3. Tensor-on-tensor regression

In this section, we review the Tensor-On-Tensor (TOT)
regression proposed by Lock (2018). As we mentioned ear-
lier, tensor regression takes many forms depending on its
inputs/outputs. In this article, we particularly focus on a
regression problem whose input and output are tensors and
hence, named TOT regression. Let X € R P2 *F and
Y € RPreXPraXxPrim  Then the TOT considers the follow-
ing linear model:

Y= (X.B), +&.

Here, B is the tensor of model parameters and £ is the tensor
of model errors. Like most of the high-order models, TOT
also suffers from the curse of dimensionality; i.e., the model is
prone to overfitting if no constraints are considered on the
tensor of model parameters. One main constraint considered
is that the tensor of parameters is low-rank, and therefore, can
be decomposed into the product of several low-dimension
matrices. Two commonly used techniques in tensor decom-
position are Tucker decomposition (Tucker, 1966) and CP
decomposition (Kolda and Bader, 2009). The former decom-
poses the input tensor as a multiplication of a core tensor,
whose dimensionality is much smaller than the original one,
and a series of factor matrices, whereas the latter (CP decom-
position) is a special case of the former where the core tensor
is diagonal. These decomposition techniques reduce the
dimensionality of the tensor and hence, alleviate the burden
of overfitting. For example, Lock (2018) considers a low-rank
decomposition of the parameter tensor as follows:

(R1)

R
— — Yoy y
B—UloUZO---OUHM—g upouy0---oup (1)

y=1

B =arg min|[y — (X.B), 2+ ABIE @
B

" column is ul,
uy---ouryy denote the outer product of vectors and is
defined as (woup---o ULEM)iyiy iy oy = (w1);, (u2);, -+

(ur+m),,,,,- Together with the tensor decomposition, a low-

where Uy, € R whose 7y and u; o

rankness penalty based on the nuclear norm (a convex sur-
rogate of the rank of a tensor) is also commonly used to
further regularize the rank of the tensor (Shang et al., 2014;
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Dian et al, 2019; Liu et al, 2020). The nuclear norm is
tightly related to the tensor decomposition techniques, as it
uses them for rank estimation. In this article, we employ the
CP decomposition to reduce the dimension of the model
parameter tensor and impose the nuclear norm to regularize
the rank of it so that the low rankness resolves the
overfitting.

4. Robust TOT Regression

In this section, we introduce the Robust TOT (RTOT)
regression framework to construct a robust model based on
training data with contaminated output tensors. Given a set
of training data {(X,,);)| X; € RP>FP>Prand ), €
RPexPraxProntV Sin which {);}Y, are contaminated by
outliers, the goal of RTOT is to estimate the relationship
between the input tensor and the response, while extracting
and detecting the outliers within the output using the fol-
lowing linear form:

Vi=(X.B),+S:i+ &

where B € RF*FP2x*Prav jg the tensor of parameters, S; €
RPexPraxxPran g 3 gparse tensor representing the outliers,
and &; is the tensor of errors. A more compact formulation
of model (M1) can be obtained by folding the tensors into
ones with one extra mode, containing all samples. That is,
we construct the output tensor ) € RN*ProxPraaxxPra ¢4
be estimated by input tensor X' € RN*Pr><PrxxPL
model as follows:

(M1)

via a linear

Y=(X.B);+S+E, (M2)

where S € RN*ProrxPrax->Pran g 3 gparse tensor represent-
ing the outliers and £ is the dense tensor of errors. Tensor
S allows for separating corruptions that do not follow the
i.i.d distribution of overall noise and therefore eliminates the
influence of these corruptions on parameter estimation.
Model (M2) is similar to the TOT model in (2) considered
in Lock (2018) and Liu et al., (2020). The difference is that,
we introduce the outliers S to the model, which makes it
more robust and allows for the detection of outliers. Similar
to TOT, due to the large number of parameters to be esti-
mated in tensor B, the above model results in overfitting
without imposing a constraint on B. To avoid such overfit-
ting, we impose nuclear norm regularization on the tensor
of parameters, which is presented later on. In addition,
including S significantly increases model flexibility (and
therefore causes overfitting) if no assumption is made on S
and £. We assume S and &£ are sparse and dense tensors,
respectively.

