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PARTIAL DATA INVERSE PROBLEMS FOR NONLINEAR

MAGNETIC SCHRÖDINGER EQUATIONS

Ru-Yu Lai and Ting Zhou

Abstract. We prove that the knowledge of the Dirichlet-to-Neumann map, measured

on a part of the boundary of a bounded domain in Rn, n ≥ 2, can uniquely determine,

in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and
the scalar electric potential, both being nonlinear in the solution.

1. Introduction

We investigate an inverse boundary value problem for the nonlinear magnetic
Schrödinger equations. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded domain
with smooth boundary ∂Ω, we consider the boundary value problem

(D +A(x, u))
2
u+ q(x, u) = 0 in Ω,(1.1)

with the boundary condition u = f on ∂Ω. Here the vector-valued function A =
(A1, . . . , An) is the nonlinear magnetic potential, modeling the effect of an external
magnetic field, the scalar function q represents the nonlinear electric potential and D
denotes −i∇x. The Dirichlet-to-Neumann (DN) map for the equation is defined by

(1.2) ΛA,q : W 2−1/p,p(∂Ω)→W 1−1/p,p(∂Ω), f 7→ ν · (∇u+ iA(x, u)u) |∂Ω,

where ν is the unit outer normal to ∂Ω.
The type of inverse boundary value problem was first formulated by Calderón [2]

for the linear condituctivity equation ∇ · γ(x)∇u = 0 when he sought to determine
the electrical conductivity γ(x) of a medium by making boundary measurements
of electric voltage and current. The unique determination was proved in [40] in
dimension n ≥ 3 by solving the problem of determining an electric potential q(x) in a
Schrödinger operator −∆ + q from the boundary Dirichlet and Neumann data. Since
then, the inverse problem has been extensively studied in various generalized cases.
The inverse boundary value problem for the linear magnetic Schrödinger equation,
where A(x, z) = A(x) and q(x, z) = q(x), has been considered in [3, 6, 8, 11, 13, 14,
16, 23, 27, 36, 37] and the references therein. Specifically, due to a gauge invariance,
one can only expect to recover uniquely the magnetic field curlA and q from the
boundary DN-map.

In dealing with the inverse problems for nonlinear PDEs, a standard approach
based on the first order linearization of the DN-map was introduced to identify the
linear reaction from the medium, then the full nonlinear medium for certain cases. See
for instance [15, 17, 18, 20, 21, 39] for the demonstration of the approach in solving the
inverse problems for certain semilinear, quasilinear elliptic equations and parabolic
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equations. Recently the higher order linearization of the DN-map has been applied in
determining the full nonlinearity of the medium for several different equations. The
method was successfully applied to solve inverse problems for nonlinear hyperbolic
equations on the spacetime [26], where in contrast the underlying problems for linear
hyperbolic equations are still open, see also [5, 33] and the references therein. In par-
ticular, the second order linearization of the nonlinear boundary map was studied in
[4, 22, 38, 39] for nonlinear elliptic equations. Moreover, this higher order linearization
technique was also applied to study elliptic equations with power-type nonlinearities,
see [10, 24, 25, 28, 31, 30, 34, 35]. A demonstration of the method can be found in [1]
on nonlinear Maxwell’s equations, in [29] on nonlinear kinetic equations, and in [32]
on semilinear wave equations.

Given a semilinear elliptic PDE whose leading term is the Laplacian operator, we
apply the higher order linearization of the DN-map with respect to the small pertur-
bation around the zero solution. The knowledge of the DN-map, measured partially
or completely on the boundary, determines an integral of the product of the m-th
order term of the nonlinear parameter and m+ 1 harmonic functions or their deriva-
tives. A density argument of the products of harmonic functions or their derivatives is
crucial in proving the uniqueness of the m-th order term. For the inverse problem of
the linear equation with DN-map measured only on part of the boundary, the density
of the product of harmonic functions, which vanish on a closed proper subset of the
boundary, was first shown in [7]. More specifically, in [7], this density argument relies
on a Runge type approximation result and an idea of propagating exponential decay
estimates for FBI transforms by the use of maximum principle as in the Kashiwara’s
watermelon theorem. In [25, 30], this density argument was directly used, along with
unique continuation and the maximum principle, to show unique determination of a
potential function q(x) in a model equation −∆u + q(x)u2 = 0 or in a more general
equation of the form −∆u + V (x, u) = 0, assuming partial data. The argument in
[7] was then generalized in [24] where the authors of [24] proved the density of the
products of the gradients of two harmonic functions, which vanish on part of the
boundary, and then use it to show the unique determination of a nonlinear potential
q(x) in the equation −∆u+ q(x)(∇u · ∇u) = 0.

1.1. Problem setup and strategy. In this paper, the main objective is to deter-
mine the nonlinear vector potential A(x, z) and the scalar potential q(x, z) in (1.1)
from the boundary DN-map (1.2). We briefly state our strategy using the higher
order linearization technique as follows.

Suppose that two sets of potentials (A1, q1) and (A2, q2) satisfy

(1.3) the map C 3 z 7→ Aj(·, z) is holomorphic with values in W 1,∞(Ω;Cn),

(1.4) the map C 3 z 7→ qj(·, z) is holomorphic with values in L∞(Ω;C),

and

Aj(x, 0) = 0, qj(x, 0) = ∂zqj(x, 0) = 0(1.5)
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for j = 1, 2. We have that the potentials admit the following expansions:

Aj(x, z) =
∞∑
k=0

∂kzA(x, 0)
zk

k!
, qj(x, z) =

∞∑
k=0

∂kz q(x, 0)
zk

k!
.

Fixing a positive integer m ≥ 1, let εk be small positive numbers and fk ∈
W 2−1/p,p(∂Ω) for k = 1, . . . ,m. We denote ε := (ε1, . . . , εm) and

uj := uj(x; ε), j = 1, 2

to be the unique small solution of the Dirichlet problem{
(D +Aj(x, uj))

2uj + qj(x, uj) = 0 in Ω,
uj = ε1f1 + . . .+ εmfm on ∂Ω.

(1.6)

We establish the well-posedness for this Dirichlet problem with small data in the
Appendix and the DN-map is thus well-defined. Moreover, by Theorem 2 we know
that the finite difference uj/εk is bounded in W 2,p(Ω) (the bound is independent of
ε), hence uj is differentiable in εk and the derivatives satisfy the linearized Laplace
equation. (See for example, [19, 38] for a more detailed exposition.) By expanding
uj in the small perturbation parameter εk and noting that uj(x; 0) ≡ 0 due to the
well-posedness, we have that the first order term

vj,k := ∂εkuj |ε=0

is indeed a harmonic function in Ω satisfying vj,k|∂Ω = fk for k = 1, . . . ,m, j = 1, 2.

