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BPS: Batching, Pipelining, Surgeon of Continuous
Deep Inference on Collaborative Edge Intelligence

Xueyu Hou"”, Yongjie Guan ', Nakjung Choi

Abstract—Users on edge generate deep inference requests con-
tinuously over time. Mobile/edge devices located near users can
undertake the computation of inference locally for users, e.g.,
the embedded edge device on an autonomous vehicle. Due to
limited computing resources on one mobile/edge device, it may
be challenging to process the inference requests from users with
high throughput. An attractive solution is to (partially) offload the
computation to a remote device in the network. In this paper, we
examine the existing inference execution solutions across local and
remote devices and propose an adaptive scheduler, a BPS scheduler,
for continuous deep inference on collaborative edge intelligence.
By leveraging data parallel, neurosurgeon, reinforcement learning
techniques, BPS can boost the overall inference performance by
up to 8.2 over the baseline schedulers. A lightweight compres-
sor, FF, specialized in compressing intermediate output data for
neurosurgeon, is proposed and integrated into the BPS scheduler.
FF exploits the operating character of convolutional layers and
utilizes efficient approximation algorithms. Compared to existing
compression methods, FF achieves up to 86.9 % lower accuracy loss
and up to 83.6% lower latency overhead.

Index Terms—Edge computing, efficient AI, reinforcement
learning, convolutional neural networks.

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) have
C achieved remarkable success in computer vision tasks due
to their high accuracy [1], [2], [3]. However, they are often char-
acterized by high computational demands, necessitating a large
number of operations [4], [5]. To address this, various compres-
sion techniques have been developed, aiming to maintain high
predictive accuracy while reducing computational costs through
modifications to the original CNN architectures [6], [7], [8], [9],
[10], [11]. Despite their effectiveness, these methods typically
require additional retraining post-compression to regain accu-
racy, significantly increasing both cost and design overhead [12].
As an alternative, several studies have explored the distribution
of CNN model execution across multiple edge/mobile devices
to expedite inference [5], [9], [12], [13], [14], [15]. A notable
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approach, Neurosurgeon [5], proposes reducing computational
load on edge/mobile devices by offloading part of a CNN
model to a high-performance edge/cloud server. This technique
involves dividing the CNN model at an intermediate layer, where
the initial layers are computed locally on the edge/mobile device,
and the remaining layers are processed on the server, with
intermediate outputs transmitted over the network. Subsequent
research has expanded on this concept, focusing on areas like
intermediate data compression [15], video analytics [16], and
integrating model compression techniques [14], among others.

In practical scenarios, CNN model inference requests are
continuously generated by users [17], [18], [19], leading to
input queues on devices. While local execution of all infer-
ences is feasible, leveraging the computing resources of nearby
mobile/edge devices can distribute the computational load. Our
findings, which we detail in Section III-A, reveal that combining
data parallelism with the Neurosurgeon approach yields the
highest inference throughput, effectively minimizing latency
across local and remote devices.

In this paper, we address the pressing issue of performing deep
inference for multiple users when only one local edge device
and another remote edge device are available. This challenge is
increasingly relevant in a variety of applications. For instance, in
autonomous driving, a local edge device installed in the vehicle
processes real-time data from multiple cameras. The nearby
infrastructure can act as the remote edge device, assisting in
the deep inference. In the realm of video surveillance such as
hospitals or residential areas, local edge devices can collect and
process video feeds from various rooms. Here, a guardian’s
device or monitoring system can serve as the remote edge device.
For multi-user augmented reality experiences, such as interac-
tive sessions in a conference room, a local computer can process
the immediate data from AR glasses, while a more distant edge
device might also be engaged for the data processing. These
examples illustrate the growing necessity for deep inference in
compact spaces like homes, conference rooms, or neighborhood
blocks. With the advancement of edge computing, local edge de-
vices are increasingly available in such areas, providing nearby
users with network connectivity and computational resources. In
abroader public network context, another edge device, reachable
via remote network connections, can offer additional computa-
tional power for deep inference tasks.

A key distinction of our work is that we do not assume the
need for a high-power server as the remote device. Instead,
we consider scenarios where the remote device may have a
wide range of computing capabilities. This approach broadens
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Fig. 1. System overview.

the applicability of our research, making it relevant to a wider
array of scenarios, especially where high-performance servers
are not feasible or available. By focusing on optimizing the use
of remote devices with comparable capabilities to local devices,
our paper aligns with the trend of upgrading computing power in
mobile and edge devices, making it highly relevant in the current
technological landscape.

In our system architecture, depicted in Fig. 1, our primary
goal is to enhance the performance of continuous deep infer-
ence across two collaborative edge devices. The local device
consistently receives user-generated inference requests, while a
connected remote device, equipped with computational capabil-
ities, assists in handling part of these computational demands.
Although a basic integration of data parallelism and the Neu-
rosurgeon approach already surpasses existing methods in this
collaborative scenario, we achieve further performance improve-
ments by implementing two advanced techniques: FastFiltering
(FF) compression (see Section IV) and Batch-Pipeline-Surgeon
(BPS) scheduling (see Section V). As detailed in Section III-B,
the synergistic application of BPS and FF boosts system perfor-
mance by as much as 44.6%. FF, in particular, stands out as an
effective compression tool for intermediate CNN model outputs.
It leverages the inherent characteristics of convolutional layers
to efficiently eliminate redundant information from the original
intermediate data. FF not only maintains a high compression rate
but also minimizes overhead. As demonstrated in Section IV, FF
achieves up to 18.9% lower accuracy loss and 83.6% less latency
overhead compared to other state-of-the-art (SOTA) intermedi-
ate data compression techniques [15], [20], [21]. BPS, on the
other hand, is a scheduler that optimizes the batch size, cutting
layer, and compression parameters for collaborative execution. It
dynamically adjusts scheduling decisions based on system con-
dition changes, utilizing reinforcement learning (RL) techniques
to ensure high performance (i.e., high accuracy and low latency)
under various conditions. As we will show in Section V, the
combined use of BPS and FF significantly outperforms baseline
scheduling methods, enhancing performance by up to 2.4 <. The
contributions of this paper are as follows:

¢ Our work introduces FastFiltering (FF), an innovative com-

pression technique specifically designed for the intermedi-
ate output data of CNN models. FF leverages the unique
operational characteristics of convolutional layers, coupled
with efficient lightweight approximation algorithms. This
approach enables FF to surpass existing state-of-the-art
(SOTA) compression methods, achieving up to 86.9%
reduction in accuracy loss and up to 83.6% decrease in
latency overhead.

e We have developed an innovative scheduler tailored
for continuous deep inference in collaborative edge in-
telligence environments, named Batch-Pipeline-Surgeon
(BPS). Utilizing the capabilities of reinforcement learning,
BPS dynamically adapts to changing system conditions in
real-time.

® We incorporate the FF compression technique into our BPS
scheduler. This integration of BPS with FF significantly
enhances the system’s overall performance. Specifically,
it results in an improvement of up to 49.6x compared to
solely local inference, up to 19.2x compared to inference
solely relying on offloading, and up to 2.4x when com-
pared to data-parallel inference methods.

® Qur evaluation covers a comprehensive range of scenar-
i0s. This includes tests on four different pairs of edge
devices, each with varying levels of computing capabil-
ities. Additionally, we assess their performance across
seven distinct CNN models and under conditions where
background applications are running on the devices. For
a thorough comparison, FF is benchmarked against two
leading state-of-the-art compression methods, while BPS
is evaluated alongside six established baseline schedulers.