In addition, (M2) has a form that is close to the tensor
recovery problem (Goldfarb and Qin, 2014; Lu et al., 2016;
Xue et al., 2017; Li et al., 2019) that are tensor extensions of
robust principle component analysis that recovers a cor-
rupted low-rank matrix (Zhou et al, 2010; Candes et al,
2011; Wong and Lee, 2017). The tensor recovery problems
consider a model defined as,

V=L+S, (M3)

where £ and S are low-rank and sparse components of )
respectively. Nevertheless, our proposed approach has sev-
eral main differences with these tensor recovery problems:
First, these problems are unsupervised and aim to recover a
corrupted low-rank tensor (i.e., £ is a recovered version
of )). In contrast, our approach is a supervised approach
that creates a predictive model based on potentially cor-
rupted data for estimating an output tensor given a new
input tensor X. Second, unlike the recovery methods that
assume ) is a corrupted low-rank tensor, our proposed
approach has no assumption on low-rankness of ) or &
and only assumes that the tensor of model parameters is
low-rank. Finally, the tensor recovery methods do not con-
sider a noisy setting where ) is noisy data. Our framework
considers more realistic and general case that the output
tensors are noisy.

The goal of the proposed approach is to find an estimator
B of B and an estimator S of S in a way that the error is
minimized, while the tensor of parameters remains low-rank
and the tensor of outliers remains sparse. For this purpose,
we solve the following optimization problem:

L+M

.M i
gmzwy%x@f6M+mwm+§H@m,wn
S i=1

where the first term minimizes the prediction error, the
second term regularizes the sparsity of S, and the last term
ensures that the tensor of parameters is low-rank. The
objective function (P1) is equivalent to the following con-
strained problem:

L+M )
min |5, + Y |IBY1.

i=1

st|Y — (X B), — 8|3 < &

)

where 6% is proportional to the variance of elementwise
noise (£) in the model and is related to u; in (P1). This
constraint allows for inexact reconstruction of noisy and
corrupted tensor ) into dense and sparse tensors (X,B);
and S. For example, if 6 — oo then S and B tend to tensors
of zeros, which results in a model with no prediction power.
In contrast, if 6 — 0, then the problem requires exact esti-
mation of ), which either results in a non-sparse estimation
of S or an estimation of 3 that overfits to the training data
depending on the choice of p,.

To emphasize on the importance of the two penalty
terms in (P1), we note that, unlike TOT, model M2 does
not have a unique solution in the following sense: There
exists (B1,S1) # (B2, S,) such that (X, B))+S8; =
(X, B;) + S;. To see this, assume B; and B, are different in
exactly one element say (py,pa,.... pr+m). Then, (X,B;) dif-
fers (X,B,) only at that element. However, this difference
can be adjusted by choosing right values of
S1(p1,p2s s Prim) and Sa(p1, pas - Prim)- The sparsity and
low-rankness penalties in (P1) alleviates this issue by choos-

ing the most parsimonious model (characterized by
w]|S|l, + M |IBY)),) that produce accurate predictions

(characterized by ||V — (X.B), — S||7) of V.



In order to solve (P1), we propose an ADMM approach
due to its capability in solving objective functions that are
decomposable into differentiable and non-differentiable
terms. Although, ADMM provides a framework to approach
this problem, it does not directly solve the problem. Instead, it
translates the problem into other optimization problems that
are solved either numerically or analytically. Particularly, we
combine the ADMM with the BCD algorithm to estimate the
factor matrices and derive closed-form solutions for estimat-
ing S. In order to let (P1) conform with ADMM, we first con-
sider CP decomposition of B that approximates the original
tensor as a sum of low-rank components:

R
B= E upouso-—-oup,y=UoUyo0---0Upy, (4)
=1

y

where uly eRP (i=1,2,..,L+M) is a column vector and
is the " column of U; € RP*R. Second, we introduce auxil-
iary variables J; such that U; =]; for i =1,2,...,L + M. The
introduction of these auxiliary variables is to make the
objective function separable. The resulting optimization is,
therefore, as follows:

L+M
. H
min leyi <X,U1 oUjo-- 'UL+M>L — $||}2:+N2HSH1 + ZHLH*

i=1

st. U=]J; fori=12,.,L+M

(P2)

where p; and p, are positive constants. Finally, the contract
tensor product can be rewritten into a matrix product (Lock,
2018) with respect to U. In other words,
vec({(X,UyoUyo---Upiy),) = Civec(U;), where C; is
defined as

Ci= [/} [CF] and

o 2 7 7 7 ” i
(i .
C/ = (Xujouyo---ou_jou o ui+M>L)—1 for i=1,2,...,L+ M,

and vec() is an operator that vectorizes a tensor. As a result,
the corresponding augmented Lagrangian form of (P2) is
written as,

L+M
L(U,),2,8) =Y % ||vec(Y) — Civec(U;) — vee(S)||?
i=1
L+M L 5
+ mlIS1 + DL A+ 10 = Tl
i=1

+ <Ul - ]i)Zi>’
(5)

where the last three terms are due to the equality constraints
in (P2), Z; is the corresponding dual variable, and y; is a
positive constant. Now, we are ready to employ ADMM to
derive the updating equations that solves (5).