Remark 1. (1) We point out that in this setup, we have harmonic functions
v1,k = v2,k for k = 1, . . . ,m in Ω since they agree on the whole boundary.

(2) In other cases, the domain Ω might have unknown geometrical features. For
example, if there is an unknown inclusion or obstacle embedded in Ω, or if
the part of the boundary where we cannot measure the DN-map has an un-
known geometry, then we would have uj to be the solutions to the magnetic
Schrödinger equation in Ωj associated with Aj and qj for j = 1, 2. This
implies that v1,k and v2,k are harmonic functions in potentially different do-
mains Ωj. These scenarios are discussed in [30] for elliptic equations, where
one can show under certain assumptions, using unique continuation, that the
domains in above examples are indeed identical.

(3) In this paper, we focus on the case where the domain is known to be Ω. For the
partial data inverse problems, we assume that the subsets of the boundary: Γ1

and Γ2, be where Dirichlet data and Neumann data are measured respectively.
By the definition of the partial DN-map in (1.11), we have the harmonic
function vj,k = ∂εkuj |ε=0, j = 1, 2 satisfying the boundary condition

v1,k|∂Ω = v2,k|∂Ω = fk with supp(fk) ⊂ Γ1.

Therefore, in the partial data setting, we still have v1,k = v2,k in Ω, hence we
simply denote

vk := vj,k for k = 1, . . . ,m

from this point on.
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To reconstruct A(x, z) and q(x, z), it is sufficient to consider the unique determi-
nation of ∂zA(x, 0), ∂2

zA(x, 0), . . . and ∂2
zq(x, 0), ∂3

zq(x, 0), . . . in Ω due to (1.5). The
proof is based on induction steps and is sketched as follows. We start with the second
order linearization. Let m = 2 and denote

wj := ∂ε1∂ε2uj |ε=0.

Then wj is the solution to the problem

−∆wj +Q
(2)
j (v1, v2) = 0 in Ω, wj |∂Ω = 0,(1.7)

where vk = vj,k for k = 1, 2, as discussed in Remark 1, and
(1.8)

Q
(2)
j (v1, v2) := 3∂zAj(x, 0) · (v1Dv2 + v2Dv1) + 2Dx · ∂zAj(x, 0)v1v2 + ∂2

zqj(x, 0)v1v2,

defined in (2.4). Assume that the DN-maps associated to (A1, q1) and (A2, q2) are
identical. We will obtain the integral identity∫

Ω

(
Q

(2)
1 (v1, v2)−Q(2)

2 (v1, v2)
)
v3 dx = 0,

where v3 is a third harmonic function in Ω with certain boundary condition. One
can see that the integral involves several complicated terms of products of harmonic
functions and their gradients, as well as mixtures of the vector and scalar potentials,
unlike the cases studied in [24, 30].

In the spirit of [7, 24], one can potentially use the corrected harmonic exponentials

v(x, ζ) = e
−ix·ζ
h + w(x, ζ), ζ ∈ Cn, ζ · ζ = 0

that vanishes on a closed proper subset of the boundary, the idea of propagating
exponential decay estimates for FBI transforms and a proper version of Runge-type
approximation, to prove an improved density result. However, the exponential decay
propagation is difficult to derive for the associated FBI type transform of the vector-
valued potential (multiplied by the complex phase). Another major difficulty comes
from the entanglement of A and q in the mixture of terms.

Instead, we combine the previously established density result in [7] and the cor-
rected harmonic exponentials together to obtain the local uniqueness of the poten-
tials. Then we conduct the local-to-global step, as in the previous work, using the
H1 Runge-type approximation. Our key step relies on a transport equation for the
harmonic functions, which helps decouple the potentials.

The argument can be easily generalized to the case m > 2 by induction.

1.2. Main result. Let us present our main result where we show that partial data
on the boundary is sufficient to uniquely determine the nonlinear potentials in the
magnetic Schrödinger equation. Meanwhile, for the completeness of the paper, we
also provide a separate proof for the situation with full data in the Appendix.

Let Ω ⊂ Rn be an open connected bounded domain with smooth boundary ∂Ω.
Let u be the solution to the boundary value problem for the magnetic Schrödinger
equation with nonlinearity:{

(D +A(x, u))
2
u+ q(x, u) = 0 in Ω,

u = f on ∂Ω,
(1.9)
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where A(x, z) ∈W 1,∞(Ω×C;Cn) and q(x, z) ∈ L∞(Ω×C;C) are both C∞ in z, and
D := −i∇. Assume that A and q satisfy (1.3)-(1.5). We will show that the Dirichlet
problem (1.9) has a unique solution u ∈ W 2,p(Ω) for sufficiently small boundary
condition f ∈ W 2−1/p,p(∂Ω) where p > n. It is clear that the equation (1.9) with
f = 0 admits the zero solution u = 0. Then the full boundary DN-map for such small
functions is defined by

(1.10) ΛA,q : W 2−1/p,p(∂Ω)→W 1−1/p,p(∂Ω), f 7→ ν · (∇u+ iA(x, u)u) |∂Ω,

where ν is the unit outer normal to ∂Ω. We also define the partial boundary DN-map
as follows. Let Γ1,Γ2 ⊂ ∂Ω be two arbitrary, nonempty open subsets. Then the
partial boundary DN-map is defined by

(1.11) ΛΓ1,Γ2

A,q (f) = ΛA,q(f)|Γ2 for all f ∈W 2−1/p,p(∂Ω) with supp(f) ⊂ Γ1.

Theorem 1. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded domain with C∞

boundary ∂Ω and let Γ1,Γ2 ⊂ ∂Ω be arbitrary nonempty open subsets of ∂Ω. Suppose
that two sets of coefficients (A1, q1) and (A2, q2) satisfy (1.3)-(1.5) and

ν · ∂kzA1(x, 0) = ν · ∂kzA2(x, 0) on Γ1 ∩ Γ2 for k ≥ 1.

Let ΛΓ1,Γ2

Aj ,qj
be the above partial boundary DN-map associated to (Aj , qj) for j = 1, 2.

Suppose that ΛΓ1,Γ2

A1,q1
(f) = ΛΓ1,Γ2

A2,q2
(f) for any f ∈ W 2−1/p,p(∂Ω), n < p < ∞ with

supp(f) ⊂ Γ1 and ‖f‖W 2−1/p,p(∂Ω) < δ, where δ > 0 is a sufficiently small constant.
Then

A1 = A2 and q1 = q2 in Ω.

Remark 2. When Γ1 = Γ2 = ∂Ω, this is the uniqueness result for the inverse problem
with full boundary data. In particular, it can be shown by a separate and direct method
as seen in the Appendix.

