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Abstract

CRISPR-Cas9 screens facilitate the discovery of gene functional
relationships and phenotype-specific dependencies. The Cancer
Dependency Map (DepMap) is the largest compendium of whole-
genome CRISPR screens aimed at identifying cancer-specific
genetic dependencies across human cell lines. A mitochondria-
associated bias has been previously reported to mask signals for
genes involved in other functions, and thus, methods for normaliz-
ing this dominant signal to improve co-essentiality networks are of
interest. In this study, we explore three unsupervised dimensional-
ity reduction methods—autoencoders, robust, and classical princi-
pal component analyses (PCA)—for normalizing the DepMap to
improve functional networks extracted from these data. We pro-
pose a novel “onion” normalization technique to combine several
normalized data layers into a single network. Benchmarking ana-
lyses reveal that robust PCA combined with onion normalization
outperforms existing methods for normalizing the DepMap. Our
work demonstrates the value of removing low-dimensional signals
from the DepMap before constructing functional gene networks
and provides generalizable dimensionality reduction-based nor-
malization tools.
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Introduction

Deciphering the functional relationships among genes is imperative for
understanding the mechanism of diseases with genetic components.

Whole-genome CRISPR screening is one state-of-the-art method for
identifying phenotype-specific genetic dependencies for diseases like
cancer (Shalem et al, 2014; Wang et al, 2014b; Tsherniak et al, 2017).
In addition to identifying cancer-specific dependencies, high-
throughput data generated from whole-genome CRISPR screens can be
mined to map functional relationships between genes (Boyle
et al, 2018; Pan et al, 2018; Kim et al, 2019; Buphamalai et al, 2021;
Wainberg et al, 2021). Therefore, the development of novel algorithms
to process, normalize, and mine whole-genome CRISPR screening data
could prove particularly fruitful for identifying such functional
relationships.

Most CRISPR screens use CRISPR-Cas9 guides to introduce
targeted knockouts across the vast majority of the human genome
in human cell culture. In brief, the workflow for a typical screen
involves the infection of human cell culture with a lentiviral vector
containing a library of ~ 70,000 guide (g)RNAs targeting around
18,000 genes. After passaging the cell population over several days,
sequencing performed at various timepoints measures the dropout
of gRNAs from the population. At the end of the experiment, com-
putational analyses are performed to quantify observed fitness
effects relative to controls, such as known non-essential guides or
screens performed in wild-type cells. Current experimental tech-
niques for performing whole-genome CRISPR screens are perhaps
best exemplified by the Cancer Dependency Map (DepMap) pro-
ject’s efforts to discover genetic dependencies across human cell
lines (Meyers et al, 2017; Tsherniak et al, 2017; Behan et al, 2019;
Dempster et al, 2019a, 2019b; Dharia et al, 2021; Pacini et al, 2021).
As of the 22Q4 version, the Cancer Dependency Map project
had performed such CRISPR screens to identify cancer-specific
genetic dependencies across 1,078 cell lines (Meyers et al, 2017;
Dempster et al, 2019b, 2021; Pacini et al, 2021; Data ref: Broad
DepMap, 2022).

In addition to directly identifying cancer-specific genetic depen-
dencies, co-essentiality between genes can be measured and used to
group genes into functional modules by measuring correlations
between CERES scores in the DepMap—a type of analysis pioneered
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in the yeast genetic interaction research community (Baryshnikova
et al, 2010; Costanzo et al, 2016). Indeed, this profile similarity anal-
ysis has been directly applied to the DepMap dataset to reveal func-
tional similarities between human genes (Boyle et al, 2018; Pan
et al, 2018; Kim et al, 2019; Buphamalai et al, 2021; Wainberg
et al, 2021; Gheorghe & Hart, 2022). However, previous research
has posited that profile similarities in the DepMap are confounded
by technical variation unrelated to the cancer-specific phenotypes of
interest (Rahman et al, 2021).

To address this problem, two methods for computationally
enhancing cancer-specific signals and identifying the source of var-
iation attributable to technical factors from the DepMap have been
proposed. Boyle et al (2018) proposed to remove principal compo-
nents derived from olfactory receptor gene profiles, which are
assumed to contain variation irrelevant to cancer-specific depen-
dencies, from the data. A separate method proposed by Wainberg
et al to enhance signals within the DepMap applied generalized
least squares (GLS) to account for dependence among cell lines
(Wainberg et al, 2021). Our own functional evaluation of DepMap
co-essentiality network using external gold-standards such as
CORUM (Comprehensive Resource of Mammalian protein com-
plex) protein co-complex annotations (Giurgiu et al, 2019)
revealed substantial bias related to mitochondrial complexes,
which dominate typical correlation analyses of DepMap profiles
(Rahman et al, 2021). These signals are highly biologically rele-
vant, but their dominance may eclipse contributions of genes in
smaller complexes, which also represent cancer-specific dependen-
cies. Because these existing normalization techniques have shown
mixed results for boosting signal within smaller and non-
mitochondrial complexes, in this study, we explore the use of
unsupervised dimensionality reduction approaches for normalizing
the DepMap dataset.

We explore classical principal component analysis (PCA; Wold
et al, 1987) as well as two state-of-the-art dimensionality reduction
normalization methods’ abilities to boost the signal of cancer-
specific dependencies and remove mitochondrial signal from the
DepMap. Specifically, we apply a variant of PCA called robust PCA
(RPCA; Candes et al, 2011) as well as autoencoder neural networks
(AE; Hinton & Salakhutdinov, 2006) to learn and remove
confounding low-dimensional signal from the DepMap. In addition,
we propose a novel method named “onion” normalization as a
general-purpose technique for integrating multiple layers of normal-
ized data across different hyperparameter values into a single nor-
malized network. The goal of the proposed onion normalization
methods is to enable the construction of improved gene-gene simi-
larity networks from the DepMap dataset, which has been a major
recent focus of analyses of these data (Boyle et al, 2018; Wainberg
et al, 2021; Gheorghe & Hart, 2022) but we note is distinct from
other important applications of the DepMap goals such as direct
clustering of the cell lines/genes (Pan et al, 2022), or more focused
target/drug discovery-oriented analyses (Chiu et al, 2021; Ma
et al, 2021; Shimada et al, 2021). We apply onion normalization
using either PCA-normalized, RPCA-normalized, or AE-normalized
data as input. Our benchmarking analyses of the normalized
versions of the DepMap demonstrate that, while autoencoder nor-
malization most efficiently captures and removes mitochondrial-
associated signal from the DepMap, aggregating signals across dif-
ferent layers with onion normalization applied to RPCA-normalized
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networks is most effective at enhancing functional relationships
between genes in the DepMap dataset.

Results

Removing low-dimensional signal from the DepMap boosts the
performance of non-mitochondrial complexes

Dimensionality reduction techniques aim to transform a high-
dimensional dataset into a low-dimensional one, and although they
are typically applied under the assumption that low-dimensional sig-
nal is desirable (Way & Greene, 2017; Ding et al, 2018; Lopez
et al, 2018; Lotfollahi et al, 2019; Sun et al, 2019), we flip that
assumption in order to normalize DepMap data. We posit that two
properties of the DepMap hold: we assume that true genetic depen-
dencies are rare, based on estimations from large-scale yeast genetic
interaction studies (Costanzo et al, 2016), and we assume that domi-
nant low-dimensional signal in the DepMap is likely to represent
mitochondrial-associated bias that is plausibly driven by technical
variation or non-specific biological variation. For example, in the
only genome-wide study of genetic interactions to date, it was esti-
mated that an average gene interacts with others roughly 3% of the
time (Costanzo et al, 2016). Therefore, instead of assuming that
low-dimensional representations of DepMap data are desirable for
data mining and visualization purposes, we instead propose to cap-
ture and remove that dominant signal from the DepMap (Fig 1A and
B). We applied multiple dimensionality reduction methods to the
DepMap to accomplish this goal, beginning with classical PCA nor-
malization. To explore the extent to which normalization improves
the detection of functional relationships between genes and removes
mitochondrial bias from the DepMap, we applied benchmarking
analyses with a software package developed for this purpose called
FLEX (Rahman et al, 2021).

