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PARTIAL DATA INVERSE PROBLEMS FOR NONLINEAR
MAGNETIC SCHRODINGER EQUATIONS

Ru-Yu La1r aAND TING ZHOU

ABSTRACT. We prove that the knowledge of the Dirichlet-to-Neumann map, measured
on a part of the boundary of a bounded domain in R™,n > 2, can uniquely determine,
in a nonlinear magnetic Schrodinger equation, the vector-valued magnetic potential and
the scalar electric potential, both being nonlinear in the solution.

1. Introduction

We investigate an inverse boundary value problem for the nonlinear magnetic
Schrédinger equations. Let €2 C R™, n > 2 be an open connected bounded domain
with smooth boundary 02, we consider the boundary value problem

(1.1) (D+ A(z,u)’u+q(z,u) =0  inQ,
with the boundary condition uv = f on 0f). Here the vector-valued function A =
(Ay,...,A,) is the nonlinear magnetic potential, modeling the effect of an external

magnetic field, the scalar function ¢ represents the nonlinear electric potential and D
denotes —iV,. The Dirichlet-to-Neumann (DN) map for the equation is defined by

(1.2) Aa g WPP(0Q) = WIVPP(9Q), s v (Vu + iA(z,u)u) |ao,

where v is the unit outer normal to 0.

The type of inverse boundary value problem was first formulated by Calderén [2]
for the linear condituctivity equation V - ~y(z)Vu = 0 when he sought to determine
the electrical conductivity y(x) of a medium by making boundary measurements
of electric voltage and current. The unique determination was proved in [40] in
dimension n > 3 by solving the problem of determining an electric potential g(x) in a
Schrodinger operator —A + ¢ from the boundary Dirichlet and Neumann data. Since
then, the inverse problem has been extensively studied in various generalized cases.
The inverse boundary value problem for the linear magnetic Schrédinger equation,
where A(z,z) = A(x) and ¢(z, z) = ¢(x), has been considered in [3, 6, 8, 11, 13, 14,
16, 23, 27, 36, 37] and the references therein. Specifically, due to a gauge invariance,
one can only expect to recover uniquely the magnetic field curl A and ¢ from the
boundary DN-map.

In dealing with the inverse problems for nonlinear PDEs, a standard approach
based on the first order linearization of the DN-map was introduced to identify the
linear reaction from the medium, then the full nonlinear medium for certain cases. See
for instance [15, 17, 18, 20, 21, 39] for the demonstration of the approach in solving the
inverse problems for certain semilinear, quasilinear elliptic equations and parabolic
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equations. Recently the higher order linearization of the DN-map has been applied in
determining the full nonlinearity of the medium for several different equations. The
method was successfully applied to solve inverse problems for nonlinear hyperbolic
equations on the spacetime [26], where in contrast the underlying problems for linear
hyperbolic equations are still open, see also [5, 33] and the references therein. In par-
ticular, the second order linearization of the nonlinear boundary map was studied in
[4, 22, 38, 39] for nonlinear elliptic equations. Moreover, this higher order linearization
technique was also applied to study elliptic equations with power-type nonlinearities,
see [10, 24, 25, 28, 31, 30, 34, 35]. A demonstration of the method can be found in [1]
on nonlinear Maxwell’s equations, in [29] on nonlinear kinetic equations, and in [32]
on semilinear wave equations.

Given a semilinear elliptic PDE whose leading term is the Laplacian operator, we
apply the higher order linearization of the DN-map with respect to the small pertur-
bation around the zero solution. The knowledge of the DN-map, measured partially
or completely on the boundary, determines an integral of the product of the m-th
order term of the nonlinear parameter and m + 1 harmonic functions or their deriva-
tives. A density argument of the products of harmonic functions or their derivatives is
crucial in proving the uniqueness of the m-th order term. For the inverse problem of
the linear equation with DN-map measured only on part of the boundary, the density
of the product of harmonic functions, which vanish on a closed proper subset of the
boundary, was first shown in [7]. More specifically, in [7], this density argument relies
on a Runge type approximation result and an idea of propagating exponential decay
estimates for FBI transforms by the use of maximum principle as in the Kashiwara’s
watermelon theorem. In [25, 30], this density argument was directly used, along with
unique continuation and the maximum principle, to show unique determination of a
potential function ¢(x) in a model equation —Au + ¢(x)u? = 0 or in a more general
equation of the form —Au 4+ V(z,u) = 0, assuming partial data. The argument in
[7] was then generalized in [24] where the authors of [24] proved the density of the
products of the gradients of two harmonic functions, which vanish on part of the
boundary, and then use it to show the unique determination of a nonlinear potential
q(z) in the equation —Au + ¢(z)(Vu - Vu) = 0.

1.1. Problem setup and strategy. In this paper, the main objective is to deter-
mine the nonlinear vector potential A(z,z) and the scalar potential ¢(z,z) in (1.1)
from the boundary DN-map (1.2). We briefly state our strategy using the higher
order linearization technique as follows.