To do so, let us first derive the updating rule for each of
the variables in (5) as shown below:
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']i - (Ui + izi)
M3

1
=, (U,» + —Zi> (6)
Hs

J; is updated as follows:
2

y in L5+
; =arg min —||J;||, +=
v 3 2

i

F

where the operator ®,(X) is the singular value shrinkage
operator followed the definition in Cai et al. (2010); U; is
updated as follows:

U; = arg min%Hvec(y) — Cvec(U;) — vec(S)||5 + %HUi
U

= Jilli + (2,0 = 7))
7)
which can be solved by a first-order method since the prob-

lem is convex; S is updated as follows:

1
S =arg minEIIS— (Y= (X UroUyo---0Ur))l;
s

Ha
+-—=|S
o IS
= prox%(y— (X, UioUyo---0Ury))
(8)

where prox,(-) is a proximity operator with /;-norm regular-
ization defined as follow:
prox,(t) = sign(¢f)max {|t| —7,0}. 9)

Algorithm 1 summarizes the pseudocode of the proposed
ADMM algorithm. Note that the stopping criteria of
Algorithm 1 are determined by primal and dual residuals r*
and s*, respectively, at iteration k. The former is defined as

k= \/ SOEM|UF — 357 and the latter is defined as s¢ =

\/ SOEEMJE — 75112, We stop the algorithm when both 7*

i=1

and s* < e. Also, the algorithm’s input R is defined as the
number of columns of U; for i=1,2,..,L+ M. For

example, if R = 3, then, U, eRP fori=1,2,....L+ M.

Algorithm 1: ADMM Solver for RTOT

Input: /i3, [y, fi3, R, € = 107°
1 initialize: U; =J; = rand(Pi,ﬁ), Z, =0 fori=1,2,..,
L+M, §=0;
2 while r* > ¢ or s* > ¢ do
3 fori=1,2,...L+Mdo
4 Update J; and U; via (6) and (15);
5 end
6 Update S via (8);
7 Zi=Z + 13U -]
8 end
Output: U; for i=1,2,..,L+Mand S

4.1. Selection of tuning parameters

The proposed method requires input parameters py, iy, U3
and R. Due to the proximity operator, we can either fix u;
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Figure 2. An example of heat map of AIC with respect to the hyper-parameters
of RTOT.

or i, and perturb the others. u3 is the learning rate and has
a default value 1 x 107'° and will dynamically change as the
algorithm proceeds. To find the best combination of them,
we conduct a grid search and select the one that has the
lowest modified Akaike Information Criterion (AIC) defined
as follows (Cavanaugh and Neath, 2019; Roy and
Michailidis, 2022):

AIC = log ||y—(X,B>L—3||§+cllog ||$'||0+cz-f2,

where ¢, and ¢, are positive constant (¢; = 2 and ¢; = 0.5 in
the implementation), and ||S||, denotes the number of non-

zero elements within the tensor S. The modified AIC con-
siders both underfitting (the first term) and overfitting (the
second term) simultaneously. The number of the fitting par-
ameter in typical AIC is replaced with R due to its propor-
tionality to the complexity of the model. For all studies in
the next section, we perform the grid search over R €
{2,3,4,..,10} and g, € {0.005,0.007,0.009, ...,0.015} (this
range is chosen empirically), and we let u, =0.0015.
Figure 2 shows an example of AIC for different values of
hyper-parameters on a synthetic data set. In this example,
R=4 and p; = 0.009 minimize the AIC criterion and are
selected for final model construction. Note that, larger ranks
(e.g, R=6,...,10) cause overfitting (model with excessive
flexibility) for most values of y; and generate larger values of
AIC. Similarly, when R=2 the model underfits data (the
error term is large) which produces larger value of AIC.
Furthermore, when y; is large the model highly penalizes the
fitting error and produce dense S. On the other hand, when
iy is small the model underfits to data and produces highly
sparse S.

