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ABSTRACT

In recent years, high-dimensional data, such as waveform signals and images have become ubiqui-
tous. This type of data is often represented by multiway arrays or tensors. Several statistical mod-
els, including tensor regression, have been developed for such tensor data. However, these
models are sensitive to the presence of arbitrary outliers within the tensors. To address the issue,
this article proposes a Robust Tensor-On-Tensor (RTOT) regression approach, which has the cap-
ability of modeling high-dimensional data when the data is corrupted by outliers. Through several
simulations and case studies, we evaluate the performance of the proposed method. The results
reveal the advantage of the RTOT over some benchmarks in the literature in terms of estimation
error. A Python implementation is available at https://github.com/Reisi-Lab/RTOT.git.
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1. Introduction

In recent years, multi-dimensional arrays, or so-called ten-

sors, have played an important role in the analysis of many

real-world applications, such as manufacturing (Fang et al.,

2019; Wahba et al., 2019; Yan et al., 2019; Gahrooei et al.,

2021), healthcare (Zhou et al., 2013; Zhao et al., 2019; Zhou

and Kan, 2021), and agriculture (Kanning et al., 2018; Li

et al., 2020). The popularity of tensors is mainly due to their

capability to preserve structural information of high-dimen-

sional data compared with traditional vector forms. That is,

unlike vectors that break the spatial and temporal structure

of high-dimensional data (e.g., multichannel profiles and

images), tensors preserve these structures. Therefore, the

extension of classic data analytics methods from a vector to

tensors results in more accurate estimations when structured

high-dimensional data is available. For example, in semicon-

ductor manufacturing, a large number of correlated tem-

poral sensing data (profiles) may be represented by tensors

to estimate the yield or a quality characteristic of a wafer

(Gahrooei et al., 2021; Wang et al., 2021). As another

example, in prognostics, a set of thermal images collected

over time from a rotary machine can be represented by ten-

sors for the prediction of the remaining lifetime of a

machine (Fang et al., 2019). Also, Electroencephalography

(EEG) signals produce multichannel data that may be repre-

sented by tensors (Naskovska et al., 2017). Many tensor data

analytical methods have been developed in the past few

years, including tensor regression models, which are the

focus of this article.
Tensor regression takes many different variations depend-

ing on the form of the inputs or output. Scalar-on-tensor

regression models (Zhao et al., 2012; Fang et al., 2019)

estimate a scalar response given a tensor input. Tensor-on-
scalar techniques (Yan et al., 2019) take a set of scalar inputs
to estimate a tensor response. And, finally, tensor-on-tensor
models estimate a tensor response from a single or multiple
tensor inputs (Xue et al., 2017; Lock, 2018; Liu et al., 2020;
Gahrooei et al., 2021). These techniques have been used in
different applications, including prediction of neurological
disorders (Zhou et al., 2013), prediction and control of a
manufacturing turning process (Yan et al., 2019), and esti-
mation of the overlay errors in semiconductor manufactur-
ing (Gahrooei et al., 2021). The main challenge in
developing these techniques is dealing with a large number
of parameters (due to the high dimensionality of data) that
may result in severe overfitting while capturing the struc-
tural attributes of the data. For this purpose, tensor regres-
sion models include a low rankness constraint, for example,
by introducing a low-rank decomposition on the tensor of
parameters (Zhou et al., 2013). Among these decomposition
methods, the PARAFAC/CANDECOMP (CP) decompos-
ition (Harshman, 1970; Kolda and Bader, 2009), in which
the original tensor is represented as a linear sum of rank-1
tensors, is commonly used.

In addition to the challenges caused by high dimensional-
ity of data, the potential presence of outliers (i.e., gross cor-
ruption of observations (Cand�es et al., 2011)) in tensors is
another obstacle that needs to be overcome. These gross
outliers are common in many modern applications, such as
road traffic data and manufacturing processes, where some
measurements may be corrupted (Candes et al., 2011; Kaur
and Datta, 2019; Hu and Work, 2020; Hullait et al., 2021).
For example, according to Hullait et al. (2021) around 1-5%
of data collected from jet engines during the pass-off test is
contaminated by outliers. Similarly, Hu and Work (2020)
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reported about 1.2% contamination in traffic data. To iden-

tify and isolate corrupted observations within a tensor,

robust tensor recovery and decomposition techniques have

been previously developed that decompose a tensor, X , into

a summation of a low-rank and sparse tensors (i.e.,

X ¼ L þ S) by imposing low-rankness and sparsity penal-

ties such as nuclear-norm and L1 regularization on the

decomposition components, L and S (Huang and Ding,

2008; Goldfarb and Qin, 2014; Xue et al., 2017; Hu and

Work, 2020) Nevertheless, these recovery techniques identify

the corruptions based on the spatio-temporal structure of a

tensor and are not applicable to a tensor regression setting,

as they do not consider the input-output correlations when

performing decomposition. More specifically, in a tensor-

on-tensor regression setting, robust tensor recovery

approaches may erroneously consider observations in the

output tensor as outliers, even though they are explainable

by the input tensor. Table 1 summarizes the literature

and the position of this article in relevance to the existing

literature.
Let us consider the problem of estimating the k-curve (an

indicator of vehicle exhaust emission) of a vehicle engine

from several sensor readings. This problem can be formu-

lated as a tensor-on-tensor regression (Gahrooei et al.,

2021). Figure 1 illustrates several examples of k-curves (each

curve corresponds to an output of a sampled engine), in

which the solid curves represent the normal ones and

dashed curves show the ones with outliers. One approach to

constructing a model to estimate the k-curve is to omit cor-

rupted curves and construct the model only based on pre-

sumably normal ones. Nevertheless, this approach eliminates

potential useful information that otherwise could have

improved the model performance. Alternatively, one can
study k-curves and decompose a curve as a summation of
normal and outlier parts (L and S), then, uses the normal
part of the curves for model constructions. However, this
decomposition is unsupervised and ignores the input–output
relations. That is, the decomposition of the k-curve may
depend on the other sensor readings (curves) that are the
predictors of the output k-curve. These challenges motivate
us to develop a robust tensor-on-tensor regression approach
that performs modeling and outlier isolation simultaneously.
This proposed approach learns the model by automatically
separating the outliers.