II. SYSTEM OVERVIEW

As shown in Fig. 1, we observe a scenario where multiple
users submit deep learning inference requests to a local device
(Device #1). Concurrently, a remote device (Device #2) is also
available to assist with model inference. The incoming requests
are queued on Device #1, awaiting processing. To ensure the ver-
satility and applicability of our system, we address several key
considerations: First, there is no inherent correlation between
the requests of different users. Unlike systems that leverage
spatial similarities among nearby cameras [22], our focus is on
a more generalized Machine Learning as a Service (MLaaS)
framework [1], [2], [3]. Here, users may send unrelated inputs
(images) for distinct deep inferences, catering to a diverse range
of requests. Second, there is no assumed correlation between
consecutive inputs from the same user. This perspective diverges
from existing approaches that exploit frame-to-frame similarity
in video streams [23], [24], [25]. In such works, key frames are
selectively processed by CNN models, with other frames being
analyzed based on cross-frame similarities, such as tracking
algorithms [23]. Thus, in our system, the inputs requiring deep
inference are those unique or key frames [16] that demand full
model processing. Third, the role of the remote device (Device
#2) is not limited to high-performance computing resources like
cloud or edge servers [5], [15]. Instead, it can be any edge
device available within the network, broadening the scope and
flexibility of our system to accommodate various computational
capabilities.

III. PRELIMINARY STUDY
A. Existing Inference Execution Methods

Consider a device receiving N inputs (e.g., images) from
users, and another device available over a network. We can
process these inputs using a CNN model M in several ways:
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Fig.2. Demonstration of execution methods across local device (orange) and
remote device (blue).

1) Local: We can process all the inputs on the local device. The
processing latency is T' = Ti.opp (N, b), where b is inference
batch size. (2) Offload: We can also offload all the inputs to
the other device in the network. The processing latency is T' =
Tiran(N,0,0) + Teomp(N, b), where 6 is network throughput.
(3) Model Parallel: We can split the first several layers in
the original model M into two parts [26], and run these two
parts in parallel on the two devices. The rest layers of M
are executed on one of the two devices. As demonstrated in
Fig. 2(a), the first four layers of the CNN model are split into two
parts for model paralleling execution. The processing latency
is T = Tpara(N,b) + Teomp(N, b). (4) Data Parallel: We can
also process IV inputs locally and V5 inputs on the other device
(N = N;j 4+ Ns). As demonstrated in Fig. 2(c), we divide the
input images into two groups and process them on the local
and remote device, respectively. The total processing latency
is T' = max Tcompl (N17 b1)7 Tiran (N2a b2) + Tcomp2 (N% b2)
(5) Neurosurgeon: We can cut the original model M at an inter-
mediate layer [5]. The first part (first L layers) is executed on the
local device, and the second part (last L, layers) is executed on
the other device. As demonstrated in Fig. 2(b), we cut the CNN
model at the forth layer and execute the two parts on the local
and remote device, respectively. The processing latency is T' =
Teomp(N,b, L1) + Tiran(N, b, 01, ) + Teomp(N, b, La), where
or, is the intermediate output from layer L;.

In our setups, we measure the latency components involved
in the computing and data transmission process between two
devices as follows. Specifically, the computing latency on De-
vice #1 is defined as the duration from the moment Device #1
loads all the input data for inference to when it generates the
output or intermediate data. Conversely, the computing latency
on Device #2 encompasses the time interval from loading the
input or intermediate data for inference to producing the final
output data. The transmission latency for inputs is determined
by the time elapsed from when Device #1 sends the input data
to the point at which Device #2 receives them. Similarly, the
transmission latency for intermediate data is calculated from
when Device #1 transmits these data until Device #2 receives
them. Lastly, the transmission latency for outputs is assessed
from the moment Device #2 sends the output data to when they
are received by Device #1. To ensure accuracy and reliability in
our latency measurements, each component is repeatedly tested
50 times under identical test conditions. We then calculate the
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Fig. 3. Comparison of different execution methods.

average of these measurements to determine the final latency
values that are reported in the paper.

As shown in Fig. 3, we implement the above five methods
in a real setup. The setup includes a Jetson Nano as the local
device (Device #1), a Jetson TX2 as the remote device (Device
#2), and the network connection between the two devices is WiFi
2.4 GHz. The local device has 20 images, and a ResNet-50 model
is utilized to process the images. For each method, we vary batch
size b (or by, bo) to exhaustively find the one(s) that generate the
lowest processing latency. For Neurosurgeon, we also search
for the optimal intermediate layer exhaustively like [5]. Thus,
the processing latency shown in Fig. 3 of each method is their
lowest value with the method. Parallel execution methods on
both devices, namely model parallel and data parallel, gener-
ally outperform other approaches by fully utilizing comput-
ing resources and avoiding idle states. The local, offload, and
neurosurgeon methods show larger processing latencies due to
their inability to simultaneously engage both devices. Addition-
ally, Neurosurgeon benefits from reduced transmission latency,
which allows for a more significant computational load on the
remote device, as highlighted in Neurosurgeon’s approach [5].
This understanding led us to the data parallel + neurosurgeon
method, which optimally uses both devices’ resources and adap-
tively manages transmission latency. This approach, as shown in
Fig. 3, reduces processing latency by 27.3% to 50% compared
to existing methods. We prefer data parallel over model parallel
due to the latter’s complexity and potential for increased latency
from redundant computations [27]. Therefore, our focus is on
the synergy of data parallel processing with Neurosurgeon for
effective continuous deep inference optimization.

B. Challenges

Though data parallel + neurosurgeon can be implemented and
achieves significant latency reduction in our preliminary setup,
a general platform with multiple users sending deep inference
requests continuously (Fig. 1) presents challenges:

First, while the data parallel + neurosurgeon approach im-
proves processing efficiency, it still faces significant overhead
due to intermediate data compression. To evaluate different com-
pression methods, as depicted in Fig. 4, we conduct tests on four
device pairs, comprising Jetson Nano and Raspberry Pi4 as local
devices, and Jetson TX2 and Jetson Xavier as remote devices,
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Fig. 5. Comparison of different compression methods (accuracy loss versus
end-to-end latency). VGG-16, WiFi 2.4 GHz, Nano-TX2.