We comment here due to the assumption (1.5), the first order linearization of
the DN-map provides boundary measurements of the harmonic functions in Ω. As
commented in Remark 1, we could adopt the argument in [30] to show the unique
determination of obstacles embedded in Ω or the unknown geometry of the inaccessible
part of the boundary.

Another important observation is that our result shows that there is no gauge
invariance for this problem.

The paper is organized as follows. The higher order linearization technique is de-
tailed in Section 2 and the crucial integral identity is also derived there. Then the
proof of Theorem 1 is given in Section 3. The well-posedness for the boundary value
problem of the nonlinear magnetic Schrödinger equation is established in Appen-
dix A. Finally, an alternative proof of the uniqueness of potentials with full boundary
measurements is provided in Appendix B.

2. The higher order linearization

In this section, we use the higher order linearization approach to derive a key
integral identity encoding the information of the discrepancy of the potentials A and
q, as stated in Proposition 2. We start by considering the m = 2 case and then extend
it to the higher order terms by induction steps.



10006 Lai and Zhou

For m ≥ 2, let ε := (ε1, . . . , εm) with εk > 0 and let fk ∈ W 2−1/p,p(∂Ω) with
supp(fk) ⊂ Γ1, k = 1, . . . ,m. Under the assumptions of Theorem 1, the boundary
value problem {

(D +Aj(x, u))2uj + qj(x, uj) = 0 in Ω,
uj = ε1f1 + . . .+ εmfm on ∂Ω,

(2.1)

admits a unique solution uj = uj(x; ε) for |ε| small enough.

2.1. For m = 2 case. We recall the condition (1.5). Given the boundary condition
f = ε1f1 +ε2f2 with supp(fk) ⊂ Γ1 for small enough |ε|, following the steps described
in the introduction, the first order linearization of (2.1) around the zero solution
uj(x; 0) = 0 gives that vj,k := ∂εkuj(x; ε)|ε=0, k = 1, 2, is harmonic function satisfying

(2.2) −∆vj,k = 0 in Ω, vj,k|∂Ω = fk.

This indeed implies that
vk := v1,k = v2,k in Ω.

Next we perform the second order linearization, then it gives that the function

wj := ∂ε1∂ε2uj(x; ε)|ε=0

is the solution to

(2.3) −∆wj +Q(2)(v1, v2) = 0 in Ω, wj |∂Ω = 0,

where
(2.4)

Q(2)(v1, v2) := 3∂zAj(x, 0) · (v1Dv2 + v2Dv1) + 2Dx · ∂zAj(x, 0)v1v2 + ∂2
zqj(x, 0)v1v2,

with the partial Dx meaning the derivative with respect to the first variable of
Aj(x, u). Then the O(ε1ε2) term in the expansion of the DN-map is

(2.5) ∂ε1∂ε2 |ε=0[ΛΓ1,Γ2

Aj ,qj
(ε1f1 + ε2f2)] = (∂νwj + 2iν · ∂zAj(x, 0)f1f2) |Γ2

.

Remark 3. Since vk ∈ W 2,p(Ω), Sobolev embedding theorem implies that vk ∈
C1,α(Ω), 0 < α < 1. Note that C1,α(Ω) is an algebra under pointwise multiplica-
tion. Therefore, f1f2 = v1v2|∂Ω ∈ C1,α(∂Ω). Combining it with ∂νwj ∈ Cα(∂Ω), the
right-hand side of (2.5) is at least in L∞(∂Ω).

We then have the integral identity in the m = 2 case.

Proposition 1. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded domain with C∞

boundary ∂Ω and let Γ1,Γ2 ⊂ ∂Ω be arbitrary nonempty open subsets of ∂Ω. Given
two sets of potentials (A1, q1) and (A2, q2) that satisfy the conditions (1.3)-(1.5) and

ν · ∂zA1(x, 0) = ν · ∂zA2(x, 0) on Γ1 ∩ Γ2,

we then have that if ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
(for small boundary data), then for any harmonic

functions v1, v2, v3 with

supp(v1|∂Ω), supp(v2|∂Ω) ⊂ Γ1 and supp(v3|∂Ω) ⊂ Γ2,

we have

(2.6)

∫
Ω

(
Q

(2)
1 (v1, v2)−Q(2)

2 (v1, v2)
)
v3 dx = 0,

where Q
(2)
j (v1, v2) is given by (2.4) with A, q replaced by Aj , qj for j = 1, 2.
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Proof. Let v1 and v2 be harmonic functions with boundary conditions fk := vk|∂Ω and

supp(fk) ⊂ Γ1 for k = 1, 2. From the fact that ΛΓ1,Γ2

A1,q1
(ε1f1 + ε2f2) = ΛΓ1,Γ2

A2,q2
(ε1f1 +

ε2f2) for small ε = (ε1, ε2), we have that

∂νw1 + 2iν · ∂zA1(x, 0)f1f2 = ∂νw2 + 2iν · ∂zA2(x, 0)f1f2 on Γ2,

where w1, w2 are solutions to

(2.7) −∆wj +Q
(2)
j (v1, v2) = 0 in Ω, wj |∂Ω = 0.

Since supp(f1), supp(f2) ⊂ Γ1 and ν · ∂zA1(x, 0) = ν · ∂zA2(x, 0) on Γ1 ∩ Γ2, one has

ν · ∂zA1(x, 0)f1f2 = ν · ∂zA2(x, 0)f1f2 on Γ2,

which leads to

∂νw1|Γ2 = ∂νw2|Γ2 .

Multiplying (2.7) by any harmonic function v3 in Ω with supp(v3|∂Ω) ⊂ Γ2 and
applying Green’s formula, we then derive that∫

Ω

(
Q

(2)
1 (v1, v2)−Q(2)

2 (v1, v2)
)
v3 dx =

∫
∂Ω\Γ2

(∂νw1 − ∂νw2)v3 dS = 0.

Thus, the proof is complete. �

2.2. Induction steps in m ≥ 2. Let m ≥ 2 and suppose that

∂kzA1(x, 0) = ∂kzA2(x, 0) for k = 1, . . . ,m− 2,

∂kz q1(x, 0) = ∂kz q2(x, 0) for k = 2, . . . ,m− 1.

Combining the base case (1.5), we have that

(2.8) ∂kzA1(x, 0) = ∂kzA2(x, 0) for k = 0, . . . ,m− 2,

and

(2.9) ∂kz q1(x, 0) = ∂kz q2(x, 0) for k = 0, . . . ,m− 1.

