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ABSTRACT: Air pollution in Africa is a significant public health issue responsible for 1.1 million prema-
ture deaths annually. Sub-Saharan Africa has the highest rate of population growth and urbanization 
of any region in the world, with substantial potential for future emission growth and worsening air 
quality. Accurate and extensive observations of meteorology and atmospheric composition have 
underpinned successful air pollution mitigation strategies in the Global North, yet Africa in general 
and East Africa in particular remain among the most sparsely observed regions in the world. This 
paper is based on the discussion of these issues during two international workshops, one held virtually 
in the United States in July 2021 and one in Kigali, Rwanda, in January 2023. The workshops were 
designed to develop a measurement, capacity building, and collaboration strategy to improve air 
quality-relevant measurements, modeling, and data availability in East Africa. This paper frames the 
relevant scientific needs and describes the requirements for training and infrastructure development 
for an integrated observing and modeling strategy that includes partnerships between East African 
scientists and organizations and their counterparts in the developed world.

SIGNIFICANCE STATEMENT: Air pollution is a leading environmental risk factor in East Africa that 
is expected to worsen with rapid urbanization and economic growth occurring in the region. The 
unique emission sources will impact atmospheric composition and chemistry and are of significant 
current interest to understand their impact on climate and air quality mitigation efforts everywhere. 
There is a need to quantify emission trends from different regions of the world and develop reli-
able methods for inventories. Relationships between scientists from both the Global North and the 
Global South will help to advance and implement measurements and to build global atmospheric 
chemistry capacity.
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1. Introduction
Air pollution is the leading environmental risk factor for premature death worldwide and is 
linked to multiple negative health outcomes (Amann et al. 2020; Christopher et al. 2020;  
Cohen et al. 201%; Kumie et al. 2021; Lelieveld et al. 2015; Pope et al. 2020; Pozzer et al. 2023; 
West et al. 201(). In Africa, air pollution was responsible for 1.1 million premature deaths 
in 201) (Boogaard et al. 201); Christopher et al. 2020; Fisher et al. 2021; Glenn et al. 2022; 
Isaxon et al. 2022; Nicholas Rees 201); Rentschler and Leonova 2023; Fuller et al. 2022), of 
which approximately (3% were linked to exposure to household air pollution (Fisher et al. 
2021; Gordon et al. 2023). It is also the third largest risk factor for death of children under 
5 years of age, with over a quarter million deaths of newborns within the *rst month of life 
(Health E+ects Institute 2022). Exposure to particulate matter (PM) has been linked to ,00 000 
preventable infant deaths per year in sub-Saharan Africa and is projected to account for 32% 
of deaths in this age group by 2025 (EPA 2021). These estimates are based on integrated 
exposure–response (IER) models that are derived largely from studies in Europe and North 
America, where ambient PM2.5 levels are considerably lower than those in Africa (Amegah 
et al. 2022; Fuller and Amegah 2022). Hence, these studies may not be reliable predictors of 
African mortality and may be underestimates (Haakenstad et al. 2022).

A limited number of short-term PM2.5 datasets in East Africa have shown concentrations 
nearly 10 times higher than the yearly average World Health Organization (WHO) guideline 
values (5 μg m-3) and approximately , times higher than the 2,-h average (15 μg m-3) (Amegah 
and Agyei-Mensah 201%; deSouza et al. 2020; Egondi et al. 2013; Gaita et al. 201,; Kume et al. 
2010; Ngo et al. 2015; Pope et al. 201.; Schwander et al. 201,; Singh et al. 2021; van Vliet 
and Kinney 200%). The three most polluted cities in sub-Saharan Africa are Lagos, Nigeria, 
in West Africa, and Nairobi, Kenya, and Addis Ababa, Ethiopia (Okafor 2023), in East Africa.

Demographic trends compound these severe health impacts. Over half of the projected 
increase in global population between 2020 and 2050, and )0% from 2050 to 2100, is from 
countries in sub-Saharan Africa, where the population is expected to triple by 2100 (Gu et al. 
2021). At the current 3.5% growth rate, Africa is expected to comprise 21% of the world’s 
urban population by 2050, and by 2100, 13 of the 20 megacities in the world will be in  
Africa (Hoornweg and Pope 201%; Hoornweg and Freire 2013). With this rapid urbanization 
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and industrialization, sub-Saharan Africa faces increasingly severe air quality problems  
and sharply increasing costs (Hove et al. 2013). In Ethiopia, Ghana, and Rwanda, ambi-
ent air pollution resulted in losses of economic production between 0.0.–0.3% of gross 
domestic product (GDP) and 0.)5%–1.2% of GDP across the continent (Fisher et al. 2021). 
Despite strong evidence of the economic benefits of cleaner air, the investment for air quality 
research is only 1% of the approximately /2.5 billion spent on international development 
funding (Ayompe et al. 2020).