5. Performance evaluation using simulation

In this section, we synthesize multiple sets of data in differ-
ent scenarios to evaluate the performance of the proposed

method designated as RTOT in comparison with three
benchmarks. The first benchmark is the TOT regression
proposed by Lock (2018) designated as TOT and the second
one is a combination of TOT and robust principal compo-
nent analysis designated as RPCA where we first apply the
principal component analysis to ) to isolate the outlier S
and acquire its low-rank representation ). Then, we apply
TOT to find B such that ) = (X, B),. Note the main differ-
ence between RTOT and RPCA is that the former seeks S
and B simultaneously whereas the latter has to perform
these two procedures sequentially. The third benchmark is a
convolutional neural network designated as CNN which has
two convolution layers of size 4 x4 x 64 and 4 x 4 x 32
and two deconvolution layers of size 4 X 4 x 32 and 4 x 4 x
64 aside from the input and output layers that have the
same size of X’ and Y respectively. To measure the perform-

ance of these approaches, we consider the Relative
Prediction Error (RPE) defined as (Lock, 2018):
—(X.B
rpg i 1Y = X Bl (10)
N

All the methods in this work are implemented in Python 3.7
with the implementation of TOT referring to the R package
provided by Lock (2018) and all experiments are conducted
under a machine equipped with Intel(R)Core(TM) i9-9880H
CPU and 32GB RAM.

5.1. Data simulation and test environment setting

To test the performance of the proposed method and the
benchmarks, we implement a fully crossed factorial simula-
tion with the following conditions: R € R := {5,7,9} and
density of the outlier D € D := {0,0.03,0.05,0.1,0.15}.

For each of the 15 scenarios (|R| x |D|), we generate two
data sets (designated by data sets 1 and 2), with 500 and
200 samples, respectively. In the first data set, the output
tensors ) are generated as follows:

Y=(X.B),+& (11)
where B=U,o0U,o0---0U; ) and U; € RP*R for i=
1,2,..,L+ M whose elements simulated from a standard
normal distribution, i.e., N(0, 1). The input tensors X are
generated as follows: First, we generate a basis matrix
defined as UY € R"* for i = 1,2,3,...,L whose elements are
drawn independently from N(0, 1). Next, we uniformly gen-
erate random weights w; ~ U(0,1) for i =1,2,3,...,L and
set X =w; - Ufow,-Ujo---owp-Uj. Finally, we generate
Y as (11) with the elements of £ simulated from N(0, 1).
In the second data set, X and ) has the relation defined as:
Y =(XBi) +(X.B), +E&, (12)
where we generate 53;, B, and X in the same way as in the
first data set except that 3, is highly sparse whose elements
are all zero except the values of the first 50 elements of
vec(B,) that are generated from N(0, 1). Also, X is gener-
ated using Fourier basis functions defined as
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Table 2. Comparison between the proposed method (RTOT) and the benchmarks in terms of RPE (standard deviation) in data set 1

settings.

R Method D=0 D=0.03 D=0.05 D=0.1 D=0.15

5 RPCA 0.0881(0.0056) 0.0892(0.0047) 0.0880(0.0051) 0.0867(0.0055) 0.0880(0.0058)
5 RTOT 0.0871(0.0056) 0.0884(0.0047) 0.0873(0.0052) 0.0859(0.0052) 0.0875(0.0065)
5 TOT 0.0871(0.0056) 0.1047(0.0077) 0.1188(0.0144) 0.1382(0.0119) 0.1708(0.0232)
5 CNN 0.0989(0.0349) 0.1250(0.0105) 0.1440(0.0122) 0.1797(0.0148) 0.2234(0.0239)
7 RPCA 0.0902(0.0058) 0.0910(0.0064) 0.0898(0.0067) 0.0905(0.004) 0.0888(0.0058)
7 RTOT 0.0892(0.006) 0.0900(0.0066) 0.0887(0.007) 0.0896(0.004) 0.0884(0.0054)
7 TOT 0.0893(0.006) 0.1043(0.0078) 0.1279(0.0348) 0.1572(0.0187) 0.1720(0.0213)
7 CNN 0.0924(0.0061) 0.1237(0.0143) 0.1489(0.0239) 0.1917(0.0165) 0.2190(0.0167)
9 RPCA 0.088(0.0067) 0.0902(0.0074) 0.0895(0.0063) 0.0894(0.0071) 0.0895(0.0067)
9 RTOT 0.0867(0.0067) 0.0892(0.0075) 0.0886(0.0066) 0.0888(0.0073) 0.0889(0.0066)
9 TOT 0.0868(0.0067) 0.104(0.0095) 0.1245(0.0125) 0.1522(0.0234) 0.1767(0.0241)
9 CNN 0.0899(0.0067) 0.1344(0.0576) 0.1474(0.0287) 0.1846(0.0167) 0.2253(0.0221)

Table 3. Comparison between the proposed method (RTOT) and

the benchmarks in terms of RPE (standard deviation) in data set 2

settings.