Benchmarking analyses with FLEX based on the CORUM protein
complex standard (Giurgiu et al, 2019) reveal the extent of mito-
chondrial dominance in the DepMap for both the original dataset
and all normalized versions. To summarize this benchmarking pro-
cess, a gene-level similarity matrix is created from the per-gene
dependency scores by calculating Pearson correlation coefficients
(PCCs) between all pairs of genes. Taking these similarity scores
and a set of gold standard co-annotations for genes as input, FLEX
generates precision-recall curves (PR curves) that measure how
many true positive gene pairs in the gold standard set are recapitu-
lated by PCCs taken at different similarity thresholds. More detailed
information such as which complexes drive the performance of PR
curves are also output by FLEX and are illustrated graphically by
diversity plots. To interpret these plots, a visually larger area corre-
sponds to more contribution to the overall PR curve from a complex
at the corresponding precision threshold. An examination of the
original DepMap’s CORUM PR curve performance alongside a diver-
sity plot reveals that most performance in the PR curve is driven by
two mitochondria-related complexes (Fig 1C). For example, the
diversity plot shows that about 80% of the true positive gene pairs
at precision point 0.8 are from gene pairs belonging to mitochon-
drial complexes. Specifically, the majority of true positive gene pairs
at various precision cut-offs are annotated to be in 55S ribosome
and respiratory chain mitochondrial complexes represented by the
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Arshia Zernab Hassan et al

1.0

Molecular Systems Biology

T
@)
L
©

A Cell lines B PCs
@ PCsT
o Real . .| Real
g data " reduction PCA H data X[ X 1]
!
Real _ |Recon.| _ | Norm. Real Train
data data = data data AE
c 1.0 M 55S ribosome, mitochondrial
1.0 c | M Respiratory chain complex | (holoenzyme), mito.
- 0.8 508 B STAGA comples, SPT3 linked
o - 5064 B Mediator complex
‘% 0.6 S~ =(R;|bodsom_e, I(‘iytoplasmm
$0.41 & 0.4+ g?/i:pggi'gp.ﬁx
0.0.2] 0.2- Fanconi anemia FAAP100 complex
0.0% T 108 105 IO N %F’:ﬂg(raga?nrg?exes
10
P 0.0 Q.4 0.8
Fraction of TP
D All gene pairs E Reconstructed Normalized
1.0
0.8] \ M Un-normalized
c \ PC=1
.%0.6 BPC=5
o™ BMPC=19
a0.2
e 1o | 5
TP c“)
No mitochondrial gene pairs ©

103 10°

TP

BT

Figure 1.

© 2023 The Authors

00 04 ' 08

' .558 ribosome, mito.

. . Resp. chain |, mito.
Fraction of TP l Top non-mito. complexes

Other complexes

Molecular Systems Biology 19:e11657|2023 3 of 18



Molecular Systems Biology

Arshia Zernab Hassan et al

Figure 1. Normalization schematic and exploration of mitochondrial bias within the DepMap with Principal Component Analysis (PCA) normalization.

A Adimensionality reduction method is applied to the original DepMap data to extract a low-dimensional representation of the data. Reconstructed data are generated

from that, which is subtracted from the original DepMap to normalize it.

B (Top) Principal Component Analysis (PCA) generates reconstructed DepMap data by multiplying the DepMap against selected Principal Components (PC) derived from
it and the transpose of those PCs. (Bottom) Autoencoders generate reconstructed data post-training by passing in the original DepMap as input.

C (Left) Precision-recall (PR) performance analysis of original DepMap 20Q2 data (Data ref: Broad DepMap, 2020) evaluated against CORUM protein complexes. The x-
axis depicts the absolute number of true positives (TPs) recovered in log scale. (Right) Contribution diversity plot of CORUM complexes in un-normalized DepMap
data. This plot is constructed by sliding a precision cutoff from high to low (indicated by the y-axis), and at each point, plotting a stacked bar plot across the x-axis at
that point reflecting the breakdown of complex membership of the TP pairs identified at that threshold. The top 10 contributing complexes are listed in the legend,
with the light gray category representing all complexes represented at lower frequency.

D (Top) Precision-recall (PR) performance analysis of PCA-normalized DepMap data with the first 5,9, and 19 principal components removed evaluated against CORUM
protein complexes. (Bottom) PR performance with mitochondrial gene pairs removed from evaluation. The x-axis of both plots depicts the absolute number of true

positives (TPs) recovered in log scale.

E The contribution diversity plots depict contributions of TP pairs from various CORUM complexes in PCA-reconstructed data and PCA-normalized data generated by

removing the first 5, 9, and 19 principal components.

large red area across the plot. These two complexes are the highest
contributing complexes in terms of true positive pairs and contrib-
ute a disproportionate amount to the strong PR curve performance.
Therefore, to ascertain how much signal the DepMap contains for
all other protein complexes, we generated PR curves that exclude a
set of mitochondrial gene pairs and observed a drastic but expected
drop in overall performance (Fig 1D, Materials and Methods).

As a reference dimensionality reduction technique, we first
examined the extent to which classical PCA (Wold et al, 1987) cap-
tures mitochondrial signal and boosts signal from other complexes
post-normalization. In the PCA-normalization approach, PCA is first
applied to gene perturbation profiles to capture low-dimensional sig-
nal. Then, the original dataset is projected onto a subset of the
strongest PCs to generate a “reconstructed” version of the DepMap.
Directly subtracting the reconstructed DepMap from the original
DepMap produces a PCA-normalized version of the DepMap that
does not contain the signal from the selected PCs.

While PCA normalization has already been applied to DepMap
versions starting from 2019 Q3 to remove several principal compo-
nents, this is insufficient to reduce the mitochondrial dominance of
the dataset or to boost signal within smaller complexes (Meyers
et al, 2017; Dempster et al, 2019b; Data ref: Broad DepMap, 2019a).
Repeating analyses detailed in Rahman et al (2021), which analyzed
the 18Q3 and 19Q2 versions of the DepMap, for the 20Q2 version,
which is used for all analyses in this manuscript, reveals that co-
dependency profiles are still dominated by mitochondrial signals
(Meyers et al, 2017; Dempster et al, 2019b; Data ref: Broad
DepMap, 2018, 2019b, 2020). In addition to removing this signal,
successful normalization methods have the potential to uncover
relationships masked by this signal, which can be measured by
observing boosts in the performance of smaller complexes in terms
of their contributions to CORUM PR curves.

