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Optical detection:
Spin-mechanical coupling in CrSBr: He-Ne laser |

ABSTRACT: Spin-mechanical coupling is vital in diverse fields
including spintronics, sensing, and quantum transduction. Two-
dimensional (2D) magnetic materials provide a unique platform for
investigating spin-mechanical coupling, attributed to their mechanical
flexibility and novel spin orderings. However, studying their spin-
mechanical coupling presents challenges in probing mechanical
deformation and thermodynamic property changes at the nanoscale.
Here we use nano-optoelectromechanical interferometry to mechan- e -
ically detect the phase transition and magnetostriction effect in Magnetic ield (1) 228
multilayer CrSBr, an air-stable antiferromagnet with large magnon- Magnetoelastic coupling constant: <,
exciton coupling. The transitions among antiferromagnetism, spin- B,,=~3 MJ/m? 2o i
canted ferromagnetism, and paramagnetism are visualized. Nontrivial oz ozew  oa% 0%
magnetostriction coefficient 2.3 X 107> and magnetoelastic coupling .

strength on the order of 10° J/m® have been found. Moreover, we demonstrate the substantial tunability of the magnetoelastic
constant by nearly 50% via gate-induced strain. Our findings demonstrate the strong spin-mechanical coupling in CrSBr and pave the
way for developing sensitive magnetic sensing and efficient quantum transduction at the atomically thin limit.
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Recent progress in layered magnetic materials represents an highlight that CrSBr can lead to unique magnetic phases'” and
emerging research frontier to explore new types of spin highly tunable quantum information carriers™ for low-power
ordering and harvest their collective excitations for techno- spintronics and hybrid magnonics.

logical advancements. Various types of magnetic ordering have Besides the coupling between charge and spin degree of
been discovered, such as 2D ferromagnets/ antiferromaég— freedoms, the interplay with the lattice degree of freedom in
nets,'~” noncollinear spin textures,” quantum spin liquid,*’ quantum materials is also important for correlated physics and
and magnetic topological insulators.®’ Among them, 2D A- hybrid magnonics. One notable example is the magneto-
type antiferromagnet CrSBr has garnered signiﬁcant attention striction effect, which dictates how lattice deformation
due to substantially enhanced spin excitations,'”"" strong accompanies magnetization change.”’”>* The underlying
couplings with excitons' ™' and superior air stability.'”"” A spin-mechanical coupling is found to be crucial for magnon
CrSBr crystal is composed of rectangular unit cells arranged in generation and transport,”*”* on-demand modulation of

layers within the ab-plane, and these layers are sequentially S
stacked along the c-axis, resulting in an orthorhombic structure
(Figure 1a). It is found to be A-type antiferromagnetic material
below a Néel temperature Ty of approximately 132 K. Spins
within each layer align ferromagnetically along the crystalline b
axis, while the interlayer coupling is antiferromagnetic. Recent
advances have reported strong magnon-exciton coupling,
where the exciton energy can be nontrivially modified by the
interlayer spin alignment by about 10 meV due to spin-
dependent exchange interaction, enabling new efficient
mechanism for magnon-exciton transduction.'’ Subsequent
research has provided compelling evidence of ultrastrong Revised:  July 29, 2024
couplin§s between cavity photons and excitons within Acce}’ted‘ July 30, 2024
CrSBr."'* Moreover, ultrathin CrSBr is air-stable and can Published: August 3, 2024
last for months under ambient conditions,'®'” which is

