
830 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

BPS: Batching, Pipelining, Surgeon of Continuous

Deep Inference on Collaborative Edge Intelligence
Xueyu Hou , Yongjie Guan , Nakjung Choi , Senior Member, IEEE, and Tao Han , Senior Member, IEEE

Abstract—Users on edge generate deep inference requests con-
tinuously over time. Mobile/edge devices located near users can
undertake the computation of inference locally for users, e.g.,
the embedded edge device on an autonomous vehicle. Due to
limited computing resources on one mobile/edge device, it may
be challenging to process the inference requests from users with
high throughput. An attractive solution is to (partially) offload the
computation to a remote device in the network. In this paper, we
examine the existing inference execution solutions across local and
remote devices and propose an adaptive scheduler, a BPS scheduler,
for continuous deep inference on collaborative edge intelligence.
By leveraging data parallel, neurosurgeon, reinforcement learning
techniques, BPS can boost the overall inference performance by
up to 8.2× over the baseline schedulers. A lightweight compres-
sor, FF, specialized in compressing intermediate output data for
neurosurgeon, is proposed and integrated into the BPS scheduler.
FF exploits the operating character of convolutional layers and
utilizes efficient approximation algorithms. Compared to existing
compression methods, FF achieves up to 86.9% lower accuracy loss
and up to 83.6% lower latency overhead.

Index Terms—Edge computing, efficient AI, reinforcement
learning, convolutional neural networks.

I. INTRODUCTION

C
ONVOLUTIONAL neural networks (CNNs) have

achieved remarkable success in computer vision tasks due

to their high accuracy [1], [2], [3]. However, they are often char-

acterized by high computational demands, necessitating a large

number of operations [4], [5]. To address this, various compres-

sion techniques have been developed, aiming to maintain high

predictive accuracy while reducing computational costs through

modifications to the original CNN architectures [6], [7], [8], [9],

[10], [11]. Despite their effectiveness, these methods typically

require additional retraining post-compression to regain accu-

racy, significantly increasing both cost and design overhead [12].

As an alternative, several studies have explored the distribution

of CNN model execution across multiple edge/mobile devices

to expedite inference [5], [9], [12], [13], [14], [15]. A notable

Manuscript received 23 October 2023; revised 14 February 2024; accepted
20 April 2024. Date of publication 10 May 2024; date of current version
6 September 2024. The work of Xueyu Hou, Yongjie Guan, and Tao Han was
supported by the National Science Foundation under Grant 2147623 and Grant
2147624. Recommended for acceptance by J. Zhai. (Corresponding author: Tao

Han.)

Xueyu Hou, Yongjie Guan, and Tao Han are with the New Jersey Institute of
Technology, Newark, NJ 07102 USA (e-mail: xh29@njit.edu; yg274@njit.edu;
tao.han@njit.edu).

Nakjung Choi is with the Nokia Bell Labs, Murray Hill, NJ 07974 USA
(e-mail: nakjung.choi@nokia-bell-labs.com).

Digital Object Identifier 10.1109/TCC.2024.3399616

approach, Neurosurgeon [5], proposes reducing computational

load on edge/mobile devices by offloading part of a CNN

model to a high-performance edge/cloud server. This technique

involves dividing the CNN model at an intermediate layer, where

the initial layers are computed locally on the edge/mobile device,

and the remaining layers are processed on the server, with

intermediate outputs transmitted over the network. Subsequent

research has expanded on this concept, focusing on areas like

intermediate data compression [15], video analytics [16], and

integrating model compression techniques [14], among others.

In practical scenarios, CNN model inference requests are

continuously generated by users [17], [18], [19], leading to

input queues on devices. While local execution of all infer-

ences is feasible, leveraging the computing resources of nearby

mobile/edge devices can distribute the computational load. Our

findings, which we detail in Section III-A, reveal that combining

data parallelism with the Neurosurgeon approach yields the

highest inference throughput, effectively minimizing latency

across local and remote devices.

In this paper, we address the pressing issue of performing deep

inference for multiple users when only one local edge device

and another remote edge device are available. This challenge is

increasingly relevant in a variety of applications. For instance, in

autonomous driving, a local edge device installed in the vehicle

processes real-time data from multiple cameras. The nearby

infrastructure can act as the remote edge device, assisting in

the deep inference. In the realm of video surveillance such as

hospitals or residential areas, local edge devices can collect and

process video feeds from various rooms. Here, a guardian’s

device or monitoring system can serve as the remote edge device.

For multi-user augmented reality experiences, such as interac-

tive sessions in a conference room, a local computer can process

the immediate data from AR glasses, while a more distant edge

device might also be engaged for the data processing. These

examples illustrate the growing necessity for deep inference in

compact spaces like homes, conference rooms, or neighborhood

blocks. With the advancement of edge computing, local edge de-

vices are increasingly available in such areas, providing nearby

users with network connectivity and computational resources. In

a broader public network context, another edge device, reachable

via remote network connections, can offer additional computa-

tional power for deep inference tasks.

A key distinction of our work is that we do not assume the

need for a high-power server as the remote device. Instead,

we consider scenarios where the remote device may have a

wide range of computing capabilities. This approach broadens

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 831

Fig. 1. System overview.

the applicability of our research, making it relevant to a wider

array of scenarios, especially where high-performance servers

are not feasible or available. By focusing on optimizing the use

of remote devices with comparable capabilities to local devices,

our paper aligns with the trend of upgrading computing power in

mobile and edge devices, making it highly relevant in the current

technological landscape.

In our system architecture, depicted in Fig. 1, our primary

goal is to enhance the performance of continuous deep infer-

ence across two collaborative edge devices. The local device

consistently receives user-generated inference requests, while a

connected remote device, equipped with computational capabil-

ities, assists in handling part of these computational demands.

Although a basic integration of data parallelism and the Neu-

rosurgeon approach already surpasses existing methods in this

collaborative scenario, we achieve further performance improve-

ments by implementing two advanced techniques: FastFiltering

(FF) compression (see Section IV) and Batch-Pipeline-Surgeon

(BPS) scheduling (see Section V). As detailed in Section III-B,

the synergistic application of BPS and FF boosts system perfor-

mance by as much as 44.6%. FF, in particular, stands out as an

effective compression tool for intermediate CNN model outputs.

It leverages the inherent characteristics of convolutional layers

to efficiently eliminate redundant information from the original

intermediate data. FF not only maintains a high compression rate

but also minimizes overhead. As demonstrated in Section IV, FF

achieves up to 18.9% lower accuracy loss and 83.6% less latency

overhead compared to other state-of-the-art (SOTA) intermedi-

ate data compression techniques [15], [20], [21]. BPS, on the

other hand, is a scheduler that optimizes the batch size, cutting

layer, and compression parameters for collaborative execution. It

dynamically adjusts scheduling decisions based on system con-

dition changes, utilizing reinforcement learning (RL) techniques

to ensure high performance (i.e., high accuracy and low latency)

under various conditions. As we will show in Section V, the

combined use of BPS and FF significantly outperforms baseline

scheduling methods, enhancing performance by up to 2.4×. The

contributions of this paper are as follows:
� Our work introduces FastFiltering (FF), an innovative com-

pression technique specifically designed for the intermedi-

ate output data of CNN models. FF leverages the unique

operational characteristics of convolutional layers, coupled

with efficient lightweight approximation algorithms. This

approach enables FF to surpass existing state-of-the-art

(SOTA) compression methods, achieving up to 86.9%

reduction in accuracy loss and up to 83.6% decrease in

latency overhead.

� We have developed an innovative scheduler tailored

for continuous deep inference in collaborative edge in-

telligence environments, named Batch-Pipeline-Surgeon

(BPS). Utilizing the capabilities of reinforcement learning,

BPS dynamically adapts to changing system conditions in

real-time.
� We incorporate the FF compression technique into our BPS

scheduler. This integration of BPS with FF significantly

enhances the system’s overall performance. Specifically,

it results in an improvement of up to 49.6× compared to

solely local inference, up to 19.2× compared to inference

solely relying on offloading, and up to 2.4× when com-

pared to data-parallel inference methods.
� Our evaluation covers a comprehensive range of scenar-

ios. This includes tests on four different pairs of edge

devices, each with varying levels of computing capabil-

ities. Additionally, we assess their performance across

seven distinct CNN models and under conditions where

background applications are running on the devices. For

a thorough comparison, FF is benchmarked against two

leading state-of-the-art compression methods, while BPS

is evaluated alongside six established baseline schedulers.