African air pollution is driven by a complex range of emissions that include fossil fuel com-
bustion, biomass and trash burning, biogenic volatile compound emissions, agriculture, and 
dust (Fig. 1). Detailed information on emissions, production, transport, and loss mechanisms 
of pollutants is required to accurately model air quality and associated health impacts. There 
are, however, relatively little reliable data on air pollution concentrations for sub-Saharan 
Africa (Fuller and Amegah 2022; Vilcassim and Thurston 2023). According to the World Air 
Quality Report, only 1) of 5, countries in Africa have sufficient public air quality data (IqAir 
2022). The 2020 OpenAQ global assessment on the availability of air quality measurements 
found that governments in only ,)% of countries produce publicly accessible air quality 
data and that four of the seven countries in which such data could have the greatest impact 
on public health policy are in East Africa (Brauer et al. 2020). A study by United Nations 
International Children’s Emergency Fund (UNICEF 201)) estimated that only (% of African 
children live within 50 km of an air quality monitor compared to %0% in Europe and North 
America. This limitation points to the lack of basic research to address the unique aspects of 
the pollutants found in Africa, and the lack of data needed to reduce uncertainties for model 
predictions (Agbo et al. 2021; Al-Zu’bi et al. 2022; Makoni 2020). A larger number of observa-
tions for species such as carbon monoxide (CO), nitrogen oxides (NOx), and ozone (O3) would 
provide better statistics against which models could be tested in this data-poor region, while 
more detailed chemical measurements that allow source apportionment of trace gases and 
aerosols could help to constrain emission inventories and model representation of chemical 
processes and transport. A recent study points out that more in situ observations in the East 
Africa could substantially improve the predictive skill of atmospheric chemistry model(s) in 
the region (Tang et al. 2023).

Data assimilation models incorporating satellite remote sensing observations are in 
some cases global in scope and therefore provide information on air quality over Africa 
(Agusti-Panareda et al. 201%, 201)). Due to missing information on actual emissions, and 
the lack of ground-based in situ and remote sensing data, accurate ground-level air pollution  
levels and validation of such models are challenging. Despite the worldwide coverage of 

FIG. 1. African pollution emission sources.
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satellite data, their use in monitoring air quality (AQ) over Africa is infrequent due to capacity 
limitations for these large datasets (Dekker et al. 2023).

Many of the scientific challenges in atmospheric chemistry are global in nature and affect 
everyone (National Academies of Sciences, Engineering, and Medicine 201(). A significant 
portion of future emissions affecting global atmospheric composition may come from Africa 
(Ayompe et al. 2020), and hence, there is a need to understand and characterize these 
emissions. The urgency stems not just from the population of Africa, but from worldwide 
climate and air quality. These low-latitude emissions have a greater impact on oxidation and 
radiative forcing than northern midlatitude emissions (Scott et al. 201.; Zhang et al. 201(a). 
For example, if emissions are left unabated, sources of African PM emissions are expected to 
contribute 50% to the global total by 2030 (Liousse et al. 201,).

Field campaigns observing detailed atmospheric composition and meteorology have been 
an effective means to achieve scientific results that inform air quality policy. Examples of 
regionally focused airborne and ground-based research in the United States include the 
2002 and 200, New England Air Quality Studies (NEAQS) (Fehsenfeld et al. 200(), the 2000 
and 200( Texas Air Quality Studies (TexAQS) (Parrish et al. 200)), and the 2010 California 
Research at the Nexus of Air Quality and Climate Change (CalNex) (Ryerson et al. 2013). 
Major scientific results from these studies have been the recognition of the role of secondary 
organic aerosol as a major component of particulate matter together with gaps in emissions 
and process chemistry of volatile organic compounds (VOCs) (de Gouw et al. 2005), the  
importance of petrochemical emissions in ozone formation in Texas (Gilman et al. 200)), and 
the identification of volatile chemical products as a major driver of VOC emissions in California 
and elsewhere (McDonald et al. 201.). In China, the Campaigns of Air Quality Research in 
Beijing and Surrounding Regions (CARE-Beijing) took place in a series of years between 200(  
and 201, and were followed by an additional series of campaigns, such as the study of air 
pollution sources and processes within Beijing (APHH Beijing) (Lu et al. 201)a; Shi et al. 
201)). This research has elucidated the major mechanisms responsible for summertime ozone 
and winter haze formation in China (Guo et al. 2023; Lu et al. 201)b) and has occurred con-
currently with significant emission reductions in East Asia (Liu et al. 201%; Xia et al. 201().

Research efforts at this scale have been limited to nonexistent in much of Africa. Here, 
we review the current state of air quality research in Africa and East Africa and discuss 
the potential outcomes of more detailed atmospheric chemistry measurements using 
research-grade instruments, field intensives, satellite observations, and modeling. We provide 
a framework for multiplatform observations, measurement, modeling, and capacity-building 
program for the region.