Existing tensor regression approaches (Zhao et al., 2012;
Lock, 2018; Gahrooei et al., 2021; Wang et al., 2021) produce
biased models when the training data contains samples in
which the output tensors are grossly corrupted (some entries
of the tensor are contaminated), as they assume the elements
of error tensor are identically distributed. In the situations
where the data contains outliers (similar to the k-curve
example), or large arbitrary noise, this assumption is not valid,
resulting in biased predictions. Our approach decomposes the
error terms into two terms, one that captures the sparse cor-
ruptions with arbitrary distributions and the other captures
the noise. This approach significantly improves the flexibility
of the tensor models and allows for more accurate predictions.
In addition, the proposed approach allows for the use of cor-
rupted or faulty historical data, which increases the training
data size and improves the model generalizability.

In this article, we develop a regression model to predict a
tensor of arbitrary dimensions PLþ1 � PLþ2 � � � � � PLþM

from another tensor of arbitrary dimensions P1 � P2 � � � � �
PL, particularly when the output tensor (responses) is cor-
rupted by gross outliers. We assume the input tensors are
not contaminated by gross outliers without loss of general-
ity. This assumption is reasonable because the output should
not be explainable by the gross corruptions within the input,
and therefore, the input corruptions should be removed via
existing pre-processing schemes. To further explain this
point, please note that the input tensor is an independent
random variable (tensor variable) and the corrupted entries
within the input tensor (of a sample) can be identified by
investigating the correlation structure of that tensor. On the
other hand, the output tensor depends on the input one.
Therefore, the corrupted elements within an output tensor
should be identified by investigating both the correlation
structure within the tensor and its relationship with the
input. To further justify why outlier detection should be done

Table 1. Summary of the literature and the relevance of this work.

Tensor Decomposition Tensor Regression

Not Robust Decomposes a tensor into a low-rank tensor and a tensor of
identically distributed noise (Kolda and Bader, 2009)

Estimates an output tensor Y given an input tensor (or
tensors) X by assuming a linear model without considering
contamination within data, e.g., (Zhao
et al., 2012; Lock, 2018; Gahrooei et al., 2021; Wang
et al., 2021).

Robust Decomposes a tensor into a low-rank tensor (L), a sparse
tensor of contamination (S) and noise. The sparse tensor S
captures the contamination beyond overall noise in the data
(Hu and Work, 2020; Li et al., 2019; Xue
et al., 2017; Goldfarb and Qin, 2014; Cand�es
et al., 2011; Huang and Ding, 2008)

This work: Trains a model under the scenario that output
tensors in the training data may contain contaminated
observations beyond general noise.

Figure 1. Example of normal and abnormal k curves. The goal is to construct a
model that predicts k curves given a set of other curves acquired by sensors of
an engine.
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simultaneously with the regression when the output tensor is

corrupted, let us consider the following scenario: Let X be an

input tensor and B1 and B2 be a dense and a highly sparse

(but structured) tensors, respectively. For example, B2 is a ten-

sor with a few blocks of non-zero values. Now, assume Y ¼
hX ,B1iL þ hX ,B2iL þ S þ E, where hX ,BiL is contract tensor
product of X and B (see Section 2) and S is a sparse tensor of

corruptions. If we apply existing algorithms for separating

outliers within the output tensor, hX ,B2iL þ S is mostly

extracted as outliers, because B2 is highly sparse and existing

techniques for outlier detection in tensors rely on global cor-

relation structures. This will reduce the predictive power of

the subsequent regression model.
To estimate the parameters of a tensor-on-tensor regres-

sion model where the noisy output tensor data is contami-

nated by gross outliers, we combine the Alternating

Direction Method of Multipliers (ADMM) with the Block

Coordinate Descent algorithm (BCD) algorithms. When

solving the problem, we take advantage of the contract ten-

sor product from Lock (2018), tensor nuclear norm, and CP

decomposition. To evaluate the performance of the proposed

method, we provide a simulation study containing 27 differ-

ent scenarios and two case studies. The case study estimates

the lambda curve (an indication of the polluting perform-

ance of a vehicle engine) based on a collection of other

operational sensor measurements taken on the engine

(Gahrooei et al., 2019).
The rest of this article is organized as follows: Section 2

introduces some notations and multi-linear algebra used in

the article. Section 3 reviews the tensor-on-tensor regression.

Section 4 discusses the formulation of robust tensor-on-tensor

and the optimization algorithm for robust parameter estima-

tion. Section 5 provides the simulation results using synthetic

data. Section 6 reports the results of case studies. Finally,

Section 7 summarizes the article.

2. Notations and preliminaries of multilinear
algebra

In this section, we introduce notations and basic tensor alge-

bra used in this article. Throughout the article, we denote a

scalar by a lower case letter, for example, a; a vector or a

matrix by boldface lower and upper case letter, for example,

a and A, respectively; and a tensor by a calligraphic letter,

for example, A: Given a tensor B 2 RP1�P2 , :::�PL�PLþ1����PLþM ,

we denote the mode-j matricization of B by BðjÞ 2 RPj�P�j ,

where P�j ¼ P1 � P2 � � � � � Pj�1 � Pjþ1 � � � � � PLþM: This

matricization is obtained by augmenting the jth mode fibers,

where tensor fibers are defined by fixing all but one index

of a tensor. We also denote the operator vecð�Þ as vectoriza-

tion operator which unfolds the input tensor into its corre-

sponding column vector. The Frobenius norm of a tensor X
is the square root of the sum of the squares of all its ele-

ments, denoted as jjXkF , which can be calculated as

jjXkF ¼ jjX ð1ÞkF: The nuclear norm of a tensor X is

denoted by jjXk� and is computed as the weighted sum the

nuclear norm of the tensor matricizations along all modes:

jjXk� ¼
Pm

i¼1 jjX
ðiÞk�, where m is the order of the tensor.