Suppose that two sets of potentials (A1,q1) and (As, g2) satisfy

(1.3) the map C > z +— A;(+, z) is holomorphic with values in W (Q;C"),

(1.4) the map C 3 z — ¢;(+, z) is holomorphic with values in L>(€; C),
and

(1.5) A;(x,0) =0, g¢j(z,0)=0.q;(z,0)=0
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for 7 = 1,2. We have that the potentials admit the following expansions:

LS ok %) Lk
k=0 ’ k=0 ’

Fixing a positive integer m > 1, let e, be small positive numbers and fi €
W2=1/pr(0Q) for k=1,...,m. We denote ¢ := (1,...,&,) and

uj = u;(x;€), ji=1,2
to be the unique small solution of the Dirichlet problem

{ (D + Aj(@,u5))*u; + gj(z,u;) =0 in Q,

(16) Uj =e1fi+...+temfm on 0f).

We establish the well-posedness for this Dirichlet problem with small data in the
Appendix and the DN-map is thus well-defined. Moreover, by Theorem 2 we know
that the finite difference u; /ey is bounded in W2P(Q) (the bound is independent of
€), hence u; is differentiable in ¢ and the derivatives satisfy the linearized Laplace
equation. (See for example, [19, 38] for a more detailed exposition.) By expanding
u; in the small perturbation parameter e; and noting that u;(z;0) = 0 due to the
well-posedness, we have that the first order term

Vj k1= Oz, Ujle=0

is indeed a harmonic function in Q satisfying v, xloq = fi for k=1,....,m, j =1,2.
Remark 1. (1) We point out that in this setup, we have harmonic functions
vip =vak fork=1,...,m in Q since they agree on the whole boundary.

(2) In other cases, the domain 2 might have unknown geometrical features. For
example, if there is an unknown inclusion or obstacle embedded in ), or if
the part of the boundary where we cannot measure the DN-map has an un-
known geometry, then we would have u; to be the solutions to the magnetic
Schrodinger equation in §1; associated with A; and q; for j = 1,2. This
implies that v1 ;, and vy, are harmonic functions in potentially different do-
mains ;. These scenarios are discussed in [30] for elliptic equations, where
one can show under certain assumptions, using unique continuation, that the
domains in above examples are indeed identical.

(3) In this paper, we focus on the case where the domain is known to be Q). For the
partial data inverse problems, we assume that the subsets of the boundary: T'y
and I's, be where Dirichlet data and Neumann data are measured respectively.
By the definition of the partial DN-map in (1.11), we have the harmonic
function vj i = 0z, ujle=0, § = 1,2 satisfying the boundary condition

V1 kloa = va.kloa = fi with supp(fr) C I'y.

Therefore, in the partial data setting, we still have vy, = va i in Q, hence we
simply denote
Uk 1= Uk fork=1,....m

from this point on.
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To reconstruct A(z,z) and g(z, 2), it is sufficient to consider the unique determi-
nation of 9, A(z,0),0?A(x,0),... and 92¢(x,0),d3q(x,0),... in Q due to (1.5). The
proof is based on induction steps and is sketched as follows. We start with the second
order linearization. Let m = 2 and denote

Wj = Oz, Oy Uj|e=o-

Then w; is the solution to the problem

(1.7) —Aw; + QP (v, u) =0 mQ  wilog =0,
where vy = v; 1, for k = 1,2, as discussed in Remark 1, and
(1.8)

Qg-z)(vl, vg) 1= 30, A;(x,0) - (v1 Dvy +vaDvy) + 2D, - 0, A;(z,0)v1v2 + 02q;(z, 0)v1v2,

defined in (2.4). Assume that the DN-maps associated to (A1, ¢1) and (As,q2) are
identical. We will obtain the integral identity

/Q (Q&Q) (1)17U2) - Q;Q)(Uh 1)2)) vs dz =0,

where vz is a third harmonic function in Q with certain boundary condition. One
can see that the integral involves several complicated terms of products of harmonic
functions and their gradients, as well as mixtures of the vector and scalar potentials,
unlike the cases studied in [24, 30].

In the spirit of [7, 24], one can potentially use the corrected harmonic exponentials

v@, ) =eF fw(,¢), CeC" (-¢C=0

that vanishes on a closed proper subset of the boundary, the idea of propagating
exponential decay estimates for FBI transforms and a proper version of Runge-type
approximation, to prove an improved density result. However, the exponential decay
propagation is difficult to derive for the associated FBI type transform of the vector-
valued potential (multiplied by the complex phase). Another major difficulty comes
from the entanglement of A and ¢ in the mixture of terms.

Instead, we combine the previously established density result in [7] and the cor-
rected harmonic exponentials together to obtain the local uniqueness of the poten-
tials. Then we conduct the local-to-global step, as in the previous work, using the
H' Runge-type approximation. Our key step relies on a transport equation for the
harmonic functions, which helps decouple the potentials.

The argument can be easily generalized to the case m > 2 by induction.

1.2. Main result. Let us present our main result where we show that partial data
on the boundary is sufficient to uniquely determine the nonlinear potentials in the
magnetic Schrodinger equation. Meanwhile, for the completeness of the paper, we
also provide a separate proof for the situation with full data in the Appendix.