II. SYSTEM OVERVIEW

As shown in Fig. 1, we observe a scenario where multiple

users submit deep learning inference requests to a local device

(Device #1). Concurrently, a remote device (Device #2) is also

available to assist with model inference. The incoming requests

are queued on Device #1, awaiting processing. To ensure the ver-

satility and applicability of our system, we address several key

considerations: First, there is no inherent correlation between

the requests of different users. Unlike systems that leverage

spatial similarities among nearby cameras [22], our focus is on

a more generalized Machine Learning as a Service (MLaaS)

framework [1], [2], [3]. Here, users may send unrelated inputs

(images) for distinct deep inferences, catering to a diverse range

of requests. Second, there is no assumed correlation between

consecutive inputs from the same user. This perspective diverges

from existing approaches that exploit frame-to-frame similarity

in video streams [23], [24], [25]. In such works, key frames are

selectively processed by CNN models, with other frames being

analyzed based on cross-frame similarities, such as tracking

algorithms [23]. Thus, in our system, the inputs requiring deep

inference are those unique or key frames [16] that demand full

model processing. Third, the role of the remote device (Device

#2) is not limited to high-performance computing resources like

cloud or edge servers [5], [15]. Instead, it can be any edge

device available within the network, broadening the scope and

flexibility of our system to accommodate various computational

capabilities.

III. PRELIMINARY STUDY

A. Existing Inference Execution Methods

Consider a device receiving N inputs (e.g., images) from

users, and another device available over a network. We can

process these inputs using a CNN model M in several ways:

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

832 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Fig. 2. Demonstration of execution methods across local device (orange) and
remote device (blue).

1) Local: We can process all the inputs on the local device. The

processing latency is T = Tcomp(N, b), where b is inference

batch size. (2) Offload: We can also offload all the inputs to

the other device in the network. The processing latency is T =
Ttran(N, b, θ) + Tcomp(N, b), where θ is network throughput.

(3) Model Parallel: We can split the first several layers in

the original model M into two parts [26], and run these two

parts in parallel on the two devices. The rest layers of M
are executed on one of the two devices. As demonstrated in

Fig. 2(a), the first four layers of the CNN model are split into two

parts for model paralleling execution. The processing latency

is T = Tpara(N, b) + Tcomp(N, b). (4) Data Parallel: We can

also process N1 inputs locally and N2 inputs on the other device

(N = N1 +N2). As demonstrated in Fig. 2(c), we divide the

input images into two groups and process them on the local

and remote device, respectively. The total processing latency

is T = maxTcomp1(N1, b1), Ttran(N2, b2) + Tcomp2(N2, b2).
(5) Neurosurgeon: We can cut the original model M at an inter-

mediate layer [5]. The first part (firstL1 layers) is executed on the

local device, and the second part (last L2 layers) is executed on

the other device. As demonstrated in Fig. 2(b), we cut the CNN

model at the forth layer and execute the two parts on the local

and remote device, respectively. The processing latency is T =
Tcomp(N, b, L1) + Ttran(N, b, oL1

) + Tcomp(N, b, L2), where

oL1
is the intermediate output from layer L1.

In our setups, we measure the latency components involved

in the computing and data transmission process between two

devices as follows. Specifically, the computing latency on De-

vice #1 is defined as the duration from the moment Device #1

loads all the input data for inference to when it generates the

output or intermediate data. Conversely, the computing latency

on Device #2 encompasses the time interval from loading the

input or intermediate data for inference to producing the final

output data. The transmission latency for inputs is determined

by the time elapsed from when Device #1 sends the input data

to the point at which Device #2 receives them. Similarly, the

transmission latency for intermediate data is calculated from

when Device #1 transmits these data until Device #2 receives

them. Lastly, the transmission latency for outputs is assessed

from the moment Device #2 sends the output data to when they

are received by Device #1. To ensure accuracy and reliability in

our latency measurements, each component is repeatedly tested

50 times under identical test conditions. We then calculate the

Fig. 3. Comparison of different execution methods.

average of these measurements to determine the final latency

values that are reported in the paper.

As shown in Fig. 3, we implement the above five methods

in a real setup. The setup includes a Jetson Nano as the local

device (Device #1), a Jetson TX2 as the remote device (Device

#2), and the network connection between the two devices is WiFi

2.4 GHz. The local device has 20 images, and a ResNet-50 model

is utilized to process the images. For each method, we vary batch

size b (or b1, b2) to exhaustively find the one(s) that generate the

lowest processing latency. For Neurosurgeon, we also search

for the optimal intermediate layer exhaustively like [5]. Thus,

the processing latency shown in Fig. 3 of each method is their

lowest value with the method. Parallel execution methods on

both devices, namely model parallel and data parallel, gener-

ally outperform other approaches by fully utilizing comput-

ing resources and avoiding idle states. The local, offload, and

neurosurgeon methods show larger processing latencies due to

their inability to simultaneously engage both devices. Addition-

ally, Neurosurgeon benefits from reduced transmission latency,

which allows for a more significant computational load on the

remote device, as highlighted in Neurosurgeon’s approach [5].

This understanding led us to the data parallel + neurosurgeon

method, which optimally uses both devices’ resources and adap-

tively manages transmission latency. This approach, as shown in

Fig. 3, reduces processing latency by 27.3% to 50% compared

to existing methods. We prefer data parallel over model parallel

due to the latter’s complexity and potential for increased latency

from redundant computations [27]. Therefore, our focus is on

the synergy of data parallel processing with Neurosurgeon for

effective continuous deep inference optimization.

B. Challenges

Though data parallel+ neurosurgeon can be implemented and

achieves significant latency reduction in our preliminary setup,

a general platform with multiple users sending deep inference

requests continuously (Fig. 1) presents challenges:

First, while the data parallel + neurosurgeon approach im-

proves processing efficiency, it still faces significant overhead

due to intermediate data compression. To evaluate different com-

pression methods, as depicted in Fig. 4, we conduct tests on four

device pairs, comprising Jetson Nano and Raspberry Pi4 as local

devices, and Jetson TX2 and Jetson Xavier as remote devices,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 833

Fig. 4. Comparison of different compression methods (VGG-16, WiFi
2.4 GHz).

Fig. 5. Comparison of different compression methods (accuracy loss versus
end-to-end latency). VGG-16, WiFi 2.4 GHz, Nano-TX2.

connected via WiFi 2.4 GHz. Using the VGG-16 model (batch

size of 4) and maintaining a consistent cutting layer (Conv 3.1 in

VGG-16), we compared latencies for each method, ensuring less

than 4% latency loss. We evaluated the Lossy method, choosing

between JPEG compression and Huffman Coding for optimal

compression rates [20], [21]. The AE+ method involved using

encoder-decoder neural networks [28] compressed with a state-

of-the-art model compression technique [29]. The DeepCOD

method [15] was also assessed with a pruned decoder (termed

DeepCOD+), leading to additional accuracy loss but reduced

latency. Despite these modifications, DeepCOD+ exhibited con-

siderable decompression delays across all device combinations.

Second, for an effective compression method, maintaining

low end-to-end latency without significantly impacting accuracy

is crucial. As illustrated in Fig. 5, lossy compression methods

can achieve higher compression ratios at the cost of accuracy.

For instance, in a Nano-TX2 setup with WiFi 2.4 GHz, we

observe an accuracy loss of 3.94% for an end-to-end latency

of 75.4 ms, though higher accuracy loss can lead to even lower

latencies. DeepCOD+, despite model compression, still suffers

from high decompression latency, constituting 48.6% to 81.3%

of total latency and resulting in a 3.78% accuracy loss for a

72.8 ms latency. In contrast, our FF method exemplifies Pareto

optimality, achieving just a 1.01% accuracy loss at only 60.1% of

DeepCOD+’s latency; for similar accuracy losses, FF’s latency

is merely 50.6% to 60.3% of that incurred by lossy methods.

Moreover, smooth accuracy-latency trade-off curves enhance

adaptability in dynamic conditions. As shown in Fig. 6, under

changing GPU contention, DeepCOD+ shows significant fluc-

tuations, reflecting its poorer adaptability compared to FF.

Fig. 6. Performance under changing GPU contention on remote device.

Fig. 7. Dynamic trend of inference request rate.