The nuclear norm of a matrix is computed as the sum of the

singular values of that matrix. Following Lock (2018), the con-

tract tensor product is defined as

hX ,YiK, ðp1 , p2 , :::, pL , q1 , q2 , :::, qMÞ

¼
X

I1

i1¼1

� � �
X

IK

iK¼1

X p1 , p2 , :::, pL, i1 , i2 , :::, iKYi1 , i2 , :::, iK , q1 , q2 , :::, qM ,

where X 2 R
P1�P2�����PL�I1�I2�����IK and Y2

R
I1�I2�����IK�Q1�Q2�����QM

:Note that forX2RP�I andY2RI�Q,

hX,Yi1¼XY:

3. Tensor-on-tensor regression

In this section, we review the Tensor-On-Tensor (TOT)

regression proposed by Lock (2018). As we mentioned ear-

lier, tensor regression takes many forms depending on its
inputs/outputs. In this article, we particularly focus on a

regression problem whose input and output are tensors and

hence, named TOT regression. Let X 2 RP1�P2�����PL and

Y 2 RPLþ1�PLþ2�����PLþM
: Then, the TOT considers the follow-

ing linear model:

Y ¼ hX ,BiL þ E: (R1)

Here, B is the tensor of model parameters and E is the tensor

of model errors. Like most of the high-order models, TOT

also suffers from the curse of dimensionality; i.e., the model is

prone to overfitting if no constraints are considered on the
tensor of model parameters. One main constraint considered

is that the tensor of parameters is low-rank, and therefore, can

be decomposed into the product of several low-dimension

matrices. Two commonly used techniques in tensor decom-

position are Tucker decomposition (Tucker, 1966) and CP
decomposition (Kolda and Bader, 2009). The former decom-

poses the input tensor as a multiplication of a core tensor,

whose dimensionality is much smaller than the original one,

and a series of factor matrices, whereas the latter (CP decom-
position) is a special case of the former where the core tensor

is diagonal. These decomposition techniques reduce the

dimensionality of the tensor and hence, alleviate the burden

of overfitting. For example, Lock (2018) considers a low-rank
decomposition of the parameter tensor as follows:

B ¼ U1 � U2 � � � � � ULþM ¼
X

R

c¼1

uc1 � u
c
2 � � � � � u

c
LþM, (1)

B� ¼ arg min
B

jjY � hX ,BiLk
2
F þ kjjBk2F , (2)

where ULþM 2 RPj�R whose cth column is ucj , and u1 �

u2 � � � � uLþM denote the outer product of vectors and is

defined as ðu1 � u2 � � � � uLþMÞi1i2���iLþM
¼ ðu1Þi1ðu2Þi2 � � �

ðuLþMÞiLþM
: Together with the tensor decomposition, a low-

rankness penalty based on the nuclear norm (a convex sur-

rogate of the rank of a tensor) is also commonly used to

further regularize the rank of the tensor (Shang et al., 2014;
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Dian et al., 2019; Liu et al., 2020). The nuclear norm is
tightly related to the tensor decomposition techniques, as it
uses them for rank estimation. In this article, we employ the
CP decomposition to reduce the dimension of the model
parameter tensor and impose the nuclear norm to regularize
the rank of it so that the low rankness resolves the
overfitting.

4. Robust TOT Regression

In this section, we introduce the Robust TOT (RTOT)
regression framework to construct a robust model based on
training data with contaminated output tensors. Given a set

of training data ðX i,YiÞj X i 2 R
P1�P2�����PL

�

and Yi 2

R
PLþ1�PLþ2�����PLþMgNi¼1 in which fYig

N
i¼1 are contaminated by

outliers, the goal of RTOT is to estimate the relationship
between the input tensor and the response, while extracting
and detecting the outliers within the output using the fol-
lowing linear form:

Yi ¼ hX i ,BiL þ Si þ Ei, (M1)

where B 2 RP1�P2�����PLþM is the tensor of parameters, Si 2

R
PLþ1�PLþ2�����PLþM is a sparse tensor representing the outliers,

and Ei is the tensor of errors. A more compact formulation
of model (M1) can be obtained by folding the tensors into
ones with one extra mode, containing all samples. That is,

we construct the output tensor Y 2 RN�PLþ1�PLþ2�����PLþM to

be estimated by input tensor X 2 RN�P1�P2�����PL via a linear
model as follows:

Y ¼ hX ,BiL þ S þ E, (M2)

where S 2 RN�PLþ1�PLþ2�����PLþM is a sparse tensor represent-
ing the outliers and E is the dense tensor of errors. Tensor
S allows for separating corruptions that do not follow the
i.i.d distribution of overall noise and therefore eliminates the
influence of these corruptions on parameter estimation.
Model (M2) is similar to the TOT model in (2) considered
in Lock (2018) and Liu et al., (2020). The difference is that,
we introduce the outliers S to the model, which makes it
more robust and allows for the detection of outliers. Similar
to TOT, due to the large number of parameters to be esti-
mated in tensor B, the above model results in overfitting
without imposing a constraint on B: To avoid such overfit-
ting, we impose nuclear norm regularization on the tensor
of parameters, which is presented later on. In addition,
including S significantly increases model flexibility (and
therefore causes overfitting) if no assumption is made on S
and E: We assume S and E are sparse and dense tensors,
respectively.

In addition, (M2) has a form that is close to the tensor
recovery problem (Goldfarb and Qin, 2014; Lu et al., 2016;
Xue et al., 2017; Li et al., 2019) that are tensor extensions of
robust principle component analysis that recovers a cor-
rupted low-rank matrix (Zhou et al., 2010; Cand�es et al.,
2011; Wong and Lee, 2017). The tensor recovery problems
consider a model defined as,

Y ¼ Lþ S, (M3)

where L and S are low-rank and sparse components of Y
respectively. Nevertheless, our proposed approach has sev-

eral main differences with these tensor recovery problems:

First, these problems are unsupervised and aim to recover a

corrupted low-rank tensor (i.e., L is a recovered version

of Y). In contrast, our approach is a supervised approach

that creates a predictive model based on potentially cor-

rupted data for estimating an output tensor given a new

input tensor X : Second, unlike the recovery methods that

assume Y is a corrupted low-rank tensor, our proposed

approach has no assumption on low-rankness of Y or X
and only assumes that the tensor of model parameters is

low-rank. Finally, the tensor recovery methods do not con-

sider a noisy setting where Y is noisy data. Our framework

considers more realistic and general case that the output

tensors are noisy.
The goal of the proposed approach is to find an estimator

B̂ of B and an estimator Ŝ of S in a way that the error is

minimized, while the tensor of parameters remains low-rank

and the tensor of outliers remains sparse. For this purpose,

we solve the following optimization problem:

min
B,S

l1
2
jjY � hX ,BiL � Sk2F þ l2jjSk1 þ

X

LþM

i¼1

jjBðiÞk�, (P1)

where the first term minimizes the prediction error, the

second term regularizes the sparsity of S, and the last term

ensures that the tensor of parameters is low-rank. The

objective function (P1) is equivalent to the following con-

strained problem:

min
B,S

l2jjSk1 þ
X

LþM

i¼1

jjBðiÞk�,

s:t:jjY � hX ,BiL � Sk2F < d2,

(3)

where d2 is proportional to the variance of elementwise

noise (E) in the model and is related to l1 in (P1). This

constraint allows for inexact reconstruction of noisy and

corrupted tensor Y into dense and sparse tensors hX ,BiL
and S: For example, if d ! 1 then S and B tend to tensors

of zeros, which results in a model with no prediction power.