Surprisingly, removing a large number of principal components
from the DepMap improves the dataset’s ability to capture signal
within non-mitochondrial complexes (Fig 1D and E). We applied
PCA-normalization to the DepMap 20Q2 dataset (Meyers et al, 2017;
Dempster et al, 2019b; Data ref: Broad DepMap, 2020) and removed
a varying number of principal components—either 1, 5, 9, or 19. In
addition to generating standard CORUM PR curves with FLEX as
described above, to measure the ability of each dataset to recover
signal within non-mitochondrial complexes, we also generated PR
curves where mitochondrial gene pairs were removed as positive
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examples from the CORUM standard (Fig 1D). While this only
affects gene pairs where both genes are members of a set of 1,266
genes (see Materials and Methods), these mitochondrial-attenuated
PR curves nevertheless reveal that removing 5 or more principal
components boosts signal for non-mitochondrial complexes com-
pared to the original DepMap. Diversity plots generated with FLEX
confirm this observation (Fig 1E, Appendix Figs S1 and S2). We con-
clude that functional signal for most protein complexes remains and
even improves while mitochondrial signal in the DepMap decreases
after removing many principal components. These observations sug-
gest that the strongest low-dimensional components of the DepMap
are likely to represent technical variation, or at least non-specific
variation that clouds more specific functional information, and that
removing a large number of low-dimensional components is valu-
able in measuring other functional relationships.

In the following section, we introduce two state-of-the-art dimen-
sionality reduction techniques for normalizing the DepMap before
characterizing their ability to both reduce the dominance of
mitochondrial-associated signal and boost the
of smaller complexes.

performance

Autoencoder and robust PCA normalization robustly capture and
remove technical variation from the DepMap

Autoencoders are a type of deep neural network method designed
for unsupervised dimensionality reduction (Hinton & Salakhut-
dinov, 2006). They function by optimizing the generation of recon-
structed profiles that are similar to a training dataset after passing
the training data through a neural network constructed in an “hour-
glass” shape. A crucial parameter of autoencoders is the latent space
size, referred to as LS throughout, which is the number of nodes
contained in the bottleneck layer at the center of the hourglass.
Strikingly, our analysis shows that deep convolutional autoenco-
ders trained with a single-dimensional latent space can both gener-
ate realistic reconstructed profiles as well as capture and remove the
majority of signal contributed by mitochondrial complexes in
the DepMap. Similar to PCA normalization, after training the auto-
encoder and observing high gene-wise correlations between recon-
structed profiles and the original profiles, we created AE-normalized
data by directly subtracting the reconstructed matrix from the origi-
nal data, thereby removing the low-dimensional signal. FLEX bench-
marking shows that AE-normalized data for LS =1, where the

© 2023 The Authors
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bottleneck layer consists of only a single node, strongly reduces
the dominance of mitochondrial complexes while boosting the sig-
nal of non-mitochondrial complexes (Fig 2A; Appendix Figs S3 and
S4), similar to PCA normalization with many principal components.
This provides evidence that the mitochondrial signal in the DepMap
is low-dimensional and can be captured efficiently with an autoen-
coder model.

The second normalization technique that we apply to the
DepMap is robust principal component analysis (Candes et al,
2011). RPCA, a modified version of PCA, is an unsupervised tech-
nique used to decompose a matrix into two components: a low-
dimensional component and a sparse component, which are
assumed to be superimposed. In this context, we expect the
low-rank component to capture technical or non-specific biological
variation and the sparse component to capture true genetic depen-
dencies. Indeed, when we applied RPCA to the DepMap, it separated
most of the dominant mitochondrial signals into the low-rank com-
ponent (the “reconstructed” dataset) while the sparse component
retained high-quality information about other functional relation-
ships (the “normalized” dataset; Fig 2B; Appendix Figs S5 and S6).
Dialing 4, a hyperparameter of RPCA, controls the dimensionality of
the low-rank component, with smaller values increasing the dimen-
sionality of the low-rank component.

Autoencoder and RPCA normalization consistently generated
realistic reconstructed data and boosted the performance of smaller
complexes across different values of LS and 4, respectively. Autoen-
coders trained with different values of LS generated reconstructed
data with similarly high Pearson correlations to the original DepMap
dataset, consistent with the observation that an autoencoder with a
bottleneck layer consisting of a single node efficiently captures most
mitochondrial signal in the DepMap. However, RPCA runs for larger
values of A resulted in reconstructed datasets with substantially
improved correlation to the original DepMap, similar to the
behavior of classical PCA (Fig 2C). Both autoencoder and RPCA nor-
malization contributed consistent performance increases for non-
mitochondrial complexes within CORUM PR curves (Fig 2A and B).

Interestingly, closer examination of the complexes with improved
signal revealed that different complexes peaked in terms of perfor-
mance at different hyperparameter settings for all methods
(Figs EV1-EV3). Therefore, we sought to apply a method that could
integrate normalized datasets across several different hyperpara-
meter choices to maximize performance in detecting varied func-
tional relationships in normalized data.

Onion normalization integrates normalized data across
hyperparameter values

The final normalization technique we propose directly addresses
this problem and involves the integration of several “layers” of nor-
malized data—where different layers are versions of the DepMap
normalized based on specific hyperparameter values, such as AE-
normalized data for varying values of LS—in order to assimilate rare
signals that may not be present in all layers of the data. The core
assumption of “onion” normalization, which is supported by our
previous analyses of both PCA-normalized and AE-normalized data,
is that dialing the parameter values of a specific normalization
method yields normalized gene effect scores containing information
specific to individual layers as well as information common to

© 2023 The Authors
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multiple layers. As a result, similarity networks created using differ-
ently normalized networks may convey information with substantial
variation, with each one capturing informative relationships
between genes. Thus, to summarize the diverse information
contained in separate layers of normalized data and to avoid compu-
tational and analytical redundancy, “onion” normalization aims to
incorporate many different layers of normalized data into a single
network.

We used a previously published, unsupervised technique called
similarity network fusion (SNF) to perform this integration (Wang
et al, 2014a). SNF operates by integrating several similarity net-
works using a network fusion technique based on multiview learn-
ing that considers the neighborhood and sparsity information of
individual networks, which can integrate networks with subtle dif-
ferences in an unbiased manner.

A Kkey strength of onion normalization is that any effective
dimensionality reduction method can be employed in the normaliza-
tion step to generate different layers of the “onion.” The similarity
network layers to be fused are created from the same data normal-
ized by varying key parameters of the chosen normalization
method. For this study, we compared onion normalization applying
PCA normalization with varying numbers of PCs (PCO), autoen-
coder normalization with varying latent space sizes (AEO), and
RPCA normalization with varying lambda values (RPCO; Fig 3A).

FLEX benchmarking reveals that onion normalization improves
performance compared to individual layers of normalized data for
all normalization methods, with RPCO normalization showing the
strongest performance of the three approaches (Fig 3B and D).
Mitochondrial-attenuated PR curves reveal a substantial perfor-
mance benefit for all onion-normalized datasets compared to the
original DepMap. Moreover, due to improved performance for
boosting weaker signal later in the PR curve (i.e., at thresholds
corresponding to higher recall), RPCO outperforms both PCO and
AEO (Fig 3B). Diversity plots of CORUM PR curves suggest that
RPCO-normalization greatly reduces the mitochondrial dominance
observed in the original DepMap dataset (Fig 3C; Appendix Fig S7).
However, a closer analysis of the complexes driving the RPCO diver-
sity plot reveals that, in addition to a partial reduction of
mitochondrial-associated signal, signal within non-mitochondrial
complexes is boosted such that the 10 complexes driving PR curve
performance no longer include mitochondrial-associated complexes.
Thus, rather than normalizing mitochondrial signal entirely out of
the DepMap, RPCO normalization instead boosts signal within
smaller, non-mitochondrial complexes such that the strongest gene—
gene similarities are no longer dominated by mitochondria-related
genes. All onion-normalized datasets also outperform their individ-
ual normalized layers for boosting signal within smaller complexes
(Fig 3D).