connected via WiFi 2.4 GHz. Using the VGG-16 model (batch
size of 4) and maintaining a consistent cutting layer (Conv 3.1 in
VGG-16), we compared latencies for each method, ensuring less
than 4% latency loss. We evaluated the Lossy method, choosing
between JPEG compression and Huffman Coding for optimal
compression rates [20], [21]. The AE+ method involved using
encoder-decoder neural networks [28] compressed with a state-
of-the-art model compression technique [29]. The DeepCOD
method [15] was also assessed with a pruned decoder (termed
DeepCOD+), leading to additional accuracy loss but reduced
latency. Despite these modifications, DeepCOD+ exhibited con-
siderable decompression delays across all device combinations.
Second, for an effective compression method, maintaining
low end-to-end latency without significantly impacting accuracy
is crucial. As illustrated in Fig. 5, lossy compression methods
can achieve higher compression ratios at the cost of accuracy.
For instance, in a Nano-TX2 setup with WiFi 2.4 GHz, we
observe an accuracy loss of 3.94% for an end-to-end latency
of 75.4 ms, though higher accuracy loss can lead to even lower
latencies. DeepCOD+, despite model compression, still suffers
from high decompression latency, constituting 48.6% to 81.3%
of total latency and resulting in a 3.78% accuracy loss for a
72.8 ms latency. In contrast, our FF method exemplifies Pareto
optimality, achieving justa 1.01% accuracy loss at only 60.1% of
DeepCOD+’s latency; for similar accuracy losses, FF’s latency
is merely 50.6% to 60.3% of that incurred by lossy methods.
Moreover, smooth accuracy-latency trade-off curves enhance
adaptability in dynamic conditions. As shown in Fig. 6, under
changing GPU contention, DeepCOD+ shows significant fluc-
tuations, reflecting its poorer adaptability compared to FF.
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Fig. 6. Performance under changing GPU contention on remote device.
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Third, the real-world applications involve continuous input
arrival at the local device, leading to fluctuating numbers of
inputs awaiting processing. This variability, influenced by the
unpredictable nature of user behavior [18], results in a widely
fluctuating inference request rate. For instance, as depicted in
Fig. 7, the request rate from four street cameras (sending only
keyframes for tiny-YOLOv3 object detection) varied between 0
to 49 frames per second over 90 minutes. A greedy data parallel
+ mneurosurgeon scheduler (Greedy DP + S) processes the
current queue without considering incoming request rate trends,
leading to suboptimal scheduling. In contrast, our proposed BPS
scheduler employs reinforcement learning to anticipate future
system states based on current conditions, including network
throughput, device contention, and queue length. Fig. 7 demon-
strates that BPS consistently outperforms the greedy approach,
especially during periods of high request rate variability (10 to
45 minutes and 65.5 to 90 minutes), achieving up to 44.6% ratio
reduction in latency over accuracy.

IV. FASTFILTERING COMPRESSION

Driven by the limitations of existing data compression tech-
niques outlined in Section I1I-B, we introduce FastFiltering (FF),
a lightweight method for compressing intermediate outputs in
CNN models. FF efficiently identifies and removes redundant
information across a model’s feature maps, both in depth and
spatial dimensions. This process significantly reduces the trans-
mission data size, as only essential information is sent to the
remote device. FF’s low latency and instant online tuning capa-
bilities allow for adaptive performance in varying network and
device conditions. The FF workflow, shown in Fig. 8, comprises
three main modules: Depth Element Selection (DES) and Spatial
Vector Clustering (SVC) on the local device, and Data Recovery
(DR) on the remote device. DES eliminates redundancy in the
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depth dimension, while SVC does the same across spatial planes.
The DR module then restores the compressed data to its original
size.

A. DES Module

Character of convolutional operation: We propose DES based
on the operating character of convolutional layer (over 90% of
layers in a CNN models are of convolutional layer). As shown in
Fig. 9, the output data of shape H,, x W, x C), can be divided
into C, 2D feature maps of shape H, x W,. Specifically, we

denote each 2D feature map as X (p) ,d=1,...,C,. Theelement
1nX(p) 1sden0tedasx(p)d,if1 WHy j=1,..,W, A
convolutlonal filter d’ in the next layer (p+1) con31sts of (&

weight matrices as shown in Fig. 9. Each weight matrix of the

filter ' is denoted as f;d/’pﬂ), d=1,
X(P+1)
d/

.,Cp. An element in
the d’-th feature map in the output data from layer
(p + 1) is computed by 2521 f(gd/’pH) ® Afip) + by, where the
operation ® is to multiply f (gd’,p D and A&p ) element-wisely and
accumulate the multiplied results together, by is bias parameter
of the filter d’, and Agp ) is the area on the d-th feature map in
X (P) that corresponds to the location of the element in X y +,

A&p ) is moved based on the stride parameter of layer (p + 1) to

obtain the other elements in Xc(f 1) The other filters in layer

(p + 1) compute in the same way. In other words, the elements at
the same spatial position in the output of layer p are accumulated
over all the channels to generate the output of layer (p+1).
Such character of convolutional operation enlightens the pro-
posal of DES module, in which we filter out elements with small

absolute values across the depth dimension (all channels) to re-
duce the datasize. As these elements have a minor contribution in
the following accumulation across all channels in the next layer’s
operation, we can approximate the original intermediate output
by setting them to zero. Specifically, we denote the elements at
the same spatial position (e.g., i*, j*) across all the C', channels

as :B(p) _ {x(p) Va1,

i d ¢, shown in Fig. 8. Based on the

discussion above, the elements in :cgf) )]
other words, not all elements of w(f )j are necessary for the

correct prediction of a CNN model. The DES module is to select
Hy} 45" Wy}

can be redundant. In

elements from each mEp)J*, {i*=1,...,

based on their absolute values:

X;p)7 E(p

{top(x *)*ar)}i*e[l,Hp],j*e[l,W,,] (1
where function top(-,

elements from a:(p )]*, I" is a hyper-parameter that controls the

trade-off between accuracy and transmission data size. As there

I can be any integer from 1 to C,. X ;

-) is to select I’ maximum (absolute value)

are C, elements in wg g
is the set of selected elements from X (p), i.e., the I' maximum
elements in each spatial position (¢*, j*) across all the channels
(i.e., w( ;+)- As the spatial dimension is Hy, x W), the shape

of Xé ) is H, x W, x I'. Each element of El(fl) is the original

depth (channel) index in X (P) that each elementin X (Fp) locates.
Thus, the shape of El(f ) is H, x W), x I'. One note is that, each

element of El(f’ ) is an integer ranging from 1 to C}, and only
needs [log, C),| bits ([-] is the ceiling of log, C,) for storage
and transmission. The latency overhead of DES module on the
local device is < 2ms based on our observation.

B. SVC Module

In X lgp) (output from the DES module), there are H, x W,
I'), denoted as ifip ) —

{@EI})d}ieu H,],je(1,w,]- Thus, X(Fp) consists of I" vectors and

elements in a channel d (d=1,...,

each vector acé ") has H,, x W, elements. In the SVC module,
we use k-means clustermg to separate these vectors into K
clusters S = {51, S, ...,Sk}. Each vector :icfip) is assigned
to a cluster S, whose cluster center u,, is nearest to it, i.e.,
argming Y1y Mg g, 1EF
parameter that controls the trade-off between accuracy and

— .||, where K is a hyper-

transmission data size. As there are I' vectors (m(p )) K can be

any integer from 1 to I'. With k-means clustering, the I" vectors

. <P . . .
in X 1(~ ) are clustered to K clusters, i.e., each vector is assigned

to one of the K clusters We denote the set of cluster labels of
the vectors as FFp ). There are I" elements in F” 2( and the d-th
element in it represents the cluster label of the d-th vector in
X (Fp), denoted as k(d). As the cluster label ranges from 1 to K,
each element of Fr(p 1)< only needs [log, K] bits for storage and
transmission. Furthermore, we denote the set of cluster centers
as Uép}( ={pq,..

X§p 1)1(’ which has the same shape as X ;p)

.. }. The quantized X (Fp) is denoted as

. Obviously, X ép )
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TABLE I
NUMBER OF BITS COMPARISON

Data Number of Bits

XxX® 32 X H, x W, x Cp
E® | [log, C,] x H, x Wy, x T
) [og, K] x T

Ulﬁp;( 32X Hp, Xx W, x K

can be exactly constructed with F1£P ) and Ué’: ). The latency

overhead of SVC module on the local device ranges from 0.3 ms
to 3.5 ms based on our observation.

C. DR Module

As shown in Fig. 8, instead of sending the original output data
X () the local device sends the depth indices EP ), the cluster
labels Fép ;(, and the cluster centers U1£ - to the remote device.