In contrast, if d ! 0, then the problem requires exact esti-

mation of Y, which either results in a non-sparse estimation

of S or an estimation of B that overfits to the training data

depending on the choice of l2.
To emphasize on the importance of the two penalty

terms in (P1), we note that, unlike TOT, model M2 does

not have a unique solution in the following sense: There

exists ðB1,S1Þ 6¼ ðB2,S2Þ such that hX ,B1i þ S1 ¼
hX ,B2i þ S2: To see this, assume B1 and B2 are different in

exactly one element say ðp1, p2, :::, pLþmÞ: Then, hX ,B1i dif-

fers hX ,B2i only at that element. However, this difference

can be adjusted by choosing right values of

S1ðp1, p2, :::, pLþmÞ and S2ðp1, p2, :::, pLþmÞ: The sparsity and

low-rankness penalties in (P1) alleviates this issue by choos-

ing the most parsimonious model (characterized by

l2jjSk1 þ
PLþM

i¼1 jjBðiÞk�) that produce accurate predictions

(characterized by jjY � hX ,BiL � Sk2F) of Y:
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In order to solve (P1), we propose an ADMM approach

due to its capability in solving objective functions that are

decomposable into differentiable and non-differentiable

terms. Although, ADMM provides a framework to approach

this problem, it does not directly solve the problem. Instead, it

translates the problem into other optimization problems that

are solved either numerically or analytically. Particularly, we

combine the ADMM with the BCD algorithm to estimate the

factor matrices and derive closed–form solutions for estimat-

ing S: In order to let (P1) conform with ADMM, we first con-

sider CP decomposition of B that approximates the original

tensor as a sum of low-rank components:

B ¼
X

R

c¼1

uc1 � u
c
2 � � � � � u

c
LþM ¼ U1 � U2 � � � � � ULþM, (4)

where uci 2 R
Pi (i ¼ 1, 2, :::, LþM) is a column vector and

is the cth column of Ui 2 R
Pi�R

: Second, we introduce auxil-

iary variables Ji such that Ui ¼ Ji for i ¼ 1, 2, :::, LþM: The

introduction of these auxiliary variables is to make the

objective function separable. The resulting optimization is,

therefore, as follows:

min
l1
2
jjY � hX ,U1 �U2 � � � �ULþMiL � Sk2F þ l2jjSk1 þ

X

LþM

i¼1

jjJik�

s:t: Ui ¼ Ji for i ¼ 1, 2, :::, LþM

(P2)

where l1 and l2 are positive constants. Finally, the contract

tensor product can be rewritten into a matrix product (Lock,

2018) with respect to Ui. In other words,

vecðhX ,U1 � U2 � � � �ULþMiLÞ ¼ CivecðUiÞ, where Ci is

defined as

Ci :¼ ½C1
i jC

2
i j � � � jC

R
i � and

C
c
i ¼ hX , u

c
1 � u

c
2 � � � � � u

c
i�1 � u

c
iþ1 � u

c
LþMi

ðiÞ
L�1 for i ¼ 1, 2, :::, LþM,

and vecðÞ is an operator that vectorizes a tensor. As a result,

the corresponding augmented Lagrangian form of (P2) is

written as,

LðUi, Ji,Zi,SÞ :¼
X

LþM

i¼1

l1
2
jjvecðYÞ � CivecðUiÞ � vecðSÞk22

þ l2jjSk1 þ
X

LþM

i¼1

jjJik� þ
l3
2
jjUi � Jik

2
F

þ hUi � Ji,Zii,

(5)

where the last three terms are due to the equality constraints

in (P2), Zi is the corresponding dual variable, and l3 is a

positive constant. Now, we are ready to employ ADMM to

derive the updating equations that solves (5).
To do so, let us first derive the updating rule for each of

the variables in (5) as shown below:

Ji is updated as follows:

Ji ¼ arg min
Ji

1

l3
jjJik� þ

1

2

�

�

�

�

Ji � Ui þ
1

l3
Zi

� �
�

�

�

�

2

F

¼ Ul3 Ui þ
1

l3
Zi

� �

(6)

where the operator UsðXÞ is the singular value shrinkage

operator followed the definition in Cai et al. (2010); Ui is

updated as follows:

Ui ¼ arg min
Ui

l1
2
jjvecðYÞ � CivecðUiÞ � vecðSÞk22 þ

l3
2
jjUi

� Jik
2
F þ hZi,Ui � Jii

(7)

which can be solved by a first-order method since the prob-

lem is convex; S is updated as follows:

S ¼ arg min
S

1

2
jjS � ðY � hX ,U1 � U2 � � � � � ULþMiLÞk

2
F

þ
l2
l1

jjSk1

¼ proxl2
l1

Y � hX ,U1 � U2 � � � � � ULþMiL
� �

(8)

where proxsð�Þ is a proximity operator with l1-norm regular-

ization defined as follow:

proxsðtÞ ¼ signðtÞmax jtj � s, 0f g: (9)

Algorithm 1 summarizes the pseudocode of the proposed

ADMM algorithm. Note that the stopping criteria of

Algorithm 1 are determined by primal and dual residuals rk

and sk, respectively, at iteration k. The former is defined as

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLþM
i¼1 jjUk

i � Jki k
2
F

q

and the latter is defined as sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLþM
i¼1 jjJki � Jk�1

i k2F

q

: We stop the algorithm when both rk

and sk < �: Also, the algorithm’s input R̂ is defined as the

number of columns of Ui for i ¼ 1, 2, :::, LþM: For

example, if R̂ ¼ 3, then, Ui 2 R
Pi�3 for i ¼ 1, 2, :::, LþM:

Algorithm 1: ADMM Solver for RTOT

Input: l1, l2, l3, R̂, � ¼ 10�6

1 initialize: Ui ¼ Ji ¼ randðPi, R̂Þ, Zi ¼ 0 for i ¼ 1, 2, :::,

LþM, S ¼ 0;