R Method D=0 D=0.03 D=0.05 D=0.1 D=0.15

5 RPCA 0.1184(0.0416) 0.1255(0.0376) 0.1121(0.0282) 0.1116(0.0492) 0.1150(0.0345)
RTOT 0.07200(0.0058) 0.0734(0.0082) 0.0734(0.007) 0.0732(0.0068) 0.0778(0.0053)
TOT 0.0760(0.0087) 0.1200(0.0305) 0.1655(0.043) 0.2108(0.0518) 0.2953(0.0693)
CNN 0.8496(0.0507) 0.8402(0.0564) 0.882(0.0482) 0.9129(0.0705) 0.9493(0.0364)

7 RPCA 0.1040(0.0352) 0.1192(0.0301) 0.1151(0.0294) 0.1200(0.0421) 0.1063(0.0399)
RTOT 0.0691(0.0059) 0.075(0.0068) 0.0718(0.0048) 0.0737(0.0042) 0.0792(0.0061)
TOT 0.0691(0.0059) 0.1133(0.0264) 0.1644(0.0466) 0.2071(0.0517) 0.2732(0.0627)
CNN 0.8504(0.0355) 0.8441(0.0402) 0.8665(0.047) 0.9053(0.0462) 0.9603(0.0481)

9 RPCA 0.1051(0.0277) 0.1090(0.0352) 0.1243(0.0391) 0.1169(0.0404) 0.1148(0.0436)
RTOT 0.0700(0.0066) 0.0714(0.0063) 0.0742(0.0059) 0.0754(0.006) 0.0787(0.0069)
TOT 0.0706(0.0065) 0.0886(0.0158) 0.1400(0.0366) 0.2209(0.0479) 0.2726(0.0742)
CNN 0.8359(0.0504) 0.8631(0.0547) 0.8747(0.037) 0.8926(0.0444) 0.9444(0.0549)

(13)

. { [cos (cnrxy), ..., cos (cnrxpj)]T, if ris odd
[ =

[sin (cmrxy), ..., sin (CTCTij)]T, if ris even

where ¢>0, r=1,2,...,5 and xj:% for j=1,2,3,..,L.
J

The dimension of B in the first data set is (15,20,5,10)
whereas that in the second data set is (35,29,7,29) for both
B; and B,.

After generating all the samples in both data sets 1 and 2,
we randomly split the data into training (400 samples and
120 samples for data sets 1 and 2, respectively) and testing
(100 samples and 80 samples for data sets 1 and 2, respect-
ively) sets. We, then, add outliers to the training sets by ran-
domly choosing D percent of the samples and picking a
starting index i, from vec())). Starting from i, till iy + I, we
reset each element to a value that follows U(.8,2) (the range
of the distribution is chosen empirically so that it is signifi-
cant enough for the corresponding element to be considered
as the outlier). After that, we reshape vec()) back to its ori-
ginal shape. Throughout the simulation, we let L=2, M =2,
I=5 for data set 1 and I € {10,11,12,...,30} for data set 2
(we randomly pick one element from the range). We repli-
cate the simulations 20 times for each of the 15 scenarios to
acquire the mean and standard deviation (std) of RPE.

5.2. Simulation results

In this section, we report the simulation results obtained
over the 15 scenarios described in the previous section. As
is depicted in Table 2 and Table 3, the proposed method
outperforms benchmarks in almost all scenarios. As is
reported, the averaged RPE of TOT and CNN increases

significantly as D increases. On the other hand, RPCA and
RTOT maintain their prediction performance close to scen-
arios where data contains no outliers. This result is expected
since TOT and CNN are not designed for the data contain-
ing outliers whereas the other two have their mechanisms to
isolate outliers from the training data, and hence, are more
accurate. In addition, the proposed method has comparable
results to TOT even when data contains no outliers.