appealing for practical device applications. These findings

L2 . . 28,2923
magnetism, efficient quantum transduction,””"” and

high-performance sensors and actuators.””*' However, such
an important effect and its great potential in hybrid magnonics
are largely unexplored in 2D CrSBr and other 2D layered
magnets due to the lack of sensitive mechanical probing
methods at the ultrathin limit and micrometer scale. For
example, conventional high-sensitivity measurement techni-
ques for magnetostriction such as strain gauge, capacitance
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Figure 1. Nano opto-electro-mechanical resonators with multilayer CrSBr. (a) Lattice structure and the spin alignment of CrSBr. (b) Schematic of
the measurement system. The resonator is electrically actuated by a vector network analyzer (VNA). A DC gate voltage, V, is superimposed to
apply static tension to the membrane through a bias tee. The motion results in dynamic boundary change and optical interference of the incident
He—Ne laser beam, whose intensity modulation at different vibration frequencies can be detected by an ultrafast PD and the same VNA. BS: beam
splitter; PD: photodetector. (c) Optical microscope image of a CrSBr opto-electro-mechanical resonator. Part of the multilayer CrSBr flake (white
dashed line) is suspended over an etched circular drum as a mechanical resonator; the Au/Ti electrodes are prepatterned to enable electrical
contact with the flake. (d) Typical amplitude curve versus the driving frequency measured at 1.7 K, showing a resonance peak at around 25.126
MHz and a quality factor around 5000. The blue curve is the Lorentz fit of the data points.

dilatometry and cantilever measurements,”” are challenging to
apply to the microscale 2D samples due to the geometrical
incompatibility and low signal-noise ratio.

Here we address this challenge and interrogate the
magnetostriction and magnetoelastic coupling in ultrathin
CrSBr membranes using nano opto-electro-mechanical reso-
nators, whose high-quality mechanical and optical cavity allows
for sensitive mechanical detection. A typical nanomechanical
system is a nanoscale device made of a thin membrane, whose
nanomechanical vibration frequency and amplitude can be
precisely probed by optical interferometry.”> Its nano-
mechanical resonance response can contain critical thermody-
namic and magnetoelastic properties of the material.
Specifically, entropy changes in a material arising from
magnetic order reorientation and transitions are reflected in
the modification of its specific heat. This modification leads to
variations in the thermal expansion coefficient that affect the
tension and resonance frequency.”*>> Building upon the
sensitive optical interferometry and high-quality mechanical
cavity, we reveal the thermodynamic properties of the
magnetic phase transition and interrogate the nontrivial
magnetostriction effect in multilayer CrSBr. Based on a free
energy model for magnetostriction, we quantify the saturation
magnetostriction 4, to be 2.3 X 107> and magnetoelastic
coupling constant to be 3.4 + 0.1 M_]/m3 The saturation
magnetostriction in CrSBr is 1 order of magnitude larger than
that of yttrium iron garnet (YIG),*® the state-of-the-art
quantum material for hybrid quantum magnonics. Further-
more, we have successfully shown that the magnetostriction
effect in multilayer CrSBr can be extensively controlled by
gate-induced strain with the magnetoelastic coupling strength
exhibiting as high as 50% amplitude tuning. Our findings may
unleash the full potential for CrSBr as new hybrid magnonic
materials and pave the way for using lattice, spin, and charge
degrees of freedom in it for quantum transduction.

10468

To fabricate the nano-optoelectromechanical cavity systems
(NOEMS), we exfoliated multilayer CrSBr flakes from
synthesized bulk crystals (Figure S1) to the Polydimethylsilox-
ane (PDMS) polymer and then transferred onto the
prepatterned circular hole (Figure 1lc, Supporting Information
§2). A DC gate voltage V, coupled through the bias tee can
change the pretension in the membrane. On the other hand,
the vibration of the membrane is excited by a small RF voltage
generated by a vector network analyzer and detected
interferometrically with a 633 nm He—Ne laser (Figure 1b,
see section S3 for more details). When the driving frequency
provided by VNA matches the resonant frequency of the
suspended membrane,” a peak emerges in the microwave
transmission spectrum (Figure 1d). The high-quality factor (Q
~ 5000) enables high sensitivity for the following mechanical
detection of spin orderings and magneto-elastic coupling.