A detailed analysis of complexes with boosted signal across nor-
malization techniques shows that RPCO normalization best
improves the signal contained in complexes with low signal in the
original DepMap. We plotted the number of complexes with
strongly boosted or weakened signal, defined as those with AUPRCs
that differ at selected AUPRC cutoffs (either 0.1 or 0.5) in normal-
ized data compared to the original DepMap, and binned those across
complex size for all normalization techniques (Fig 3D). This analy-
sis shows that integration with onion normalization, especially with
RPCA, outperforms all individually normalized layers at boosting
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Figure 2. Exploration of Principal Component Analysis (PCA), robust PCA (RPCA), and autoencoder (AE) normalization across hyperparameters.

A (Left) Precision-recall (PR) performance analysis of AE-normalized DepMap 20Q2 data (Data ref: Broad DepMap, 2020) generated with latent space sizes 1, 3 and 5
evaluated against CORUM protein complexes. The x-axis depicts the absolute number of true positives (TPs) recovered in log scale. (Right) Corresponding contribution
diversity plots depicting TP pairs contributions from various CORUM complexes in AE-reconstructed and AE-normalized data.

B (Left) PR performance analysis of RPCA-normalized DepMap data generated with hyperparameter A set to 0.0049, 0.007 and 0.0091 evaluated against CORUM protein
complexes. The x-axis depicts the absolute number of true positives (TPs) recovered in log scale. (Right) Corresponding contribution diversity plots illustrating TP pairs’
contributions from CORUM complexes in RPCA-reconstructed and RPCA-normalized data.

C Scatter plot of Pearson’s correlation coefficients between un-normalized DepMap data and reconstructed data as well as between un-normalized data and normal-
ized data generated by PCA, AE, and RPCA normalization. Y-axis contains Pearson’s correlation coefficient values, and the x-axis contains the number of removed prin-
cipal components (first 1, 3, 5, 7,9, 11, 13, 15, 17, 19) for PCA-normalization, latent space sizes (1, 2, 3, 4, 5, 10) for AE normalization and A (approximately 0.0049,

0.0056, 0.0063, 0.007, 0.0077, 0.0084, 0.0091) for RPCA normalization.

the signal contained across complexes of different sizes. For exam-
ple, even though autoencoder normalization efficiently removes
mitochondrial signal, it also removes signal from many non-
mitochondrial complexes—a drawback rescued by integration with
onion normalization.

Similar benchmarking analyses show that RPCO and AEO nor-
malization outperform the GLS normalization technique proposed
by Wainberg et al (2021) and the olfactory receptor normalization
(OLF) technique proposed by Boyle et al (2018). Mitochondrial-
attenuated PR curves show improved performance of RPCO over
AEO and GLS, which perform similarly (Fig 4A), while diversity
plots reveal that both AEO and RPCO reduce mitochondrial-
associated signal more distinctly than GLS (Fig 4B; Appendix
Fig S8). Plotting per-complex AUPRC values based on the differ-
ence between normalized and un-normalized data for all methods
details a similar pattern for thresholds of 0.1 and 0.5, where RPCO
performs best and AEO and GLS perform similarly (Fig 4C). For
the complexes with the most pronounced difference between
unnormalized and normalized data at a threshold of 0.7 AUPRC,
both RPCO and AEO perform similarly and substantially outper-
form GLS. Although several individual normalized layers from
RPCA, PCA, and AE perform comparably to GLS, the combination
of all layers (RPCO) results in the strongest performance and out-
performs GLS (Appendix Figs S9 and S10). Across all evaluations,
OLF normalization does not substantially reduce mitochondrial sig-
nal or boost signal contained within non-mitochondrial complexes
compared to the other three methods. Furthermore, we found simi-
lar performance from RPCA- and RPCO-normalization techniques
when applied to a more recent version of the DepMap (DepMap
2022 Q4 Chronos scores; Meyers et al, 2017; Dempster
et al, 2019b, 2021; Pacini et al, 2021; Data ref: Broad
DepMap, 2022) and benchmarked against GLS, confirming that the
RPCO-normalization is robust across DepMap scoring pipelines
(Appendix Figs S11 and S12).

Network analysis of onion-normalized DepMap data uncovers
biologically relevant clusters

To visually examine functional relationships between genes pre-
and post-RPCO normalization and the expected reduction in mito-
chondrial signal, we created correlation networks for both versions
of the DepMap in Cytoscape version 3.7.2 (Shannon et al, 2003)
using the yFiles organic layout algorithm. We performed this for
five, ten, and fifteen thousand of the top-ranked edges sorted in
decreasing order of correlations for pre- and post-normalization
data, plotting the five and fifteen-thousand edge networks (Fig 5A

© 2023 The Authors

and B). Rather than forming a handful of connected components
centered around hub genes, RPCO-normalized data formed up to
2,073 discrete clusters for the fifteen-thousand edge network
(Fig 5A). However, pre-normalization DepMap data represented
nearly an order of magnitude fewer clusters for the fifteen-thousand
edge network, 290, with the majority of edges instead concentrated
into a single connected component with many mitochondrial-
associated edges (Fig 5B). Comparing the number of genes repre-
sented across networks further illustrates that RPCO normalization
relationships previously masked by mitochondrial-
associated signal, with 10,493 more genes in the fifteen thousand
edge RPCO network than the corresponding pre-normalization net-
work (Fig 5C).

An investigation of clusters derived from RPCO-normalized data
which lack signal in the original DepMap reveals potentially novel
functions for the genes KPRP, DNTTIP1, TMEMS9L, and
ELMSAN1. Twelve out of thirteen of a cluster of genes with a
mean z-score of 43.8 in RPCO-normalized data, compared to a z-
score of 1.9 in the original DepMap, are enriched for GO terms
related to metal homeostasis (Fig 5D). The remaining gene, KPRP,
is mostly uncharacterized and is not annotated to any GO biologi-
cal process term. Therefore, we hypothesize that KPRP is also
involved in metal homeostasis, perhaps working in conjunction
with its nearest neighbor MT1X. A separate cluster of twelve
genes, with a z-score of 30 in RPCO-normalized data compared to
a z-score of 1.5 in the original DepMap, is enriched for MAP
kinase signaling-related genes such as MAPK14 (Fig 5E). Intrigu-
ingly, while the gene ELMSANI1 (since renamed to MIDEAS) is
known to be involved with histone deacetylation but little else, it
is connected to both MAPK14 and MAP2K3. Through these con-
nections, the similarly uncharacterized genes DNTTIP1 and
TMEMSIL are associated with this cluster as well, indicating a
potential connection between ELMSAN1, DNTTIP1, TMEMS59L,
and MAPK14 activity.

uncovers

Onion normalization improves prediction of cell lines’
tissue-of-origin

Our previous analyses focused on refinement of gene similarity net-
works derived from the DepMap data. We reasoned that onion nor-
malization may also improve detection of similarities between cell
lines” dependency profiles. Previous work has explored the extent to
which cell lines with similar mutations or similar tissues-of-origin
exhibit common dependencies (e.g., Dharia et al, 2021). To test this,
we implemented a simple K-nearest neighbor (kNN) classifier to
predict tissue-of-origin from dependency profiles and optimized the

Molecular Systems Biology 19: e11657|2023 7 of 18
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Figure 3. Onion normalization schematic and benchmarking for different normalization techniques as input.

A Similarity networks are generated from data normalized with a chosen technique—autoencoders (AE), Principal Component Analysis (PCA) or robust PCA (RPCA)—for
different choices of hyperparameters, which are then combined with a network integration technique.

