A Case Study of Taking AP Computer Science Principles:
A Student’s Perspective

Sarah Cameron
Department of Computer Science
University of West Florida
Pensacola, FL, USA
sec80@students.uwf.edu

ABSTRACT

With the increased demand for Computer Science degrees in
the work force, Computer Science is becoming more prominent in
high schools. AP Computer Science Principles (AP CSP) is a course
that serves as a bridge into Computer Science. Code.org provides a
year-long curriculum for this AP course to be led by teachers in the
classroom. Beyond an analysis of the pass rates of students, and
with the recency of the AP CSP course, a reflection of the AP CSP
curriculum from the student’s perspective is in order. This study
breaks down the strengths and weaknesses of AP CSP from a
student’s perspective. Results show there are many strengths
compared to weaknesses in relation to the Code.org curriculum.
However, the course can be a little challenging in motivating and
engaging students if not executed properly by the teacher.

ACM Reference format:

Sarah Cameron, Tony Pham and Sikha Bagui. 2023. A Case Study of Taking
AP Computer Science Principles: A Student’s Perspective. In Proceedings of
2024 Special Interest Group Computer Science Education (SIGCSE’24), March
20-23, Portland, OR.ACM, Portland, OR, USA, 3 pages.
https://doi.org/10.1145/3626253.3635490

1 INTRODUCTION

The field of computer science (CS) is a growing field, in need of
graduating students with CS degrees to fill positions. In Florida
alone, there were 28,088 open positions with only 3,808 graduates
in 2022 [1]. To encourage students to pursue CS degrees at the
college level, CS education is being introduced to students at the
high school level. Many high schools are introducing CS courses,
one version being the Advanced Placement (AP) Computer Science
Principles (CSP) course. AP CSP is a course offered to high schoolers
that allows them to earn college credit and learn about CS in a
broader scope. Due to the recency of the course, research relating
to the course is just beginning to be published. One area of lacking
research is insight into the student's perspective on the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0424-6/24/03. https://doi.org/10.1145/3626253.3635490

Tony Pham
Department of Computer Science
University of West Florida
Pensacola, FL, USA
hdp12@students.uwf.edu

Dr. Sikha Bagui
Department of Computer Science
University of West Florida
Pensacola, FL, USA
bagui@uwf.edu

course and its content. This work intends to present a reflection of
the AP CSP curriculum from the student’s perspective.

2 BACKGROUND INFORMATION

The AP CSP course was first launched in the 2016 exam season
with the intent of bridging the gap for underrepresented groups in
computer science including women, African Americans, and
Hispanics. This intent has shown mixed results. AP’s own report
showed positive increases in underrepresented student enrollment
in AP STEM-related courses [2], but this contrasts with data
showing that the AP CSP course compared to the AP Computer
Science A (CSA) course correlated with fewer declared CS majors
(16.9% versus 28.3% respectively) [3]. A state-wide study on the AP
CSP course, conducted in the state of Maryland, saw a decrease in
the offerings of AP CSA once AP CSP was introduced in many
districts [4]. Overall, research shows a mixed conversation about the
AP CSP course, with little to no research specifically focusing on the
student's perspective on the course.

3 UNDERSTANDING CODE.ORG

The students related to this research were taught using the AP
CSP Code.org curriculum, a website-based curriculum recognized
by AP [5]. The curriculum incorporates the 5 major topics of the
exam into a 10-unit course with a combination of coding and
conceptual-centric units.

The Code.org curriculum employs various resources to help
students and teachers understand the course including worksheets,
multi-media presentations, videos, projects, and assessments. The
coding-centric units also employ a model by Code.org called EIPM
(Explore, Investigate, Practice, Make). This EIPM model is intended
for teachers to build a strong foundation of knowledge with their
students before slowly allowing students to take charge of each

topic [6].

4 ANALYSIS

To assess the Code.org curriculum for AP CSP from a student’s
perspective, both strengths and shortcomings of the course will be
highlighted. Alongside these strengths and weaknesses, a section
discussing the students' direct experiences is included.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635490&domain=pdf&date_stamp=2024-03-15

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

4.1 Strengths

4.1.1 Usage of Multimedia Presentations. Code.org uses
multimedia presentations to engage, motivate, and develop
students’ understanding of the material. This style of presentation
is beneficial for students as it can “stimulate cognitive aspects of
learning... [and] increase student motivation. [7]” Code.org directly
integrates AP CSP vocabulary into multimedia presentations.
Studies have shown that multimedia integration of vocabulary have
helped in learning and retaining more vocabulary [8, 9].

4.1.2 Skill-Building: Collaboration to Debugging, Skills of
Computer Science. Debugging, pair programming, and general
collaboration are all skills emphasized in the course through
projects and lessons. Debugging and collaborative skills are both
vital in the field of computer science. A study has shown that
learning through debugging allows students to have a more
thorough understanding of coding principles [10]. The pair
programming model has been shown to improve the confidence of
students and the quality of projects when used in classes [11].

4.1.3 Projects, Assessments, and Handouts: Skill Assessment
Towards Success. Code.org has a heavy emphasis on hands-on
projects, AP-relevant assessments, and assistive handouts. A
longitudinal study showed that students can develop a conceptual
understanding rooted in creative and deeper thinking through
projects [12].