2. Existing datasets
a. Reference monitoring. Reference monitors are key for air quality management and research. 
A survey of the data available on OpenAQ as of September 2023 (Fig. 2) shows that there are 
three reference-grade O3 monitors in Africa (all in South Africa) and 123 PM2.5 reference moni-
tors ()% in South Africa and 2( in the rest of the continent). PM2.5 reference monitors such as 
the federal reference method (FRM) instruments and federal equivalence method (FEM) instru-
ments, commonly used in the United States, are rare in Africa. The largest repository of refer-
ence PM2.5 data outside of South Africa comes from the U.S. State Department AirNow program, 
where reference monitors are placed at U.S. diplomatic posts, which are publicly available. Most 
regulatory monitoring e+orts are recent, resulting in only a few years of data. Some long-term 
measurement sites were also available including the World Meteorological Organization (WMO) 
Global Atmospheric Watch (GAW) stations specially the one located in Mount Kenya and the 
Rwanda Climate Observatory which provided information on greenhouse gas emissions  
relevant for air quality assessment in East Africa.
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b.  Low-cost sensors. Consumer-grade, “low-cost” air sensor data (henceforth referred to 
as LCS) have been embraced across Africa to *ll air quality data gaps. Typically, LCSs have 
measured PM rather than gases. Many LCS deployments have had limited reference data 
to calibrate against. Their deployments, however, have been vital to understand PM  levels 
in African cities, many of which were previously unmonitored. For instance, McFarlane 
et al. (2021b) presented the *rst PM2.5 measurements in Kinshasa, Democratic Republic of 
Congo using a calibrated network of PurpleAir sensors. Example LCS deployments in West 
Africa include locally calibrated LCSs in Lomé, Togo (Raheja et al. 2022), the Greater Accra, 
Ghana region (Raheja et al. 2023), and Gabon (Ngo et al. 201)). In East Africa, work has 
focused in cities such as Addis Ababa (Singh et al. 2021), Nairobi (Pope et al. 201.), Kigali 
 (Subramanian 2020), and Kampala (Okure et al. 2022).

A challenge with LCS is data quality. Proper calibration is needed for reliable data since 
they are biased high for PM2.5 in most environments. Since environmental conditions and 
aerosol properties affect the measurements, calibration of LCS against reference monitors 
is ideally conducted locally with higher time resolution FEM instruments (e.g., BAM 1020, 
Teledyne T(,0, and TEOM 1,05). Calibration methods include simple models such as linear 
regression and more complex approaches such as machine learning (McFarlane et al. 2021a). 
Across the continent, more work is needed to go beyond characterizing concentrations and 
leverage well-calibrated LCS for source attribution, data fusion with other sources such as 
satellites and models, and health and policy studies.

c. Visibility networks as a proxy for air quality. The lack of long-term air quality data in-
troduces uncertainty in assessing trends in East Africa’s air quality. The satellite record pro-
vides column observations since the 1))0s, but for earlier data, the only records are from 

FIG. 2. Locations of reference-grade PM2.5 and O3 monitors in Africa available on OpenAQ as of September 2023. The map also 
shows domains of field intensives in and near Africa since 1992 and is described in section 3. Illustrations at right show expanded 
views of SAFARI 2000, AMMA 2006, and DACCIWA 2016. Reproduced with permission from Knippertz et al. (2017), Redelsperger 
et al. (2006), and Swap et al. (2002).
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air quality proxies. Singh et al. (2020) used visibility data (1)%0s–2010s), which are rou-
tinely measured at airports, as a proxy for PM. Visibility in the three studied locations (Addis 
Ababa, Kampala, and Nairobi) decreased signi*cantly over this period, suggesting that PM 
levels have increased between (2% and 1.2%.

d. Satellite remote sensing instruments. Owing to their greater spatial coverage, satellite  
measurements are an important supplement to sparse in situ monitoring (Fig. 3). Informa-
tion about multiple trace gases (O3, CO, nitrogen dioxide (NO2), sulfur dioxide (SO2), formal-
dehyde (HCHO), ammonia (NH3), methane (CH,), carbon dioxide (CO2), methanol (CH3OH), 
nitrous acid (HONO), glyoxal (CHOCHO), isoprene, and a few other VOCs), aerosol param-
eters [aerosol optical depth (AOD), vertical pro*les of aerosol extinction coe0cient, and re-
fractive index (RI)], and *re activity can be retrieved from space. Over Africa, satellite data 
of atmospheric composition have been used for studying air quality and its trends (Duncan  
et al. 201(; Shikwambana et al. 2020), improving information from low-cost sensors  