To reveal the spin-mechanical couplings in different
magnetic orderings, we first use NOEMS to detect the
magnetic phase transition and corresponding thermodynamic
properties in multilayer CrSBr with a thickness of 30 nm
(Figure S2.1). In particular, we measured the temperature
dependent mechanical resonance frequency f, (T) in the range
from 117 to 145 K, (solid blue line in Figure 2a). We observed
a smooth frequency redshift except for a subtle abrupt change
around 139 K. This signature is more evident by df3(T)/dT
(solid red curve in Figure 2a), which shows a sudden large dip
around 139 K. The gradual thermal expansion induced strain
change is commonly accounted for the smooth frequency
decrease, given the resonant frequency is highly dependent on

. 24 | Eye .
membrane strain (f= - |2%, where Ey is Young’s
P

27R
modulus, &, is strain, R is the radius of the circular resonator,
and p is the mass density). The sudden frequency slope change
around 139 K is attributed to the antiferromagnetic to
paramagnetic transition in CrSBr. Here the magnetic entropy
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Figure 2. Mechanical detection of magnetic phase transition and thermodynamic properties of multilayer CrSBr. (a) Detection of magnetic phase
transition temperature. Solid blue curve, resonance frequency as a function of temperature, solid red curve, temperature derivative of f3(T), with a
minimum at 139 K, which corresponds to Néel temperature Ty. The inset shows an amplified plot around Ty. (b) Temperature dependence of
mechanical quality factor Q of the fundamental resonance mode, the drop of Q factor at AFM-PM magnetic phase transition suggests the larger
mechanical loss arises from spin fluctuation. (c) Heat capacity c, of the CrSBr thin flake calculated from f, (T), exhibits an anomaly at 139 K due to

magnetic phase transition.

changes result in subtle tension variation, which is captured by
the ultrahigh frequency sensitivity in our NOEMS approach.
Note that the Ty detected in our ultrathin CrSBr membrane is
slightly higher than its bulk counterpart (132 K), which is
assigned to a distinctive intermediate or surface magnetic
phase.””*® In addition, the quality factor of resonance, defined
as the ratio between resonance frequency and resonance line
width gradually decreases from 117 K with a minimum
occurring near 139 K, which coincides with the Neéel
temperature obtained from the previous fo(T) curve (Figure
2b). It suggests that larger dissipation near the phase transition
due to more significant thermoelastic damping.*”*® The
identical critical temperature again confirms the magnetic
phase transition around 139 K in the ultrathin CrSBr NOEMS
devices. Moreover, the heat capacity c, is proportional to the
derivative of resonance frequency squared with respect to
temperature (c, o dfg(T)/dT)** (see section S4). Accordingly,
we plotted the value of the heat capacity through the magnetic
phase transition. The second order magnetic phase transition
at Néel temperature features an anomaly in the heat capacity.
And our calculated values are consistent with those reported
for bulk CrSBr crystals.'”*® This demonstrates the feasibility of
our NOEMS approach in measuring thermodynamical
property in micrometer-scale 2D materials, which is challeng-
ing for the conventional calorimetry method.*'

Building upon the magnetic phase diagram, we investigated
the magnetostriction effect in different spin orderings of CrSBr
using another device with a 20 nm thickness (Figure S2.2). To
start, the mechanical resonance f, of the CrSBr device was
measured under out-of-plane magnetic field scanning at 2 K
(Figure 3a). We observed that f, redshifts smoothly with
increasing field at 2 K and saturates beyond 1.92 T. The total
change in f is about 0.09 MHz or 0.4% (fA”f"i_f‘AF ~ 0.4%) of

AFM

the initial frequency. Since the mechanical resonance variation
is directly connected with strain change in the membrane, such
nontrivial frequency shift under magnetic field is a hallmark of
the magnetostriction effect in the multilayer CrSBr device.
Moreover, the observed saturation field (1.92 T) is consistent
with the value reported for multilayer CrSBr*>~** and our
magnetic circular dichroism data (see section S8 and S9 in the
Supporting Information). Thus, we attributed the smooth
mechanical frequency redshift to the spin-canting from in-
plane antiferromagnetism to out-of-plane ferromagnetism in
2D CrSBr. During the process, the spin alignment changes the
strain in the membrane via the magnetostriction effect.