The remote device then recovers an approximation of X 2
based on them, denoted as X gp ) as follows: Step-1: Constructing

X lgp }{ based on FF(P 1)( and Ul(f;}{. Note that X 1(«’2( is quantization

of X ép) Step-2: Placing each element of Xl(f’ }< in X flp) at its
(p)

original position in X (®) according to the depth indices E;
Specifically, the element of El(f) ) located at (#*, j*, d*) represents

the depth index of )] o (e, the element pr )j g of X’ﬁp )
located at (7%, j*, d*)) in the original output data X (P)_ The other
elements in X ((lp are set to zeros, as shown in Fig. 8. The latency
overhead of the DR module on the remote device is < 4.5ms

based on our observation.

D. Transmission Data Size

Table I compares the number of bits of X ) El(ﬂp ). Flgp ])(, and

Uép 1)< We assume that the elements in X ®) and Uyr @ ) are of
single-precision floating-point format (FP32) (default precmon
of CNN models’ weights). As H), - W, - C, is larger than 10% in
most cases, [logy, K| -I' < 32- Hy, - W, - C,. Thus, the ratio
of data size after FF compression (i.e., compressed data size)
to the original data size (i.e., original output data size) can be
approximately calculated by rpp Uogggizw o T CK) The
rpp is in direct proportion to the hyper-parametérs T and K.
Smaller I' and/or K leads to lower rpp (higher compression
rate), and vice versa. As the shape of X ((lp) is the same as the
shape of X (), X (P) can be directly fed into the original layers of
the CNN model on the server. Thus, FF implements transmission
data compression without modifications to the CNN model. The
hyper-parameters I" and K determine the transmission data size
and the information stored in the transmission data. Smaller
I" (and/or K) leads to higher compression but preserves less
information and vice versa.

E. Optimization for Model Inference

In FF, the parameter I' plays a crucial role in balancing com-
pression ratio and data accuracy. A smaller I typically results in
a higher compression ratio, reducing the size of data needed for

transmission. However, this also means that more values in the
original data are approximated to zeros, potentially leading to a
loss in accuracy. Similarly, the parameter K exhibits comparable
effects on performance, influencing both compression and ac-
curacy. To address these challenges, we provide comprehensive
guidance on how to optimally select I" and K in model inference.

In the offline stage, we profile the relationship between the
model accuracy and the values of I' and K at each cutting
layer p, denoted as A(T, K;p). For each cutting layer p, we
profile the processing latency on the local device as a function
Ly = fi1(c1;p), where ¢; is the contention on the local device.
For neural networks, we use the GPU utilization rate as the
contention [30]. Similarly, for each cutting layer p, we profile
the processing latency on the remote device as a function Lo =
fa(c2;p), where ¢5 is the contention on the local device. Note
that we ignore the computing latency of the modules in FF on
the devices because we experimentally find that the computing
latency of FF takes around 5% of the computing latency. Thus,
we find that it does not deteriorate the performance when we
ignore them in selecting I" and K.

As discussed in Section IV-D, the relationship between the
transmission data size S and the compression parameters I'
and K is also linear, denoted as S(I', K;p) = a1 - I' + b1 - K,
where a1 = [log, C,| - H, - W), and by = 32 - H,, - W,,. Fol-
lowing [16], we approximate the the profiled relationships
AT, K;p), fi(c1;p), and fo(co;p) as linear functions. Specif-
ically, we have A(I', K;p) =ao - T+ by - K + ¢, fi(c1;p) =
ag - c1 + bs, and fo(co;p) = ayq - co + by. We take the cutting
layer p as a parameter for brute-force search as other works on
neurosurgery [5], [15]. Thus, for each p, we offline profile its
corresponding set of {a1,b1; ag, ba, c; az, bs; aq, by}.

In the online stage, we design solutions of the optimal 1" and
K for two cases. In the first case, the system requires the highest
possible accuracy while adhering to the latency limits:

gll%?;ag-F+b2-K+c, 2)
b
s.t.%.r+§1.K+0§Tmax, 3)
1<T <Gy, 4)
Kmin S KSF (5)

where C' = a3 - ¢1 + b3 + agq - co + by, 0 is the observed net-
work throughput, and c¢; and cy are the contentions of the
local and the remote device, respectively. The K, is a hyper-
parameter and we can set it to any value above 1. For each
cutting layer p, we find the optimal T'(?) = mln{ ~ (Tinax —
C)— % + Kunin, Cp} and KP) = K,;,, given %2 > bz re =
K®) = min{f22srC . 0, O} given 22 < Zf.Theoptlmalp =
arg max,{as - I'P) 4 by - KP) 4 ¢} and the final solution is
{I‘(p*),K(p*),p*}.

In the second case, the system minimizes latency without
compromising the specified accuracy threshold:

b
min — I‘—i——l

i 0 7 K+C (6)
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Fig. 10.  Batch-pipeline-surgeon scheduler.
s.t. CLQ'F"‘bQ 'K+CZAH11H7 (7)
1< <Gy, ®)
Kmin < K < I. (9)

For each cutting layer p, we find the optimal I'?) =
min{ - (Amin — ¢) — % « Kinin, Cp} and K = K5, given
2> %;F( P) = K@) = mln{A"‘;“l;c,Cp}giveng—f < %.The
optimal p* = arg min, {4 - I'® + W K® 4 C} and the fi-
nal solution is {T'®"), K" p*}.

V. BATCH-PIPELINE-SURGEON SCHEDULER

In this section, we introduce a reinforcement learning-based
scheduler, the BPS scheduler, aimed at enhancing continuous
deep inference performance across local and remote devices.
As depicted in Fig 10, the BPS scheduler rapidly determines the
batch size, cutting layer, and compression parameters (I" and K
in FF compression) by analyzing current system conditions such
as network throughput, device contentions, and queue length.
The scheduler’s RL agent is trained to produce scheduling
decisions that effectively minimize the ratio of inference latency
to accuracy.

A. Problem Definition

As discussed in Section III-B, the rate of inference requests
from users changes in a wide range. It is nontrivial to schedule
the inferences of these requests to achieve high accuracy and
low latency. We define the objective function as:

e 7113;:2 (10
where b, is the batch size in each step, and p; is the cutting layer
of the CNN model in each step; L; is the average inference
latency per request in each step, and A; is the average accuracy
per request in each step. Once the local device finishes its
computation for inputs in the current step, the scheduler makes
the decision for the next step.

B. Calculation of Compression Parameters in FastFiltering

We can determine transmission compression parameters
{T"y, K;} (in FF compression method) given current scheduling
decision {b;, p; } and previous scheduling decision {b;_1, p;—1}.
Specifically, the computing latency on the local device for the

Comp. on Comp. on
local devlce I:lTransmlSSlonDremote device

Lt—l,l

Lt—l d Lt—l 2
Lt JL Lt a Lt 2!