FIG. 3. Tropospheric Monitoring Instrument (TROPOMI) NO2, CO, HCHO, and UV aerosol index (UVAI), 
averaged over July 2019 over the African continent. NO2 is an indicator for fossil fuel burning, CO is an 
indicator for biomass burning, HCHO is an indicator for biogenic emissions, and UVAI is an indicator for 
Sahara dust. The data represent all major air pollutants, and all of them are present in Africa. Image 
courtesy Pepijn Veefkind, Royal Netherlands Meteorological Institute (KNMI).
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(deSouza et al. 2020; Malings et al. 2020), model evaluation (Kumar et al. 2022; Ridley et al. 
2012; Tang et al. 2023), emission estimates (Marais et al. 2012; Martinez-Alonso et al. 2023) 
and health impacts (He1-Neal et al. 201.). Nevertheless, there are several challenges to ap-
plying satellite data over Africa. Satellite products provide vertically integrated information at 
coarser spatial resolution than ground-based local sensors. It is thus important to better con-
nect satellite column retrievals to surface concentrations, such as AOD to PM2.5 and NO2 to NOx. 
However, the rapidly improving spatial resolution of satellite observations will provide more 
accurate information in the future (Alvarado et al. 201); Cooper et al. 2020, 2022; Shindell 
et al. 2022). Currently, Africa is only covered by polar-orbiting satellites rather than geosta-
tionary satellites, which introduces temporal representativeness errors (Tang et al. 2021). The 
quality of satellite products relies heavily on ground and aircra1 validation and calibration 
(Paton-Walsh et al. 2022). The limited number of ground measurements and ground-based re-
mote sensing measurements in Africa hinders the interpretation of satellite observations and 
introduces uncertainties in retrievals. The quality of the atmospheric models is another uncer-
tainty in Africa, since in most cases retrievals are dependent on model assumptions. The un-
certainty in emissions and trace gas and aerosol vertical pro*les, and a lack of proper surface 
albedo data, also in2uences retrieval accuracy. Air quality *eld intensives bene*t from a better 
understanding of satellite column retrievals and their relationships with surface concentra-
tions and vice versa. A geostationary satellite for air quality over Africa in the future (Marais 
2015), model development, and more in situ monitoring and ground-based remote sensing 
measurements for satellite validation would address these data gaps.

e. Model studies. Atmospheric chemistry models simulate detailed chemical and transport 
processes controlling air quality and are therefore useful for understanding and predicting 
air quality. Modeling studies on African air quality have focused on evaluating the impacts 
of dust (Flaounas et al. 201%; Gueye and Jenkins 201); Saidou Chaibou et al. 2020), *re im-
pacts (Kuik et al. 2015; Opio et al. 2022; Wang et al. 201.), and regional carbon monoxide 
transport (Kumar et al. 2022) and assessing the impact of economic growth and mitigation 
policies on air quality (Bockarie et al. 2020; Lacey et al. 201%; Marais et al. 201)). Models 
have been used to quantify the contribution of di+erent sources to air pollution and their im-
pacts on human health. Examples of such studies include those that investigate emissions 
from fugitive and ine0cient combustion sources (Marais and Wiedinmyer 201(), charcoal 
production (Bockarie et al. 2020), residential emissions (Lacey et al. 201%), electric power 
generation plants (Marais et al. 201)), fertilizer use (Garland et al. 201%; Huang et al. 201.), 
and trash burning (Gordon et al. 2023).

The Weather Research and Forecasting Model coupled with chemistry (WRF-Chem), the 
Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) (Tang et al. 
2023), the Goddard Earth Observing System driven atmospheric chemistry (Marais et al. 201)) 
(GEOS-Chem), the Comprehensive Air Quality Model with Extensions (CAMx), and CHIMERE 
(Mazzeo et al. 2022) are among the modeling systems used to study air quality in Africa. These 
can be accessed from the quasi-operational to operational air quality forecasting systems 
run by different centers including the European Centre for Medium-Range Weather Forecasts 
(ECMWF), the Global Modeling and Assimilation Office (GMAO) of the National Aeronautics 
and Space Administration (NASA), the National Center for Atmospheric Research (NCAR) in 
the United States, and ensemble dust forecasts generated by the Barcelona Supercomputing 
Center (BSC).

3. Field intensives
Field campaigns, or intensive operating periods (IOPs), are a common tool for understanding 
atmospheric composition and air quality. IOPs augment long-term, routine monitoring 
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from surface sites and observations from satellite remote sensing instruments, providing 
more detailed chemical and meteorological measurements over a de*ned period. IOPs may 
involve enhanced observations at *xed sites, or mobile measurements utilizing instrumented 
vehicles, research aircra1, or ships. They o1en incorporate or are conducted in conjunction 
with observations from satellite instruments. They are useful for source apportionment, 
understanding of process chemistry, pollutant spatial distributions, and transport and loss 
mechanisms.

a. Previous field intensives in Africa. There have been a limited number of *eld campaigns 
over or near the African continent during the last 3 decades (Table 1 and Fig. 2). Early 
missions, Southern African Fire Atmospheric Research Initiative (SAFARI) (Lindesay et al. 
1))() and Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A) 
(Lindesay et al. 1))() in 1))2, were designed to better understand ozone over the Atlantic 
basin as observed by satellite instruments. The Experiment for Regional Sources and Sinks 
of Oxidants (EXPRESSO) 1))( campaign (Delmas et al. 1)))) focused on regional oxidants 
and biogenic and biomass burning emissions.