Let © C R™ be an open connected bounded domain with smooth boundary 0f2.
Let u be the solution to the boundary value problem for the magnetic Schrodinger
equation with nonlinearity:

(D + A(z,u)’ u+q(z,u) =0 in Q,
(1.9) { u=f on 09,
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where A(z, 2) € WH(Q x C;C") and g(x, z) € L°(2 x C; C) are both C* in z, and
D := —iV. Assume that A and ¢ satisfy (1.3)-(1.5). We will show that the Dirichlet
problem (1.9) has a unique solution u € W?P(Q) for sufficiently small boundary
condition f € W2~Y/PP(9Q) where p > n. It is clear that the equation (1.9) with
f = 0 admits the zero solution v = 0. Then the full boundary DN-map for such small
functions is defined by

(1.10)  Aay: W2VPP(OQ) — WI=VPP(Q), [ v (Vu+iA(z, u)u)|sq,

where v is the unit outer normal to 9€). We also define the partial boundary DN-map
as follows. Let I'1,I's C 02 be two arbitrary, nonempty open subsets. Then the
partial boundary DN-map is defined by

(111) AL () = Aag(f)lr, for all f € W*~Y/PP(9Q) with supp(f) C Ty.

Theorem 1. Let Q C R™, n > 2 be an open connected bounded domain with C°
boundary 02 and let T'1,T'y C 02 be arbitrary nonempty open subsets of 0S). Suppose
that two sets of coefficients (A1,q1) and (As, q2) satisfy (1.3)-(1.5) and

v-0%A(z,0) = v- 08 Ay(x,0) onT1NTy for k> 1.

Let Aitl;f be the above partial boundary DN-map associated to (Aj,q;) for j =1,2.

Suppose that Aglll;f(f) = Aigg;(f) for any f € W2=VPP(9Q), n < p < oo with
supp(f) C I't and || fllw2-1/v.p(090) < 6, where 6 > 0 is a sufficiently small constant.
Then

Ay =As and q = q m Q.

Remark 2. When 'y =Ty = 09, this is the uniqueness result for the inverse problem
with full boundary data. In particular, it can be shown by a separate and direct method
as seen in the Appendiz.

We comment here due to the assumption (1.5), the first order linearization of
the DN-map provides boundary measurements of the harmonic functions in Q. As
commented in Remark 1, we could adopt the argument in [30] to show the unique
determination of obstacles embedded in €2 or the unknown geometry of the inaccessible
part of the boundary.

Another important observation is that our result shows that there is no gauge
invariance for this problem.

The paper is organized as follows. The higher order linearization technique is de-
tailed in Section 2 and the crucial integral identity is also derived there. Then the
proof of Theorem 1 is given in Section 3. The well-posedness for the boundary value
problem of the nonlinear magnetic Schrodinger equation is established in Appen-
dix A. Finally, an alternative proof of the uniqueness of potentials with full boundary
measurements is provided in Appendix B.

2. The higher order linearization

In this section, we use the higher order linearization approach to derive a key
integral identity encoding the information of the discrepancy of the potentials A and
q, as stated in Proposition 2. We start by considering the m = 2 case and then extend
it to the higher order terms by induction steps.
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For m > 2, let € := (£1,...,6,) With g, > 0 and let f, € W2~1/PP(9Q) with
supp(fx) C Ty, k = 1,...,m. Under the assumptions of Theorem 1, the boundary
value problem
(2.1) (D + Aj(z,u)*uj + ¢j(z,u5) =0 inQ,

’ Uy =e1fi+...+emfm on 0,

admits a unique solution u; = u;(x;¢) for |¢| small enough.
2.1. For m = 2 case. We recall the condition (1.5). Given the boundary condition
f =e1f1+eafs with supp(fx) C I'y for small enough |¢], following the steps described
in the introduction, the first order linearization of (2.1) around the zero solution
uj(z;0) = 0 gives that v; ; 1= 0, u;(x;€)|e=0, k = 1,2, is harmonic function satisfying
(2.2) — AUjJC =0 in Q7 Vj k
This indeed implies that

o0 = [k

Vg i=U1p = U2 in
Next we perform the second order linearization, then it gives that the function
w; = Og, O, uj (25 €)]e=0
is the solution to
(2.3) —Aw; + QP (v1,12) =0 InQ,  wjlen =0,
where
(2.4)
Q¥ (v1,v2) := 30.A;(x,0) - (vy Dvg 4+ vaDvy) + 2D, - D, Aj(x, 0)v1vg 4+ 02q; (2, 0)vyva,
with the partial D, meaning the derivative with respect to the first variable of

Aj(x,u). Then the O(g1e2) term in the expansion of the DN-map is
(2.5) 02,0z, |e=0 (A2 (61 fi + e2f2)] = (Dyw; + 2iv - 0.A;(2,0) f1 f2) [,

»qj

Remark 3. Since v, € W?P(Q), Sobolev embedding theorem implies that vy, €
Ch2(Q), 0 < a < 1. Note that C1*(Q) is an algebra under pointwise multiplica-
tion. Therefore, fifa = viv2|aq € C1*(0Q). Combining it with 8, w; € C*(0N), the
right-hand side of (2.5) is at least in L ().

We then have the integral identity in the m = 2 case.