Let ε = (ε1, . . . , εm) with small enough εk > 0 and let fk ∈ W 2−1/p,p(∂Ω) with
supp(fk) ⊂ Γ1 for k = 1, . . . ,m. Again, from Theorem 2, there exists a unique small
solution uj = uj(x; ε) to the problem{

(D +Aj(x, uj))
2uj + qj(x, uj) = 0 in Ω,

uj = ε1f1 + . . .+ εmfm on ∂Ω,
(2.10)

for j = 1, 2.

Generally, for any positive integer m ≥ 2, we define the function Qmj (v1, . . . , vm)
by

Q
(m)
j (v1, . . . , vm) := (m+ 1)∂m−1

z Aj(x, 0) ·D(v1 . . . vm)

+m(Dx · ∂m−1
z Aj(x, 0))v1 . . . vm + ∂mz qj(x, 0)v1 . . . vm.

(2.11)

The general integral identity is summarized in the following proposition:
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Proposition 2. Let (A1, q1) and (A2, q2) satisfy the conditions (1.3)-(1.5). Moreover,
suppose for m ≥ 2, (2.8) and (2.9) are satisfied and

(2.12) ν · ∂m−1
z A1(x, 0) = ν · ∂m−1

z A2(x, 0) on Γ1 ∩ Γ2

holds. If ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
for small data, then for any harmonic functions v1, . . . , vm+1

satisfying

supp(v1|∂Ω), . . . , supp(vm|∂Ω) ⊂ Γ1 and supp(vm+1|∂Ω) ⊂ Γ2,

we have ∫
Ω

(
Q

(m)
1 (v1, . . . , vm)−Q(m)

2 (v1, . . . , vm)
)
vm+1 dx = 0.(2.13)

Before proving Proposition 2, we first need to look more closely at the derivative
of uj with respect to ε, which is stated in Lemma 1.

We start with defining the notation Ek for 1 ≤ k ≤ m to be a product of k distinct
operators of the form ∂εi and setting ε = 0. For example, for distinct numbers
1 ≤ `1, `2, . . . , `k ≤ m, we have that ∂ε`1∂ε`2 . . . ∂ε`ku|ε=0 is a representative of Eku.

Lemma 1. Suppose that (2.8) and (2.9) hold. Let uj be the solution to (2.10). For
any 1 ≤ k < m, then we have

Eku1 = Eku2.

Proof. To demonstrate this for k = 1, we apply ∂εi , 1 ≤ i ≤ m, to the equation (2.10)
for uj and set ε = 0. As before we find ∂εiuj |ε=0 satisfies the linear equation

∆∂εiuj |ε=0 = 0,

with boundary condition (∂εiuj |ε=0)|∂Ω = fi. Since this holds for j = 1, 2, we conclude
that E1u1 = E1u2.

Now we proceed by the induction argument. Suppose that

(2.14) Eiu1 = Eiu2

holds for any Ei with 1 ≤ i < k, and we want to show Eku1 = Eku2. Without loss of
generality, we consider the operator

Ek = ∂ε1 . . . ∂εk |ε=0.

By applying Ek to (2.10), we have

0 = −∆Ekuj + Ψk(uj , Aj , qj),

where the term Ψk is defined by

Ψk(uj , Aj , qj)

:= Ψk(E1uj , . . . , Ek−1uj , ∂
1
zAj(x, 0), . . . , ∂k−1

z Aj(x, 0), ∂2
zqj(x, 0), . . . , ∂kz qj(x, 0))

and contains derivatives of order at most k − 1 in uj , derivatives of order at most
k − 1 in Aj , and derivatives of order at most k in qj with respect to the variable z.
Since k < m, we have k ≤ m−1 and k−1 ≤ m−2. Therefore combining (2.8), (2.9),
and (2.14), we have

Ψk(u1, A1, q1) = Ψk(u2, A2, q2).

Therefore the conclusion is that

−∆(Eku1) = −∆(Eku2).
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Moreover, Eku1 and Eku2 share the same boundary condition, then one can conclude

Eku1 = Eku2

as desired.
�

Proof of Proposition 2. For the given harmonic functions v1, . . . , vm, whose boundary
traces are supported on Γ1, we consider the solution uj to (2.10) with fk = vk|∂Ω

(k = 1, . . . ,m). It is not hard to see by Lemma 1 that ∂εku1|ε=0 = ∂εku2|ε=0 = vk.
Applying the operator ∂ε1 . . . ∂εm |ε=0 to (2.10), we get

0 = −∆(∂ε1 . . . ∂εmuj |ε=0)

+ (m+ 1)∂m−1
z Aj(x, 0) ·D(v1 . . . vm) +m(Dx · ∂m−1

z Aj(x, 0))v1 . . . vm

+ ∂mz qj(x, 0)v1 . . . vm +Rm(uj , Aj , qj).

Here the remaining term Rm contains derivatives of order at most m − 1 in uj , at
most m− 2 in Aj(x, 0), and at most m− 1 in qj(x, 0) with respect to z variable. For
j = 1, 2, if we write

φj := ∂ε1 . . . ∂εmuj |ε=0

and use the notation introduced in (2.11), then we can write this as

∆φj = Q
(m)
j (v1, . . . , vm) +Rm(uj , Aj , qj) in Ω, φj |∂Ω = 0.

From Lemma 1 (E`u1 = E`u2, 1 ≤ ` < m) and the assumptions on Aj and qj , we see
that

Rm(u1, A1, q1) = Rm(u2, A2, q2).

Therefore if we subtract the equation for j = 2 from the equation for j = 1, we get

∆(φ1 − φ2) = Q
(m)
1 (v1, . . . , vm)−Q(m)

2 (v1, . . . , vm).

From the equality of the DN-maps ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
, Lemma 1 (Eku1 = Eku2, 1 ≤

k < m), and the condition (2.12), we can easily derive

(2.15) ∂νφ1|Γ2 = ∂νφ2|Γ2 .

Now let vm+1 be harmonic and supp(vm+1|∂Ω) ⊂ Γ2, and consider the integral∫
Ω

∆(φ1 − φ2)vm+1 dx.

Similar to the case m = 2 discussed in the proof of Proposition 1, by performing the
integration by parts, we get∫

Ω

∆(φ1 − φ2)vm+1 dx =

∫
Ω

(φ1 − φ2)∆vm+1 dx = 0,

with no boundary terms, thanks to the equality (2.15), φ1|∂Ω = φ2|∂Ω = 0 and
supp(vm+1|∂Ω) ⊂ Γ2. This gives us∫

Ω

(
Q

(m)
1 (v1, . . . , vm)−Q(m)

2 (v1, . . . , vm)
)
vm+1 dx = 0.