2 while rk > � or sk > � do

3 for i ¼ 1, 2, :::, LþM do

4 Update Ji and Ui via (6) and (15);
5 end

6 Update S via (8);
7 Zi ¼ Zi þ l3ðUi � JiÞ
8 end

Output: Ui for i ¼ 1, 2, :::, LþM and S

4.1. Selection of tuning parameters

The proposed method requires input parameters l1, l2, l3

and R̂: Due to the proximity operator, we can either fix l1
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or l2 and perturb the others. l3 is the learning rate and has

a default value 1� 10�10 and will dynamically change as the
algorithm proceeds. To find the best combination of them,
we conduct a grid search and select the one that has the
lowest modified Akaike Information Criterion (AIC) defined
as follows (Cavanaugh and Neath, 2019; Roy and
Michailidis, 2022):

AIC ¼ log jjY � hX , B̂iL � Ŝk2F þ c1 log jjŜk0 þ c2 � R̂,

where c1 and c2 are positive constant (c1 ¼ 2 and c2 ¼ 0:5 in

the implementation), and jjŜk0 denotes the number of non-

zero elements within the tensor Ŝ : The modified AIC con-
siders both underfitting (the first term) and overfitting (the
second term) simultaneously. The number of the fitting par-

ameter in typical AIC is replaced with R̂ due to its propor-
tionality to the complexity of the model. For all studies in

the next section, we perform the grid search over R̂ 2
f2, 3, 4, :::, 10g and l1 2 f0:005, 0:007, 0:009, :::, 0:015g (this

range is chosen empirically), and we let l2 ¼ 0:0015:
Figure 2 shows an example of AIC for different values of
hyper-parameters on a synthetic data set. In this example,
R¼ 4 and l1 ¼ 0:009 minimize the AIC criterion and are
selected for final model construction. Note that, larger ranks
(e.g., R ¼ 6, :::, 10) cause overfitting (model with excessive

flexibility) for most values of l1 and generate larger values of
AIC. Similarly, when R¼ 2 the model underfits data (the
error term is large) which produces larger value of AIC.
Furthermore, when l1 is large the model highly penalizes the
fitting error and produce dense S: On the other hand, when
l1 is small the model underfits to data and produces highly
sparse S:

5. Performance evaluation using simulation

In this section, we synthesize multiple sets of data in differ-
ent scenarios to evaluate the performance of the proposed

method designated as RTOT in comparison with three
benchmarks. The first benchmark is the TOT regression
proposed by Lock (2018) designated as TOT and the second
one is a combination of TOT and robust principal compo-
nent analysis designated as RPCA where we first apply the

principal component analysis to Y to isolate the outlier Ŝ

and acquire its low-rank representation Ŷ : Then, we apply

TOT to find B̂ such that Ŷ ¼ hX , B̂iL: Note the main differ-

ence between RTOT and RPCA is that the former seeks Ŝ

and B̂ simultaneously whereas the latter has to perform
these two procedures sequentially. The third benchmark is a
convolutional neural network designated as CNN which has
two convolution layers of size 4� 4� 64 and 4� 4� 32
and two deconvolution layers of size 4� 4� 32 and 4� 4�
64 aside from the input and output layers that have the
same size of X and Y respectively. To measure the perform-
ance of these approaches, we consider the Relative
Prediction Error (RPE) defined as (Lock, 2018):

RPE :¼
jjY � hX , B̂iLkF

jjYkF
: (10)

All the methods in this work are implemented in Python 3.7
with the implementation of TOT referring to the R package
provided by Lock (2018) and all experiments are conducted
under a machine equipped with Intel(R)Core(TM) i9-9880H
CPU and 32GB RAM.

5.1. Data simulation and test environment setting

To test the performance of the proposed method and the
benchmarks, we implement a fully crossed factorial simula-

tion with the following conditions: R 2 �R :¼ f5, 7, 9g and

density of the outlier D 2 �D :¼ f0, 0:03, 0:05, 0:1, 0:15g:
For each of the 15 scenarios ( �Rj j � j�Dj), we generate two

data sets (designated by data sets 1 and 2), with 500 and
200 samples, respectively. In the first data set, the output
tensors Y are generated as follows:

Y ¼ hX ,BiL þ E, (11)

where B ¼ U1 � U2 � � � � � ULþM and Ui 2 R
Pi�R for i ¼

1, 2, :::, LþM whose elements simulated from a standard
normal distribution, i.e., N(0, 1). The input tensors X are
generated as follows: First, we generate a basis matrix

defined as Ux
i 2 R

Pi�5 for i ¼ 1, 2, 3, :::, L whose elements are

drawn independently from N(0, 1). Next, we uniformly gen-
erate random weights wi � Uð0, 1Þ for i ¼ 1, 2, 3, :::, L and
set X ¼ w1 � U

x
1 � w2 � U

x
2 � � � � � wL � U

x
L: Finally, we generate

Y as (11) with the elements of E simulated from N(0, 1).
In the second data set, X and Y has the relation defined as:

Y ¼ hX ,B1iL þ hX ,B2iL þ E, (12)

where we generate B1, B2 and X in the same way as in the
first data set except that B2 is highly sparse whose elements
are all zero except the values of the first 50 elements of
vecðB2Þ that are generated from N(0, 1). Also, X is gener-
ated using Fourier basis functions defined as

Figure 2. An example of heat map of AIC with respect to the hyper-parameters
of RTOT.
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urj ¼
cos ðcprx1Þ, :::, cos ðcprxPjÞ
	 
>

, if r is odd

sin ðcprx1Þ, :::, sin ðcprxPjÞ
	 
>

, if r is even

(

(13)

where c> 0, r ¼ 1, 2, :::, 5 and xj ¼
j
Pj

for j ¼ 1, 2, 3, :::, L:

The dimension of B in the first data set is ð15, 20, 5, 10Þ
whereas that in the second data set is ð35, 29, 7, 29Þ for both

B1 and B2:

After generating all the samples in both data sets 1 and 2,
we randomly split the data into training (400 samples and

120 samples for data sets 1 and 2, respectively) and testing

(100 samples and 80 samples for data sets 1 and 2, respect-

ively) sets. We, then, add outliers to the training sets by ran-

domly choosing D percent of the samples and picking a
starting index i0 from vecðYÞ: Starting from i0 till i0 þ l, we

reset each element to a value that follows Uð:8, 2Þ (the range

of the distribution is chosen empirically so that it is signifi-

cant enough for the corresponding element to be considered
as the outlier). After that, we reshape vecðYÞ back to its ori-

ginal shape. Throughout the simulation, we let L¼ 2, M¼ 2,

l¼ 5 for data set 1 and l 2 f10, 11, 12, :::, 30g for data set 2

(we randomly pick one element from the range). We repli-

cate the simulations 20 times for each of the 15 scenarios to
acquire the mean and standard deviation (std) of RPE.