Since the year 2000, there have been only two large-scale field campaigns in West Africa 
and one in southern Africa. This number pales in comparison with the intensively sampled 
regions of North America, Europe, and Asia. No campaign has taken place in East Africa  
(Fig. 2). SAFARI 1)))–2001 (Otter et al. 2002; Swap et al. 2003, 2002) incorporated ground 
sites with multiple aircraft to understand terrestrial ecosystems, land-use change, aero-
sols, trace gases, clouds, radiation, and hydrology. The 2000 dry season campaign in-
volved investigators from 1. countries and 5 aircraft (Swap et al. 2002). The 200( African  
Monsoon Multidisciplinary Analysis (AMMA) campaign in West Africa (Haywood et al. 
200.; Liousse et al. 2010;  Redelsperger et al. 200() incorporated ground sites and aircraft 
oriented around IOPs during the dry season (January–February) and different monsoon 
phases (June–September) to understand the meteorology of the West African monsoon 
(WAM), emissions, chemical processes, aerosol properties, and regional biomass burning. 
The 201( Dynamics–Aerosol–Chemistry–Clouds Interactions in West Africa (DACCIWA) 
campaign in southern West Africa (SWA) (Flamant et al. 201.; Knippertz et al. 2015, 201%) 
included ground sites and aircraft, with major scientific goals focused on meteorology, 
and the chemical evolution of pollution plumes originating from the urban areas of Accra, 
Ghana, and Lomé, Togo. The campaign also focused on biomass burning plumes advected 
from southern Africa. DACCIWA also emphasized capacity building through partnerships 
between European institutions and local scientists.

Additional recent campaigns over the Atlantic basin (Table 1) have largely been focused 
on understanding the westward transport of African biomass burning emissions. These in-
clude the 201(–1. U.S. NASA Observations of Aerosols above CLouds and their intEractionS 
(ORACLES) campaign based in coastal Namibia and São Tomé (Redemann et al. 2021) and the 
U.K. Cloud–Aerosol–Radiation Interaction and Forcing (CLARIFY) aircraft campaign based 
in Ascension Island (Haywood et al. 2021). Last, limited flight altitude data and profiles 
over selected airports are being collected on passenger aircraft equipped by the European 
Research Infrastructure In-Service Aircraft for a Global Observing System (IAGOS) project 
(Petzold et al. 2015).

A campaign in East Africa would very likely build on the limited existing work that has 
gone before it on the continent, particularly SAFARI, AMMA, and DACCIWA. Section , out-
lines the major goals for such a campaign. Observations to address air quality in East Africa 
would ideally include the tools described above, up to and including aircraft observations. 
Partnerships and capacity building are an essential component of a campaign to ensure the 
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best use of the observations by the local scientific and policy communities. These aspects 
are described further below.

b. Interaction of meteorological and atmospheric composition measurements. The changes  
and in2uencing factors of air pollution in East Africa over a period from 2001 to 2021 have 
been investigated using remote sensing data (Kalisa et al. 2023). The analysis demonstrated 
increasing and decreasing air pollution in hotspots (PHS) and cold spots (PCS), respectively, 
and showed that average AOD values and burned areas varied signi*cantly between PHS and 
PCS. The *ndings highlight the spatial and temporal heterogeneity of air pollution in East 
Africa and emphasize the importance of considering meteorological factors such as high sea 
level pressure in the upper latitudes, the cold air masses from the Northern Hemisphere, and 
dry vegetation in the study region coupled with a dry and less humid atmosphere from the 
boreal winter in understanding air pollution patterns and concentrations.

4. Approaches and next steps
There are multiple challenges to conducting a comprehensive air quality *eld intensive in 
Africa. 1) There is a lack of capacity of basic research infrastructure for atmospheric and 
air quality research, including a lack of capacity in using satellite data. 2) There is a lack 
of e+ective communication such as understanding the local cultural meanings and data 

TABLE 1. Historical field intensives and scientific goals in or near Africa.