This finishes the proof. �
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From Proposition 1 and Proposition 2, we have proved that the integral identity
(2.13) holds for m ≥ 2. In the next section, we will focus on extracting the information
about potentials A and q from this identity.

3. Proof of Theorem 1

3.1. A key lemma. We will see below that by using the integral identity (2.13)
in Proposition 2 and the density result in Theorem 1.1 in [7], we can derive a much
simpler identity that will be the key component to show the desired uniqueness result.

To this end, we first simplify the notations by denoting the discrepancy in ∂m−1
z A1

and ∂m−1
z A2 as

Ãm−1(x) := ∂m−1
z A2(x, 0)− ∂m−1

z A1(x, 0),

and also denoting the discrepancy in ∂mz q1 and ∂mz q2 as

q̃m(x) := ∂mz q2(x, 0)− ∂mz q1(x, 0).

By applying the integration by parts and the boundary condition ν ·∂m−1
z A1(x, 0) =

ν · ∂m−1
z A2(x, 0), the identity in Proposition 2 now becomes

0 =

∫
Ω

(
Q

(m)
2 (v1, . . . , vm)−Q(m)

1 (v1, . . . , vm)
)
vm+1 dx

=

∫
Ω

(
− (D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1

)
v1 . . . vm dx

for harmonic functions v1, . . . , vm+1 such that

supp(v1|∂Ω), . . . , supp(vm|∂Ω) ⊂ Γ1 and supp(vm+1|∂Ω) ⊂ Γ2.

We then have the following result by using the density of the product of harmonic
functions in L1 space.

Lemma 2. Suppose that the conditions in Proposition 2 hold and harmonic functions
v3, . . . , vm have nontrivial boundary data. Then the following identity holds:

(3.1) − (D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1 = 0

almost everywhere (a.e.) in Ω for m ≥ 2.

Proof. When m = 2, we apply Theorem 1.1 in [7], stating that the set of products

v1v2 of harmonic functions in C∞(Ω) that vanish on a closed proper subset Γ̃ of ∂Ω
is dense in L1(Ω). We immediately obtain

−(D · Ã1)v3 − 3(Ã1 ·Dv3) + q̃2v3 = 0

a.e. in Ω.

For m > 2, we also apply Theorem 1.1 in [7] to obtain(
−(D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1

)
v3 . . . vm = 0

a.e. in Ω. By the fact that
⋃m
j=3 v

−1
j (0) has measure zero, we then have (3.1) for any

m > 2. �
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For simplicity of notations, for m ≥ 2, we recast (3.1) as the following transport
equation,

F (x) ·Dvm+1 + g(x)vm+1 = 0,(3.2)

where

F (x) := −(m+ 1)Ãm−1(x), g(x) := −(D · Ãm−1)(x) + q̃m(x).(3.3)

3.2. Uniqueness result. The proof of Theorem 1 relies heavily on the following
result, that is, Proposition 3 below: if the equation

F (x) ·Dvm+1 + g(x)vm+1 = 0 in Ω

holds for all harmonic functions vm+1 ∈ C∞(Ω) with supp(vm+1|∂Ω) ⊂ Γ2 ⊂ ∂Ω, then

F = 0 and g = 0 in Ω. It is clear that the identity F = 0 = g implies Ãm−1 = 0 = q̃m.
Thus, the uniqueness of the potentials follows immediately.

The key strategy is to first show that F and g vanish locally, that is, F (x) and g(x)
vanish a.e. in a neighborhood of a point x0 ∈ Γ2. Next we extend this local result to
the global one. The detailed argument is stated in the proof of Proposition 3.

To begin, we first construct the harmonic function vm+1 as in [7]. Without loss of
generality, we let x0 = 0, the tangent plane to ∂Ω at x0 be given by x1 = 0 and

Ω ⊂ {x ∈ Rn : |x+ e1| < 1}, Γ̃2 := ∂Ω\Γ2 = {x ∈ ∂Ω : x1 ≤ −2c}

for some constant c > 0. Here

ej = (0, . . . , 0, 1, 0, . . . , 0)

with the jth component equals to 1.

Remark 4. We comment here that one can apply a transformation to achieve above
conditions for the domain (or by the conformal mapping in [7] for non-convex do-

mains). More specifically, given the transformation T : Ω̃ → Ω, x = T (y), the
transport equation

F (x) ·Dv + g(x)v = 0 in Ω

becomes

F̃ (y) ·
(
∂y

∂x

)T
Dy ṽ + g̃(y)ṽ = 0 in Ω̃,

where

ṽ(y) = v ◦ T (y), F̃ (y) = F ◦ T (y), g̃(y) = g ◦ T (y).

It is not hard to see that with the transformation satisfying det
(
∂y
∂x

)
6= 0 a.e., we

have that
(
∂y
∂x

)T
F̃ (y) = 0 and g̃(y) = 0 in Ω̃ implies that F (x) = 0 and g(x) = 0 in

Ω.

For ζ ∈ Cn such that ζ · ζ = 0 and a cut-off function χ ∈ C∞0 (Rn) such that χ = 1

on Γ̃2 and supp(χ) ⊂ {x ∈ Rn : x1 ≤ −c}, we consider the harmonic function

vm+1(x, ζ) = e−ix·ζ/h + w̃(x, ζ), h > 0,(3.4)
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with vm+1|Γ̃2
= 0, where w̃ is the solution to the Dirichlet problem∆w̃ = 0 in Ω,

w̃|∂Ω = −
(
e−ix·ζ/hχ

)
|∂Ω.

Then it is clear to see

‖w̃‖H1(Ω) ≤ C‖e−ix·ζ/hχ‖H1/2(∂Ω) ≤ C(1 + h−1|ζ|)1/2e
1
hHK(Im ζ),

where HK is the supporting function of the compact subset K = supp(χ)∩ ∂Ω of the
boundary and is defined by

HK(~d) = sup
x∈K

x · ~d, for ~d ∈ Rn.

In particular, from the property of χ, one can further derive that when Im ζ1 ≥ 0,

‖w̃‖H1(Ω) ≤ C(1 + h−1|ζ|)1/2e−
c
h Im ζ1e

1
h | Im ζ′|,

where ζ = (ζ1, ζ
′) with ζ ′ being the (n− 1) dimensional coordinate vector.

Similarly, we can also derive that for any α ∈ Zn+, the remainder function w̃ satisfies

‖∂αw̃‖H1(Ω) ≤ C‖∂α(e−ix·ζ/hχ)|∂Ω‖H1/2(∂Ω)

≤ C(1 + h−1|ζ|)(1+|α|)/2e−
c
h Im ζ1e

1
h | Im ζ′|,

which gives the upper bound of w̃ ∈ H |α|+1(Ω). By the Sobolev embedding theorem
[9], when |α| − [n2 ]− 1 ≥ 0, one has

‖w̃‖C1(Ω) ≤ C(1 + h−1|ζ|)(1+|α|)/2e−
c
h Im ζ1e

1
h | Im ζ′|.(3.5)

Now we are ready to show the following proposition.