Proposition 1. Let Q C R™, n > 2 be an open connected bounded domain with C'*°
boundary 02 and let I'1, Ty C O be arbitrary nonempty open subsets of 0. Given
two sets of potentials (A1, q1) and (Asz,q2) that satisfy the conditions (1.3)-(1.5) and

v-90,A1(x,0) =v-0,A5(x,0) onT'1 NIy,

we then have that if Azll’l;f = AE;’EE (for small boundary data), then for any harmonic

functions vy, vq, v3 with

supp(v1]aq), supp(va|an) C Tt and supp(vs|an) C I's,

we have
(2.6) / (Q?) (’Ul7 ’02) — QéQ) (Ul, 1}2)) V3 dr = 07
Q

where QS»Q) (v1,v2) is given by (2.4) with A,q replaced by A;,q; for j =1,2.
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Proof. Let vy and vy be harmonic functions with boundary conditions fi := vg|sq and
supp(fx) C I’y for £ = 1,2. From the fact that Agll”l;f (e1f1 +eafa) = Ag;g; (erf1 +
gaf2) for small € = (g1, e2), we have that

Oywy + 2iv - 0, A1 (,0) f1 fo = Oywa + 2iv - 0, As(x,0) f1f2 on I's,
where w1, ws are solutions to
(2.7) — Aw; + Q§-2)(v1,v2) =0 inQ, wjlag = 0.
Since supp(f1),supp(f2) C Ty and v - 9, A1 (2,0) = v -9, As(x,0) on I’y NTy, one has
v-0,A41(,0) f1fo =v-0.A2(x,0) f1f2 on I'y,

which leads to
al/w1|rg = al/w2|FQ'

Multiplying (2.7) by any harmonic function vs in  with supp(vs|aq) C TI's and
applying Green’s formula, we then derive that

/ ( §2)(’U1,’U2) — ng) (vl,vg)) vy dr = / (Opwy — Oywa)vs dS = 0.
Q OO\T,

Thus, the proof is complete. O

2.2. Induction steps in m > 2. Let m > 2 and suppose that
OF A1 (2,0) = 0% Ay (x,0) fork=1,...,m —2,

gy (x,0) = 0Fqa(2,0) for k=2,...,m—1.
Combining the base case (1.5), we have that

(2.8) OF A1 (2,0) = 0% Ay(,0) for k=0,...,m — 2,

and

(2.9) 0%q1(x,0) = 0%qa(x,0) for k=0,...,m — 1.

Let € = (e1,...,6m,) with small enough ¢, > 0 and let f; € WQfl/p’p(ﬁQ) with
supp(fx) C I'y for k =1,...,m. Again, from Theorem 2, there exists a unique small

solution uj; = u;(z;¢) to the problem

(2.10) (D + Aj(z,u;))u; + qj(z,u;) =0 in Q,

. uj:€1f1+«~~+€mfm OnaQ’
for j =1,2.

Generally, for any positive integer m > 2, we define the function Q}”(vl, ey Um)
by

QU™ (v1,. .. ) = (m + 1)87 Ay (x,0) - D(vy ... )

(2.11)
+m(Dy - 0T A (2,0))v1 . Vg + 0T (2,0)v1 .. Uy

The general integral identity is summarized in the following proposition:
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Proposition 2. Let (A1, q1) and (As, q2) satisfy the conditions (1.3)-(1.5). Moreover,
suppose for m > 2, (2.8) and (2.9) are satisfied and

(2.12) V0" A (2,0) = v - 0T Ay(2,0) onT1NTy

1,2 _ AT T2 ; ;
holds. If A, 2 = Ay, > for small data, then for any harmonic functions vi, . .., Um41

satisfying
supp(v1]6Q); - - -, supp(vmlan) C Tt and supp(vim41loq) C Lo,

we have
(2.13) / (Qg"”(vl, ) — QS (. ,vm)> g1 daz = 0.
Q

Before proving Proposition 2, we first need to look more closely at the derivative
of u; with respect to €, which is stated in Lemma 1.

We start with defining the notation Ej for 1 < k& < m to be a product of k£ distinct
operators of the form 0., and setting ¢ = 0. For example, for distinct numbers
1< 01,0, ...,0 < m, we have that 6'5[1 6&2 .. .35[ku|€:0 is a representative of Epu.

Lemma 1. Suppose that (2.8) and (2.9) hold. Let u; be the solution to (2.10). For
any 1 < k <m, then we have
Ekul = EkUQ.
Proof. To demonstrate this for k = 1, we apply 0O, 1 <1i < m, to the equation (2.10)
for u; and set € = 0. As before we find 0., u;|.=o satisfies the linear equation
Aaeiuj|5:0 =0,
with boundary condition (9, u;j|e=0)|ano = fi- Since this holds for j = 1, 2, we conclude
that E1u1 = E1u2.
Now we proceed by the induction argument. Suppose that
(214) Eiul = EiUQ
holds for any F; with 1 < i < k, and we want to show Fyu; = Exus. Without loss of
generality, we consider the operator

Er =0, ...0c,|c=0-
By applying Fj to (2.10), we have
0=—-AFEpu; + Ui(u;, 4;,q),
where the term Wy, is defined by
W (uj, Aj, q)
= Ui (Eyug, ..., Br_quj, 0L A;(2,0),...,05 1 A;(x,0),0%q;(2,0),...,0%q;(x,0))

and contains derivatives of order at most £ — 1 in u;, derivatives of order at most
k—11in A;, and derivatives of order at most k in g; with respect to the variable z.
Since k < m, we have k < m—1 and k—1 < m — 2. Therefore combining (2.8), (2.9),
and (2.14), we have

Wy (u1, A1, q1) = Vi(ug, Az, q2).
Therefore the conclusion is that

—A(Ekul) = —A(Ek’U,Q).
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Moreover, Fju; and Ejus share the same boundary condition, then one can conclude

Eruy = Eruy

as desired.