Fig. 11.  Pipeline.

inputs in current step can be predicted by a latency predic-
tor [30], i.e., Ly 1 = fi(bs, c1;pt), wWhere ¢ is the contention
on the local device; Similarly, the computing latency on the
remote device for the inputs in previous step can be predicted
by Li_12 = fo(bi—1,c2; pi—1), where ¢ is the contention on
the remote device; the transmission latency for the interme-
diate data in previous step can be estimated by L; 14 =
S(Tt-1,Kt—1,bi-1;pt—1)/0, where S is the transmission data
size for the inputs in previous step (can be easily calculated
as shown in Section IV-D), 6 is the network throughput. As
shown in Fig. 11, if the intermediate data for the inputs in
the current step arrive at the remote device at the exact time
when the computation for the previous step finishes, then the
scheduler fully utilizes the computing resources on the two
devices (keeping them busy consistently). Thus, with Ly 1,
Li_1,2, and L; g, the optimal transmission latency for the in-
puts in current step is Ly q = Ly—12 + Ly—1,9 — Ly,;1. Given
monitored network throughput 6, the optimal transmission data
size S(T'y, Ky, by;pr) = 0 - Ly q. As described in Section IV-D,
S is linearly proportional to I' and K. Thus, we express
S(Ft, Kt7 bt;pt) as S(Ft, Kt; btapt) = ay - Ft + bl . Kt,where
ar = [logy, Cp| - Hy - Wy - by and by =32 - Hy, - W, - by. Sim-
ilarly, we approximate the relationship between accuracy and
{T", K'} to be linear, i.e., A(T'¢, K¢; pr) = ao - Ty + by - Ky + ¢,
where as, b, ¢ can be measured offline [15], [30]. Consequently,
the following problem is formulated:

mé}g( Cl2'Ft+b2'Kt+C, (11)
S.t.7 al -Ft + bl . Kt =0- Lt,da (12)
1<Ty <Cp,, (13)
1< K<T. (14)

When %2402 > 0, T, 7m1n{[M],Cm} and K; =
max{1, (MW}, When azbi‘:lb"’ <0, TI't=max

by

{[#Eet2) 1) and - K, = min{Ty, [E84-"50) The
solution of I"; and K only contains simple algebra operations
and can be finished in neglectable time on the local device.
In this way, we obtain all the parameters {b;, p;,I';, K} for
batching, pipelining, and neurosurgeon in the current scheduling

step .

C. BPS Scheduler

As shown in Fig. 10, we utilize a reinforcement learning
algorithm to train a BPS scheduler. Specifically, the RL agent
makes decisions on two parameters b;, p; at each step ¢, i.e.,
its action a; = (b, p;). The RL agent observe the system state
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s = (0, Qt,ce1,c02, Ay, L), where 6, is current network
throughput, @); is the number of inputs in the queue, c; ; is
the contention on the local device, ¢; 2 is the contention on
the remote device, A; is the sequence of historical average
accuracies in previous steps, and L; is the sequence of historical
average latencies in previous steps. To train the RL agent, we
utilize DDPG method [31], as shown in Algorithm 1. The reward
function is defined as: r = —L; / A,. We utilize the Ornstein-
Uhlenbeck process as the random action exploration A (line
5 in Algorithm 1). We set the number of episodes as 300 (line
4 in Algorithm 1). The hyper-parameter N as 50 (line 12 in
Algorithm 1) and 7 as 0.005 (line 20 in Algorithm 1). The
original two outputs from the actor network in the RL agent
range between 0 and 1. We map one of them to batch size b, by
multiplying it with B (maximum batch size'), and the other to
cutting layer p; by multiplying it with | M| (the number of layers
in the CNN model M), respectively (line 9 in Algorithm 1). In
each step, the actor network p generates the action based on the
observed state and random action exploration (line 8 to 10 in
Algorithm 1). We apply the (mapped) action to the system and
observe the new state and the reward (line 11 in Algorithm 1).
The tuple of states, reward, and action is stored into the replay
buffer R (line 12 in Algorithm 1). At each step, we randomly
select NV tuples from the buffer (line 13 in Algorithm 1) to train
the critic network (line 15 and 16 in Algorithm 1) and the actor
network (line 17 and 18 in Algorithm 1). The critic network
is trained by minimizing the difference between the predicted
Q-value Q(s;,a;|0¢) and the target Q-value calculated using
the target networks Q' and z' (line 14 in Algorithm 1) At the
end of each step, we softly update the target networks using the
7 parameter (line 20 in Algorithm 1).

VI. EVALUATION

In this section, we evaluate the performance of FF compres-
sion and BPS scheduler.

Hardware: For the local device, we have two types of devices:
Jetson Nano and Raspberry Pi4. For the remote device, we have
two types of devices: Jetson TX2 and Jetson Xavier. The network
connection between the local device and the remote device is
WiFi 2.4 GHz, and the users connect to the local device through
cables.

CNN models: We include seven CNN models: VGG-16 [3],
ResNet-50 [32], Inception-V3 [33], MobileNet-V3 [34], tiny-
YOLOV3 [35], SSD [36], FasterRCNN [37].

Metrics: For the FF compression, we have three metrics:
accuracy loss, data size after compression, and decompression
latency. For the BPS scheduler, we use the ratio of inference
accuracy over processing latency as the metric. We use the
average inference accuracy and processing latency per request.
Note that a higher ratio indicates higher accuracy with lower
processing latency.

Baselines: For the FF compression, we have SOTA lossy [20],
[21] and DeepCOD+ as baselines. For SOTA lossy, we choose

'Note that, though B can be arbitrarily set, a large value may lead to a
potentially high risk of memory overflow in execution.

Algorithm 1: Training BPS Scheduler w/ DDPG Method.

1: Initialize critic network Q(s, a|fq) and actor network
w(s|6,,) with weights 6 and 6,,;

2: Initialize target networks Q" and p/ with weights
Og g and 0,y < 0,;

3: Initialize replay buffer R.

4: For episode = 1,2, ...

Initialize random action exploration N;

Receive initial observation state s1;

Fort=1,2,...
ar = p(s0,) + N

9:  Map a:[0] to batch size b; and a:[1] to layer p;;
10: Obtain a; = (by, pr);

11: Execute a; and observe reward r; and s441;
12: Store transition (s, Gy, 74, S¢41) in R;
13: Sample N transitions of (s;, @;, 7, $;+1) from R;

14: Sety; = ri +7Q' (i1, 1 (8i+110,0)|0);
15:  Update the critic Q(s,a|fg) by minimizing:
16: L= >y — Q(si, ail0g))?
17:  Update the actor 1(s|6,,) by policy gradient:
18:  Vy, J =

% Zz VGQ(S’ a|9Q) sm#(sqz)v%ﬂ((gw;i)
19: Update the target networks:
20: 9@/ :TQQ+(].77’)9Q/,9/,/ :7'9/,,+(].77’)91,/.

S

the one that achieves a higher compression rate between the
JPEG-based compression (accelerated by nvJPEG [38]) and the
Huffman Coding [20], [21]. For DeepCOD [15], we compress
its decoder with SOTA model compression method [29] (which
generates 0.21% to 10.75% extra accuracy loss and 2.4% to
66.3% latency reduction), denoted as DeepCOD+. For the BPS
scheduler, we have the following baselines: (1) Local-RL: We
process all the inputs on the local device. We train an RL agent
to make the decision on the batch size. (2) Offload-RL: We
offload all the inputs to the remote device in the network. We
train an RL agent to make the decision on the batch size. (3)
Data Parallel-RL: We train an RL agent to make the decision
on the batch sizes on the local and remote devices. (4) Greedy:
We make the decision on the batch size and the cutting layer
greedily. The greedy method determines the batch size and the
cutting layer based on the current network throughput (6;), the
queue length of inputs (Q), contentions of devices (c¢,; and
¢t,2), directly. Specifically, we set b, = min{(Q);, B} and p, =
arg minp(it /Ay). Following [5], we brute-forcely compute L;
and A; by varying p € [1,|M|] and find the optimal p value
that shows the lowest L;/A;. The greedy method optimizes
for immediate rewards, making choices that seem best at the
current step without considering the long-term consequences.
In contrast, reinforcement learning is designed to optimize
long-term rewards. It uses the concepts of policy (a strategy
to choose actions) and value functions (which estimate the
long-term rewards of states), offering a more nuanced approach
to decision-making compared to the single-step optimization in
greedy methods. (5) BPS-DeepCOD+: We substitute FF with
DeepCOD+ in the BPS scheduler. (6) BPS-lossy: We substitute
FF with SOTA lossy in the BPS scheduler.
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TABLE II
COMPARISON OF COMPRESSION METHODS ON VGG-16 (NANO-TX2, LATENCY UNIT: MS)