Proposition 3. Let Ω ⊂ Rn, n ≥ 2 be an open bounded connected set with smooth

boundary and Γ2 be an open nonempty proper subset of ∂Ω. Denote Γ̃2 = ∂Ω\Γ2.
Let F ∈ L∞(Ω;Cn) and g ∈ L∞(Ω;C). Suppose for all harmonic functions vm+1 ∈
C∞(Ω) with supp(vm+1|∂Ω) ⊂ Γ2 such that

F (x) ·Dvm+1(x) + g(x)vm+1(x) = 0 a.e. in Ω.(3.6)

Then we have F = 0 and g = 0 a.e. in Ω.

Remark 5. We remark here that in the full data setting (Γ2 = ∂Ω), an individual
proof of this proposition can be found in Appendix B.

Proof. Step 1: Local result. As discussed above, we take x0 = 0 ∈ Γ2 without
loss of generality. Substituting vm+1 defined in (3.4) with nontrivial boundary data
vm+1|∂Ω 6= 0 into (3.6), we obtain

F (x) · ζ = hF (x) ·Dw̃eix·ζ/h + hg(x) + hg(x)w̃eix·ζ/h.(3.7)

Let ζ = (i, 1, 0, . . . , 0)T . Then for all x ∈ Ω such that x1 > −c, we have from the
above estimates (3.5) for w̃ that

|w̃(x)eix·ζ/h|, |Dw̃(x)eix·ζ/h| ≤ Ce−
x1
h Im ζ1(1 + h−1|ζ|)(1+|α|)/2e−

c
h Im ζ1e

1
h | Im ζ′|.

When h→ 0, this implies that the right-hand side of (3.7)

hF (x) ·Dw̃eix·ζ/h + hg(x) + hg(x)w̃eix·ζ/h
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vanishes. Hence F (x) · ζ = 0, at every point x ∈ Ω with x1 > −c, i.e., in a neighbor-
hood of x0 = 0. Similarly, by choosing ζ ′ = (i,−1, 0, . . . , 0)T instead, we can derive
that F (x) · ζ ′ = 0. These two identities F (x) · ζ = 0 and F (x) · ζ ′ = 0 indicate the
first two components of F (x) indeed vanish.

Furthermore, by choosing other

ζ = ie1 + ej for j = 3, . . . , n,

one can show that the other components of F (x) vanish too, which implies that F = 0.
Thus, we can also obtain that g = 0 from the equation (3.6) and the fact that v−1

m+1(0)
has measure zero. Finally we have derived that F = 0 and g = 0 in a neighborhood
of every point x0 ∈ Γ2 provided that (3.6) hold for all harmonic functions vm+1 with
boundary data that is supported in Γ2.

Step 2: Global result. To extend the local result to any point x1 of Ω, we take
a point x0 ∈ Γ2 and let θ : [0, 1] → Ω be a C1 curve joining x0 and x1 such that
θ(0) = x0 and θ′(0) is the inner normal to ∂Ω at x0, and θ(t) ∈ Ω for t ∈ (0, 1]. We
set

Θε(t) = {x ∈ Ω : d(x, θ([0, t])) ≤ ε},
a closed neighborhood of the curve θ(s), s ∈ [0, t]. Let

I = {t ∈ [0, 1] : F = 0, g = 0 a.e. on Θε(t) ∩ Ω}.

The above local result indicates that 0 ∈ I if ε > 0 is small enough. Moreover, it is
clear that I is a closed subset of [0, 1]. If we can further show that I is also open,
then we can get I = [0, 1], which further implies that x1 /∈ supp(F ) ∪ supp(g). Since
x1 is an arbitrary point in Ω, we then have F = 0 and g = 0 in Ω. This will complete
the proof of the global result.

To show that I is open in [0, 1], we take t ∈ I and ε > 0 small enough so that
∂Θε(t)∩ ∂Ω ⊂ Γ2. It is easy to see that the set Ω\Θε(t) can be smoothed out into an
open subset Ω1 of Ω with smooth boundary so that

Ω1 ⊃ Ω\Θε(t), ∂Ω ∩ ∂Ω1 ⊃ Γ̃2.

We further augment the set Ω by smoothing out the set Ω∪B(x0, ε
′) with 0 < ε′ � ε

sufficiently small, into an open set Ω2 so that

∂Ω2 ∩ ∂Ω ⊃ ∂Ω ∩ ∂Ω1 = ∂Ω1 ∩ ∂Ω2 ⊃ Γ̃2.

Now we let G2 be the Green kernel associated to the open set Ω2 and

−∆yG2(x, y) = δ(x− y) in Ω2, G2(x, y)|∂Ω2
= 0.

We consider the function

Φ(x; y) := F (y) ·DyG2(x, y) + g(y)G2(x, y), y ∈ Ω1, x ∈ Ω2\Ω1.

It is clear that Φ(x; y) is harmonic in x on Ω2\Ω1 for a fixed y ∈ Ω1. Since F (y) = 0
and g(y) = 0 for y ∈ Θε(t) ∩ Ω, we can extend Φ(x; y) by zero to y ∈ Ω. When x ∈
Ω2\Ω, the Green function G2(x, y) is a harmonic function in y on Ω with G2(x, ·)|Γ̃2

=

0. By (3.6), we have

Φ(x; y) = 0, for a.e. y ∈ Ω, x ∈ Ω2\Ω.
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Since Φ(x; y) is harmonic in x on Ω2\Ω1 and the set Ω2 \ Ω1 is connected, by the
unique continuation, we then have

Φ(x; y) = 0, for a.e. y ∈ Ω1, x ∈ Ω2\Ω1.

By Lemma 2.2 of [24] (H1-density), we have that for any v ∈ C∞(Ω1) harmonic
with v|∂Ω1∩∂Ω2

= 0 and arbitrary small ε > 0, there exists a ∈ C∞(Ω2) with supp(a) ⊂
Ω2\Ω1 such that ∥∥∥∥v(y)−

∫
Ω2

G2(x, y)a(x) dx

∥∥∥∥
H1(Ω1)

< ε.