Campaign Year Region Platforms Scientific goals

SAFARI 1992 Southern Africa Ground sites Biomass burning

Light and heavy aircraft (DC-3) Tropospheric O3

Remote sensing

TRACE-A 1992 Southern Africa 
and southern and 
tropical Atlantic

U.S. NASA DC-8 Tropospheric O3

Remote sensing

EXPRESSO 1996 West central Africa Ground site Biogenic emissions

Light aircraft Regional oxidants

Remote sensing Biomass burning

SAFARI 1999–2001 Southern Africa Ground sites Terrestrial ecosystems

U.S. NASA ER-2 and University 
of Washington’s Convair

Land-use change

U.K. C-130 Aerosols, trace gases, 
clouds, and radiation

South African Aero 
Commander

Hydrology

AMMA 2006 West Africa Ground sites Meteorology of the WAM

U.K. BAE 146 Emissions and aerosol 
properties

Biomass burning

DACCIWA 2016 SWA Ground sites Meteorology

German DLR Falcon Urban pollution plumes

French SAFIRE ATR 42 Biomass burning

U.K. Twin Otter Aerosol–cloud interactions

ORACLES 2016–18 Southern and 
tropical Atlantic

U.S. NASA P-3 and ER-2 Biomass burning transport

CLARIFY 2017 Tropical Atlantic U.K. BAE 146 Aerosol–cloud interactions

Biomass burning
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sharing among groups working on air quality research in the region. Reference data exist  
on the continent, but they are mainly controlled by individual research groups or environ-
mental management authorities. Some of these data may publicly be available upon request. 
3) Lack of local technical capacity and resources limits the utility of air quality instruments 
owned and run by local governments in East Africa. ,) General lack of awareness of the dan-
gers of air pollution and governmental reluctance to invest in mitigation hinders large-scale 
research e+orts.

a. Major scientific objectives. The scienti*c goals associated with *eldwork in East Africa 
may include, but would not be limited to, the following.

1) EMISSIONS IN EAST AFRICA SPECIFIC TO THE REGION. The region has a unique mixture of emis-
sion sources as depicted in Fig. 1. Quantifying anthropogenic and natural emissions and de-
veloping a representative epidemiological model is the cornerstone to accurate predictions 
of air quality and health impacts.

2) CHEMICAL TRANSFORMATIONS THAT LEAD TO SECONDARY POLLUTANTS SUCH AS PM2.5 AND O3.   
Chemical transformations of primary emissions produce secondary pollutants that are harm-
ful to human health and therefore regulated in the Global North. Such chemical transforma-
tions depend on atmospheric conditions and the amounts and characteristics of primary 
emissions (Jimenez et al. 200); Seinfeld 1).)) and are therefore speci*c to a given region. 
There is a general lack of process-level understanding for the formation of ozone and sec-
ondary aerosols in Africa.

3) METEOROLOGY AND TRANSPORT RELEVANT TO REGIONAL AIR QUALITY. Prevailing weather patterns 
and synoptic conditions control the spread and mixing of pollutants and their long-range 
transport (Lai et al. 2023). Interaction of topography and prevailing wind patterns prolongs 
the duration of pollution events in valleys, for example, or facilitates the “cleaning” of pol-
luted air near mountain passes (Wolf et al. 2020). For example, the prevailing wind patterns 
over Addis Ababa tend to be from east and south-southeast, where the ri1 valley and large 
drop in topography are located leading to downslope wind ventilation and complex inter-
action between the urban and topographic wind controls (Weiß et al. 2022). Other diurnal 
wind patterns, like the low-level jet (LLJ) and the extent of the Somali jet on pollution and 
its recirculation, are not known (Samman and Gallus 201.; Wei et al. 2023). The urban mi-
crometeorology over megacities and its control on diurnal boundary layer evolution and its 
interaction and modi*cation by the synoptic conditions are all important factors that are not 
well reported and understood in most of the African cities.

4) REGIONAL EMISSION TRENDS AND GLOBAL IMPACTS.  Africa has approximately 15% of the 
global population but contributes only ,% of anthropogenic CO2 emissions (Ayompe et al. 
2020). Global demographic and emission trends suggest that this fraction will grow. Africa 
accounts for approximately %2% of the burned area worldwide and about 52% of the car-
bon emissions, which includes ,,% of CO emissions, 3(% of CH, emissions (van der Werf 
et al. 2010), and (0% of the total black carbon (BC) emissions. Recent estimates show that 
Africa’s *re emissions are 31%–101% higher than previously estimated (Ramo et al. 2021). 
Africa is a large source of both dust and biogenic emissions (Guenther et  al. 2012;  
Prospero et al. 201,; Scholes and Andreae 2000). Urban and other emissions that lead to 
ozone and secondary aerosol have been characterized from recent satellite and *eld observations 
but remain uncertain (Hickman et al. 2021; Liousse et al. 201,, 2010; Marais et al. 201)).  
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The equatorward shi1 in such emissions in the last , decades has led to increases in the 
global tropospheric ozone burden (Christiansen et al. 2022; Wang et al. 2022), and further 
emission shi1s associated with continued midlatitude declines and increases in Africa may 
have similar but as yet undetermined e+ects.

5) EDUCATION AND HUMAN AND INFRASTRUCTURAL CAPACITY BUILDING IN THE REGION. Education of 
policymakers, citizens, and international collaborators is a critical component of sustain-
able air quality research. Training in e+ective communication helps foreign scientists gain 
a deeper understanding of the cultural context within which they are working. Local invest-
ment for infrastructure and training of technicians to maintain infrastructure and scientists 
that conduct the research is critical. Any e+ort by international groups needs clear coordi-
nation with local governments for infrastructure development and training to sustain the 
activity.