Third, the real-world applications involve continuous input

arrival at the local device, leading to fluctuating numbers of

inputs awaiting processing. This variability, influenced by the

unpredictable nature of user behavior [18], results in a widely

fluctuating inference request rate. For instance, as depicted in

Fig. 7, the request rate from four street cameras (sending only

keyframes for tiny-YOLOv3 object detection) varied between 0

to 49 frames per second over 90 minutes. A greedy data parallel

+ neurosurgeon scheduler (Greedy DP + S) processes the

current queue without considering incoming request rate trends,

leading to suboptimal scheduling. In contrast, our proposed BPS

scheduler employs reinforcement learning to anticipate future

system states based on current conditions, including network

throughput, device contention, and queue length. Fig. 7 demon-

strates that BPS consistently outperforms the greedy approach,

especially during periods of high request rate variability (10 to

45 minutes and 65.5 to 90 minutes), achieving up to 44.6% ratio

reduction in latency over accuracy.

IV. FASTFILTERING COMPRESSION

Driven by the limitations of existing data compression tech-

niques outlined in Section III-B, we introduce FastFiltering (FF),

a lightweight method for compressing intermediate outputs in

CNN models. FF efficiently identifies and removes redundant

information across a model’s feature maps, both in depth and

spatial dimensions. This process significantly reduces the trans-

mission data size, as only essential information is sent to the

remote device. FF’s low latency and instant online tuning capa-

bilities allow for adaptive performance in varying network and

device conditions. The FF workflow, shown in Fig. 8, comprises

three main modules: Depth Element Selection (DES) and Spatial

Vector Clustering (SVC) on the local device, and Data Recovery

(DR) on the remote device. DES eliminates redundancy in the

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

834 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Fig. 8. Workflow of FastFiltering compression.

Fig. 9. Convolutional operation scheme in CNN models.

depth dimension, while SVC does the same across spatial planes.

The DR module then restores the compressed data to its original

size.

A. DES Module

Character of convolutional operation: We propose DES based

on the operating character of convolutional layer (over 90% of

layers in a CNN models are of convolutional layer). As shown in

Fig. 9, the output data of shape Hp ×Wp × Cp can be divided

into Cp 2D feature maps of shape Hp ×Wp. Specifically, we

denote each 2D feature map asX
(p)
d ,d = 1, . . ., Cp. The element

in X
(p)
d is denoted as x

(p)
i,j,d, i = 1, . . ., Hp, j = 1, . . .,Wp. A

convolutional filter d′ in the next layer (p+ 1) consists of Cp

weight matrices as shown in Fig. 9. Each weight matrix of the

filter d′ is denoted as f
(d′,p+1)
d , d = 1, . . ., Cp. An element in

the d′-th feature map X
(p+1)
d′ in the output data from layer

(p+ 1) is computed by
∑Cp

d=1 f
(d′,p+1)
d �∆

(p)
d + bd′ , where the

operation� is to multiply f
(d′,p+1)
d and∆

(p)
d element-wisely and

accumulate the multiplied results together, bd′ is bias parameter

of the filter d′, and ∆
(p)
d is the area on the d-th feature map in

X(p) that corresponds to the location of the element in X
(p+1)
d′ .

∆
(p)
d is moved based on the stride parameter of layer (p+ 1) to

obtain the other elements in X
(p+1)
d′ . The other filters in layer

(p+ 1) compute in the same way. In other words, the elements at

the same spatial position in the output of layer p are accumulated

over all the channels to generate the output of layer (p+1).

Such character of convolutional operation enlightens the pro-

posal of DES module, in which we filter out elements with small

absolute values across the depth dimension (all channels) to re-

duce the data size. As these elements have a minor contribution in

the following accumulation across all channels in the next layer’s

operation, we can approximate the original intermediate output

by setting them to zero. Specifically, we denote the elements at

the same spatial position (e.g., i∗, j∗) across all the Cp channels

as x
(p)
i∗,j∗ = {x

(p)
i∗,j∗,d}d=1,...,Cp

shown in Fig. 8. Based on the

discussion above, the elements in x
(p)
i∗,j∗ can be redundant. In

other words, not all elements of x
(p)
i∗,j∗ are necessary for the

correct prediction of a CNN model. The DES module is to select

elements from each x
(p)
i∗,j∗ , {i

∗ = 1, . . ., Hp}, {j∗ = 1, . . .,Wp}
based on their absolute values:

X̂
(p)

Γ , E
(p)
Γ = {top(x

(p)
i∗,j∗ ,Γ)}i∗∈[1,Hp],j∗∈[1,Wp] (1)

where function top(·, ·) is to select Γ maximum (absolute value)

elements from x
(p)
i∗,j∗ , Γ is a hyper-parameter that controls the

trade-off between accuracy and transmission data size. As there

areCp elements inx
(p)
i∗,j∗ ,Γ can be any integer from 1 toCp. X̂

(p)

Γ

is the set of selected elements from X(p), i.e., the Γ maximum

elements in each spatial position (i∗, j∗) across all the channels

(i.e., x
(p)
i∗,j∗). As the spatial dimension is Hp ×Wp, the shape

of X̂
(p)

Γ is Hp ×Wp × Γ. Each element of E
(p)
Γ is the original

depth (channel) index inX(p) that each element in X̂
(p)

Γ locates.

Thus, the shape of E
(p)
Γ is Hp ×Wp × Γ. One note is that, each

element of E
(p)
Γ is an integer ranging from 1 to Cp and only

needs �log2 Cp� bits (�·� is the ceiling of log2 Cp) for storage

and transmission. The latency overhead of DES module on the

local device is < 2ms based on our observation.

B. SVC Module

In X̂
(p)

Γ (output from the DES module), there are Hp ×Wp

elements in a channel d (d = 1, . . .,Γ), denoted as x̂
(p)
d =

{x̂
(p)
i,j,d}i∈[1,Hp],j∈[1,Wp]. Thus, X̂

(p)

Γ consists of Γ vectors and

each vector x̂
(p)
d has Hp ×Wp elements. In the SVC module,

we use k-means clustering to separate these vectors into K

clusters S = {S1, S2, . . ., SK}. Each vector x̂
(p)
d is assigned

to a cluster Sk whose cluster center µk is nearest to it, i.e.,

argminS
∑K

k=1

∑
x̂

(p)
d

∈Sk
‖x̂

(p)
d − µk‖

2, where K is a hyper-

parameter that controls the trade-off between accuracy and

transmission data size. As there are Γ vectors (x̂
(p)
d), K can be

any integer from 1 to Γ. With k-means clustering, the Γ vectors

in X̂
(p)

Γ are clustered to K clusters, i.e., each vector is assigned

to one of the K clusters. We denote the set of cluster labels of

the vectors as F
(p)
Γ,K . There are Γ elements in F

(p)
Γ,K and the d-th

element in it represents the cluster label of the d-th vector in

X̂
(p)

Γ , denoted as k(d). As the cluster label ranges from 1 to K,

each element of F
(p)
Γ,K only needs �log2 K� bits for storage and

transmission. Furthermore, we denote the set of cluster centers

as U
(p)
Γ,K = {µ1, . . .,µK}. The quantized X̂

(p)

Γ is denoted as

X̃
(p)
Γ,K , which has the same shape as X̂

(p)

Γ . Obviously, X̃
(p)
Γ,K

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 835

TABLE I
NUMBER OF BITS COMPARISON

can be exactly constructed with F
(p)
Γ,K and U

(p)
Γ,K . The latency

overhead of SVC module on the local device ranges from 0.3 ms

to 3.5 ms based on our observation.

C. DR Module

As shown in Fig. 8, instead of sending the original output data

X(p), the local device sends the depth indices E
(p)
Γ , the cluster

labels F
(p)
Γ,K , and the cluster centers U

(p)
Γ,K , to the remote device.

The remote device then recovers an approximation of X(p)

based on them, denoted asX(p)
a as follows: Step-1: Constructing

X̃
(p)
Γ,K based on F

(p)
Γ,K and U

(p)
Γ,K . Note that X̃

(p)
Γ,K is quantization

of X̂
(p)

Γ . Step-2: Placing each element of X̃
(p)
Γ,K in X(p)

a at its

original position in X(p) according to the depth indices E
(p)
Γ .

Specifically, the element ofE
(p)
Γ located at (i∗, j∗, d∗) represents

the depth index of x
(p)
i∗,j∗,d∗ (i.e., the element x

(p)
i∗,j∗,d∗ of X̃

(p)
Γ,K

located at (i∗, j∗, d∗)) in the original output dataX(p). The other

elements inX(p)
a are set to zeros, as shown in Fig. 8. The latency

overhead of the DR module on the remote device is < 4.5ms

based on our observation.