We multiply Φ(x; y) by a(x) and then integrate it with respect to x on Ω2. We obtain

F (y) ·Dy

∫
Ω2

G2(x, y)a(x) dx+ g(y)

∫
Ω2

G2(x, y)a(x) dx = 0, a.e. y ∈ Ω1,

and, moreover, we can derive that

‖F ·Dv + gv‖L2(Ω1)

≤
∥∥∥∥F ·D ∫

Ω2

G2(x, ·)a(x) dx+ g

∫
Ω2

G2(x, ·)a(x) dx

∥∥∥∥
L2(Ω1)

+ Cε = Cε

for arbitrary small ε > 0. This implies that

F ·Dv + gv = 0 a.e. in Ω1

for v ∈ C∞(Ω1) harmonic with v|∂Ω1∩∂Ω2
= 0. By the above local result in Step 1,

we then have F = 0 and g = 0 in an open neighborhood of ∂Ω1 \ (∂Ω1 ∩ ∂Ω2) and
this implies that F and g vanish on a slightly larger neighborhood Θε(t

′), t′ > t of
the curve. This proves that I is open, hence completes the proof.

�

Proof of Theorem 1. From Proposition 2, we have the integral identity holds for m =
2. By applying Lemma 2, Proposition 3 and (3.3), we have F = 0, g = 0, which
implies that

∂zA1(x, 0) = ∂zA2(x, 0), ∂2
zq1(x, 0) = ∂2

zq2(x, 0).

Given any integer m > 2, by induction argument, suppose that for k = 2, . . . ,m− 1,
the following are true:

∂k−1
z A1(x, 0) = ∂k−1

z A2(x, 0), ∂kz q2(x, 0) = ∂kz q1(x, 0).

We want to show that ∂m−1
z A1(x, 0) = ∂m−1

z A2(x, 0) and ∂mz q1(x, 0) = ∂mz q2(x, 0)
also hold.

From above, we have known that Aj and qj satisfy the conditions (2.8) and (2.9)
and thus we can apply Proposition 2 to get the integral (2.13) for such m > 2.
Applying Lemma 2 and Proposition 3 again, we then derive that F = 0, g = 0, which
gives

0 = ∂m−1
z A2(x, 0)− ∂m−1

z A1(x, 0)

and

0 = ∂mz q2(x, 0)− ∂mz q1(x, 0).

Therefore, we complete the proof of Theorem 1. �
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Appendix A. Well-posedness of the nonlinear magnetic Schrödinger
equation

In this section, we prove that the boundary value problem (1.9) is well-posed if
the small boundary data is given. The analysis is based on the contraction mapping
principle.

Theorem 2 (Well-posedness). Let A(x, z) and q(x, z) satisfy (1.3)-(1.4). Moreover,
suppose that q(x, 0) = 0 and 0 is not a Dirichlet eigenvalue of the linear operator

L0 := (D +A(x, 0))2 + ∂zq(x, 0).

Then there exists a small constant ε > 0 such that for any ‖f‖W 2−1/p,p(∂Ω) ≤ ε, the
boundary value problem{

(D +A(x, u))
2
u+ q(x, u) = 0 in Ω,

u = f on ∂Ω,
(A.1)

admits a unique solution u ∈ W 2,p(Ω). Moreover, there exists a constant C > 0
independent of f such that

‖u‖W 2,p(Ω) ≤ C‖f‖W 2−1/p,p(∂Ω).(A.2)

Proof. We will use contraction mapping principle to show the existence of solution to
(1.9).

Step 1: Linearization. First, for A(x, z) and q(x, z) satisfying (1.3)-(1.4), we use
the Taylor formulas

A(x, z) = A(x, 0) +Ar(x, z)z,

q(x, z) = ∂zq(x, 0)z + qr(x, z)z2,

where we denote

Ar(x, z) :=

∫ 1

0

∂zA(x, tz) dt, qr(x, z) :=

∫ 1

0

∂2
zq(x, tz)(1− t) dt.

Given f ∈ W 2−1/p,p(∂Ω) for p ∈ (n,+∞), by Theorem 9.15 of [12], there exists a
unique solution u0 ∈W 2,p(Ω) to the Dirichlet problem{

L0u0 := (D +A(x, 0))2u0 + ∂zq(x, 0)u0 = 0 in Ω,
u0 = f on ∂Ω.

(A.3)

Moreover, we have

‖u0‖W 2,p(Ω) ≤ C‖f‖W 2−1/p,p(∂Ω).

(This can be obtained by extending f to a W 2,p(Ω) function and apply Lemma 9.17
of [12] to the equation for the difference of the solution and the extended function.)

Thus, if u is a solution to (1.9) we have the remainder function v := u−u0 satisfying
the following problem

(A.4) L0v = F(v), v|∂Ω = 0,
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where

F(v) :=− (D +A(x, 0)) ·
[
Ar(x, u0 + v)(u0 + v)2

]
−Ar(x, u0 + v)(u0 + v) · (D +A(x, 0)) (u0 + v)

−Ar(x, u0 + v)2(u0 + v)3 − qr(x, u0 + v)(u0 + v)2.

By Theorem 9.15 in [12] again, for F ∈ Lp(Ω), there exists a unique solution ũ ∈
W 2,p(Ω) ∩W 1,p

0 (Ω) to the equation L0ũ = F ∈ Lp(Ω) in Ω with trivial boundary
data. We denote the solution operator by

L−1
0 : Lp(Ω) → W 2,p(Ω) ∩W 1,p

0 (Ω),

which is the continuous operator F 7→ ũ and thus L−1
0 (F ) is the solution to L0ũ =

F ∈ Lp(Ω) in Ω with trivial boundary condition. Therefore, we are looking for the
unique fixed point v of L−1

0 ◦ F .

Step 2: A contraction map. In what follows, we will show that L−1
0 ◦ F is indeed

a contraction map on a suitable subset Xδ of W 2,p(Ω)∩W 1,p
0 (Ω). Here we denote the

set Xδ for 1 > δ > 0 by

Xδ := {v ∈W 2,p(Ω) ∩W 1,p
0 (Ω) | ‖v‖W 2,p(Ω) ≤ δ}.

We first show that (L−1
0 ◦F)(Xδ) ⊂ Xδ. Recalling that, by the Sobolev embedding

theorem, we have W 2,p(Ω) ↪→ C1(Ω) if p > n. For v ∈ Xδ, we have v, u0 ∈ C1(Ω)
since v, u0 ∈W 2,p(Ω). Thus we have that Ar(x, u0(x) + v(x)) and qr(x, u0(x) + v(x))
are both bounded in Ω. Moreover, since

D · [Ar(x, u0(x) + v(x))]

=

∫ 1

0

Dx · ∂zA(x, t(u0 + v)) dt+

∫ 1

0

t∂2
zA(x, t(u0 + v)) dt ·D(u0 + v),(A.5)

one can derive that

‖F(v)‖Lp(Ω) ≤ C‖u0 + v‖C1(Ω)‖u0 + v‖Lp(Ω)

≤ C‖u0 + v‖2W 2,p(Ω) ≤ C(‖u0‖2W 2,p(Ω) + ‖v‖2W 2,p(Ω)).