4.2 Shortcomings

4.2.1 Conceptual and Coding Units: An Issue of Pacing. One
major issue seen throughout the course is the issue of pacing. Units
focusing on concepts relating to CS including cybersecurity,
networks, and global connection are slow in nature compared to the
extremely fast-paced coding units. Units relating to coding are often
taught so quickly that newer students are unable to keep up.

4.2.2 Projects and Assessments: Disconnected from Curriculum.
The projects and assessments for some units can feel disconnected
from the material taught through the presentations. This disconnect
doesn’t allow students to benefit from the creative learning style
brought about by project-centric learning.

4.3 Student’s Perspective

4.3.1 Resources and Presentations: The Good and The Bad. The
resources provided by Code.org for teachers to use are extensive
and intended to support even the newest computer science
educators in helping their students. However, these resources can
fail to be effective for students if teachers do not provide access to
these resources.

4.3.2 The EIPM Model: A System Failed in Application. The EIPM
Model in design is meant to encourage students to slowly take
initiative in their learning pertaining to each coding topic. However,
if teachers fail to embrace the model’s intended principles of
weaning students off teacher support with each topic, the model
falls flat. Failure to embrace the model by students and teachers can
also harm the learning environment for coding-related concepts.

4.3.3 Teacher Involvement: A Curriculum Made for the Engaged.
The curriculum is thorough in its explanations, providing extensive

1589

Sarah Cameron, Tony Pham, & Sikha Bagui

notes and a tight-knit community for teachers to connect to, but
oftentimes, teachers don’t embrace these available sources.

5 CONCLUSIONS

In general, beneficial approaches to teaching are found through
the AP CSP Code.org
presentations with vocabulary integration; skill building including

curriculum including multimedia
debugging, pair programming, and collaboration; and emphasis on
teacher involvement including guidance and feedback. Despite the
strong course, there are still some weak areas of pacing and
disconnected projects and assessments. A big part of the student
feedback emphasized the strength of the course material and setup
but the failure of the teachers to embrace the material.

Overall, the students agreed that the course was quite effective
at the material it taught but only failed in application due to teachers
not being able to embrace all the material available.

ACKNOWLEDGMENTS

This work has been supported by NSF grant no. 2122393 and by The
University of West Florida’s Office of Undergraduate Research.

REFERENCES

[1] Code.org. 2022. Florida 2022 State of CS report | CS advocacy. Retrieved 2022 from
https://advocacy.code.org/stateofcs.

[2] Jeff Wyatt, Jing Feng, and Maureen Ewing. 2020. AP computer science principles
and the computer science pipelines. (December 2023). Retrieved 2022 from
https://apcentral.collegeboard.org/media/pdf/ap-csp-and-stem-cs-pipelines.pdf.
Linda J Sax, Kaitlin N. S Newhouse, Joanne Goode, Max Skorodinsky, Tomoko M
Nakajima, and Michelle Sendowski. Does AP CS Principles Broaden Participation
in Computing? February 2020. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 542-548. https://doi.org/10.1145/3328778.3366826
Heather Killen, David Weintrop, and Megean Garvin. AP Computer Science
Principles' Impact on the Landscape of High School Computer Science using
Maryland as a Model. February 2019. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education. 1060-1066.
https://doi.org/10.1145/3287324.3287356
[5] Codeorg. 2023. CS Principles | Code.org. Retrieved 2022 from

https://code.org/educate/csp.

Code.org. 2022. EIPM: A Short Introduction - Google Docs. Retrieved 2022 from
https://docs.google.com/document/d/1ncil5b0y WAN4LCyOeXwYuNrNKEHtN4n

mAd2o-_K5Psw/preview.

Iryna, Kotiash, Iryna Shevchuk, Maksym Porysonok, Iryna Matviienko, Mykyta
Popov, Vitalii Terekhov, and Oleksandr Kuchai. Possibilities of using multimedia
technologies in education. June 2022. International Journal of Computer Science and
Network Security 22, 6 (June 2022), 727-732.
https://doi.org/10.22937/]JCSNS.2022.22.6.91

Hamidreza Khiyabani, Behzad Ghonsooly, and Zargham Ghabanchi. Using
multimedia in teaching vocabulary in high school classes. January 2014. Journal of
Advances in English Language Teaching 2, 1 (Jan. 2014), 1-13.

Bagui, S. Reasons for Increase in Learning with Multimedia. The Journal of
Multimedia and Hypermedia, 7(1), (1999), 3-18.

J.M. Griffin. Learning by taking apart: deconstructing code by reading, tracing,

and debugging. September 2016. In Proceedings of the 17th Annual Conference on
Information Technology Education. 148-153.
https://doi.org/10.1145/2978192.2978231

C. McDowell, L Werner, H. E. Bullock, J. Fernald. The impact of pair programming
on student performance, perception and persistence. May 2003. In Proceedings of
the 25th International Conference on Software Engineering. 602-607.
httsp://doi.org/10.1109/ICSE.2003.1201243

Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. Project-based learning:

A review of the literature. July 2016. Improving Schools 19, 3 (July 2016), 267-277.
httsp://doi.org/10.1177/1365480216659733

[7]

[9]

[10]

(11]

[12