To quantify the magnetoelastic coupling strength, we have
adapted the conventional magnetostriction model,”>* with
the specific CrSBr magnetic and elastic free energy to fit our
experimental data. Our model indicates that the competition
between minimizing the internal magnetic energy and elastic
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Figure 3. Probing magnetostriction effect in different magnetic regimes. (a) Normalized vibration amplitude as a function of driving frequency and
out-of-plane magnetic field that sweeps from —3.2 to 3.2 T, measured at 2 K. The resonance frequency blueshifts as the magnetic field increases
until the magnetization is saturated. The magnetic field dependent mechanical resonance frequency shift clearly reveals nontrivial spin-mechanical
coupling. (b) Temperature dependent magnetostriction effect at 2, 42, 82, 122, 142, and 162 K, respectively. (c) The magnetoelastic constant in
antiferromagnetic ordering as a function of temperature fitted from the magnetostriction model, which drops dramatically as the temperature
increases from 2 to 132 K. The shaded blue band represents the fitting error bar. (d) Magnetic phase diagram of CrSBr using the absolute value of
0¢/0B as an indicator. The dotted black lines delineate the boundary between antiferromagnetic (AFM), ferromagnetic (FM) and paramagnetic

(PM) states.

energy contributes to the resonance frequency shifts with the
magnetic state. The elastic energy of the membrane per unit

3 2 . .
volume can be expressed as U; = ~Eye”, where ¢ is the strain,

Ey is Young’s modulus. On the other hand, the intrinsic
. . : 46,47
magnetic energy in CrSBr can be written as

H= ) -] 88+ X [-D(S)) + EI(S)) — (87)]

n—1 n

Here ], is the interlayer exchange coupling with energy per
unit volume. S, S, denotes the spin unit vector of the top and
bottom CrSBr layers, and the single-ion anisotropy parameters
D and E are introduced to simulate the triaxial magnetic
anisotropy.*®*” The two terms of the CrSBr spin Hamiltonian
describe the contribution from the magnetic exchange energy
and anisotropic energy, respectively. By minimizing the total
energy with respect to strain, we can obtain the expression of
frequency shift as a function of the applied magnetic field. (see
section SS in the Supporting Information for more details)
LszzBmesin2 0

AT R

Here the magnetoelastic constant B, = (n — 1)/ndJ,/de — 1/
20(E + D)/0e, where n is the layer number of CrSBr devices.
When n > 1, B, ~ 0],/d¢ — 1/20(E + D)/0¢, where p is
the effective mass density, sin 8 = M/M, = H/H, for the
antiferromagnetic phase. H, is the magnetic saturation field.
From this model we found the frequency shift within spin
canting process can be well fit (Figure S3 in the Supporting
Information), and we can further infer the magnetoelastic
constant B, 2.4 + 0.2 MJ/ m?, here the value derivation is the
fitting error bar. By calculating the maximum strain change the
under magnetic field based on the resonance frequency, we
also determined a saturation magnetostriction coefficient A, =
1.7 x 107° at 2 K.

faen — S =

To fully understand the magnetostriction in different spin
orderings, we have conducted a systematic temperature
dependent magnetostriction study (Figure 3b, Figure S4).
We again observed a decrease in resonance frequency with
increasing temperature, indicating a strain reduction of
approximately 0.1% from 2 to 192 K. The strain we measured
is an averaged strain in our circular membrane with thermal
expansion contribution from both the 4 and b axes. Such
averaged strain change is smaller than the absolute value of the
uniaxial strain,** which may arise from the opposite thermal
expansion for the a and b axis as reported before.”* On the
other hand, as the temperature rises, the magnetic saturation
field drops arising from a weakened magnetic exchange
interaction. Accordingly, the temperature dependence of
magnetoelastic constants in the antiferromagnetic regime
declines dramatically as the temperature increases from 2 to
132 K (Figure 3c). Besides, resonance frequency blueshifts
beyond the saturation field, especially at higher temperature in
contrast to a nearly flat curve observed at 2 K. Above the Néel
temperature, the magnetic saturation field is no longer
observable, and f, blueshifts continuously with an increasing
magnetic field (Figure 3c, 142 and 162 K data). The large
magnetostriction in paramagnetic phase is attributed to the
large magnetocrystalline anisotropy generated by the spin orbit
coupling (SOC) of the bromine atoms,™ similar to what is
observed in other magnetostriction materials.** A local or
short-range magnetic order within each CrSBr layer'” may also
contribute to this phenomenon. The different nature of the
magnetostriction effect in CrSBr at different regimes enables us
to draw a magnetic phase diagram with respect to temperature
and applied magnetic field (Figure 3d). The intensity of the
mapping plot is indicated by the magnetostriction sensitivity
defined as 0de/0dB, which characterizes the magnetostriction
strength.”” The transition between the FM and AFM states is
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Figure 4. Gate tuning of the magnetostriction effect in CrSBr membrane. (a) Resonance frequency with respect to magnetic field under gate
voltages 0 and 30 V measured at 1.7 K. Frequency change between zero field and saturation field at 30 V is significantly smaller than that at 0 V,
indicating a tunable magnetoelastic coupling. (b) Fitted magnetoelastic coupling constants B, against gate voltages from —30 to 30 V. B,
decreases symmetrically with increasing V|, achieving an up to 50% strength change. The shaded region represents the error band from the fitting.
(c) Fitted magnetoelastic coupling constants B, as a function of strain. Given the nearly symmetric response, only the data of strains induced by