This implies that, for ‖f‖W 2−1/p,p(∂Ω) < ε and p > n, one has

‖L−1
0 (F(v))‖W 2,p(Ω) ≤ C‖F(v)‖Lp(Ω)

≤ C(‖f‖2W 2−1/p,p(∂Ω) + ‖v‖2W 2,p(Ω)) ≤ C(ε2 + δ2).(A.6)

Therefore, for ε and δ small enough, the operator L−1
0 ◦ F maps Xδ into itself.

Next we show that L−1
0 ◦F is a contraction on Xδ. To this end, we take v1, v2 ∈ Xδ

and consider

‖L−1
0 ◦ F(v1)− L−1

0 ◦ F(v2)‖W 2,p(Ω) = ‖L−1
0 (F(v1)−F(v2))‖W 2,p(Ω)

≤ C‖F(v1)−F(v2)‖Lp(Ω).

In addition, we rewrite

−F(v) = D · (Ar(x, u0 + v))(u0 + v)2 + 3(Ar(x, u0 + v) ·D(u0 + v))(u0 + v)

+ 2A(x, 0) ·Ar(x, u0 + v)(u0 + v)2 +Ar(x, u0 + v)2(u0 + v)3

+ qr(x, u0 + v)(u0 + v)2.
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Thus, F(v2)−F(v1) is the sum of the following two terms

I = D · (Ar(x, u0 + v1))[(u0 + v1)2 − (u0 + v2)2]

+ 3Ar(x, u0 + v1) · [D(u0 + v1)(u0 + v1)−D(u0 + v2)(u0 + v2)]

+ 2A(x, 0) ·Ar(x, u0 + v1)[(u0 + v1)2 − (u0 + v2)2]

+Ar(x, u0 + v1)2[(u0 + v1)3 − (u0 + v2)3]

+ qr(x, u0 + v1)[(u0 + v1)2 − (u0 + v2)2],

II = [D · (Ar(x, u0 + v1))−D · (Ar(x, u0 + v2))](u0 + v2)2

+ 3(Ar(x, u0 + v1)−Ar(x, u0 + v2)) ·D(u0 + v2)(u0 + v2)

+ 2A(x, 0) · [Ar(x, u0 + v1)−Ar(x, u0 + v2)](u0 + v2)2

+ [Ar(x, u0 + v1)2 −Ar(x, u0 + v2)2](u0 + v2)3

+ (qr(x, u0 + v1)− qr(x, u0 + v2))(u0 + v2)2.

For the first term, we obtain

‖I‖Lp(Ω) ≤ C
{

(‖u0‖C1(Ω) + ‖v1‖C1(Ω) + ‖v2‖C1(Ω))‖v1 − v2‖Lp(Ω)

+ (‖u0‖Lp(Ω) + ‖v1‖Lp(Ω) + ‖v2‖Lp(Ω))‖v1 − v2‖C1(Ω)

}
≤ C(‖u0‖W 2,p(Ω) + ‖v1‖W 2,p(Ω) + ‖v2‖W 2,p(Ω))‖v1 − v2‖W 2,p(Ω)

≤ C(ε+ δ)‖v1 − v2‖W 2,p(Ω).

For II, we have

‖II‖Lp(Ω) ≤ C‖u0 + v2‖2C1(Ω)

{
‖D · [Ar(x, u0 + v1)]−D · [Ar(x, u0 + v2)]‖Lp(Ω)

+ ‖Ar(x, u0 + v1)−Ar(x, u0 + v2)‖Lp(Ω)

+ ‖qr(x, u0 + v1)− qr(x, u0 + v2)‖Lp(Ω)

}
.

By (A.5) and that D · ∂zA(x, z), ∂2
zA(x, z), ∂zA(x, z) and ∂2

zq(x, z) are all Lipschitz
in z (where the Lipschitz constants are independent of x by the boundedness of ∂kzA
and ∂kz q), we obtain

‖II‖Lp(Ω) ≤ C‖u0 + v2‖2C1(Ω)‖v1 − v2‖W 1,p(Ω) ≤ C(ε2 + δ2)‖v1 − v2‖W 2,p(Ω).

Combining above estimates together, we obtain

‖F(v1)−F(v2)‖Lp(Ω) ≤ C(δ + ε+ δ2 + ε2)‖v1 − v2‖W 2,p(Ω).

Therefore, L−1
0 ◦ F is a contraction on Xδ for ε and δ small enough. Using the

contraction mapping theorem, there exists a unique fixed point v ∈ Xδ of L−1
0 ◦ F ,

namely,

(L−1
0 ◦ F)(v) = v,

and hence v solves (A.4). Substituting the fixed point v into the second inequality of
(A.6), we then have

‖v‖W 2,p(Ω) ≤ C(ε‖f‖W 2−1/p,p(∂Ω) + δ‖v‖W 2,p(Ω)).

For δ small enough, this gives

‖v‖W 2,p(Ω) ≤ C‖f‖W 2−1/p,p(∂Ω).
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Finally, we obtain u = u0 + v ∈W 2,p(Ω) which solves (1.9) and satisfies

‖u‖W 2,p(Ω) ≤ C‖f‖W 2−1/p,p(∂Ω).

�

Appendix B. An alternative proof of the full boundary data result

In this section, we provide a separate proof to show that the nonlinear potentials
can be uniquely recovered when the boundary data are given on the whole boundary.

Proof of Theorem 1 (when Γ1 = Γ2 = ∂Ω). We will begin by reproving Proposition 3
here when Γ2 = ∂Ω. From identity (3.2), we substitute harmonic function

vm+1 = eζ·x,

into (3.2), where ζ ∈ Cn satisfy ζ · ζ = 0. Then we have

F (x) · ζ + g(x) = 0.(B.1)

Since ζ is arbitrary with ζ · ζ = 0, we can take

ζ = he1 + ihej

for j = 2, . . . , n and h ∈ R. We then obtain from (B.1) that

F (x) · (e1 + iej) = 0(B.2)

as h→∞. Similarly, we can take

ζ ′ = he1 − ihej ,

then we have

F (x) · (e1 − iej) = 0.(B.3)

Adding these two equations (B.2) and (B.3) together, we get

F (x) · e1 = 0,

which implies the first component of F vanishes. Following similar argument as above,
we can then conclude F = 0 in Ω. Thus, from (3.2), we can also derive g = 0 if we
have known F = 0.

Finally, by following a similar argument as in the Proof of Theorem 1 for the partial
data setting in Section 3, we obtain the uniqueness result with complete data. �
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