O
Proof of Proposition 2. For the given harmonic functions vy, ..., v,,, whose boundary
traces are supported on I'y, we consider the solution u; to (2.10) with fi = vi|sn
(k=1,...,m). It is not hard to see by Lemma 1 that 0, u1|c—0 = ¢, ua|e—0 = V.

Applying the operator 9, ... 0  |-=o to (2.10), we get
0=-A(0, ... 3Emu]'|5:0)
+ (m+ 1) Aj(2,0) - D(vy ... vm) +m(Dy - 07 Aj(2,0))v1 ..o,
+ 07 q;j(x,0)v1 ... v + R (uy, Aj, q;5).

Here the remaining term R,, contains derivatives of order at most m — 1 in u;, at
most m — 2 in A;(z,0), and at most m — 1 in ¢;(z, 0) with respect to z variable. For
7 =1,2, if we write

¢j = 851 . 85muj|5:0

and use the notation introduced in (2.11), then we can write this as

Ag; = QS (w1, vm) + Run(uy, Ajqy) i Q dylon =0.

From Lemma 1 (Eyu; = Epug, 1 < ¢ < m) and the assumptions on A; and g;, we see
that

R (u1, A1, q1) = R (u2, A2, g2).
Therefore if we subtract the equation for j = 2 from the equation for j = 1, we get
A1 — ¢o) = gm)(vh cey Um) — ém)(vl, cey Um).
From the equality of the DN-maps ALz = ATT2 Temma 1 (Eruy; = Epug, 1 <

A,q1 Az,q27
k < m), and the condition (2.12), we can easily derive
(2.15) do1lr, = 0 ga|r,.

Now let v,,41 be harmonic and supp(v,,+1]ga) C I's, and consider the integral

A((bl — ¢52)1}m+1 dl‘
Q

Similar to the case m = 2 discussed in the proof of Proposition 1, by performing the
integration by parts, we get

/ A(¢1 - ¢2)Um+1 dr = /(d)l - ¢2)A’Um+1 dr = O,
Q Q

with no boundary terms, thanks to the equality (2.15), ¢1]an = ¢2|loe = 0 and
supp(vm+1|aq) C T'. This gives us

/ (ng)(vl,...,vm) — gm)(vh...,vm)) Um+41 dr = 0.
Q
This finishes the proof. O
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From Proposition 1 and Proposition 2, we have proved that the integral identity
(2.13) holds for m > 2. In the next section, we will focus on extracting the information
about potentials A and ¢ from this identity.

3. Proof of Theorem 1

3.1. A key lemma. We will see below that by using the integral identity (2.13)
in Proposition 2 and the density result in Theorem 1.1 in [7], we can derive a much
simpler identity that will be the key component to show the desired uniqueness result.

To this end, we first simplify the notations by denoting the discrepancy in ™1 A;
and 971 Ay as

Ap_i(z) := 07 Ay(2,0) — 07T Ay (2, 0),
and also denoting the discrepancy in 07'¢; and 0'qo as
Gm () = 07" q2(x,0) — 07 q1(x, 0).

By applying the integration by parts and the boundary condition v-07 "1 A;(z,0) =
v-0m 1 Ay(x,0), the identity in Proposition 2 now becomes

O:/( ém)(vl,...,vm)— gm)(vl,...,vm)>vm+1 dx
Q

= / ( —(D- gm,l)vmﬂ —(m+ 1)(gm,1 - Dupy1) + Ejmvmﬂ)vl Uy, dx
Q
for harmonic functions vy, ..., v;41 such that

supp(v1]aq); - - - supp(vmla) C Tt and  supp(vm+ilan) C T'a.

We then have the following result by using the density of the product of harmonic
functions in L' space.

Lemma 2. Suppose that the conditions in Proposition 2 hold and harmonic functions
V3, ..., Um have nontrivial boundary data. Then the following identity holds:

(3.1) — (D Ap—1)vmi1 — (m+ 1) (A1 - DVni1) + GVt = 0
almost everywhere (a.e.) in Q for m > 2.

Proof. When m = 2, we apply Theorem 1.1 in [7], stating that the set of products
v1v2 of harmonic functions in C'°°(€2) that vanish on a closed proper subset I' of 9
is dense in L!(Q). We immediately obtain

—(D . gl)vg — 3(21 . D’Ug) 4+ gov3 =0

a.e. in ).
For m > 2, we also apply Theorem 1.1 in [7] to obtain

(7(D . ;{m—l)vm+1 — (m + 1)(;{m—1 . D?)m+1) + Ejmva) V3...Um = 0

a.e. in €. By the fact that (Jj_, v;l(O) has measure zero, we then have (3.1) for any
m > 2. g
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For simplicity of notations, for m > 2, we recast (3.1) as the following transport
equation,
(3.2) F(x) - Dvpy1 + g(x)vme1 =0,
where

(3-3) F(z) = —(m+ D)An_1(2), g(2):=—(D- Ay1)(@) +Gin(2).