positive voltages are plotted for simplification.

distinguishable due to the discontinuity of de/0B across the
two magnetic phases. Conversely, in the PM state, the strain
increases monotonically with the magnetic field and no
discontinuity is observed.

Finally, we interrogated the tunability of magnetostriction
effect in another multilayer CrSBr (15 nm; see Figure $2.3)
NOEMS device by applying in situ DC gate bias between
suspended membrane and silicon substrate. In particular, we
measured the magnetic field dependent resonance frequency at
different DC gate voltages (Figure 4a and Figure S8). As the
gate voltage increases, we observed the significant drop of
frequency change between zero field and saturation field in the
f—H curves, which suggests a tunable magnetostriction effect.
Through the parabolic fitting of the f—H curve using an
established magnetostriction model, we quantified the
magnetoelastic constant B, as a function of gate voltages
(Figure 4b). The B, for this device at zero gate voltage is 3.4
+ 0.1 MJ/m?® and magnetostriction coefficient A, = 2.3 X 107°.
This value is 1 order of magnitude larger than yttrium iron
garnet (YIG), and comparable to iron.”**° We notice that the
B, here is larger than that in the 30 nm device. In several
other devices we measured, the fitted B, range from 2—4 MJ/
m?® (see Table S1 in the Supporting Information), and no clear
thickness dependence is observed. As a result, we suspect that
multiple extrinsic factors during device fabrication, including
initial transfer strain and polymer residue on the CrSBr
membrane, may lead to this variation. This observation of large
magnetoelastic coupling is supported by our first-principles
density functional theory (DFT), which suggests similarly large
values in 2D vdW CrSBr (see section S11 in the Supporting
Information). Furthermore, we found that B, decreases
remarkably as the voltages increase to 30 V with up to 50%
amplitude tunability. The tuning trend is almost symmetrical
for positive and negative voltages.

In the following, we discuss the possible underlying tuning
mechanisms. On one hand, the DC gate bias can provide

additional capacitive force to pull the suspended CrSBr
membrane downward and build up extra tensile strain to
alter magnetostriction. On the other hand, the DC gate bias
can also induce carrier doping into the membrane, which may
modify the exchange and the anisotropy energy terms in the
magnetostriction model. To elucidate the observed tunability
contributed by these two mechanisms, we conducted both
reflective magnetic circular dichroism (RMCD) and DFT
calculations. First, we implement RMCD on the supported
region of the same CrSBr flake on the SiO,/Si substrate to
quantify the gate-dependent saturation field (Figure SS), in
which the gate bias can only induce electrostatic doping. We
noticed that the saturation field B, = 20400 Oe remains
unchanged for CrSBr flake on the substrate under gate voltages
up to 90 V. Note that B, is linearly proportional to interlayer
exchange interaction ], and magnetic anisotropy energy, and
its first derivative respect to strain determines the magne-
toelastic constant B_,. Therefore, the observed nearly
unchanged B for ultrathin supported CrSBr suggests that the
doping effect is negligible to alter the magnetoelastic coupling
by up to 50%. Our DFT calculation results also point out that
the gate induced doping (~10''/cm?), has a minor effect on
the interlayer exchange interaction and magnetic anisotropy
energy (Figure $9.3).