D. Transmission Data Size

Table I compares the number of bits of X(p), E
(p)
Γ , F

(p)
Γ,K , and

U
(p)
Γ,K . We assume that the elements in X(p) and U

(p)
Γ,K are of

single-precision floating-point format (FP32) (default precision

of CNN models’ weights). As Hp ·Wp · Cp is larger than 104 in

most cases, �log2 K� · Γ � 32 ·Hp ·Wp · Cp. Thus, the ratio

of data size after FF compression (i.e., compressed data size)

to the original data size (i.e., original output data size) can be

approximately calculated by rFF =
�log2 Cp�

32 · Γ
Cp

+ K
Cp

. The

rFF is in direct proportion to the hyper-parameters Γ and K.

Smaller Γ and/or K leads to lower rFF (higher compression

rate), and vice versa. As the shape of X(p)
a is the same as the

shape ofX(p),X(p)
a can be directly fed into the original layers of

the CNN model on the server. Thus, FF implements transmission

data compression without modifications to the CNN model. The

hyper-parameters Γ and K determine the transmission data size

and the information stored in the transmission data. Smaller

Γ (and/or K) leads to higher compression but preserves less

information and vice versa.

E. Optimization for Model Inference

In FF, the parameter Γ plays a crucial role in balancing com-

pression ratio and data accuracy. A smaller Γ typically results in

a higher compression ratio, reducing the size of data needed for

transmission. However, this also means that more values in the

original data are approximated to zeros, potentially leading to a

loss in accuracy. Similarly, the parameter K exhibits comparable

effects on performance, influencing both compression and ac-

curacy. To address these challenges, we provide comprehensive

guidance on how to optimally selectΓ and K in model inference.

In the offline stage, we profile the relationship between the

model accuracy and the values of Γ and K at each cutting

layer p, denoted as A(Γ,K; p). For each cutting layer p, we

profile the processing latency on the local device as a function

L1 = f1(c1; p), where c1 is the contention on the local device.

For neural networks, we use the GPU utilization rate as the

contention [30]. Similarly, for each cutting layer p, we profile

the processing latency on the remote device as a function L2 =
f2(c2; p), where c2 is the contention on the local device. Note

that we ignore the computing latency of the modules in FF on

the devices because we experimentally find that the computing

latency of FF takes around 5% of the computing latency. Thus,

we find that it does not deteriorate the performance when we

ignore them in selecting Γ and K.

As discussed in Section IV-D, the relationship between the

transmission data size S and the compression parameters Γ
and K is also linear, denoted as S(Γ,K; p) = a1 · Γ + b1 ·K,

where a1 = �log2 Cp� ·Hp ·Wp and b1 = 32 ·Hp ·Wp. Fol-

lowing [16], we approximate the the profiled relationships

A(Γ,K; p), f1(c1; p), and f2(c2; p) as linear functions. Specif-

ically, we have A(Γ,K; p) = a2 · Γ + b2 ·K + c, f1(c1; p) =
a3 · c1 + b3, and f2(c2; p) = a4 · c2 + b4. We take the cutting

layer p as a parameter for brute-force search as other works on

neurosurgery [5], [15]. Thus, for each p, we offline profile its

corresponding set of {a1, b1; a2, b2, c; a3, b3; a4, b4}.

In the online stage, we design solutions of the optimal Γ and

K for two cases. In the first case, the system requires the highest

possible accuracy while adhering to the latency limits:

max
Γ,K,p

a2 · Γ + b2 ·K + c, (2)

s.t.
a1
θ

· Γ +
b1
θ

·K + C ≤ Tmax, (3)

1 ≤ Γ ≤ Cp, (4)

Kmin ≤ K ≤ Γ. (5)

where C = a3 · c1 + b3 + a4 · c2 + b4, θ is the observed net-

work throughput, and c1 and c2 are the contentions of the

local and the remote device, respectively. The Kmin is a hyper-

parameter and we can set it to any value above 1. For each

cutting layer p, we find the optimal Γ(p) = min{ θ
a1
(Tmax −

C)− b1
a1

·Kmin, Cp} and K(p) = Kmin given a2

a1
> b2

b1
; Γ(p) =

K(p) = min{Tmax−C
a1+b1

· θ, Cp} given a2

a1
< b2

b1
. The optimal p∗ =

argmaxp{a2 · Γ
(p) + b2 ·K

(p) + c} and the final solution is

{Γ(p∗),K(p∗), p∗}.

In the second case, the system minimizes latency without

compromising the specified accuracy threshold:

min
Γ,K,p

a1
θ

· Γ +
b1
θ

·K + C (6)

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

836 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Fig. 10. Batch-pipeline-surgeon scheduler.

s.t. a2 · Γ + b2 ·K + c ≥ Amin, (7)

1 ≤ Γ ≤ Cp, (8)

Kmin ≤ K ≤ Γ. (9)

For each cutting layer p, we find the optimal Γ(p) =
min{ 1

a2
(Amin − c)− b2

a2
·Kmin, Cp} and K(p) = Kmin given

a2

a1
> b2

b1
;Γ(p) = K(p) = min{Amin−c

a2+b2
, Cp}given a2

a1
< b2

b1
. The

optimal p∗ = argminp{
a1

θ
· Γ(p) + b1

θ
·K(p) + C} and the fi-

nal solution is {Γ(p∗),K(p∗), p∗}.

V. BATCH-PIPELINE-SURGEON SCHEDULER

In this section, we introduce a reinforcement learning-based

scheduler, the BPS scheduler, aimed at enhancing continuous

deep inference performance across local and remote devices.

As depicted in Fig 10, the BPS scheduler rapidly determines the

batch size, cutting layer, and compression parameters (Γ and K
in FF compression) by analyzing current system conditions such

as network throughput, device contentions, and queue length.

The scheduler’s RL agent is trained to produce scheduling

decisions that effectively minimize the ratio of inference latency

to accuracy.

A. Problem Definition

As discussed in Section III-B, the rate of inference requests

from users changes in a wide range. It is nontrivial to schedule

the inferences of these requests to achieve high accuracy and

low latency. We define the objective function as:

min
bt,pt

lim
T→∞

1

T

T∑

t=0

L̄t

Āt

(10)

where bt is the batch size in each step, and pt is the cutting layer

of the CNN model in each step; L̄t is the average inference

latency per request in each step, and Āt is the average accuracy

per request in each step. Once the local device finishes its

computation for inputs in the current step, the scheduler makes

the decision for the next step.

B. Calculation of Compression Parameters in FastFiltering

We can determine transmission compression parameters

{Γt,Kt} (in FF compression method) given current scheduling

decision {bt, pt} and previous scheduling decision {bt−1, pt−1}.

Specifically, the computing latency on the local device for the

Fig. 11. Pipeline.

inputs in current step can be predicted by a latency predic-

tor [30], i.e., Lt,1 = f1(bt, c1; pt), where c1 is the contention

on the local device; Similarly, the computing latency on the

remote device for the inputs in previous step can be predicted

by Lt−1,2 = f2(bt−1, c2; pt−1), where c2 is the contention on

the remote device; the transmission latency for the interme-

diate data in previous step can be estimated by Lt−1,d =
S(Γt−1,Kt−1, bt−1; pt−1)/θ, where S is the transmission data

size for the inputs in previous step (can be easily calculated

as shown in Section IV-D), θ is the network throughput. As

shown in Fig. 11, if the intermediate data for the inputs in

the current step arrive at the remote device at the exact time

when the computation for the previous step finishes, then the

scheduler fully utilizes the computing resources on the two

devices (keeping them busy consistently). Thus, with Lt,1,

Lt−1,2, and Lt,d, the optimal transmission latency for the in-

puts in current step is Lt,d = Lt−1,2 + Lt−1,d − Lt,1. Given

monitored network throughput θ, the optimal transmission data

size S(Γt,Kt, bt; pt) = θ · Lt,d. As described in Section IV-D,

S is linearly proportional to Γ and K. Thus, we express

S(Γt,Kt, bt; pt) asS(Γt,Kt, bt; pt) = a1 · Γt + b1 ·Kt, where

a1 = �log2 Cp� ·Hp ·Wp · bt and b1 = 32 ·Hp ·Wp · bt. Sim-

ilarly, we approximate the relationship between accuracy and

{Γ,K} to be linear, i.e., A(Γt,Kt; pt) = a2 · Γt + b2 ·Kt + c,
where a2, b2, c can be measured offline [15], [30]. Consequently,

the following problem is formulated:

max
Γt,Kt

a2 · Γt + b2 ·Kt + c, (11)

s.t., a1 · Γt + b1 ·Kt = θ · Lt,d, (12)

1 ≤ Γt ≤ Cpt
, (13)

1 ≤ K ≤ Γ. (14)

When a2−a1b2
b1

> 0, Γt = min{�
θ·Lt,d−b1

a1
�, Cpt

} and Kt =

max{1, �
θ·Lt,d−a1·Γt

b1
�}; When a2−a1b2

b1
< 0, Γt = max

{�
θ·Lt,d−b1

a1
�, 1} and Kt = min{Γt, �

θ·Lt,d−a1·Γt

b1
�}. The

solution of Γt and Kt only contains simple algebra operations

and can be finished in neglectable time on the local device.