3.2. Uniqueness result. The proof of Theorem 1 relies heavily on the following
result, that is, Proposition 3 below: if the equation

F(z) - Dvmi1 + 9(2)vme1 =0 in Q

holds for all harmonic functions v, +1 € C°°(Q) with supp(v,,11laq) C T2 C 99, then
F =0and g =01in Q. It is clear that the identity F' = 0 = g implies Ap1=0= Q-
Thus, the uniqueness of the potentials follows immediately.

The key strategy is to first show that F and g vanish locally, that is, F(z) and g(x)
vanish a.e. in a neighborhood of a point zy € I's. Next we extend this local result to
the global one. The detailed argument is stated in the proof of Proposition 3.

To begin, we first construct the harmonic function v,,+1 as in [7]. Without loss of
generality, we let x¢o = 0, the tangent plane to 90 at xg be given by z; = 0 and

QCc{zeR": |z+e| <1}, I, = 0N\ ={x €90 : a1 < —2¢}

for some constant ¢ > 0. Here

with the j** component equals to 1.

Remark 4. We comment here that one can apply a transformation to achieve above
conditions for the domain (or by the conformal mapping in [7] for non-convex do-

mains). More specifically, given the transformation T : Q — Q, © = T(y), the
transport equation

F(z)-Dv+g(x)v=0 in Q

becomes

where

0(y) =voT(y), Fly) = FoT(y), §(y) = goT(y).
It is not hard to see that with the transformation satisfying det (%) # 0 a.e., we

T . ~
have that (%) F(y) =0 and §(y) = 0 in Q implies that F(z) =0 and g(x) =0 in
Q.

For ¢ € C™ such that ¢ - ¢ = 0 and a cut-off function x € C§°(R") such that x =1
on I's and supp(x) C {# € R™: 21 < —c}, we consider the harmonic function

(3.4) Vi1 (2,¢) = e @M L@, 0),  h >0,
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with vy, 41 |1:2 = 0, where w is the solution to the Dirichlet problem
Aw =0 in Q,
wlon = — (efm'C/hx> log-
Then it is clear to see
1@ 1) < Clle™ "Xl 11172 a0y < C(1+ R[] 2er im0,

where H is the supporting function of the compact subset K = supp(x) N o< of the
boundary and is defined by

Hy(d) = sup z - d, for d € R".
zeK

In particular, from the property of x, one can further derive that when Im¢; > 0,
|0 1) < C(1+ Y)Y 2em R Tm G [ T €|

where ¢ = ({1,¢’) with ¢’ being the (n — 1) dimensional coordinate vector.
Similarly, we can also derive that for any « € Z", the remainder function w satisfies

10%W|| g1y < C\Ié‘“(e‘”'“hx)lan\Isz(aQ)
< O(1+ b ¢ (HleD/2g= 5 G g [ Tm ]
which gives the upper bound of @w € H!**1(Q). By the Sobolev embedding theorem
[9], when |a| — [§] —1 > 0, one has
(3:5) [@lcrmy < O+ hTHC D 2RIl im e,
Now we are ready to show the following proposition.

Proposition 3. Let Q C R™, n > 2 be an open bounded connected set with smooth
boundary and I's be an open nonempty proper subset of 02. Denote fg = OO\Ds.
Let F € L>®(Q;C") and g € L>®(Q;C). Suppose for all harmonic functions vy,+1 €
C>=(Q) with supp(vmy1laa) C T2 such that

(3.6) F(z) - Dupg(z) + g(x)vmy1(x) =0 a.e. in .
Then we have FF =0 and g =0 a.e. in 2.

Remark 5. We remark here that in the full data setting (T's = 09Q), an individual
proof of this proposition can be found in Appendix B.

Proof. Step 1: Local result. As discussed above, we take zg = 0 € I's without
loss of generality. Substituting v, 1 defined in (3.4) with nontrivial boundary data
Um+1loa # 0 into (3.6), we obtain

(3.7) F(z)- ¢ = hF(z) - Dwe™ " 4 hg(z) + hg(z)we™</h.

Let ¢ = (i,1,0,...,0)7. Then for all € Q such that ; > —c, we have from the
above estimates (3.5) for w that

|@(x)eim-f:/h|’ \D@(x)e“”f/ﬂ < Ce*%lmgl(l + h71|C|)(1+\a|)/2e*%1m<1€%\ImC’I_
When h — 0, this implies that the right-hand side of (3.7)
hE(z) - Dwe™ /" 4+ hg(x) + hg(z)we™ /"
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vanishes. Hence F(z) - ¢ = 0, at every point z € Q with #; > —c, i.e., in a neighbor-
hood of xg = 0. Similarly, by choosing ¢’ = (i, —1,0,...,0)7 instead, we can derive
that F'(z) - ¢’ = 0. These two identities F'(z) - ( = 0 and F(x) - (' = 0 indicate the
first two components of F'(z) indeed vanish.

Furthermore, by choosing other

¢ =1ie; + e forj=3,...,n,

one can show that the other components of F'(x) vanish too, which implies that F' = 0.
Thus, we can also obtain that g = 0 from the equation (3.6) and the fact that v;,"; (0)
has measure zero. Finally we have derived that F' = 0 and g = 0 in a neighborhood
of every point ¢ € I'y provided that (3.6) hold for all harmonic functions v, 1 with
boundary data that is supported in I's.