B FLEX precision-recall (PR) performance analysis of original DepMap 20Q2 data (Data ref: Broad DepMap, 2020) and onion normalized data with AE (AEO), PCA (PCO)
or RPCA (RPCO) as normalization methods against CORUM protein complexes as the standard. (Left) All CORUM co-complex gene pairs as true positives. (Right) Mito-
chondrial gene pairs are removed from the evaluation. The x-axis of both plots depicts the absolute number of true positives (TPs) recovered in log scale.

C Contribution diversity of CORUM complexes for the original DepMap, AEO, PCO, and RPCO data. Fractions of true positives (TP) from different complexes are plotted
at various precision levels on the y-axis. Note that the left panel is replicated from Fig 1C (right panel).

D Number of complexes for which area under the PR curve (AUPRC) values increase and decrease with respect to chosen AUPRC thresholds due to normalization as
compared to un-normalized data. The bars on the left side of the dotted line correspond to AE-normalized layers (latent space size = 1, 2, 3, 4, 5, 10), PCA-normalized
layers (first 1, 3, 5, 7,9, 11, 13, 15, 17, 19 principal components removed) and RPCA layers (4 ~ 0.0049, 0.0056, 0.0063, 0.007, 0.0077, 0.0084, 0.0091). The bars on the
right side of the dotted line correspond to SNF integrated data of the respective layers for all three methods. The color gradient for each method represents four bins
with complexes containing 2-3 genes, 4-5 genes, 6-9 genes, and 10 or more genes. (Left) t = 0.1. (Right) t = 0.5.

choice of k (see Materials and Methods). The kNN classifier was
provided either similarity based on the un-normalized dataset, or a
similarity network derived from RPCO normalization applied to the
cell line similarity matrix based on the DepMap 20Q2 dataset
(Meyers et al, 2017; Dempster et al, 2019b; Data ref: Broad DepMap,
2020). We evaluated precision-recall statistics for each possible
tissue-of-origin, which reflects the ability of the kNN to correctly
predict the corresponding tissue-of-origin based on each cell line’s
nearest neighbors. We found that the RPCO-normalized network
supported a substantial increase in the median F1 score for
tissue-of-origin prediction (from 0.2 to 0.4 for k = 5) and for 24 out
of 26 tissues, the normalization resulted in equal or better perfor-
mance (Figs EV4 and EV5). This indicates that cell line similarity
networks also benefit from onion normalization.

Onion normalization enhanced signals in gene expression data

To explore the generalizability of our onion normalization methods
to other genome-scale datasets, we applied onion normalization to
a single-cell gene expression dataset generated from healthy
peripheral blood mononuclear cells (PBMCs) using Chromium
scRNA-seq technology and Cell Ranger (Zheng et al, 2017; Data
ref: 10x Genomics, 2019). The pre-processed data contain log-
normalized expression readouts for 12,410 genes across 1,195
cells. A FLEX PR curve from the un-normalized data benchmarked
against the CORUM protein standard shows the detection of 2,000
true positive gene pairs at a precision threshold of 0.8 (Appendix
Fig S13A). However, the corresponding diversity plot shows that
the majority of the strong performance (high precision) indicated
by the PR curve comes from the cytoplasmic ribosome complex.
PR-curves from RPCA- and RPCO-normalized data outperform un-
normalized data by increasing the number of true positive (TP)
gene pairs from 2,000 to 5,000 at a precision threshold of 0.8
(Appendix Fig S13B left). Moreover, PR curves without ribosomal
gene pairs in the evaluation reveal that the normalized data per-
forms better than the un-normalized data (Appendix Fig S13B
right). For example, at a precision threshold of 0.2 the un-
normalized data have around 50 TP gene pairs, whereas RPCO
normalization has 100. This suggests that the normalization pro-
cess enhances signals in gene pairs within non-ribosomal com-
plexes. For example, a closer look at the per-complex AUPRC
values reveals that RPCO normalization increased AUPRC for the
Ferritin complex from 0.036 to 0.25 and for the Cofilin-actin-CAP1
complex from 0.028 to 0.146. This indicates that an optimized

© 2023 The Authors

onion normalization method can be used to generally boost signals
in gene expression data as well as CRISPR screen data.

Discussion

In this study, we explored the use of unsupervised dimensionality
techniques to identify functional relationships between genes within
whole-genome CRISPR screening data and proposed a novel method
called “onion” normalization for integrating signal between different
“layers” of normalized data. While deep learning with autoencoders
efficiently removed unwanted mitochondrial signal from the
DepMap, this performance came at the expense of signal within
smaller, non-mitochondrial complexes. Onion normalization res-
cued this poor performance for small complexes while still
reducing mitochondrial signal and outperformed all proposed and
state-of-the-art normalization methods when paired with robust
principal component analysis (RPCO).

Co-essentiality maps derived from RPCO-normalized data show
an unprecedented ability to recover signal from most of the
genome when contrasted against the un-normalized DepMap
and previous DepMap-derived co-essentiality maps. The fifteen-
thousand edge RPCO network, constructed in a completely unsu-
pervised way by measuring Pearson correlations above a given
threshold, contained a total of ~ 12 k genes with an average of
2.5 neighbors per gene. The same approach applied to the original
DepMap captured only ~ 1,500 genes with an average of 19.7
neighbors per gene, likely due to the dominance of mitochondrial-
associated hub genes within the network. Previous co-essentiality
maps constructed from the DepMap either filtered out the majority
of the genome or initialized the network structure based on a set
of pre-existing clusters (Kim et al, 2019; Wainberg et al, 2021),
techniques ill-suited for mapping the functions of understudied
genes. RPCO-normalization overcomes these limitations and allows
us to ascribe putative functions to previously weakly connected
genes.

We emphasize that the main purpose of the proposed onion nor-
malization methods is to enable the construction of improved gene-
gene similarity networks from the DepMap dataset. Our analysis
also suggests it can also be used for refining cell line-level similarity
networks (e.g., for identification of cell lines that exhibit common
dependencies). However, there are many other important applica-
tions of the DepMap data including direct clustering of the cell
lines/genes, more focused target/drug discovery-oriented analyses,

Molecular Systems Biology 19: 116572023 9 of 18
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Figure 4. Benchmarking onion normalization against other methods.

A FLEX precision-recall (PR) performance analysis of original DepMap 20Q2 data (Data ref: Broad DepMap, 2020) and data from onion normalization with autoencoders
(AEQ), onion normalization with robust PCA (RPCO), generalized least squares (GLS) normalization from Wainberg et al (2021), and olfactory receptor (OLF) normaliza-
tion from Boyle et al (2018) against CORUM protein complexes as the standard. (Left) All CORUM co-complex gene pairs as true positives. (Right) Mitochondrial gene
pairs are removed from the evaluation. The x-axis of both plots depicts the absolute number of true positives (TPs) recovered in log scale.

B Contribution diversity of CORUM complexes for the original DepMap, AEO, RPCO, GLS, and OLF data. Fractions of true positives (TP) from different complexes are
plotted at various precision levels on the y-axis. Note that the left panel is replicated from Fig 1C (right panel) and 3C, and the second and third panels are replicated
from Fig 3C.