5.2. Simulation results

In this section, we report the simulation results obtained

over the 15 scenarios described in the previous section. As
is depicted in Table 2 and Table 3, the proposed method

outperforms benchmarks in almost all scenarios. As is

reported, the averaged RPE of TOT and CNN increases

significantly as D increases. On the other hand, RPCA and

RTOT maintain their prediction performance close to scen-

arios where data contains no outliers. This result is expected

since TOT and CNN are not designed for the data contain-

ing outliers whereas the other two have their mechanisms to

isolate outliers from the training data, and hence, are more

accurate. In addition, the proposed method has comparable

results to TOT even when data contains no outliers.
Table 2 reports the performance (in terms of RPE and its

standard deviation) of all methods when applied to data set

1. When D> 0 the proposed method outperforms all other

benchmarks. For example, when R¼ 5 and D ¼ 0:0:03,

RTOT achieves RPE¼ 0.0884 compared with 0.0892, 0.1047,

and 0.1250 obtained by RPCA, TOT, and CNN, respectively.

Table 3 reports the performance of all methods when

applied to dataset 2. As is reported, RTOT has the best per-

formance among all other approaches when D> 0. For

example, when R¼ 7 and D¼ 0.1, RTOT achieves

RPE¼ 0.0737 compared with 0.1200, 0.2071, and 0.9053

obtained by RPCA, TOT, and CNN, respectively. Please

note that data set 2, in which we amplify part of Y by add-

ing an extra term hX ,B2iL, appeared to be a more challeng-

ing case for RPCA (compared with data set 1). More

specifically, the performance of RPCA is always significantly

inferior to RTOT (the average RPE in data set 2 of RPCA is

higher than that of RTOT in all scenarios), which reveals

the potential issue of using the RPCA. As mentioned earlier,

RPCA performs the outlier elimination and prediction in a

sequential manner, which may lose some of the information

from the input during the elimination process, and hence,

lowering the overall prediction performance. Furthermore,

Table 2. Comparison between the proposed method (RTOT) and the benchmarks in terms of RPE (standard deviation) in data set 1
settings.

R Method D¼ 0 D¼ 0.03 D¼ 0.05 D¼ 0.1 D¼ 0.15

5 RPCA 0.0881(0.0056) 0.0892(0.0047) 0.0880(0.0051) 0.0867(0.0055) 0.0880(0.0058)
5 RTOT 0.0871(0.0056) 0.0884(0.0047) 0.0873(0.0052) 0.0859(0.0052) 0.0875(0.0065)
5 TOT 0.0871(0.0056) 0.1047(0.0077) 0.1188(0.0144) 0.1382(0.0119) 0.1708(0.0232)
5 CNN 0.0989(0.0349) 0.1250(0.0105) 0.1440(0.0122) 0.1797(0.0148) 0.2234(0.0239)
7 RPCA 0.0902(0.0058) 0.0910(0.0064) 0.0898(0.0067) 0.0905(0.004) 0.0888(0.0058)
7 RTOT 0.0892(0.006) 0.0900(0.0066) 0.0887(0.007) 0.0896(0.004) 0.0884(0.0054)
7 TOT 0.0893(0.006) 0.1043(0.0078) 0.1279(0.0348) 0.1572(0.0187) 0.1720(0.0213)
7 CNN 0.0924(0.0061) 0.1237(0.0143) 0.1489(0.0239) 0.1917(0.0165) 0.2190(0.0167)
9 RPCA 0.088(0.0067) 0.0902(0.0074) 0.0895(0.0063) 0.0894(0.0071) 0.0895(0.0067)
9 RTOT 0.0867(0.0067) 0.0892(0.0075) 0.0886(0.0066) 0.0888(0.0073) 0.0889(0.0066)
9 TOT 0.0868(0.0067) 0.104(0.0095) 0.1245(0.0125) 0.1522(0.0234) 0.1767(0.0241)
9 CNN 0.0899(0.0067) 0.1344(0.0576) 0.1474(0.0287) 0.1846(0.0167) 0.2253(0.0221)

Table 3. Comparison between the proposed method (RTOT) and the benchmarks in terms of RPE (standard deviation) in data set 2
settings.

R Method D¼ 0 D¼ 0.03 D¼ 0.05 D¼ 0.1 D¼ 0.15

5 RPCA 0.1184(0.0416) 0.1255(0.0376) 0.1121(0.0282) 0.1116(0.0492) 0.1150(0.0345)
RTOT 0.07200(0.0058) 0.0734(0.0082) 0.0734(0.007) 0.0732(0.0068) 0.0778(0.0053)
TOT 0.0760(0.0087) 0.1200(0.0305) 0.1655(0.043) 0.2108(0.0518) 0.2953(0.0693)
CNN 0.8496(0.0507) 0.8402(0.0564) 0.882(0.0482) 0.9129(0.0705) 0.9493(0.0364)

7 RPCA 0.1040(0.0352) 0.1192(0.0301) 0.1151(0.0294) 0.1200(0.0421) 0.1063(0.0399)
RTOT 0.0691(0.0059) 0.075(0.0068) 0.0718(0.0048) 0.0737(0.0042) 0.0792(0.0061)
TOT 0.0691(0.0059) 0.1133(0.0264) 0.1644(0.0466) 0.2071(0.0517) 0.2732(0.0627)
CNN 0.8504(0.0355) 0.8441(0.0402) 0.8665(0.047) 0.9053(0.0462) 0.9603(0.0481)

9 RPCA 0.1051(0.0277) 0.1090(0.0352) 0.1243(0.0391) 0.1169(0.0404) 0.1148(0.0436)
RTOT 0.0700(0.0066) 0.0714(0.0063) 0.0742(0.0059) 0.0754(0.006) 0.0787(0.0069)
TOT 0.0706(0.0065) 0.0886(0.0158) 0.1400(0.0366) 0.2209(0.0479) 0.2726(0.0742)
CNN 0.8359(0.0504) 0.8631(0.0547) 0.8747(0.037) 0.8926(0.0444) 0.9444(0.0549)
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we evaluate the performance of the proposed method in

terms of localizing the outliers during the training of the

model. More specifically, we compare the estimated sparse

tensor Ŝ to the original tensor S in both simulation scen-

arios. Table 4 reports the ACCuracy (ACC), False Negative

Rate (FNR), and False Positive Rate (FPR) of outlier detec-

tion. As is reported, under all simulated settings, the pro-

posed method can isolate outliers with high accuracy

(ACC> 0.99).
Table 5 reports the computational time of the proposed

method and benchmarks. In this table, we evaluate the com-

putational time of the RTOT when the value of learning rate

l3 is set to a fixed value (ROTO-S) and when it is changed

dynamically (RTOT-D) as discussed in Section 4.1. As it is

reported in the table, the RTOT with dynamic learning rate

(RTOT-D) outperforms TOT and RPCA with the latter being

the worse one as it requires performing RPCA before applying

TOT to estimate the model parameters. The RTOT with fixed

learning rate, however, is slower than other methods as it

requires many iterations to enforce the constraints in (P2).