Figure , depicts interconnections among multiplatform observations, modeling frame-
works, and societal impacts. The observations are required for evaluating air quality models, 
improving air quality forecasts and reanalysis through assimilation, constraining emissions 
through inverse modeling, and designing air quality mitigation strategies. Improved air qual-
ity simulations serve as the basis for societal impact analysis.

b. Approaches for observations and modeling in East Africa.
1) GROUND-BASED CHEMICAL AND METEOROLOGICAL OBSERVATIONS. Ground-based physical and 
chemical measurements are required to understand the sources, transformation, transport, 
and fate of pollutants and their interaction with the structure of the planetary boundary 
layer. Even a modest expansion of long-term reference monitoring of standard pollutants in 
Africa, such as O3, NOx, CO, PM2.5, and PM10, and meteorology would substantially increase 
the currently available database in the region. Ground-based remote sensing instruments, 
such as Pandora, Micro-Pulse Lidar Network (MPLNET), Fourier transform infrared (FTIR) 
spectroscopy, or Aerosol Robotic Network (AERONET) (Crawford et al. 2021; García et al. 
2021), connect observations of trace gases (HCHO and NO2) and particulate matter to satel-
lite columns. The optimal location for monitoring stations would include urban centers and/
or suburban areas and receptor sites downwind of major source locations. Such long-term 
monitoring sites, once established, may then serve as potential host locations for shorter 
duration (e.g., 1–2 months) but more detailed *eld campaigns. Detailed, short-term chemical 

FIG. 4. Interconnections among multiplatform observations, modeling framework, and societal impacts.
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measurements that augment longer-term monitoring include gas-phase speciated VOCs, 
speciated and total reactive nitrogen (NOy), sulfur dioxide, ammonia, halogen compounds, 
greenhouse gases, and radicals [hydroxyl (OH), hydroperoxyl (HO2), and nitrate (NO3)].  
Detailed aerosol measurements include composition, size distributions, hygroscopicity, and 
optical properties (extinction, scattering, and/or absorption). Meteorological measurements 
include high-frequency winds (e.g., for 2ux measurements) and vertical pro*les of temper-
ature, wind speed and direction, and boundary layer height. Sample towers that extend in 
situ chemical and meteorological observations to tens or hundreds of meters above ground 
level increase the footprint of stationary observations to larger areas and reduce sensitiv-
ity to localized emission sources. Field intensives incorporating part or all of this observa-
tional suite (detailed instrument descriptions are beyond the scope of this manuscript) are 
well suited to address the science questions outlined in section ,a.

2) MOBILE PLATFORMS. Ground-based mobile platforms, typically instrumented vehicles o1en 
referred to as mobile laboratories, incorporate the routine measurements listed above and a 
targeted subset of the intensive observations listed above. They provide spatial distributions 
of pollutants to constrain emissions, transport, and chemical transformations and can be 
operated more routinely and at lower cost than research aircra1. Such an approach may be 
particularly attractive in East Africa as a *rst step to extend beyond stationary ground-based 
operations.

Aircraft research is often the capstone of an observing strategy that builds from stationary 
and mobile ground-based research. Aircraft are essential for validating and linking together 
space- and ground-based remote sensing measurements (Crawford et al. 201(; Judd et al. 
201); Nowlan et al. 201.; Zhang et al. 201(b). Airborne measurements are useful to observe 
atmospheric chemistry in real time through quasi-Lagrangian sampling (Adhikary et al. 200)), 
for example, in the outflow of large emission sources such as fires, urban areas, and industrial 
and energy generation point sources. Aircraft can characterize regional backgrounds as well 
as emission fluxes over large areas (Karion et al. 2015; Li et al. 2020).

Many of the aircraft programs in or near Africa in section 3 were designed, led, and 
instrumented by scientists and agencies from the United States and Europe. Recent campaigns, 
such as DACCIWA 201(, have made the participation of African scientists an integral 
component of the study design. Although we anticipate that any near-term aircraft campaign 
in East Africa will necessarily rely on the research capacity of the Global North, partnerships 
with and training of local scientists will be an essential component to ensure that research 
findings have the greatest relevance to local and regional air quality issues. The following 
sections on capacity building outline this concept in greater detail.