C Number of complexes for which area under the PR curve (AUPRC) values increase and decrease with respect to chosen AUPRC thresholds due to normalization as
compared to un-normalized data for AEO, RPCO, GLS, and OLF data. The color gradient for each method represents four bins with complexes containing 2-3 genes, 4—
5 genes, 6-9 genes, and 10 or more genes. (Left) t = 0.1. (Middle) t = 0.5. (Right) t = 0.7.

or analysis of individual genetic dependencies identified by the Our exploration provides a compendium of resources for study-
DepMap profiles. Onion normalization is not applicable to many of ing functional relationships within the DepMap at an improved
those other downstream applications. resolution, including a novel co-essentiality map and the onion
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Figure 5. Network analysis of RPCO-normalized and original DepMap data.

A Top-ranked edges between genes from RPCO-normalized DepMap 20Q2 data (Data ref: Broad DepMap, 2020) laid out with the yFiles organic layout algorithm in
Cytoscape (Shannon et al, 2003), with mitochondrial-associated genes highlighted in blue. (Left) The top 5,000 edges for n = 3,850 genes. (Right) The top 15,000 edges
for n = 12,017 genes.

B Top-ranked edges based on Pearson correlations between genes from original DepMap data laid out with the yFiles organic layout algorithm in Cytoscape, with
mitochondrial-associated genes highlighted in blue. The largest connected components of the networks are inset and represent many mitochondrial-associated genes.
(Left) The top 5,000 edges for n = 810 genes. (Right) The top 15,000 edges for n = 1,524 genes.

C The number of genes represented in the RPCO and original DepMap networks plotted in panels A and B.

D Cluster derived from the 15,000 edge RPCO network representing metal homeostasis genes. (Left) Edges present in 15,000 edge RPCO network. (Right) Edges present
in 15,000 edge original DepMap network.

E  MAPK14-centric cluster derived from the 15,000 edge RPCO network. (Left) Edges present in 15,000 edge RPCO network. (Right) Edges present in 15,000 edge original
DepMap network.
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normalization method. While our results show a strong perfor-
mance benefit for robust principal component analysis, future
work could investigate both deep learning approaches for normal-
izing the DepMap and onion normalization applied to different
input normalization approaches. Perhaps other deep-learning
approaches that learn meaningful latent spaces, such as variational
autoencoders (Kingma & Welling, 2022), could better learn and
remove mitochondrial signal without reducing signal within

Arshia Zernab Hassan et al

mitochondrial-associated complexes. As the key technical limita-
tion of onion normalization is its high memory cost, which
scales with the number of layers, future work could also investi-
gate the choice of optimal hyperparameters across different
layers of normalized data. Additionally, onion normalization is a
general framework that our initial analyses suggest may be appli-
cable to other types of genomic data such as bulk and single-cell
RNA-seq.

Materials and Methods

Reagents and Tools table

Reagent/Resource Source Identifier

Dataset

DepMap 2020 Q2 Genome-wide CRISPR https://figshare.com/articles/DepMap_20Q2_Public/12280541/4 N/A

screens

o Achilles_gene_effect.csv Meyers et al (2017), Dempster et al (2019b), Data ref: Broad DepMap (2020)

e sample_info.csv

DepMap 2022 Q4 Genome-wide CRISPR https://figshare.com/articles/dataset/DepMap_22Q4_Public/21637199/2 N/A

screens

* CRISPRGeneEffect.csv Meyers et al (2017), Dempster et al (2019b, 2021), Pacini et al (2021), Data ref: Broad
DepMap (2022)

10x Genomics sSCRNA-seq gene expression https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3 N/A

dataset

e Sk_pbmc_v3_filtered_feature_bc_matrix.tar Data ref: 10x Genomics (2019)

Software

argparse R package v2.0.3 https://cran.r-project.org/web/packages/argparse/index.html N/A
Davis et al (2023)

clusterProfiler R package v3.16.1 Wu et al (2021) N/A

crfsuite R package v0.4.1 https://cran.r-project.org/web/packages/crfsuite/index.ntml N/A
Wijffels et al (2022)

cvms R package https://cran.r-project.org/web/packages/cvms/index.html N/A
Olsen et al (2023)

Cytoscape v3.4.0 Shannon et al (2003) N/A

devtools R package v2.4.3 https://cran.r-project.org/web/packages/devtools/index.html N/A
Wickham et al (2022)

dplyr R package v1.0.8 https://cran.r-project.org/web/packages/dplyr/index.html N/A
Wickham et al (2023b)

FLEX R package https://github.com/csbio/FLEX_R N/A
Rahman et al (2021)

Generalized least squares (GLS) normalization https://github.com/kundajelab/coessentiality N/A
Wainberg et al (2021)

ggplot2 R package v3.3.5 https://cran.r-project.org/web/packages/ggplot2/index.html N/A
Wickham et al (2023a)

ggthemes R package v4.2.4 https://cran.r-project.org/web/packages/ggthemes/index.html N/A
Arnold et al (2021)

gplots R package v3.1.1 https://cran.r-project.org/web/packages/gplots/index.html N/A
Warnes et al (2022)

gridExtra R package v2.3 https://cran.r-project.org/web/packages/gridExtra/index.html N/A

Auguie & Antonov (2017)
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Reagents and Tools table (continued)

Molecular Systems Biology

Reagent/Resource Source Identifier

NumPy v1.17.4 https://numpy.org/ N/A

Pandas v0.25.1 https://zenodo.org/record/8239932 N/A

pheatmap R package v1.0.12 https://cran.r-project.org/web/packages/pheatmap/index.html N/A
Kolde (2019)

Python version 3.7.3 https://www.python.org/ N/A

PyTorch v1.6.0 https://pytorch.org/ N/A

R versions 3.6.3 and 4.1.3 https://www.r-project.org/ N/A

ramify R package v0.3.3 https://cran.r-project.org/web/packages/ramify/index.ntml N/A
Greenwell (2016)

RColorBrewer R package v1.1-3 https://cran.r-project.org/web/packages/RColorBrewer/index.html N/A
Neuwirth (2022)

RcppCNPy R package v0.2.11 https://cran.r-project.org/web/packages/RcppCNPy/index.html N/A
Eddelbuettel & Wu (2022)

reshape R package v0.8.9 https://cran.r-project.org/web/packages/reshape/index.html N/A
Wickham (2022a)

rpca R package v0.2.3 https://cran.r-project.org/web/packages/rpca/index.html N/A
Candes et al (2011), Sykulski (2015)

Seurat R package v4.3.0 https://cloud.r-project.org/web/packages/Seurat/index.html N/A
Hao et al (2021), Butler et al (2023)

SNFtool R package v2.31 https://cran.r-project.org/web/packages/SNFtool/index.html (Wang et al, 2021) N/A

stringi R package v1.7.6 https://cran.r-project.org/web/packages/stringi/index.html N/A
Gagolewski & Tartanus (2023)

stringr R package v1.4.0 https://cran.r-project.org/web/packages/stringr/index.html N/A
Wickham (2022b)

tidyr R package v1.2.0 https://cran.r-project.org/web/packages/tidyr/index.html N/A

Wickham et al (2023c)

Methods and Protocols

Principal component analysis normalization
We applied the following steps to create PCA-normalized data from
the original DepMap data -

1 As a pre-processing step, NA values were replaced with gene-wise
mean CERES scores in the DepMap 20Q2 data (Achilles_gene_ef-
fect.csv) (Meyers et al, 2017; Dempster et al, 2019b; Data ref:
Broad DepMap, 2020).

2 We then applied the R function prcomp (an SVD-based R implemen-
tation of PCA) to the DepMap data with scale and center parameters
set to true and generated corresponding principal component (PC)
outputs. The rotation variable of the PCA output corresponds to
loadings of the principal components. Multiplying DepMap CERES
scores with the complete rotation matrix transforms the data to a
coordinate space defined by the principal components. Multiplying
this resulting matrix with the transpose of the PC loadings matrix re-
transforms data into the original coordinate space.