Compr Conv2.1 Conv3.1 Conv4.1 Conv5.1
Method Size Acc tenc ter tdec Size Acc tene tir tdec Size Acc tenc Lo tdec Size Acc tenc tir tdec
FF 135KB 84.4% 1.8 21.0 23 91.4KB 89.3% 2.0 16.2 2.7 25.2KB 89.4% 24 6.8 3.1 6.9KB 89.7% 29 52 34
43%) | (-6.0%) - - - (58%) | (-1.1%) - - - (32%) | (-1.0%) - - - (18%) | (-0.7%) - - -
Deep 2.3KB 84.3% 2.1 42 254 1.7KB 85.1% 2.1 39 30.5 988B 84.9% 2.7 3.7 37.8 469B 85.6% 34 35 40.6
COD+ (0.07%) (-6.1%) - - - (0.11%) | (-5.3%) - - - (0.13%) (-5.5%) - - - (0.12%) (-4.1%) - - -
SOTA 379KB 76.6% 1.7 37.6 0.8 185KB 82.0% 1.9 259 1.0 87.0KB 83.8% 22 142 1.5 78.0KB 88.2 2.6 132 2.4
Lossy (12.1%) (-13.8%) - - - (11.8%) (-8.4%) - - - (11.1%) (-6.6%) - - - (19.9%) (-2.2%) - - -
Original 3136KB 90.4% 0 325.3 0 1568KB 90.4% 0 178.6 0 784KB 90.4% 0 83.4 0 392KB 90.4% 0 49.3 0
TABLE III
COMPARISON OF COMPRESSION METHODS ON RESNET-50 (NANO-TX2, LATENCY UNIT: MS)
Compr Block 1 Block 2 Block 3 Block 4
Method Size Acc tene tir tdec Size Acc tenc ter tdec Size Acc tenc tir tdec Size Acc tene ter tdec
FF 123.5KB 83.7% 1.5 19.4 2.1 127.0KB 88.8% 1.8 19.4 23 46.3KB 89.9% 2.1 8.5 2.6 6.7KB 90.6% 2.6 52 3.0
(157%) | (-9.2%) - - - (8.1%) (-4.1%) - - - {(5.9%) | (-29%) - - - 17%) | (-22%) - - -
Deep 980B 84.7% 2.0 3.7 28.7 245B 87.0% 23 32 36.2 184B 86.3% 2.6 2.8 427 123B 86.6% 33 2.5 47.5
COD+ | (0.12%) | (-8.1%) - - - 0.02%) | (-5.8%) - - - 0.02%) | (-6.5%) - - - 0.03%) | (-6.2%) - - -
SOTA 94.7KB 77.1% 1.2 16.9 0.7 178KB 79.0% 1.5 25.1 0.9 87.4KB 86.6% 1.9 142 12 80.8KB 89.1% 2.4 13.4 1.5
Lossy (12.1%) | (-15.8%) - - - (114%) | (-13.9%) - - - (11.1%) | (-6.3%) - - - (20.6%) | (-4.2%) - - -
Original 784KB 92.8% 0 83.4 0 1568KB 92.8% 0 178.6 0 784KB 92.8% 0 83.4 0 392KB 92.8% 0 49.3 0
Latency Predictor: For the latency predictors (f1 and f5) in [*K=2-K=5+K=10=*K =15
BPS scheduler, we use quad.ratlc regression m0d§ls to approx- S0 —— S0 i
imate the latency of CNN inference. In the offline stage, we < 50 = 80
train the predictors by varying the batch size, cutting layer, and 8 8
device contention. The prediction accuracy can reach > 96% on g 60 g 00
the devices in our evaluation, and the online prediction overhead < 0 25 %0 75 100 < 25 50 75 100
is neglectable. =100 (a) =100 (i;)
. . . .. . A_A_A_ o NP
Design and train of RL: During training, the learning rates & ST s o=t 4
of the actor and critic network as 10~* and 1072, respectively. ;:; 80 § 80
The critic network consists of four fully-connected layers with 2 60 2 60
dimensions of {200, 100, 50, 50} and the actor network consists < 0 25 50 75 100 & 025 50 75 100
of three fully-connected layers with dimensions of {40, 20}. The (g) (121)
length of historical accuracies and latencies is five, respectively.
Note that we only need the actor network in the online stage, and ~ Fig. 12.  Accuracy (Top-5) of VGG-16 w/ Different IT, T, and K: (a) IT = 5;

the actor network generates neglectable overhead on the local
device. We train the RL agent offline for 12 hours on a work-
station with one RTX2080 GPU. For object detection service,
five cameras stream live video (keyframes) to the local device
for object detection. The videos are from webcams from [39].
For image recognition, up to eight users randomly send images
(from ImageNet validation dataset [40]) to the local devices, the
request rate follows Poisson inter-arrival time distribution [18].

A. Performance of FastFiltering

In Table II, we offload the output from {’pool’, ’pool2’,
pool3’, ’poold’} of VGG-16 to the server. Correspondingly,
the first layer on the server is {’conv2.1’, conv3.1’, "conv4.1’,
conv5.1’} of VGG-16. In Table III, we partition ResNet-50
before each block like [15]. For FF, at each cutting layer, we
tune the compression parameters (I and K) to find the optimal
ones that achieve the highest ratio of accuracy over latency.
For SOTA lossy, we also find the optimal compression point.
For DeepCOD+, we compress its decoder to the optimal level
that also achieves the highest ratio of accuracy over latency.
The compression performances (data size after compression,
accuracy, latency overhead) with the optimal parameters in
each cutting layer are shown in Tables II and III. The latency
overhead is consisted of the compression latency (tc,c), the
transmission latency (%;,-), and the decompressing latency (¢e.)-

(b) IT = 10; (c) IT = 19; (d) IT = 28.

For the compression, the computational complexity of k-means
clustering (the DES module) is proportional to I' (number of
features) and K (number of cluster centers). However, as shown
in Fig. 12, raising K above 5 does not contribute significantly
to the accuracy improvement. Thus, we can keep K below 5
with trivial accuracy reduction. Similarly, we can keep I' below
40 with trivial accuracy reduction. Furthermore, as the edge
devices are equipped with embedded GPUs and/or multi-core
CPUs, we further reduce the computing latency by paralleling
the computation of the clustering. Based on our observation, the
overhead of k-means clustering accounts for around 65% in FF
compression, which is less than 2 ms.