Step 2: Global result. To extend the local result to any point z; of €, we take
a point zg € T'y and let 6§ : [0,1] — Q be a C! curve joining x¢ and x; such that
6(0) = z¢ and €'(0) is the inner normal to 9 at zg, and 6(¢) € Q for ¢ € (0,1]. We
set

O.(t) ={x € Q: d(x,0([0,t])) < e},
a closed neighborhood of the curve 6(s), s € [0,¢]. Let
I={te[0,1]: F=0, g=0 a.c.onO.(t)NQ}.

The above local result indicates that 0 € I if € > 0 is small enough. Moreover, it is
clear that I is a closed subset of [0,1]. If we can further show that I is also open,
then we can get I = [0, 1], which further implies that 1 ¢ supp(F') U supp(g). Since
x1 is an arbitrary point in €2, we then have F' =0 and g = 0 in 2. This will complete
the proof of the global result.

To show that I is open in [0,1], we take ¢ € I and & > 0 small enough so that
00 (t) NN C T'y. Tt is easy to see that the set Q\O,(¢) can be smoothed out into an
open subset Q1 of 2 with smooth boundary so that

QD 0\O.(t), 0NN D Ty.

We further augment the set 2 by smoothing out the set QUB(zg,&’) with0 < &’ < &
sufficiently small, into an open set {25 so that

990 NN D NN O = I NN O To.
Now we let G5 be the Green kernel associated to the open set Q5 and
—AyGo(z,y) =0(x —y) inQs, Ga(z,y)|sq, =0.
We consider the function
O(z;y) = F(y) - DyGa(w,y) + 9(y)Ga(a,y), y €D, x €M\

It is clear that ®(x;y) is harmonic in o on Q,\Q; for a fixed y € ;. Since F(y) =0
and g(y) = 0 for y € O(t) N Q, we can extend ®(x;y) by zero to y € . When z €
2\, the Green function Ga(x,y) is a harmonic function in y on  with Go(z, g, =
0. By (3.6), we have

d(z;y) =0, for a.e. ye, xe\Q.
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Since ®(z;y) is harmonic in z on Q2\Q; and the set 5 \ €; is connected, by the
unique continuation, we then have

O(x;y) =0, for a.e. y€Qy, x€N\Q.
By Lemma 2.2 of [24] (H!-density), we have that for any v € C°°(Q;) harmonic

Withiv| 00,no0, = 0 and arbitrary small € > 0, there exists a € C*°(£y) with supp(a) C
022\ such that

o(y) — | Ga(z,y)a(z) dx
Q2

< €.

H (1)
We multiply ®(z;y) by a(z) and then integrate it with respect to  on 5. We obtain
F(y)- D, Ga(x,y)a(z) dx + g(y) Ga(z,y)a(z) de =0, ae. y€EQ,
Qz QQ

and, moreover, we can derive that

|F- Dv + gv||z2(q,)

+ Ce=Ce

< HF -D Ga(z,)a(z) de+g [ Ga(zx,-)a(x) dx
L2(1)

QQ Q2

for arbitrary small € > 0. This implies that
F-Dv+gv=0 a.e. in €y

for v € C*°(Qy) harmonic with v|gn,ns0, = 0. By the above local result in Step 1,
we then have F = 0 and g = 0 in an open neighborhood of 9Q; \ (9Q; N 99Qs) and
this implies that F and g vanish on a slightly larger neighborhood ©.(¢'), t' > t of
the curve. This proves that I is open, hence completes the proof.

O

Proof of Theorem 1. From Proposition 2, we have the integral identity holds for m =
2. By applying Lemma 2, Proposition 3 and (3.3), we have F' = 0, g = 0, which
implies that

0,A1(x,0) = 9,A5(x,0), 63(]1(%,0) = 8§q2(m, 0).

Given any integer m > 2, by induction argument, suppose that for k =2,...,m — 1,
the following are true:

OE T Au(2,0) = 957 Ao (2,0),  Eqa(x,0) = B (,0).
We want to show that 9771 A;(z,0) = 07 1 Ay(x,0) and 7q1(z,0) = 9Mqa(x,0)
also hold.

From above, we have known that A; and g; satisfy the conditions (2.8) and (2.9)
and thus we can apply Proposition 2 to get the integral (2.13) for such m > 2.
Applying Lemma 2 and Proposition 3 again, we then derive that F' = 0, g = 0, which
gives

0=0""1Ay(x,0) — " A (x,0)
and
0=0"q(x,0) — 9 qi(z,0).

Therefore, we complete the proof of Theorem 1. O
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Appendix A. Well-posedness of the nonlinear magnetic Schrédinger
equation

In this section, we prove that the boundary value problem (1.9) is well-posed if
the small boundary data is given. The analysis is based on the contraction mapping
principle.

Theorem 2 (Well-posedness). Let A(z,z) and q(x, z) satisfy (1.3)-(1.4). Moreover,
suppose that q(x,0) = 0 and 0 is not a Dirichlet eigenvalue of the linear operator

Lo := (D + A(z,0))* + 0.q(x,0).