In this way, we obtain all the parameters {bt, pt,Γt,Kt} for

batching, pipelining, and neurosurgeon in the current scheduling

step t.

C. BPS Scheduler

As shown in Fig. 10, we utilize a reinforcement learning

algorithm to train a BPS scheduler. Specifically, the RL agent

makes decisions on two parameters bt, pt at each step t, i.e.,

its action at = (bt, pt). The RL agent observe the system state

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 837

st = (θt, Qt, ct,1, ct,2,At,Lt), where θt is current network

throughput, Qt is the number of inputs in the queue, ct,1 is

the contention on the local device, ct,2 is the contention on

the remote device, At is the sequence of historical average

accuracies in previous steps, and Lt is the sequence of historical

average latencies in previous steps. To train the RL agent, we

utilize DDPG method [31], as shown in Algorithm 1. The reward

function is defined as: r = −L̄t/Āt. We utilize the Ornstein-

Uhlenbeck process as the random action exploration N (line

5 in Algorithm 1). We set the number of episodes as 300 (line

4 in Algorithm 1). The hyper-parameter N as 50 (line 12 in

Algorithm 1) and τ as 0.005 (line 20 in Algorithm 1). The

original two outputs from the actor network in the RL agent

range between 0 and 1. We map one of them to batch size bt by

multiplying it with B (maximum batch size1), and the other to

cutting layer pt by multiplying it with |M| (the number of layers

in the CNN model M), respectively (line 9 in Algorithm 1). In

each step, the actor network µ generates the action based on the

observed state and random action exploration (line 8 to 10 in

Algorithm 1). We apply the (mapped) action to the system and

observe the new state and the reward (line 11 in Algorithm 1).

The tuple of states, reward, and action is stored into the replay

buffer R (line 12 in Algorithm 1). At each step, we randomly

select N tuples from the buffer (line 13 in Algorithm 1) to train

the critic network (line 15 and 16 in Algorithm 1) and the actor

network (line 17 and 18 in Algorithm 1). The critic network

is trained by minimizing the difference between the predicted

Q-value Q(si, āi|θQ) and the target Q-value calculated using

the target networks Q′ and µ′ (line 14 in Algorithm 1) At the

end of each step, we softly update the target networks using the

τ parameter (line 20 in Algorithm 1).

VI. EVALUATION

In this section, we evaluate the performance of FF compres-

sion and BPS scheduler.

Hardware: For the local device, we have two types of devices:

Jetson Nano and Raspberry Pi4. For the remote device, we have

two types of devices: Jetson TX2 and Jetson Xavier. The network

connection between the local device and the remote device is

WiFi 2.4 GHz, and the users connect to the local device through

cables.

CNN models: We include seven CNN models: VGG-16 [3],

ResNet-50 [32], Inception-V3 [33], MobileNet-V3 [34], tiny-

YOLOv3 [35], SSD [36], FasterRCNN [37].

Metrics: For the FF compression, we have three metrics:

accuracy loss, data size after compression, and decompression

latency. For the BPS scheduler, we use the ratio of inference

accuracy over processing latency as the metric. We use the

average inference accuracy and processing latency per request.

Note that a higher ratio indicates higher accuracy with lower

processing latency.

Baselines: For the FF compression, we have SOTA lossy [20],

[21] and DeepCOD+ as baselines. For SOTA lossy, we choose

1Note that, though B can be arbitrarily set, a large value may lead to a
potentially high risk of memory overflow in execution.

Algorithm 1: Training BPS Scheduler w/ DDPG Method.

1: Initialize critic network Q(s, a|θQ) and actor network

µ(s|θµ) with weights θQ and θµ;

2: Initialize target networks Q′ and µ′ with weights

θQ′ ← θQ and θµ′ ← θµ;

3: Initialize replay buffer R.

4: For episode = 1, 2, . . .
5: Initialize random action exploration N ;

6: Receive initial observation state s1;

7: For t = 1, 2, . . .
8: āt = µ(st|θµ) +Nt;

9: Map āt[0] to batch size bt and āt[1] to layer pt;
10: Obtain at = (bt, pt);
11: Execute at and observe reward rt and st+1;

12: Store transition (st, āt, rt, st+1) in R;

13: Sample N transitions of (si, āi, ri, si+1) from R;

14: Set yi = ri + γQ′(si+1, µ
′(si+1|θµ′)|θQ′);

15: Update the critic Q(s, ā|θQ) by minimizing:

16: L = 1
N

∑
i(yi −Q(si, āi|θQ))

2;

17: Update the actor µ(s|θµ) by policy gradient:

18: ∇θµJ ≈
1
N

∑
i ∇aQ(s, ā|θQ)|si,µ(si)∇θµµ(s|θµ)|si ;

19: Update the target networks:

20: θQ′ = τθQ + (1− τ)θQ′ , θµ′ = τθµ + (1− τ)θµ′ .

the one that achieves a higher compression rate between the

JPEG-based compression (accelerated by nvJPEG [38]) and the

Huffman Coding [20], [21]. For DeepCOD [15], we compress

its decoder with SOTA model compression method [29] (which

generates 0.21% to 10.75% extra accuracy loss and 2.4% to

66.3% latency reduction), denoted as DeepCOD+. For the BPS

scheduler, we have the following baselines: (1) Local-RL: We

process all the inputs on the local device. We train an RL agent

to make the decision on the batch size. (2) Offload-RL: We

offload all the inputs to the remote device in the network. We

train an RL agent to make the decision on the batch size. (3)

Data Parallel-RL: We train an RL agent to make the decision

on the batch sizes on the local and remote devices. (4) Greedy:

We make the decision on the batch size and the cutting layer

greedily. The greedy method determines the batch size and the

cutting layer based on the current network throughput (θt), the

queue length of inputs (Qt), contentions of devices (ct,1 and

ct,2), directly. Specifically, we set bt = min{Qt, B} and pt =
argminp(L̄t/Āt). Following [5], we brute-forcely compute L̄t

and Āt by varying p ∈ [1, |M|] and find the optimal p value

that shows the lowest L̄t/Āt. The greedy method optimizes

for immediate rewards, making choices that seem best at the

current step without considering the long-term consequences.

In contrast, reinforcement learning is designed to optimize

long-term rewards. It uses the concepts of policy (a strategy

to choose actions) and value functions (which estimate the

long-term rewards of states), offering a more nuanced approach

to decision-making compared to the single-step optimization in

greedy methods. (5) BPS-DeepCOD+: We substitute FF with

DeepCOD+ in the BPS scheduler. (6) BPS-lossy: We substitute

FF with SOTA lossy in the BPS scheduler.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

838 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

TABLE II
COMPARISON OF COMPRESSION METHODS ON VGG-16 (NANO-TX2, LATENCY UNIT: MS)

TABLE III
COMPARISON OF COMPRESSION METHODS ON RESNET-50 (NANO-TX2, LATENCY UNIT: MS)

Latency Predictor: For the latency predictors (f1 and f2) in

BPS scheduler, we use quadratic regression models to approx-

imate the latency of CNN inference. In the offline stage, we

train the predictors by varying the batch size, cutting layer, and

device contention. The prediction accuracy can reach > 96% on

the devices in our evaluation, and the online prediction overhead

is neglectable.

Design and train of RL: During training, the learning rates

of the actor and critic network as 10−4 and 10−3, respectively.

The critic network consists of four fully-connected layers with

dimensions of {200, 100, 50, 50} and the actor network consists

of three fully-connected layers with dimensions of {40, 20}. The

length of historical accuracies and latencies is five, respectively.