Please note that the TOT algorithm uses a BCD algorithm to

solve its problem and does not have a learning rate. Note that

CNN takes full advantage of GPU, and hence, it achieves the

lowest computational time. The required computational time

of RTOT can be further reduced via parallelization, which is a

subject of future work.

6. Performance evaluation using case study

We evaluate the performance of the proposed robust

approach using two real data sets. The first data set is obtained

from vehicle engine sensors and the second data is related to

EEG signals and functional Magnetic Resonance Imaging

(fMRI) scans obtained from the OpenNeuro website (https://
openneuro.org/datasets/ds000116/versions/00003).

6.1. Case study I: Vehicle engine lambda sensor

prediction

The NOx Storage Catalyst (NSC) is a catalyst system
designed to treat the exhaust gas produced by vehicles. The
NSC process consists of two alternating phases: (i) absorp-
tion: where NOx molecules are trapped/absorbed by zeo-
lites–coated converter support; (ii) regeneration: where the
stored NOx is reduced by a catalyst when the absorber is
saturated. It is well-known that, during the regeneration
phase, optimal combustion is required to ensure an ideal
conversion rate of the catalytic converter. The NSC only
operates efficiently at stoichiometric conditions, which
requires the combustion process in a rich air-to-fuel status.
The relative air/fuel ratio normalized by stoichiometry (des-
ignated by the Greek letter k), which is measured runtime
by a sensor upstream of the NSC, is used as an indicator to
show if the regeneration phase is running correctly. A good
sign of k should maintain a value within a set-point interval
of 0.92–0.95. When the k signal falls below a threshold (0.8–
0.9) which is called k-undershoot, it would worsen the per-
formance of NSC. Thus, developing a model that could esti-
mate the k signal based on other operation signals collected
by onboard sensors (such as inner torque, rotational speed,
and quantity of fuel injected) could further improve the
engine operation condition, as well as the calibration of the
engine control unit.

In this case study, we apply our proposed method and
three other benchmarks to estimate the k-upstream curve
given a set of five input curves. We evaluate the performance
of the methods by computing the RPE over several replica-
tions. The data set has 285 samples with each containing five
input signals and one lambda signal corresponding to the out-
put. All the data points are recorded within a 2-second inter-
val with 203 measurements in total. To comply with our
model, we reshape the output into 285� 29� 7 (285� 203
without reshaping) and the input into 285� 29� 35, and
then randomly partition the data into training (200 samples)
and testing (85 samples) sets. The number of replications of
the training/testing process is set to 20 and at each iteration,
we acquire RPE from all four methods. Figure 3 shows

Table 4. Performance evaluation of outlier detection of RTOT for both scenarios (data sets 1 and 2) in terms of ACC, FNR, and FPR.. The true positives are outlier
elements within S.

Data Set 1 Data Set 2

D R ACC FNR FPR D R ACC FNR FPR

0.03 5 0.9998 0.0000 0.0002 0.03 5 0.9998 0.0642 0.0000
0.03 7 0.9999 0.0000 0.0001 0.03 7 0.9999 0.0279 0.0000
0.03 9 0.9998 0.0000 0.0002 0.03 9 0.9999 0.049 0.0000
0.05 5 0.9997 0.0000 0.0003 0.05 5 0.9998 0.0342 0.0000
0.05 7 0.9997 0.0000 0.0003 0.05 7 0.9999 0.019 0.0000
0.05 9 0.9997 0.0000 0.0003 0.05 9 0.9999 0.0211 0.0000
0.1 5 0.9993 0.0000 0.0007 0.1 5 0.9996 0.0374 0.0000
0.1 7 0.9994 0.0000 0.0006 0.1 7 0.9998 0.0235 0.0000
0.1 9 0.9993 0.0000 0.0007 0.1 9 0.9994 0.056 0.0000
0.15 5 0.999 0.0000 0.001 0.15 5 0.9996 0.028 0.0000
0.15 7 0.9991 0.0000 0.0009 0.15 7 0.9995 0.0373 0.0000
0.15 9 0.9991 0.0000 0.0009 0.15 9 0.9994 0.0471 0.0000

Table 5. Averaged computational time (in seconds) required for one replica-
tion with different choices of R. RTOT-D refers to RTOT with dynamic learning
rate and RTOT-S refers to RTOT when learning rate is set to a fixed value
(static).

Method R¼ 7 R¼ 10 R¼ 20 R¼ 30

RPCA 1.1560 1.5901 3.7869 6.0684
RTOT-D 0.4793 0.6488 2.2690 3.8052
RTOT-S 1.5891 2.8569 7.1529 16.3950
TOT 0.6400 1.1102 3.2528 5.5942
CNN 0.1702 0.1562 0.1606 0.1566
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examples of the five input signals and Figure 4 shows an

example of a k curve together with the predicted curves

obtained by RTOT, RPCA, TOT, and CNN. As is illustrated,

while all methods produce reasonable predictions, the curve

predicted by RTOT shows fewer deviations from the true

curve (for example, TOT, RPCA, and CNN have a relatively

large bias of around 0.5 sec compared with RTOT). Table 6

reports the average of RPE along with standard deviation,

which indicates the superior performance of RTOT. As is

reported, the proposed method has the lowest RPE (0.0514)

compared with the other approaches.

6.2. Case study II: EEG prediction from fMRI

The integration of EEG and fMRI, in which EEG has high

temporal resolution and low spatial resolution, and fMRI

has high spatial resolution and low temporal resolution has

been used as a tool to study brain activity. The advantage of

this simultaneous EEG-fMRI framework is that it guarantees

the same signal source and also provides a way to analyze

the connection between the variations of the brain signals

and brain activities.