Table 2 reports the performance (in terms of RPE and its
standard deviation) of all methods when applied to data set
1. When D >0 the proposed method outperforms all other
benchmarks. For example, when R=5 and D = 0.0.03,
RTOT achieves RPE =0.0884 compared with 0.0892, 0.1047,
and 0.1250 obtained by RPCA, TOT, and CNN, respectively.
Table 3 reports the performance of all methods when
applied to dataset 2. As is reported, RTOT has the best per-
formance among all other approaches when D >0. For
example, when R=7 and D=0.1, RTOT achieves
RPE=0.0737 compared with 0.1200, 0.2071, and 0.9053
obtained by RPCA, TOT, and CNN, respectively. Please
note that data set 2, in which we amplify part of } by add-
ing an extra term (X, 3,);, appeared to be a more challeng-
ing case for RPCA (compared with data set 1). More
specifically, the performance of RPCA is always significantly
inferior to RTOT (the average RPE in data set 2 of RPCA is
higher than that of RTOT in all scenarios), which reveals
the potential issue of using the RPCA. As mentioned earlier,
RPCA performs the outlier elimination and prediction in a
sequential manner, which may lose some of the information
from the input during the elimination process, and hence,
lowering the overall prediction performance. Furthermore,
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Table 4. Performance evaluation of outlier detection of RTOT for both scenarios (data sets 1 and 2) in terms of ACC, FNR, and FPR.. The true positives are outlier

elements within S.

Data Set 1 Data Set 2

D R ACC FNR FPR D R ACC FNR FPR

0.03 5 0.9998 0.0000 0.0002 0.03 5 0.9998 0.0642 0.0000
0.03 7 0.9999 0.0000 0.0001 0.03 7 0.9999 0.0279 0.0000
0.03 9 0.9998 0.0000 0.0002 0.03 9 0.9999 0.049 0.0000
0.05 5 0.9997 0.0000 0.0003 0.05 5 0.9998 0.0342 0.0000
0.05 7 0.9997 0.0000 0.0003 0.05 7 0.9999 0.019 0.0000
0.05 9 0.9997 0.0000 0.0003 0.05 9 0.9999 0.0211 0.0000
0.1 5 0.9993 0.0000 0.0007 0.1 5 0.9996 0.0374 0.0000
0.1 7 0.9994 0.0000 0.0006 0.1 7 0.9998 0.0235 0.0000
0.1 9 0.9993 0.0000 0.0007 0.1 9 0.9994 0.056 0.0000
0.15 5 0.999 0.0000 0.001 0.15 5 0.9996 0.028 0.0000
0.15 7 0.9991 0.0000 0.0009 0.15 7 0.9995 0.0373 0.0000
0.15 9 0.9991 0.0000 0.0009 0.15 9 0.9994 0.0471 0.0000

Table 5. Averaged computational time (in seconds) required for one replica-
tion with different choices of R. RTOT-D refers to RTOT with dynamic learning
rate and RTOT-S refers to RTOT when learning rate is set to a fixed value
(static).

Method R=7 R=10 R=20 R=30
RPCA 1.1560 1.5901 3.7869 6.0684
RTOT-D 0.4793 0.6488 2.2690 3.8052
RTOT-S 1.5891 2.8569 7.1529 16.3950
TOT 0.6400 1.1102 3.2528 5.5942
CNN 0.1702 0.1562 0.1606 0.1566

we evaluate the performance of the proposed method in
terms of localizing the outliers during the training of the
model. More specifically, we compare the estimated sparse

tensor S to the original tensor S in both simulation scen-
arios. Table 4 reports the ACCuracy (ACC), False Negative
Rate (FNR), and False Positive Rate (FPR) of outlier detec-
tion. As is reported, under all simulated settings, the pro-
posed method can isolate outliers with high accuracy
(ACC>0.99).

Table 5 reports the computational time of the proposed
method and benchmarks. In this table, we evaluate the com-
putational time of the RTOT when the value of learning rate
Us is set to a fixed value (ROTO-S) and when it is changed
dynamically (RTOT-D) as discussed in Section 4.1. As it is
reported in the table, the RTOT with dynamic learning rate
(RTOT-D) outperforms TOT and RPCA with the latter being
the worse one as it requires performing RPCA before applying
TOT to estimate the model parameters. The RTOT with fixed
learning rate, however, is slower than other methods as it
requires many iterations to enforce the constraints in (P2).
Please note that the TOT algorithm uses a BCD algorithm to
solve its problem and does not have a learning rate. Note that
CNN takes full advantage of GPU, and hence, it achieves the
lowest computational time. The required computational time
of RTOT can be further reduced via parallelization, which is a
subject of future work.

6. Performance evaluation using case study

We evaluate the performance of the proposed robust
approach using two real data sets. The first data set is obtained
from vehicle engine sensors and the second data is related to
EEG signals and functional Magnetic Resonance Imaging

(fMRI) scans obtained from the OpenNeuro website (https://
openneuro.org/datasets/ds000116/versions/00003).