Note that we only need the actor network in the online stage, and

the actor network generates neglectable overhead on the local

device. We train the RL agent offline for 12 hours on a work-

station with one RTX2080 GPU. For object detection service,

five cameras stream live video (keyframes) to the local device

for object detection. The videos are from webcams from [39].

For image recognition, up to eight users randomly send images

(from ImageNet validation dataset [40]) to the local devices, the

request rate follows Poisson inter-arrival time distribution [18].

A. Performance of FastFiltering

In Table II, we offload the output from {’poo1’, ’pool2’,

pool3’, ’pool4’} of VGG-16 to the server. Correspondingly,

the first layer on the server is {’conv2.1’, ’conv3.1’, ’conv4.1’,

’conv5.1’} of VGG-16. In Table III, we partition ResNet-50

before each block like [15]. For FF, at each cutting layer, we

tune the compression parameters (Γ and K) to find the optimal

ones that achieve the highest ratio of accuracy over latency.

For SOTA lossy, we also find the optimal compression point.

For DeepCOD+, we compress its decoder to the optimal level

that also achieves the highest ratio of accuracy over latency.

The compression performances (data size after compression,

accuracy, latency overhead) with the optimal parameters in

each cutting layer are shown in Tables II and III. The latency

overhead is consisted of the compression latency (tenc), the

transmission latency (ttr), and the decompressing latency (tdec).

Fig. 12. Accuracy (Top-5) of VGG-16 w/ Different Π, Γ, and K: (a) Π = 5;
(b) Π = 10; (c) Π = 19; (d) Π = 28.

For the compression, the computational complexity of k-means

clustering (the DES module) is proportional to Γ (number of

features) and K (number of cluster centers). However, as shown

in Fig. 12, raising K above 5 does not contribute significantly

to the accuracy improvement. Thus, we can keep K below 5

with trivial accuracy reduction. Similarly, we can keep Γ below

40 with trivial accuracy reduction. Furthermore, as the edge

devices are equipped with embedded GPUs and/or multi-core

CPUs, we further reduce the computing latency by paralleling

the computation of the clustering. Based on our observation, the

overhead of k-means clustering accounts for around 65% in FF

compression, which is less than 2 ms.

As shown in Tables II and III, FF compression achieves the

highest accuracy (lowest accuracy loss) and the lowest latency

overhead simultaneously in most cases. The accuracy loss with

FF compression reaches 17.2% of that with DeepCOD+ (VGG-

16 at Conv5.1), and reaches 13.1% of that with SOTA lossy

(VGG-16 at Conv3.1). The latency overhead with FF compres-

sion reaches 16.4% of that with DeepCOD+ (ResNet = 50 at

Block 4), and reaches 60.7% of that with SOTA lossy (VGG-16

at Conv2.1). We explain the underlying reason why our FF

compression methods outperform DeepCOD+ and SOTA lossy.

Compared to SOTA lossy, FF method exploits the operating

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 839

character of convolution layers (Section IV-A) and efficient

approximation (Section IV-A and IV-B). By preserving key

information in the intermediate output data effectively, up to

18.9% higher compression ratio is obtained by our FF method,

which leads to 61.2% transmission latency reduction compared

to SOTA lossy. In addition, the decompressing latency of our

FF method is only 1.0 ms to 1.7 ms higher than that of SOTA

lossy. Consequently, the overall overhead (accumulated latency

of transmission and decompressing latency) of our FF method

is up to 83.6% lower than that of SOTA lossy. By designing the

compression based on the character of convolutional operation,

our FF method also outperforms SOTA lossy regarding the

accuracy, i.e., its accuracy loss is as low as 13.1% of that with

SOTA lossy.

Compared to DeepCOD+, our DR module recovers the com-

pressed data in a much simpler way, which ensures efficiency

on relatively low-performance remote devices. DeepCOD, de-

signed specifically for device-server neurosurgeon workflows,

implements an asymmetric encoding-decoding framework that

predominantly burdens the server side, as outlined in [15]. In

their design, a lightweight encoder compresses data on the local

device, while a more complex decoder is responsible for data

reconstruction on the remote server. The decoder in DeepCOD

employs a content generation technique to enhance the data

dimensionality, which significantly increases the number of

computational operations. Consequently, in situations where

the remote server or devices have limited capabilities, Deep-

COD’s decoder experiences extended decompression latency

significantly. On the other hand, our approach to decompres-

sion involves reconstructing data using cluster labels and depth

indices. This method maintains a considerably lower count of

operations compared to DeepCOD, enhancing efficiency, es-

pecially in resource-constrained environments. Though Deep-

COD+ achieves an extreme small transmission data size (e.g.,

< 1KB), its reduction in transmission latency is minor com-

pared to its high decoding latency on the remote device. Even

a compressed-version decoder with high accuracy loss (3.4%

to 5.2%) generates > 10× longer decompressing latency com-

pared to our FF method. It is important to address that, as

WiFi 2.4 GHz (450 Mbps to 600 Mbps) has a much smaller

bandwidth than popular wireless networks (e.g., WiFi 5 GHz,

up to 1300 Mbps) today, our setup actually favors DeepCOD+

whose compression ratio is high. Evaluating the performance in

a better network like WiFi 5 GHz is expected to increase the

superiority of our FF method over DeepCOD+; meanwhile, the

superiority of our FF over SOTA lossy is irrelevant to network

conditions.

B. Performance of BPS Scheduler

We evaluate the performance of our BPS scheduler

(Section V) in various cases. In Fig. 13, we evaluate the per-

formance of BPS in image recognition (VGG-16) and object

detection (tiny-YOLOV3) on four pairs of local and remote

devices. Compared to local-RL, BPS-FF borrows the computing

resources from the remote device and outperforms local-RL by

7.3× on average. Compared to offload-RL, BPS-FF utilizes both

Fig. 13. BPS performance in: (a) image recognition, (b) object detection.

Fig. 14. BPS performance with different models (Nano-TX2).

local and remote devices for deep inference and outperforms

offload-RL by 2.7× on average. Compared to DataParallel-RL,

BPS-FF utilizes neurosurgeon and FF techniques to adjust the

portion of computing load across the two devices and out-

performs DataParallel-RL by 1.8× on average. Compared to

Greedy-FF, BPS-FF adopts reinforcement learning technique

to learn the underlying pattern of the relationship between

system performance and scheduling decisions and outperforms

greedy-FF by 1.4× on average. Compared to BPS-DeepCOD+

and BPS-Lossy, BPS-FF takes benefits from the FF compression

(i.e., high-granularity curve of accuracy-latency trade-off and

Pareto optimality) and outperforms BPS-DeepCOD+ by 2.6×,

BPS-Lossy by 1.7×. In Fig. 14, we further observe the perfor-

mance of BPS-FF on other CNN models and compare it with the

baseline schedulers. Similar to the discussion above, BPS-FF

outperforms the baselines by wisely utilizing the computing

resources on local and remote devices. Overall, it outperforms

the baselines by 8.2 to 1.4×.

We closely examine a 10-second transient performance, as

shown in Fig. 15. Within this timeframe, we note a fluctuation

in the number of requests: initially averaging about 80 every

300 ms, dropping to approximately 20 at 23.6 seconds, and then

climbing back to around 70 at 26.3 seconds. The conventional

greedy method determines batch size (bt) and cutting (partition)

layer (pt) based solely on the current network status, request

queue length, and device contention, without accounting for the

long-term dependencies between temporal states. In contrast,

the BPS scheduler employs a learned policy that optimizes

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

840 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Fig. 15. Transient observation (Nano-TX2).

for long-term performance by considering these dependencies.

During the transient phase shown in Fig. 15, we pay particular

attention to the system’s response to changes in the number

of requests, which directly relates to the request queue length

(At). Under high request loads, such as from 20 s to 23.6 s,

the greedy method reacts immediately by increasing the batch

size, thus compromising accuracy to reduce processing latency.

This approach results in a noticeable drop in the performance

(Accuracy/Latency) during periods of intense requests. Its per-

formance recovers during times of lower request density, e.g.,

from 23.6 s to 26.3 s, as the system only needs to process a

smaller influx of requests, allowing for high-quality processing

with greater accuracy and lower latency. On the other hand,

the BPS scheduler adopts a more consistent approach to han-

dling requests. During high-demand periods (e.g.„ from 20 s to

23.6 s), unlike the greedy method, the BPS scheduler does not

significantly increase batch size. Instead, it strategically allows

some requests to be processed later, during less busy periods

(e.g., from 23.6 s to 26.3 s). As a result, as shown in Fig. 15,

the batch size under the BPS scheduler remains smaller than

the greedy method during peak request times and larger during

quieter intervals. This strategy, informed by an awareness of

long-term dependencies, also aids the BPS scheduler in choosing

parameters that maintain high accuracy, particularly under heavy

request loads. Consequently, as shown in Fig. 15, the ratio of ac-

curacy to latency performance maintained by the BPS scheduler

consistently surpasses that of the greedy method during these

high-demand periods.