In this case study, we intend to predict the EEG, which is
a 16� 3� 121 tensor from the fMRI, which is a 16� 10�
8 tensor. The first dimension of these tensors represents the
number of subjects in the study. Note that the original shape
of EEG is 16� 37� 121; however, we pick the three most
relevant channels among 37 channels (the second dimen-
sion) that are closest to the active regions of the brain dur-
ing the experiment. We reshape the fMRI from 16� 80 to
16� 10� 8 to comply with our approach. To evaluate the
performance of the proposed method (RTOT), we compare
the prediction results with three benchmarks TOT, RPCA,
and CNN and replicate the training/testing process 20 times
to calculate the average RPE and its variance. The 14 train-
ing samples are randomly selected from the data with the
remaining two serving as the test sample. As reported in
Table 7, in which each cell reports the mean of the RPE and
its variance (number in parenthesis), RTOT demonstrates
the lowest RPE compared with the other benchmarks.
Figure 5 depicts a prediction result of one of the EEG chan-
nels. In this figure most of the methods predict the curve
well within the time interval ranging from 20 to 60 except
CNN. The inferior performance of CNN is mainly attributed
to the high dimensionality and small sample size of the
data. Although all other methods show a comparable result
in the other two intervals (½0, 20� and ½60, 120�), underesti-
mation and overestimation can be observed in the predic-
tions of RTOT, TOT and RPCA.

The estimated model parameters can serve as a new data
that contains the interrelation between the EEG and fMRI
data. One can use CP or Tucker decomposition on this ten-
sor of parameters to extract features for the purpose of deci-
sion making such as classification.

Figure 3. Example of the input signals.

Figure 4. Example of a k curve prediction by the proposed method and
benchmarks.

Table 6. RPE of the predicted original lambda curve by proposed and bench-
mark methods.

RPCA RTOT TOT CNN

0.0517(0.0012) 0.0514(0.0009) 0.0527(0.0012) 0.0599(0.0051)

Table 7. RPE of the predicted EGG by proposed and benchmark methods.

RPCA RTOT TOT CNN

0.3228(0.0046) 0.3155(0.0063) 0.3236(0.0052) 0.9999(0.0000)

Figure 5. Example of EEG prediction by the proposed method and benchmarks.
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7. Conclusion

This article proposes a robust TOT approach to model proc-
esses with high-dimensional inputs and contaminated out-

puts. The approach extends the TOT regression and
borrows techniques from tensor recovery. To estimate the

parameters, a least square loss function is applied, and to

avoid overfitting, a nuclear norm regularization that penal-
izes the rank of the tensor is used. To solve the resulting

minimization problem, we propose an ADMM algorithm
that first transforms the problem into its corresponding

Lagrangian form and then decomposes the entire problem
into several sub-problems with closed-form solutions.

To evaluate the performance of the proposed method, we

provide a simulation study that has 15 different scenarios
and two case studies with the data coming from real-world

applications. In all simulation and case studies, We com-
pared the proposed approach to three benchmark methods,

namely TOT, RPCA, which is a combination of RPCA and

TOT, and CNN. As it is reported in the results, not only
can RTOT maintain a decent accuracy when data has been

corrupted by outliers but also demonstrate high efficiency
during the training phase. In addition, we show a compar-

able result to TOT even when the data has no outliers.
Future work may extend the proposed framework to situa-

tions where data contains missing values.
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A Appendix
A.1. Updater deduction

Based on (5), we totally have four variables, Ui, Ji, Zi and S need to be
updated, and below details how we update these variables.

	 Ji ¼ arg minJi
1
l3
jjJik� þ

1
2
jjJi � ðUi þ

1
l3
ZiÞk

2
F in which, according

to (Cai et al., 2010), can be solved via the singular value shrinkage
operator defined as

UsðXÞ :¼ UDsV
> (14)

where Ds ¼ diagfðr1 � sÞþ,ðr2� sÞþ, ðrn � sÞþ, :::, ðrr � sÞþg given

that U 2 Rm�r and V> 2 Rr�n, and ri is ith the singular value of the
matrix X. Therefore, applying (14), we have that

Ji ¼ arg min
Ji

1

l3
jjJik� þ

1

2

�

�

�

�

Ji� Ui þ
1

l3
Zi

� �
�

�

�

�

2

F

¼Ul3 Uiþ
1

l3
Zi

� �

:

	 Ui ¼ arg minUi

l1
2
jjvecðYÞ�CivecðUiÞ � vecðSÞk22 þ

l3
2
jjUi � Jik

2
Fþ

hZi,Ui � Jii which is a convex problem and can be solved using
first-order method as follows:

� l1C
>
i ðvecðYÞ�CivecðUiÞ � vecðSÞÞþ l3ðvecðUiÞ

� vecðJiÞÞ þ vecðZiÞ ¼ 0

) l1C
>
i CivecðUiÞ þ l3Ui ¼ l1CiðvecðYÞ

� vecðSÞÞþ l3 � vecðJiÞ � vecðZiÞ

) Ui ¼ ðl1C
>
i Ci þ l3IÞ

�1ðl1CiðvecðYÞ

� vecðSÞÞþ l3 � vecðJiÞ � vecðZiÞÞ:

(15)

	 S ¼ arg minS
1
2
jjS � ðY � hX ,U1 � U2 � � � � � ULþMiLÞk

2
F þ

l2
l1
jjSk1

which can be transformed into a Lasso problem as follow:

minS
1

2
jjS � ðY � hX ,U1 � U2 � � � � � ULþMiLÞk

2
F þ

l2
l1

jjSk1

¼
1

2
jjvecðSÞ � ðvecðYÞ � vecðhX ,U1 � U2 � � � � � ULþMiLÞÞjj

2

þ
l2
l1

jjvecðSÞk1

and can be solved via the proximity operator proxsðtÞ :¼
signðtÞ �max ðjtj � s, 0Þ: Therefore, we have

S ¼ arg min
S

1

2
jjS � ðY � hX ,U1 � U2 � � � � � ULþMiLÞk

2
F þ

l2
l1

jjSk1

¼ proxl2
l1

vecðYÞ � vecðhX ,U1 � U2 � � � � � ULþMiLÞ
� �

(16)

	 Zi ¼ Zi þ l3ðUi � JiÞ which is the cumulative sum of the dual
infeasibility.
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