6.1. Case study I: Vehicle engine lambda sensor
prediction

The NOx Storage Catalyst (NSC) is a catalyst system
designed to treat the exhaust gas produced by vehicles. The
NSC process consists of two alternating phases: (i) absorp-
tion: where NOx molecules are trapped/absorbed by zeo-
lites—coated converter support; (ii) regeneration: where the
stored NOx is reduced by a catalyst when the absorber is
saturated. It is well-known that, during the regeneration
phase, optimal combustion is required to ensure an ideal
conversion rate of the catalytic converter. The NSC only
operates efficiently at stoichiometric conditions, which
requires the combustion process in a rich air-to-fuel status.
The relative air/fuel ratio normalized by stoichiometry (des-
ignated by the Greek letter A), which is measured runtime
by a sensor upstream of the NSC, is used as an indicator to
show if the regeneration phase is running correctly. A good
sign of 4 should maintain a value within a set-point interval
of 0.92-0.95. When the / signal falls below a threshold (0.8
0.9) which is called A-undershoot, it would worsen the per-
formance of NSC. Thus, developing a model that could esti-
mate the A signal based on other operation signals collected
by onboard sensors (such as inner torque, rotational speed,
and quantity of fuel injected) could further improve the
engine operation condition, as well as the calibration of the
engine control unit.

In this case study, we apply our proposed method and
three other benchmarks to estimate the A-upstream curve
given a set of five input curves. We evaluate the performance
of the methods by computing the RPE over several replica-
tions. The data set has 285 samples with each containing five
input signals and one lambda signal corresponding to the out-
put. All the data points are recorded within a 2-second inter-
val with 203 measurements in total. To comply with our
model, we reshape the output into 285 x 29 x 7 (285 x 203
without reshaping) and the input into 285 x 29 x 35, and
then randomly partition the data into training (200 samples)
and testing (85 samples) sets. The number of replications of
the training/testing process is set to 20 and at each iteration,
we acquire RPE from all four methods. Figure 3 shows
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Figure 3. Example of the input signals.
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Figure 4. Example of a 1 curve prediction by the proposed method and
benchmarks.

Table 6. RPE of the predicted original lambda curve by proposed and bench-
mark methods.

RPCA
0.0517(0.0012)

RTOT
0.0514(0.0009)

T0T
0.0527(0.0012)

CNN
0.0599(0.0051)

Table 7. RPE of the predicted EGG by proposed and benchmark methods.
RPCA RTOT TOT CNN
0.3228(0.0046) 0.3155(0.0063) 0.3236(0.0052) 0.9999(0.0000)

examples of the five input signals and Figure 4 shows an
example of a A curve together with the predicted curves
obtained by RTOT, RPCA, TOT, and CNN. As is illustrated,
while all methods produce reasonable predictions, the curve
predicted by RTOT shows fewer deviations from the true
curve (for example, TOT, RPCA, and CNN have a relatively
large bias of around 0.5sec compared with RTOT). Table 6
reports the average of RPE along with standard deviation,
which indicates the superior performance of RTOT. As is
reported, the proposed method has the lowest RPE (0.0514)
compared with the other approaches.

6.2. Case study ll: EEG prediction from fMRI

The integration of EEG and fMRI, in which EEG has high
temporal resolution and low spatial resolution, and fMRI
has high spatial resolution and low temporal resolution has
been used as a tool to study brain activity. The advantage of
this simultaneous EEG-fMRI framework is that it guarantees
the same signal source and also provides a way to analyze
the connection between the variations of the brain signals
and brain activities.

Time (ms)

100 150 200 0O 50 100

Time (ms)

150 200 0 50 100

Time (ms)

150

TOT - RTOT - RPCA —~ CNN - True|

20 40 60 80
Time

100 120

Figure 5. Example of EEG prediction by the proposed method and benchmarks.