C. Performance With Background On-Device Applications

We further evaluate the performance of the BPS scheduler

under a real background application running on the local/remote

device(s). Following the test approach in [30], we run a GPU-

intensive linear algebra routine (Gaussian Elimination from the

Rodinia Benchmark [41]). We run the background application

while keeping the inference service for 10 minute. As shown

in Fig. 16, in all three cases (background app on the device, on

the remote device, and both devices), BPS-FF outperforms the

baseline schedulers by 4.3× on average. Besides the reasons

described in Section VI-B, the superiority of BPS-FF over the

Fig. 16. Performance with real background app on device(s) (Nano-TX2).

baselines is also achieved by the high-granularity online-tunable

FF compression, which allows the scheduler to adaptively adjust

its scheduling decisions according to the change of contention

on the device(s).

VII. RELATED WORK

In the realm of edge computing, Neurosurgeon [5] proposes a

method to reduce computational load on edge/mobile devices

by offloading part of a CNN model to a high-performance

edge/cloud server. This approach involves partitioning the model

at an intermediate layer, processing early layers locally and

transmitting the intermediate output for the remaining layers to a

server. Subsequent studies have expanded on Neurosurgeon, ex-

ploring intermediate data compression [15], video analytics [16],

and integration with model compression [14]. Meanwhile, com-

pression of the intermediate output is pivotal in Neurosurgeon-

based offloading. Techniques like JPEG-based compression and

Huffman coding have been employed [20], [21], but their effec-

tiveness on CNN intermediate outputs is limited, often resulting

in large data sizes and significant accuracy loss [15]. The method

proposed in [15] involves adding extra encoding and decoding

layers at partition points, achieving higher compression rates

with lower accuracy loss but necessitating extensive additional

training for each potential partition point, which can be time-

consuming.

In server cluster parallel processing, Hone [42] introduces

a tuple scheduler using an online Largest-Backlog-First strat-

egy to minimize the maximum queue backlog, thereby reduc-

ing latency in stream processing. Parrot [43] offers an online

coflow-aware framework, optimizing the scheduling of depen-

dent coflows in distributed machine learning jobs to decrease

overall job completion times in shared clusters. Our approach

with the BPS scheduler is distinct, aiming to optimize deep

inference in tandem between local and remote edge devices. BPS

combines efficient intermediate data compression with adaptive

techniques like batching, pipelining, and surgeon to improve

performance. Unlike Hone, which manages stragglers in large

clusters, and Parrot, which is dedicated to machine learning

cluster job scheduling, BPS is tailored for the specific demands

of collaborative edge computing.

VIII. DISCUSSION

FF Advantages: Compared to basic compression schemes that

simply discard small values, FF offers several advanced features.

Primarily, FF employs its the DES module to selectively discard

small values, with a specific focus on the depth dimension.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 841

This targeted selection aligns with the convolutional operation’s

intrinsic mechanism, where elements at the same spatial location

in a layer’s output are cumulatively processed across all chan-

nels for the next layer’s output. This depth-oriented approach

contrasts with general compression schemes, which may not

consider discarding small values in the depth dimension, as they

typically do not account for the unique operational dynamics of

convolutional processes. For instance, traditional image com-

pression methods primarily focus on spatial dimensions (height

× width). Additionally, FF’s SVC module further refines the

data reduction process, going beyond the capabilities of the DES

module. The SVC module employs K-means clustering over the

depth dimension, distinctively approximating the layer output

data already refined by the DES module. This approach allows

the SVC module to effectively handle data devoid of smaller

values, a level of data approximation not typically achieved by

simple compression schemes that merely discard small values.

By integrating these modules, FF demonstrates a nuanced under-

standing of data characteristics in CNN models, enabling more

effective and model-specific compression than general methods.

Model Compression Versus FF: In the realm of neural network

model compression, quantization is a technique that decreases

the precision of a model’s parameters. This process involves

converting each parameter from a high-precision format, such as

32-bit, to a lower precision format, like 8-bit. On the other hand,

FF focuses on reducing the size of the output data of a neural

network layer. FF achieves this by employing methods such as

filtering and clustering feature maps across the channels of the

network. While quantization enhances a model’s efficiency by

lowering the precision of its parameters, FF directly diminishes

the volume of output data from a neural network layer by

decreasing the number of its channels. It is important to note that

the application of quantization and pruning techniques would

not diminish the advantages offered by FF. These techniques

primarily aim to reduce computational latency by decreasing the

number of operations required by the models. In contrast, FF is

designed to reduce the data size of the layer outputs. Therefore,

FF functions as a data compression method for the intermediate

data in convolutional neural networks, complementing quanti-

zation and pruning. The latter are model compression methods

that optimize the structure of convolutional neural networks.

By targeting different aspects of efficiency – FF focusing on

data size reduction and quantization/pruning on operational

efficiency – these approaches can be effectively combined to

enhance overall network performance.

Scalability of FF and BPS: Both the FF compression tech-

nique and the BPS scheduler can be modified to scenarios in-

volving more than two devices. For FF compression, the method

can be implemented across each data transmission occurring

between any two devices in the network. In the case of the

BPS scheduler, adaptations can be made to the state and ac-

tion definitions within its reinforcement learning framework.

Specifically, this involves augmenting the state to include the

contention levels of all devices and the network throughput for

each device pair. As for the action space, it expands to encom-

pass the decisions regarding the cutting layer for each device,

represented as {p
(0)
t , p

(1)
t , . . ., p

(N)
t }, where N is the total

number of devices in the system. In practical applications, we en-

sure p
(i)
t = max{p

(i)
t , p

(i−1)
t } to maintain that the cutting layer

index for the i-th device is always greater than or equal to that of

the preceding device. If a situation arises where p
(i)
t ≤ p

(i−1)
t ,

it implies that there will be no model execution on the i-th
device.

System Decentralization: The system can operate in a de-

centralized manner, allowing the remote device to manage its

own inference tasks independently. This flexibility is facilitated

by the BPS scheduler, which considers the contention levels of

the devices, such as their GPU utilization rates. As a result, the

remote device, influenced by its own contention state, can ef-

fectively execute its inference tasks while concurrently running

a BPS scheduler to optimize its computational processes. When

both devices are performing inference tasks simultaneously, it

becomes essential for their respective BPS schedulers to coor-

dinate. One possible approach is to establish a priority system,

where one scheduler’s decisions take precedence, and the other

scheduler adapts its actions based on the leading scheduler’s

decisions. Furthermore, integrating multi-agent reinforcement

learning concepts could enhance this coordination. By treating

each BPS scheduler as an individual agent, they can collabora-

tively work towards optimizing a collective reward. This reward

could be framed in terms of maximizing overall accuracy and/or

minimizing the average latency across the inference tasks on

both devices. Such a collaborative approach ensures that while

each device operates autonomously, they collectively contribute

to the system’s overarching performance goals.

IX. CONCLUSION

Responding to the growing need for efficient deep inference

at the edge, this paper addresses the scheduling challenges posed

by the availability of a remote device for shared computational

tasks. We introduced BPS, an adaptive online scheduler designed

for collaborative edge intelligence. BPS incorporates data par-

allel, neurosurgeon, and reinforcement learning techniques to

enhance inference performance, achieving an up to 8.2× im-

provement over traditional schedulers. Additionally, we devel-

oped FF, a specialized compressor for intermediate output data in

neurosurgeon applications. FF capitalizes on the unique aspects

of convolutional layers and employs effective approximation

algorithms, resulting in up to 86.9% less accuracy loss and

83.6% less latency overhead compared to existing compression

methods. Together, the BPS scheduler and FF compressor offer

a robust solution for optimizing continuous deep inference in

collaborative edge environments.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 2016, pp. 779–788.
[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014, arXiv:1409.1556.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

842 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

[4] K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, “Memory-and
communication-aware model compression for distributed deep learning
inference on IoT,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 5s,
pp. 1–22, 2019.