3 In our method, the original DepMap data matrix M,y is multiplied
by only a subset of the principal component loadings matrix (Lcx.)
and its transpose. This creates a ‘PCA-reconstructed’ version of

© 2023 The Authors

the original data matrix from the low dimensional signal-space
defined by that particular subset of principal components (equa-
tion 1.1).(1.1)

M:L;(L‘grzstructed = My X Len ¥ Lan

4 The n-PC PCA-reconstruction of the original data is thus generated

using the first n columns of the rotation matrix. Subtracting the

PCA-reconstructed matrix from the original data matrix generates

the n-PC removed PCA-normalized version of the data (equa-
tion 1.2).(1.2)

normalized __ reconstructed
erc _erchrxc

Robust principal component analysis normalization

Robust principal component analysis (RPCA) decomposes matrix
Xixe into low-rank, L., and sparse, S, component matrices so
that they satisfy equation 1.3 (Candes et al, 2011). RPCA is an unsu-
pervised method, designed to optimize the values of L and S to mini-
mize Equation 1.4, where IILIl« is the nuclear-norm of L and lISll; is
the l;-norm of S. A is a hyperparameter whose suggested value is

1+ y/max(r,c).
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X=L+S (1.3)
min [[L||, + 2IS|l, stX =L+S (1.4)

We applied the following steps to create RPCA-normalized data
from the original DepMap data -

1 NA values were first replaced with gene-wise mean CERES scores
in the DepMap 20Q2 data (Achilles_gene_effect.csv; Data ref:
Broad DepMap, 2020).

2 We then applied the rpca function from the rpca R-package (an R
implementation of RPCA, Sykulski, 2015) to the DepMap data.
Variables S and L in rpca output are the RPCA-normalized data
and RPCA-reconstructed data, respectively.

Autoencoder normalization
We applied the following steps to create AE-normalized data from
the original DepMap data -

1 The 20Q2 DepMap data (Data ref: Broad DepMap, 2020) Achil-
les_gene_effect.csv, was processed in the following way to pre-
pare data for fitting with an autoencoder model.

a. NA values were replaced with gene-wise mean CERES scores.

b. The dataset was row-standardized.

c. The 0.12% of resulting z-scores below —4 or above 4 were
clipped to —4 or 4, respectively.

d. The entire dataset was min-max scaled to fall between —1 and 1.

2 A deep convolutional autoencoder was then trained on the
DepMap for 1 epoch and a latent space size of LS =1, 2, 3,4, 5
or 10. The encoder architecture consisted of a 1D convolutional
layer converting from 1 channel into 10 with a subsequent 1D
max pooling layer, another 1D convolutional layer converting
from 10 channels into 20 with a subsequent 1D max pooling
layer, and flattening followed by a linear layer with size equal to
the chosen latent space. The decoder architecture consisted of
inverse operations with max unpooling, transposed convolutional
layers and a final linear layer to reshape output into the original
input size. All convolutional kernel sizes were set to 3 and all
pooling kernel sizes were set to 2.

3 The ‘reconstructed’ data (decoder output) generated from the
latent space is subtracted from the original DepMap to create
‘normalized’ data.

Onion normalization

The onion normalization method combines signals from different nor-
malized data (that we refer to as ‘layers’) generated by dialing param-
eter values of a normalization method. It has three components — (i)
normalizing gene effect scores with a dimensionality reduction
method, (ii) creating similarity networks from normalized data, and
finally (iii) integrating the similarity-networks into a single network.

1 Any effective dimensionality reduction method can be employed
in the normalization step. The layers to be fused are produced
from the same data normalized by varying a parameter of the
normalization method. We created such layers by applying PCA,
RPCA, or AE normalization methods to the 20Q2 DepMap data
(Data ref: Broad DepMap, 2020) as described in their respective
sections. For example, we created six AE-normalized layers using
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AE normalization with latent space sizes of 1, 2, 3, 4, 5, and 10.
Similarly, we removed the first n principal components (for
n=1,3,5 7,9, 11, 13, 15, 17, or 19) and generated 10 PCA-
normalized layers. For RPCA normalization, we regulated 4
applying the formula f+\/m for f=0.7, 0.8, 09, 1, 1.1,
1.2, 1.3, r=18,119, ¢=769 and generated seven RPCA-
normalized layers for integration.

2 From each normalized layer, we created a gene-level similarity
network by computing Pearson correlation coefficients among the
gene profiles.

3 For the network integration module of the onion method, we
selected the Similarity Network Fusion (SNF) approach developed
by Wang et al (2014a) as it outperformed baseline integration
techniques we explored (Appendix Figs S14-S16). SNF is a net-
work fusion technique based on multiview learning that enhances
or diminishes network edge weights by considering the neighbor-
hood and sparsity information of the individual networks. We
converted Pearson correlation coefficients to distance metrics by
subtracting them from 1 before applying a scaled exponential sim-
ilarity kernel (the affinityMatrix function in the SNF R package,
Wang et al, 2021) to generate an affinity score matrix. These
affinity matrices generated from each layer of normalized data are
then integrated into one network with the SNF package.

SNF has three relevant hyperparameters. The first parameter, o,
is a standard deviation regulator of the exponential similarity kernel
and is used to create the affinity matrices. Another hyperparameter,
k, regulates the number of neighboring vertices to be considered
during calculating edge weights in the integrated network and is
used both in the affinity matrix creation and the final integration
stages. A third hyperparameter controls the number of iterations in
the integration stage. We dialed ¢ = 0.1, 0.3, 0.5, 0.7 and k = 3, 5,
10, 20 in integrating AE, PCA, and RPCA normalized layers and set-
tled on 6 = 0.3, k =5 for PCO and ¢ = 0.5, k = 5 for RPCO and
AEO, based on how much diversity it can introduce during the eval-
uation process (Appendix Fig S17). We set the number of iterations
to 10 for all methods. While integrating AE-normalized layers, we
also included the similarity network generated from the un-
normalized data as a layer, fusing a total of seven layers.

Normalization of DepMap 2022 Q4 Chronos scores

We investigated the effect of RPCA normalization, RPCO normaliza-
tion as well as the GLS method (Wainberg et al, 2021) on the
DepMap 2022 Q4 Chronos single KO effect scores (CRISPRGeneEf-
fect.csv; Data ref: Broad DepMap, 2022).

—_

Applying RPCA normalization, we generated seven normalized

layers (gene X cell lines) by setting hyperparameter A of the RPCA

method to f+\/rnax(r,c), where r = 17,453, ¢ = 1,078, and

f=0.7,08,09,1,1.1, 1.2, 1.3.

2 These normalized data were then converted into seven gene-gene
profile similarity networks using Pearson Correlation Coefficients
as the similarity metric.

3 These networks were integrated using the SNF method (hyper-
parameter ¢ = 0.5 and k = 5) (Wang et al, 2014a) to create the
RPCO-normalized network.