In this case study, we intend to predict the EEG, which is
a 16 x 3 x 121 tensor from the fMRI, which is a 16 x 10 x
8 tensor. The first dimension of these tensors represents the
number of subjects in the study. Note that the original shape
of EEG is 16 x 37 x 121; however, we pick the three most
relevant channels among 37 channels (the second dimen-
sion) that are closest to the active regions of the brain dur-
ing the experiment. We reshape the fMRI from 16 x 80 to
16 x 10 x 8 to comply with our approach. To evaluate the
performance of the proposed method (RTOT), we compare
the prediction results with three benchmarks TOT, RPCA,
and CNN and replicate the training/testing process 20 times
to calculate the average RPE and its variance. The 14 train-
ing samples are randomly selected from the data with the
remaining two serving as the test sample. As reported in
Table 7, in which each cell reports the mean of the RPE and
its variance (number in parenthesis), RTOT demonstrates
the lowest RPE compared with the other benchmarks.
Figure 5 depicts a prediction result of one of the EEG chan-
nels. In this figure most of the methods predict the curve
well within the time interval ranging from 20 to 60 except
CNN. The inferior performance of CNN is mainly attributed
to the high dimensionality and small sample size of the
data. Although all other methods show a comparable result
in the other two intervals (]0,20] and [60,120]), underesti-
mation and overestimation can be observed in the predic-
tions of RTOT, TOT and RPCA.

The estimated model parameters can serve as a new data
that contains the interrelation between the EEG and fMRI
data. One can use CP or Tucker decomposition on this ten-
sor of parameters to extract features for the purpose of deci-
sion making such as classification.
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7. Conclusion

This article proposes a robust TOT approach to model proc-
esses with high-dimensional inputs and contaminated out-
puts. The approach extends the TOT regression and
borrows techniques from tensor recovery. To estimate the
parameters, a least square loss function is applied, and to
avoid overfitting, a nuclear norm regularization that penal-
izes the rank of the tensor is used. To solve the resulting
minimization problem, we propose an ADMM algorithm
that first transforms the problem into its corresponding
Lagrangian form and then decomposes the entire problem
into several sub-problems with closed-form solutions.

To evaluate the performance of the proposed method, we
provide a simulation study that has 15 different scenarios
and two case studies with the data coming from real-world
applications. In all simulation and case studies, We com-
pared the proposed approach to three benchmark methods,
namely TOT, RPCA, which is a combination of RPCA and
TOT, and CNN. As it is reported in the results, not only
can RTOT maintain a decent accuracy when data has been
corrupted by outliers but also demonstrate high efficiency
during the training phase. In addition, we show a compar-
able result to TOT even when the data has no outliers.
Future work may extend the proposed framework to situa-
tions where data contains missing values.
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A Appendix
A.1. Updater deduction

Based on (5), we totally have four variables, Uj, J;, Z; and S need to be
updated, and below details how we update these variables.

o Jy=arg miny - [[Jill, +3J; = (U; +%}Zi)||,2; in which, according
to (Cai et al., 2010), can be solved via the singular value shrinkage
operator defined as

®,(X) := UD, V' (14)

where D, = diag{(s, — 1), (62— 7)., (06n — 7)., (6, — 7).} given
that U € R™ and V' € R™", and o; is ith the singular value of the
matrix X. Therefore, applying (14), we have that

2

1 1 1
pi=arg min (5] +3 1 (02
Ji U3 2 1y

1
= CD#; (U, +*Z,) .
) Hs

e U; = arg miny Elvec(Y) — Civec(U;) — vec(S)H% + &1U; - ]i||12'~‘+
(Z;,U; —7J;) which is a convex problem and can be solved using
first-order method as follows:

— 1, € (vec(Y) — Civec(U;) — vec(S)) + sy (vec(U;)
—vec(J;)) +vec(Z;) =0

= ﬂlCiTCiVEC(Ui) + 13 U; = p1, Ci(vec(Y)
—vec(S)) + ps - vec(J;) — vec(Z;)

=U; = (1nC/ Ci + i51) " 1, Ci(vec(D)
—vec(S)) + s - vec(J;) — vec(Zy)).

o S=arg ming}|lS — (¥~ (X.Ui0oUz 00 Uppar),)l[7 +221ISll,
which can be transformed into a Lasso problem as follow:

F

(15)

. 1
ming 518 = (¥ = (X010 Uz o0 V) ) [ + 2 S,
1

= 2Ivee(S) — (vee(d) — vee((X. Uy 0 Uy 0+~ 0 Up ) )P

i
+=2||vec(S)Il,
151

and can be solved via the proximity operator prox,(t):=
sign(t) - max (|t| — 7,0). Therefore, we have

1
§ = arg min 1S - (¥~ (X010 Uzo -0 Upo) I + 22115
S 1

= proxi%(vec(y) —vec({X. Uy oUyo---0Uppy),))

(16)

e Z;,=2Z7Z;+ u5(U; —J;) which is the cumulative sum of the dual
infeasibility.
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