[5] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[6] R. D. Evans, L. Liu, and T. M. Aamodt, “JPEG-ACT: Accelerating deep
learning via transform-based lossy compression,” in Proc. ACM/IEEE 47th

Annu. Int. Symp. Comput. Architecture, 2020, pp. 860–873.
[7] D. Gudovskiy, A. Hodgkinson, and L. Rigazio, “DNN feature map com-

pression using learned representation over GF (2),” in Proc. Eur. Conf.

Comput. Vis. Workshops, 2018, pp. 502–516.
[8] J.-H. Luo and J. Wu, “An entropy-based pruning method for CNN com-

pression,” 2017, arXiv: 1706.05791.
[9] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuc-

cia, “BottleFit: Learning compressed representations in deep neu-
ral networks for effective and efficient split computing,” 2022,
arXiv:2201.02693.

[10] Y. Shi, M. Wang, S. Chen, J. Wei, and Z. Wang, “Transform-based feature
map compression for CNN inference,” in Proc. IEEE Int. Symp. Circuits

Syst., 2021, pp. 1–5.
[11] S. I. Young, Z. Wang, D. Taubman, and B. Girod, “Transform quantization

for CNN compression,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 9, pp. 5700–5714, Sep. 2022.

[12] X. Hou, Y. Guan, T. Han, and N. Zhang, “DistrEdge: Speeding
up convolutional neural network inference on distributed edge de-
vices,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2022,
pp. 1097–1107.

[13] E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani,
“RL-PDNN: Reinforcement learning for privacy-aware distributed neu-
ral networks in IoT systems,” IEEE Access, vol. 9, pp. 54872–54887,
2021.

[14] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Energy-efficient
model compression and splitting for collaborative inference over time-
varying channels,” in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor

Mobile Radio Commun., 2021, pp. 1173–1178.
[15] S. Yao et al., “Deep compressive offloading: Speeding up neural network

inference by trading edge computation for network latency,” in Proc. 18th

Conf. Embedded Netw. Sensor Syst., 2020, pp. 476–488.
[16] L. Zhang, L. Chen, and J. Xu, “Autodidactic neurosurgeon: Collaborative

deep inference for mobile edge intelligence via online learning,” in Proc.

Web Conf., 2021, pp. 3111–3123.
[17] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica, “Clipper: A Low-Latency online prediction serving system,”
in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, 2017,
pp. 613–627.

[18] A. Gujarati et al., “Serving DNNs like clockwork: Performance pre-
dictability from the bottom up,” in Proc. 14th USENIX Symp. Operating

Syst. Des. Implementation, 2020, pp. 443–462.
[19] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: Automated

model-less inference serving,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 397–411.

[20] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host parti-
tioning of deep neural networks with feature space encoding for resource-
constrained internet-of-things platforms,” in Proc. IEEE 15th Int. Conf.

Adv. Video Signal Based Surveill., 2018, pp. 1–6.
[21] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint

accuracy-and latency-aware deep structure decoupling for edge-cloud
execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst., 2018,
pp. 671–678.

[22] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. Conf. ACM

Special Int. Group Data Commun., 2018, pp. 253–266.
[23] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for

mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile Comput.

Netw., 2019, pp. 1–16.
[24] X. Wang, Z. Yang, J. Wu, Y. Zhao, and Z. Zhou, “EdgeDuet: Tiling small

object detection for edge assisted autonomous mobile vision,” in Proc.

IEEE Conf. Comput. Commun., 2021, pp. 1–10.
[25] T.-W. Chin, R. Ding, and D. Marculescu, “AdaScale: Towards real-time

video object detection using adaptive scaling,” in Proc. Mach. Learn. Syst.,
2019, pp. 431–441.

[26] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN: Local
distributed mobile computing system for deep neural network.” in Proc.

Des. Automat. Test Eur. Conf. Exhib., 2017.
[27] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,

“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proc. 4th ACM/IEEE Symp. Edge Comput., 2019.

[28] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van
Gool, “Conditional probability models for deep image compres-
sion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 4394–4402.

[29] A. Khetan and Z. Karnin, “PruneNet: Channel pruning via global impor-
tance,” 2020, arXiv: 2005.11282.

[30] R. Xu et al., “Approxdet: Content and contention-aware approximate
object detection for mobiles,” in Proc. 18th Conf. Embedded Netw. Sensor

Syst., 2020, pp. 449–462.
[31] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-

ing,” 2015, arXiv:1509.02971.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.
[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016.
[34] A. Howard et al., “Searching for MobileNetv3,” in Proc. IEEE/CVF Int.

Conf. Comput. Vis., 2019, pp. 1314–1324.
[35] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”

2016, arXiv:1612.08242.
[36] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.

Comput. Vis., Springer, 2016, pp. 21–37.
[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2015, pp. 91–99.
[38] NVIDIA, “nvJPEG.” [Online]. Available: https://developer.nvidia.com/

nvjpeg
[39] “Webcams,” 2023. [Online]. Available: https://www.webcamtaxi.com/
[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit.. Ieee, 2009, pp. 248–255.
[41] S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,”

in Proc. IEEE Int/Symp. Workload Characterization, 2009, pp. 44–54.
[42] W. Li, D. Liu, K. Chen, K. Li, and H. Qi, “Hone: Mitigating stragglers in

distributed stream processing with tuple scheduling,” IEEE Trans. Parallel

Distrib. Syst., vol. 32, no. 8, pp. 2021–2034, Aug. 2021.
[43] W. Li, S. Chen, K. Li, H. Qi, R. Xu, and S. Zhang, “Efficient online

scheduling for coflow-aware machine learning clusters,” IEEE Trans.

Cloud Comput., vol. 10, no. 4, pp. 2564–2579, Fourth Quart. 2022.

Xueyu Hou received the BS and MS degrees in
electrical engineering from Xi’an Jiaotong Univer-
sity, and the PhD degree from the Electrical and
Computer Engineering Department, New Jersey In-
stitute of Technology (NJIT), advised by professor
Tao Han. She was also a student in the Special Class
of Gifted Young in Xi’an Jiaotong University. She
is the recipient of the NJIT Hashimoto Prize 2024.
Her current research interests include efficient artifi-
cial intelligence, human-centered computing, mobile
edge computing, and sustainable computing.

Yongjie Guan received the BS degree in electrical
engineering from the University of Electronic Science
and Technology of China, and the master’s and PhD
degrees from the Electrical and Computer Engineer-
ing Department, New Jersey Institute of Technology
(NJIT), advised by professor Tao Han. His current
research interests include mobile X reality system,
mobile edge computing, unmanned aircraft systems,
and human-centered computing.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

HOU et al.: BPS: BATCHING, PIPELINING, SURGEON OF CONTINUOUS DEEP INFERENCE ON COLLABORATIVE EDGE INTELLIGENCE 843

Nakjung Choi (Senior Member, IEEE) received the
BS and PhD degrees from the School of Computer
Science and Engineering, Seoul National University,
in 2002 and 2009, respectively. He is currently lead-
ing MNS (Mobile Network Systems) Department in
NSSR (Network Systems and Security Research),
Nokia Bell Labs, Murray Hill, USA, and DMTS
(Distinguished MTS). Also, he has received several
awards such as Best Paper Awards and Awards of
Excellence. His research is on end-to-end network
orchestration and automation, network control cross

domains, 5G/5G-A/6G, dynamic network slicing, carrier-grade cloud-native,
SDN/NFV, edge/fog computing & networking, and open radio access network
(O-RAN).

Tao Han (Senior Member, IEEE) received the
PhD degree in electrical engineering from the New
Jersey Institute of Technology, in 2015. He is an
associate professor with the Department of Electrical
and Computer Engineering, New Jersey Institute of
Technology (NJIT). Before joining NJIT, He was an
Assistant Professor with the Department of Electri-
cal and Computer Engineering, University of North
Carolina at Charlotte. He is the recipient of the NSF
CAREER Award 2021, the Newark College of En-
gineering Outstanding Dissertation Award 2016, the

NJIT Hashimoto Prize 2015, and the New Jersey Inventors Hall of Fame Grad-
uate Student Award 2014. His papers win the IEEE International Conference
on Communications (ICC) Best Paper Award 2019 and IEEE Communications
Society’s Transmission, Access, and Optical Systems (TAOS) Best Paper Award
2019. His research interests include mobile edge computing, machine learning,
mobile X reality, 5G system, Internet of Things, and smart grid.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 15,2024 at 16:15:32 UTC from IEEE Xplore. Restrictions apply.