3) MODEL DEVELOPMENT: EMISSIONS, METEOROLOGY, AND CHEMISTRY.  Due to large variation 
in sources and the intensity of emissions between megacities and geographic regions in  
Africa (Liousse et  al. 201,, 2010; Malavelle et  al. 2011), it is essential for atmospheric 
chemistry models to use information generated regionally from direct observations. To  
ensure accurate model development for the region, there is a clear need for both *eld data 
and new laboratory-based experimental data that are speci*c to the process chemistry  
associated with regional emissions. The WMO has a multimodel intercomparison exercise, 
Air Quality Prediction and Forecasting Improvement for Africa, to understand the abil-
ity of di+erent models to simulate air quality in Africa (Sokhi et al. 2022; WHO 2022). 
Heterogeneous chemistry on dust surfaces can be an important process due to the high 
abundance of dust in Africa, but large variability in reactive uptake coe0cient can lead to 
large errors in model simulations (Kumar et al. 201,). Measurements of these coe0cients 
are essential for improving model simulations.
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c. Capacity-building partnerships. The research and collaboration model for East Africa high-
lighted here is based on common scienti*c and research goals that focus on regional needs and 
priorities (Hickey et al. 201.). Costello and Zumla (2000) suggest that the components of a gen-
uinely cooperative research partnership include 1) mutual trust and shared decision-making, 
2) emphasis on transitioning research *ndings into practice, 3) the development of national 
research capacity, and ,) focus on solution development that is community centered.

It is useful to create partnerships and relationships with the local communities in order to 
be able to consider cultural expectations in creating cooperative strategies for improvement 
in air quality (Amey 2010) and build on existing knowledge (Black 2002). Consistent com-
munication to revisit expectations for collaboration will help develop shared understanding 
on strategies and outcomes (Jie 2010).

Following the workshop in Kigali, air quality working groups in four East African cities 
have been formed. The groups consist of universities, city governments, relevant government 
agencies, local air quality regulators, international organizations and universities, 
and meteorological agencies. There are several other efforts at building international 
collaborations on African air quality. For example, the National Science Foundation-funded 
Clean Air Monitoring and Solutions Network (CAMS-Net) project seeks to close the African 
air pollution data gap. Other efforts include capacity-building programs funded by the U.S. 
State Department. AfriqAir is an international consortium of air quality experts interested in 
improving African air quality. AirQo works to empower African communities with accurate, 
hyperlocal, and timely air quality data to drive air pollution mitigation actions. The African 
Group on Atmospheric Sciences (ANGA), the African-led group, focused on atmospheric 
sciences aims on uniting atmospheric expertise across Africa.

The goals of these partnerships are to provide opportunities for infrastructure and human 
capacity building and creating a sustained power (human and infrastructure) and empower 
the partners in the developing countries to be equal partners who can contribute to the 
global effort to clean air and mitigate climate change. A concerted educational campaign to 
address the dangers of air pollution, the economic and health costs of air pollution, and the 
linkage between air pollution, climate change, and food and energy security would serve to  
foster such scientific partnerships. Local investment can also help sustain the efforts, and 
engaging diaspora scientists may help facilitate communication and overcome cultural 
barriers.

Finally, it is worth noting that any air quality research effort in East Africa will substan-
tially contribute to United Nations-defined sustainable development goals (United Nations 
202,). Although improved air quality is not itself one of these goals, it is a component of 
several others, including good health and well-being, affordable and clean energy, resilient 
infrastructure, sustainable cities and communities, and climate action. Clean energy and 
climate action are worth particular emphasis. Emission control strategies that benefit air 
quality very often have co-benefits for climate change. Research to identify such strategies 
has the potential to influence the trajectory of development at this critical period in Africa 
broadly and East Africa in particular. Rapid population growth and urbanization are in their 
early stages but will accelerate in the coming decades. Such growth need not take place in 
an information vacuum but could rather be informed by the best available scientific tools 
that have been developed in other nations. International partnerships are the key to real-
izing this critical need for environmental information. The Clean Air and Climate Coalition 
(CCAC) that met in 2022 included the United Nations Environment Program, and the African 
Union released a comprehensive report “Assessment of Air Pollution and Climate Change 
for Sustainable Development in Africa.” The report shows how African leaders can act on 
key emission sources to fight climate change, reduce air pollution, and improve health in 
the continent (UNEP 2022).
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5. Conclusions
Africa is already a large global source region for emissions from *re, the biosphere, and dust, 
and it is undergoing a period of rapid urbanization that has the potential to signi*cantly 
increase its urban, agricultural, and other anthropogenic emissions. To date, there has been 
relatively little research to address this issue that will a+ect both the growing population in the 
region and the composition of the global atmosphere. Quantifying trends in emissions from 
di+erent regions of the world and their impacts on atmospheric composition and chemistry 
to advance fundamental atmospheric chemistry knowledge has been one of the priorities 
identi*ed by the U.S. National Academy of Sciences. The East African environment o+ers an 
opportunity to advance this fundamental understanding. This paper has summarized the state 
of air quality research capacity in Africa, with a focus on East Africa, and the challenges and 
opportunities for conducting coordinated research in the region. It suggests a roadmap and 
framework for observations, measurement, modeling, capacity building (both human and 
infrastructure), and education to address the challenges.
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