As shown in Tables IT and III, FF compression achieves the
highest accuracy (lowest accuracy loss) and the lowest latency
overhead simultaneously in most cases. The accuracy loss with
FF compression reaches 17.2% of that with DeepCOD+ (VGG-
16 at Conv5.1), and reaches 13.1% of that with SOTA lossy
(VGG-16 at Conv3.1). The latency overhead with FF compres-
sion reaches 16.4% of that with DeepCOD+ (ResNet = 50 at
Block 4), and reaches 60.7% of that with SOTA lossy (VGG-16
at Conv2.1). We explain the underlying reason why our FF
compression methods outperform DeepCOD+ and SOTA lossy.
Compared to SOTA lossy, FF method exploits the operating
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character of convolution layers (Section IV-A) and efficient
approximation (Section IV-A and IV-B). By preserving key
information in the intermediate output data effectively, up to
18.9% higher compression ratio is obtained by our FF method,
which leads to 61.2% transmission latency reduction compared
to SOTA lossy. In addition, the decompressing latency of our
FF method is only 1.0 ms to 1.7 ms higher than that of SOTA
lossy. Consequently, the overall overhead (accumulated latency
of transmission and decompressing latency) of our FF method
is up to 83.6% lower than that of SOTA lossy. By designing the
compression based on the character of convolutional operation,
our FF method also outperforms SOTA lossy regarding the
accuracy, i.e., its accuracy loss is as low as 13.1% of that with
SOTA lossy.

Compared to DeepCOD+, our DR module recovers the com-
pressed data in a much simpler way, which ensures efficiency
on relatively low-performance remote devices. DeepCOD, de-
signed specifically for device-server neurosurgeon workflows,
implements an asymmetric encoding-decoding framework that
predominantly burdens the server side, as outlined in [15]. In
their design, a lightweight encoder compresses data on the local
device, while a more complex decoder is responsible for data
reconstruction on the remote server. The decoder in DeepCOD
employs a content generation technique to enhance the data
dimensionality, which significantly increases the number of
computational operations. Consequently, in situations where
the remote server or devices have limited capabilities, Deep-
COD’s decoder experiences extended decompression latency
significantly. On the other hand, our approach to decompres-
sion involves reconstructing data using cluster labels and depth
indices. This method maintains a considerably lower count of
operations compared to DeepCOD, enhancing efficiency, es-
pecially in resource-constrained environments. Though Deep-
COD+ achieves an extreme small transmission data size (e.g.,
< 1KB), its reduction in transmission latency is minor com-
pared to its high decoding latency on the remote device. Even
a compressed-version decoder with high accuracy loss (3.4%
to 5.2%) generates > 10x longer decompressing latency com-
pared to our FF method. It is important to address that, as
WiFi 2.4 GHz (450 Mbps to 600 Mbps) has a much smaller
bandwidth than popular wireless networks (e.g., WiFi 5 GHz,
up to 1300 Mbps) today, our setup actually favors DeepCOD+
whose compression ratio is high. Evaluating the performance in
a better network like WiFi 5 GHz is expected to increase the
superiority of our FF method over DeepCOD+; meanwhile, the
superiority of our FF over SOTA lossy is irrelevant to network
conditions.

B. Performance of BPS Scheduler

We evaluate the performance of our BPS scheduler
(Section V) in various cases. In Fig. 13, we evaluate the per-
formance of BPS in image recognition (VGG-16) and object
detection (tiny-YOLOV3) on four pairs of local and remote
devices. Compared to local-RL, BPS-FF borrows the computing
resources from the remote device and outperforms local-RL by
7.3 on average. Compared to offload-RL, BPS-FF utilizes both
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BPS-Lossy

Local-RL Offload-RL

Greedy-FF_B_BPS-DeepCOD+ BPS-FF ‘

Accuracy/Latency
(=2}

OJ_LLL

Nano-TX2 Pi4-TX2 Nano-Xavier Pi4-Xavier
0 (a) VGG-16

>

Q

g6

3

3 4

£

52 |

< | [ |
Nano-TX2 Pi4-TX2 Nano-Xavier Pi4-Xavier

(b) TinyYOLOV3
Fig. 13.  BPS performance in: (a) image recognition, (b) object detection.
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Fig. 14. BPS performance with different models (Nano-TX2).

local and remote devices for deep inference and outperforms
offload-RL by 2.7x on average. Compared to DataParallel-RL,
BPS-FF utilizes neurosurgeon and FF techniques to adjust the
portion of computing load across the two devices and out-
performs DataParallel-RL by 1.8x on average. Compared to
Greedy-FF, BPS-FF adopts reinforcement learning technique
to learn the underlying pattern of the relationship between
system performance and scheduling decisions and outperforms
greedy-FF by 1.4 on average. Compared to BPS-DeepCOD+
and BPS-Lossy, BPS-FF takes benefits from the FF compression
(i.e., high-granularity curve of accuracy-latency trade-off and
Pareto optimality) and outperforms BPS-DeepCOD+ by 2.6 %,
BPS-Lossy by 1.7x. In Fig. 14, we further observe the perfor-
mance of BPS-FF on other CNN models and compare it with the
baseline schedulers. Similar to the discussion above, BPS-FF
outperforms the baselines by wisely utilizing the computing
resources on local and remote devices. Overall, it outperforms
the baselines by 8.2 to 1.4 x.

We closely examine a 10-second transient performance, as
shown in Fig. 15. Within this timeframe, we note a fluctuation
in the number of requests: initially averaging about 80 every
300 ms, dropping to approximately 20 at 23.6 seconds, and then
climbing back to around 70 at 26.3 seconds. The conventional
greedy method determines batch size (b;) and cutting (partition)
layer (p;) based solely on the current network status, request
queue length, and device contention, without accounting for the
long-term dependencies between temporal states. In contrast,
the BPS scheduler employs a learned policy that optimizes

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.



840 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

l—z-—Req. Num. (every 300ms) —o— BPS-FF Greedy-FF
ég B —— AA
53 Va4 A \)t
o8 :
2= Al

8 80

iz 68| - f/"—‘*
: 56f(e/4>——n‘a—

2w

3

m 32

Output
S gonVS,l 1 R
-= Conv4. 1
E Conv3.1}/
< Conv2.1

Wl

A< Inpute 2

= 8.2

§>, 7.0 = +

£9 58l

83 3

<3 22

20s 23.6s 26.3s 29.6s
Timeline

Fig. 15. Transient observation (Nano-TX2).

for long-term performance by considering these dependencies.
During the transient phase shown in Fig. 15, we pay particular
attention to the system’s response to changes in the number
of requests, which directly relates to the request queue length
(Az). Under high request loads, such as from 20 s to 23.6 s,
the greedy method reacts immediately by increasing the batch
size, thus compromising accuracy to reduce processing latency.
This approach results in a noticeable drop in the performance
(Accuracy/Latency) during periods of intense requests. Its per-
formance recovers during times of lower request density, e.g.,
from 23.6 s to 26.3 s, as the system only needs to process a
smaller influx of requests, allowing for high-quality processing
with greater accuracy and lower latency. On the other hand,
the BPS scheduler adopts a more consistent approach to han-
dling requests. During high-demand periods (e.g.,, from 20 s to
23.6 s), unlike the greedy method, the BPS scheduler does not
significantly increase batch size. Instead, it strategically allows
some requests to be processed later, during less busy periods
(e.g., from 23.6 s to 26.3 s). As a result, as shown in Fig. 15,
the batch size under the BPS scheduler remains smaller than
the greedy method during peak request times and larger during
quieter intervals. This strategy, informed by an awareness of
long-term dependencies, also aids the BPS scheduler in choosing
parameters that maintain high accuracy, particularly under heavy
request loads. Consequently, as shown in Fig. 15, the ratio of ac-
curacy to latency performance maintained by the BPS scheduler
consistently surpasses that of the greedy method during these
high-demand periods.