Regarding the gate-induced strain influence, we observed a
500 Oe decrease of B, within the same gate voltage range by
RMCD measured on the suspended drum (Figure S6). Based
on this B, difference, we calibrated the strain change according
to the strain dependent saturation field,”" and found a gate-
induced tensile strain on the order of 0.1% under the 30 V gate
voltage (Figure 4c and Figure S7). The observed strain
tunability of magnetoelastic coupling is higher than conven-
tional bulk magnetostriction materials such as Fe, Ni, and
Co.”>** For example, in epitaxial Fe(001) films, around 0.3%
strain is required to tune B, by 50%,”> while only 0.1% strain
is needed for CrSBr to achieve the same relative magnitude
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change. Such a large strain tunability of magnetoelastic
coupling and magnetostriction may be understood by the
strong modification of the geometry of the Cr—Br—Br—Cr
exchange pathway and the distinctive mechanical flexibility of
2D membranes, where strain tuning of the electronic orbital
change results in substantial spin responses. Besides, a large
shape anisotropy arising from the in-plane spin orientation may
also play a role here.** Taken together, our finding, for the first
time, features the discovery of substantial tunability of spin-
mechanical coupling in 2D magnetic membranes.

Our results of the magnetostriction effect in ultrathin CrSBr
suggest its great potential as a superior quantum magnonics
platform for information transduction and spintronics. For
example, compared to YIG, the state-of-the-art material for
hybrid quantum magnonics, the demonstrated much larger
magnetostriction and much stronger magneto-optic effect in
atomically thin CrSBr can potentially overcome the weak
quasiparticle coupling and the large material mode volume
challenges, leading to long-sought efficient quantum trans-
duction using cavity magnomechanics and cavity optomag-
nonics schemes.””** Such nontrivial magnetoelastic coupling
in CrSBr can also lead to efficient magnon generation at 2D
limit via planar surface acoustic wave launching,SS’S(’ which is
important for on-chip spintronics. Moreover, the highly
tunable magnetoelastic coupling strength in CrSBr is beneficial
when exploring quantum critical phenomena across different
quantum phases. For instance, the observation of exceptional
points and exceptional surfaces in non-Hamiltonian magnon
polariton systems benefits a large tunable coupling strength to
achieve the degeneracy of both eigenfrequencies and
eigenvectors. The large turnability also allows for illustrating
the evolution of Riemann surfaces associated with real and
imaginary parts of the eigenvalues as the coupling strength
changes.””>*

In summary, we have studied the magnetic phase transition
and magnetostriction effect in 2D layered magnets CrSBr using
high-quality nano opto-electro-mechanical resonators. The
magnetic phase transition around Ty and associated
thermodynamical properties such as specific heat was
characterized through the temperature-dependent resonance
frequency analysis. Through magnetic field dependent
mechanical frequency measurements and magnetostriction
model fitting, we found distinct magnetostriction effect A, =
2.3 X 107° and magnetoelastic coupling strength on the order
of 10° J/m>. Furthermore, we have demonstrated significant
gate-induced strain tunability ~50% of magnetoelastic
coupling. A model for magnetostriction was applied to quantify
the magnetoelastic constant B, whose strain tunability in
CrSBr is found to be much larger than that of typical thin film
magnetic materials such as cobalt and iron. Distinct from prior
magnetostriction studies in 2D magnets Crl; and
MnBi,Te,,””*” our results on CrSBr have unique significance
in terms of: (1) distinctive material platform with strong
coupling physics. Specifically, CrSBr features a multitude of
quasiparticle interactions including magnon-exciton, magnon-
phonon, magnon—magnon, and cavity photon-exciton cou-
plings; (2) superior air stability. In contrast to extremely air-
sensitive Crl; and MnBi,Te,, atomically thin CrSBr flakes are
robust under the ambient condition,'® which is critical for
routine and reliable device applications. (3) CrSBr also has a
much higher magnetic transition temperature'’ above the
liquid nitrogen temperature with lower cryogenic operation
cost. Taken together, our study advances the understanding of

spin-mechanical coupling in 2D layered quantum materials and
paves the way for low-dimensional magnetostriction device
applications such as spintronics, magnetic sensing, and

quantum transduction.
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