4 The GLS pipeline (Wainberg et al, 2021) was applied to the same

2022 Q4 Chronos DepMap dataset using the standard settings.
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Functional evaluations

To evaluate normalization methods we used the CRISPR screen
benchmarking package FLEX (Rahman et al, 2021) and the
CORUM protein complex database (Giurgiu et al, 2019) as FLEX’s
gold standard to benchmark against. FLEX’s evaluation is based
on the idea that gene-level similarity scores, calculated from gene
knock-out profiles, connote functional similarity among genes and
a higher similarity score between two genes implies membership
in the same protein complex. FLEX orders gene pairs from high
to low similarity scores and evaluates complex membership pre-
dictions at different precision points against the CORUM standard.
The precision-recall (PR) curve from FLEX depicts how many true
positive (TP) gene pairs are both strongly correlated within the
data and members of the same CORUM protein complex. For all
PR analysis plots, we plot precision on the y-axis and the abso-
lute number of true positives (TPs) on the x-axis. We note that
this deviates from the strict definition of recall, which is a frac-
tional value (number of TPs divided by the total number of posi-
tive examples). In this context, we prefer to plot the absolute
number of TPs to provide more information about the total num-
ber of gene pairs captured at each threshold. The x-axis would
simply be scaled by a single constant if recall were plotted
instead.

This visualization is augmented by contribution diversity plots,
which illustrate specific complexes that contribute to true positive
(TP) gene pairs at various precision points on the y-axis. These
plots are constructed by sliding a precision cutoff from high to
low (indicated by the y-axis), and at each point, plotting a
stacked bar plot across the x-axis at that point reflecting the
breakdown of complex membership of the TP pairs identified at
that threshold. For example, if there are X total TP gene pairs
at a cutoff that results in a precision of 0.8, the diversity plot will
contain a stacked bar plot centered at y = 0.80 stretching across
the x-axis, where each section of the bar plot represents the frac-
tion of pairs contributed by a specific protein complex among
those X TP pairs. This stacked bar plot is recomputed at each
precision point to reflect the set of TP pairs satisfying the corre-
sponding cutoff. As a result, a visually larger area from a com-
plex denotes more TP contribution from that complex across the
y-axis. In all diversity plots across the manuscript, the top 10
contributing complexes are shown in red or blue shades and all
other complexes contributing at a lower frequency are represented
in gray.

Another evaluation metric in FLEX is the per-complex area under
the PR curve (AUPRC) value. In calculating AUPRC for a complex,
gene pairs belonging to that complex are considered as positive
examples whereas gene pairs from other complexes are set as nega-
tive examples. A higher per-complex AUPRC indicates more gene
pairs associated with that complex have been identified based on
their similarity scores. Conversely, a lower per-complex AUPRC
means that scores for the within-complex genes are poorly corre-
lated compared to between-complex gene pairs.

FLEX also facilitates removing specific annotated gene pairs from
the evaluation process so that they contribute to neither true
positives nor false-positives. To evaluate the influence of mitochon-
drial complexes in the DepMap data, we compiled 1,266
mitochondrial genes from three sources to remove from our
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analysis. A total of 1,136 genes were collected from the Human
MitoCarta3.0, an inventory of human mitochondrial proteins and
pathways by the Broad Institute (Rath et al, 2021). All genes from
the KEGG OXIDATIVE PHOSPHORYLATION and the REACTOME
RESPIRATORY ELECTRON TRANSPORT pathways were included in
the list. 436 genes were also assembled by an expert based on infor-
mation from pathways and CORUM complexes, and the union of
these lists formed a reference list of mitochondrial-associated genes.
To modify FLEX analyses according to this list and better examine
non-mitochondrial signal within the DepMap, gene pairs were
excluded from FLEX analyses where both genes are contained in the
mitochondrial gene list. Gene pairs that contain only one or no mito-
chondrial genes are not removed.

Network analysis

Networks were constructed from the original 20Q2 DepMap and the
RPCO-normalized DepMap datasets by taking the top five, ten, or
fifteen-thousand edges based on the strength of Pearson correlations
across each respective dataset (Data ref: Broad DepMap, 2020). Net-
work layouts were performed with the yFiles organic layout algo-
rithm in Cytoscape version 3.7.2 (Shannon et al, 2003). All
connected components within each network were treated as sepa-
rate clusters and analyzed for enrichment. Enrichments tests were
performed with hypergeometric tests using the clusterProfiler R
package version 3.16.1 by Wu et al (2021) against human Gene
Ontology-biological process and MSigDB C2-curated pathway anno-
tations and a background set of all genes in the given network at a
Benjamini-Hochberg FDR of 0.2.

Analysis on cell line similarity network

We analyzed the effect of RPCO normalization on the DepMap 20Q2
(Data ref: Broad DepMap, 2020) cell line similarity network. To cre-
ate a RPCO-normalized network the following steps were taken:

1 We applied RPCA (Candes et al, 2011) to DepMap 20Q2 cell line
profiles (Ceres scores across genes) and generated seven normal-
ized layers (cell lines x genes) by setting hyperparameter 4 of the
RPCA method to f+\/max(r,c), where r = 769, ¢ = 18,119, and
f=0.7,08,09,1,1.1,1.2,1.3.

2 Seven cell line similarity networks were created from the normal-
ized data using Pearson Correlation Coefficient as a similarity
metric

3 The seven networks were integrated using SNF (Wang
et al, 2014a) (6 = 0.5, k =5) to generate a RPCO-normalized
network.

For the tissue-lineage prediction task the following methods were
applied,

1 A tissue label was assigned to a cell line using k-nearest neighbor
with majority voting. The highest similarity score neighbor label
was assigned in case of a tie.

2 The overall precision, recall and F1 scores were calculated using
weighted mean of scores from individual classes. The true tissue
labels for cell lines are derived from the sample_info.csv file pro-
vided with DepMap 20Q2.

3 The baseline prediction scores were calculated by a random classi-
fier and taking the average of 100 iterations.
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Analysis on gene-expression data
To investigate the RPCO normalization on scRNA-seq gene expres-
sion data, we applied the following steps:

1 The scRNA-seq gene expression dataset (5k_pbmc_v3_filtered_
feature_bc_matrix.tar) was downloaded from 10xGENOMICS
(Data ref: 10x Genomics, 2019). The dataset was generated from
Peripheral blood mononuclear cells (PBMCs) using Chromium
and Cell Ranger.

2 We applied the Seurat R package (Hao et al, 2021; Butler
et al, 2023) to filter the dataset.

a. We removed genes for which the number of cells with non-
zero values is smaller than or equal to 50.

b. We also filtered out cells for which the number of unique
genes detected in each cell is < 100 and > 4,500.

c. We only included cells for which the percentage of reads that
map to the mitochondrial genome is lower than 7.

d. The final matrix contains 12,410 genes and 1,195 cells, around
20% of which is non-zero. We log-normalized the data using
Seurat function NormalizeData with default parameters.

3 We applied RPCA to the pre-processed scRNA-seq data and gener-
ated seven RPCA-normalized layers by setting hyperparameter
lambda to f+\/max(r,c), where r = 12,000, c = 1,200, and
f=0.7,08,09,1,1.1,1.2, 1.3.

4 Seven gene-gene similarity networks were generated from the
normalized data using Pearson Correlation Coefficients as the
similarity metric.

5 The networks were integrated by taking the maximum weight for
each gene pair across the seven networks.

6 To demonstrate the dominance of cytoplasmic ribosomal gene
pairs in the analysis results (Appendix Fig S13B right), we
removed 81 Ribosome (cytoplasmic) complex-associated genes
during the FLEX evaluation process.

Data availability

The computer code and data produced in this study are available in
the following databases:

» Code to reproduce the main figures: GitHub (https://github.com/
ArshiaZHassan/ONION_git).

» Code for autoencoder-normalization: GitHub (https://github.com/
csbio/ae-norm).

e Data to reproduce the main figures and associated outputs:
Zenodo (https://zenodo.org/record/7671685#.Y_gi9nbMK5c).

Expanded View for this article is available online.
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