C. Performance With Background On-Device Applications

We further evaluate the performance of the BPS scheduler
under a real background application running on the local/remote
device(s). Following the test approach in [30], we run a GPU-
intensive linear algebra routine (Gaussian Elimination from the
Rodinia Benchmark [41]). We run the background application
while keeping the inference service for 10 minute. As shown
in Fig. 16, in all three cases (background app on the device, on
the remote device, and both devices), BPS-FF outperforms the
baseline schedulers by 4.3x on average. Besides the reasons
described in Section VI-B, the superiority of BPS-FF over the

DataParallel-RL
BPS-Lossy
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Greedy-FF B BPS-DeepCOD+ BPS-FF

o

Accuracy/Latency
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1 N | |
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Fig. 16.  Performance with real background app on device(s) (Nano-TX2).

baselines is also achieved by the high-granularity online-tunable
FF compression, which allows the scheduler to adaptively adjust
its scheduling decisions according to the change of contention
on the device(s).

VII. RELATED WORK

In the realm of edge computing, Neurosurgeon [5] proposes a
method to reduce computational load on edge/mobile devices
by offloading part of a CNN model to a high-performance
edge/cloud server. This approach involves partitioning the model
at an intermediate layer, processing early layers locally and
transmitting the intermediate output for the remaining layers to a
server. Subsequent studies have expanded on Neurosurgeon, ex-
ploring intermediate data compression [15], video analytics [16],
and integration with model compression [14]. Meanwhile, com-
pression of the intermediate output is pivotal in Neurosurgeon-
based offloading. Techniques like JPEG-based compression and
Huffman coding have been employed [20], [21], but their effec-
tiveness on CNN intermediate outputs is limited, often resulting
in large data sizes and significant accuracy loss [15]. The method
proposed in [15] involves adding extra encoding and decoding
layers at partition points, achieving higher compression rates
with lower accuracy loss but necessitating extensive additional
training for each potential partition point, which can be time-
consuming.

In server cluster parallel processing, Hone [42] introduces
a tuple scheduler using an online Largest-Backlog-First strat-
egy to minimize the maximum queue backlog, thereby reduc-
ing latency in stream processing. Parrot [43] offers an online
coflow-aware framework, optimizing the scheduling of depen-
dent coflows in distributed machine learning jobs to decrease
overall job completion times in shared clusters. Our approach
with the BPS scheduler is distinct, aiming to optimize deep
inference in tandem between local and remote edge devices. BPS
combines efficient intermediate data compression with adaptive
techniques like batching, pipelining, and surgeon to improve
performance. Unlike Hone, which manages stragglers in large
clusters, and Parrot, which is dedicated to machine learning
cluster job scheduling, BPS is tailored for the specific demands
of collaborative edge computing.

VIII. DISCUSSION

FF Advantages: Compared to basic compression schemes that
simply discard small values, FF offers several advanced features.
Primarily, FF employs its the DES module to selectively discard
small values, with a specific focus on the depth dimension.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.



HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 841

This targeted selection aligns with the convolutional operation’s
intrinsic mechanism, where elements at the same spatial location
in a layer’s output are cumulatively processed across all chan-
nels for the next layer’s output. This depth-oriented approach
contrasts with general compression schemes, which may not
consider discarding small values in the depth dimension, as they
typically do not account for the unique operational dynamics of
convolutional processes. For instance, traditional image com-
pression methods primarily focus on spatial dimensions (height
x width). Additionally, FF’s SVC module further refines the
data reduction process, going beyond the capabilities of the DES
module. The SVC module employs K-means clustering over the
depth dimension, distinctively approximating the layer output
data already refined by the DES module. This approach allows
the SVC module to effectively handle data devoid of smaller
values, a level of data approximation not typically achieved by
simple compression schemes that merely discard small values.
By integrating these modules, FF demonstrates a nuanced under-
standing of data characteristics in CNN models, enabling more
effective and model-specific compression than general methods.

Model Compression Versus FF': In the realm of neural network
model compression, quantization is a technique that decreases
the precision of a model’s parameters. This process involves
converting each parameter from a high-precision format, such as
32-bit, to a lower precision format, like 8-bit. On the other hand,
FF focuses on reducing the size of the output data of a neural
network layer. FF achieves this by employing methods such as
filtering and clustering feature maps across the channels of the
network. While quantization enhances a model’s efficiency by
lowering the precision of its parameters, FF directly diminishes
the volume of output data from a neural network layer by
decreasing the number of its channels. It is important to note that
the application of quantization and pruning techniques would
not diminish the advantages offered by FF. These techniques
primarily aim to reduce computational latency by decreasing the
number of operations required by the models. In contrast, FF is
designed to reduce the data size of the layer outputs. Therefore,
FF functions as a data compression method for the intermediate
data in convolutional neural networks, complementing quanti-
zation and pruning. The latter are model compression methods
that optimize the structure of convolutional neural networks.
By targeting different aspects of efficiency — FF focusing on
data size reduction and quantization/pruning on operational
efficiency — these approaches can be effectively combined to
enhance overall network performance.

Scalability of FF and BPS: Both the FF compression tech-
nique and the BPS scheduler can be modified to scenarios in-
volving more than two devices. For FF compression, the method
can be implemented across each data transmission occurring
between any two devices in the network. In the case of the
BPS scheduler, adaptations can be made to the state and ac-
tion definitions within its reinforcement learning framework.
Specifically, this involves augmenting the state to include the
contention levels of all devices and the network throughput for
each device pair. As for the action space, it expands to encom-
pass the decisions regarding the cutting layer for each device,

represented as {pgo),pgl),...,pim}, where N is the total

number of devices in the system. In practical applications, we en-
sure p,(f) = max{pgi), pgifl)} to maintain that the cutting layer
index for the i-th device is always greater than or equal to that of
the preceding device. If a situation arises where pti) < pgifl),
it implies that there will be no model execution on the i-th
device.

System Decentralization: The system can operate in a de-
centralized manner, allowing the remote device to manage its
own inference tasks independently. This flexibility is facilitated
by the BPS scheduler, which considers the contention levels of
the devices, such as their GPU utilization rates. As a result, the
remote device, influenced by its own contention state, can ef-
fectively execute its inference tasks while concurrently running
a BPS scheduler to optimize its computational processes. When
both devices are performing inference tasks simultaneously, it
becomes essential for their respective BPS schedulers to coor-
dinate. One possible approach is to establish a priority system,
where one scheduler’s decisions take precedence, and the other
scheduler adapts its actions based on the leading scheduler’s
decisions. Furthermore, integrating multi-agent reinforcement
learning concepts could enhance this coordination. By treating
each BPS scheduler as an individual agent, they can collabora-
tively work towards optimizing a collective reward. This reward
could be framed in terms of maximizing overall accuracy and/or
minimizing the average latency across the inference tasks on
both devices. Such a collaborative approach ensures that while
each device operates autonomously, they collectively contribute
to the system’s overarching performance goals.

IX. CONCLUSION

Responding to the growing need for efficient deep inference
at the edge, this paper addresses the scheduling challenges posed
by the availability of a remote device for shared computational
tasks. We introduced BPS, an adaptive online scheduler designed
for collaborative edge intelligence. BPS incorporates data par-
allel, neurosurgeon, and reinforcement learning techniques to
enhance inference performance, achieving an up to 8.2x im-
provement over traditional schedulers. Additionally, we devel-
oped FF, a specialized compressor for intermediate output data in
neurosurgeon applications. FF capitalizes on the unique aspects
of convolutional layers and employs effective approximation
algorithms, resulting in up to 86.9% less accuracy loss and
83.6% less latency overhead compared to existing compression
methods. Together, the BPS scheduler and FF compressor offer
a robust solution for optimizing continuous deep inference in
collaborative edge environments.
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