Then there exists a small constant € > 0 such that for any ||fllw2-1/p000) < €, the
boundary value problem

{ (D + A(z,u)’ u+q(z,u) =0 in €,

(A-1) u=f on 09,

admits a unique solution u € W2P(Q). Moreover, there exists a constant C > 0
independent of [ such that

(A.2) [ullwzr@) < Cllfllwa-1/p000)-

Proof. We will use contraction mapping principle to show the existence of solution to
(1.9).

Step 1: Linearization. First, for A(z,z) and ¢(x, z) satisfying (1.3)-(1.4), we use
the Taylor formulas

Az, z) = A(z,0) + Ar(z, 2)z,

q(z,2) = 0:q(x,0)2 + g, (2, 2)2%,

where we denote
1 1
Az, 2) = / 0, A(x,tz) dt, qr(x, 2) ::/ 02q(x,tz)(1 —t) dt.
0 0

Given f € W2=1/Pr(9Q) for p € (n,+oc), by Theorem 9.15 of [12], there exists a
unique solution uy € W2P?(Q) to the Dirichlet problem

{ Loug := (D + A(x,0))%ug + 9.q(z,0)ug =0 in Q,

(A.3) g = f on 0§

Moreover, we have

luollw2r) < Clfllwe-1/0250)-

(This can be obtained by extending f to a W?2?(2) function and apply Lemma 9.17
of [12] to the equation for the difference of the solution and the extended function.)

Thus, if u is a solution to (1.9) we have the remainder function v := u—wuq satisfying
the following problem

(A4) ,C()U = .7:(1)), 'U|8Q = 0,
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where
F(v) :=— (D + A(z,0)) - [Ar(z,u0 + v)(uo + v)?]
— Ap(x,up + v)(up +v) - (D + A(x,0)) (up + v)
— A (z,up + v)*(ug + v)® — g (2, u0 + ) (up + v)2.

By Theorem 9.15 in [12] again, for F € LP(f), there exists a unique solution @& €
W2P(Q) N W, P(Q) to the equation Loii = F € LP(Q) in Q with trivial boundary
data. We denote the solution operator by

Lot LP(Q) — W2P(Q) N Wy P(Q),
which is the continuous operator F + @ and thus £y (F) is the solution to L@ =

F € LP(Q) in © with trivial boundary condition. Therefore, we are looking for the
unique fixed point v of L Lo F.

Step 2: A contraction map. In what follows, we will show that £ Lo Fis indeed
a contraction map on a suitable subset X5 of W2P(Q)N Wol’p(Q). Here we denote the
set X5 for 1 > 6 > 0 by

X5 = {v € W*P(Q) " Wo (9 | [olweney < 5).

We first show that (L' o F)(Xs) C X;. Recalling that, by the Sobolev embedding
theorem, we have W?2P(Q) — C(Q) if p > n. For v € X5, we have v,uy € C*()
since v, ug € W2P(Q). Thus we have that A, (z,uo(z) +v(z)) and g (x, ug(x) +v(x))
are both bounded in 2. Moreover, since

D - [Ar(z, uo(x) + v(2))]

1 1

(A.5) = / D, - 0, A(z, t(ug +v)) dt + / t0? A(z, t(ug +v)) dt - D(ug + v),
0 0

one can derive that

[F ()L < Clluo + vllcr(elluo + vl Ly (o)
< Cllug +vlly2 (@) < Cllluolliyar@) + 1olliy20))-
This implies that, for || f||y2-1/p.0(90) < € and p > n, one has
1£5 H(F(@)llwzp@) < ClIF(©)||Lra)
(4.6) < CUIyamsim oy + [0lnnqey) < O3+ 69).

Therefore, for € and ¢ small enough, the operator L 1o F maps Xj into itself.
Next we show that L‘al o F is a contraction on Xs. To this end, we take vq,vy € X5
and consider

1£5% 0 F(v1) = L5+ o Flva)llwzr(e) = L5 (F(v1) = F(v2))lw2r ()
< C||F(v1) = F(v2)llpe(e)-
In addition, we rewrite
—F(v) =D - (Ap(z,up + v))(uo +v)? + 3(A,(z,ug +v) - D(up + v))(ug + v)
+ 2A(x,0) - Ay (2, u0 + v)(ug + )2 + A (2, up + v)2 (ug + v)3
+ qr (2, ug + v) (up + v)2.
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Thus, F(vz) — F(v1) is the sum of the following two terms
I=D- (A (z,u0 +v1))[(uo +v1)* — (ug +v2)%
+ 3A,(x,up 4+ v1) - [D(ug + v1)(uo + v1) — D(ug + v2)(ug + v2)]
+2A(z,0) - Ay (2, ug + v1)[(uo 4+ v1)* — (ug + v2)?]
+ Ar(,ug 4 v1)*[(uo +v1)° — (ug + v2)°]
+ ¢r (2, u0 + v1)[(uo + 1) — (uo + v2)?],
II=[D- (A (z,u0 +v1)) — D - (A(z,u0 + v2))](uo + v2)?
+ 3(Ar(x,up + v1) — Ar(x,up + v2)) - D(up + v2)(ug + v2)
+2A(2,0) - [An (2, up +v1) — Ap(x, up 4+ v2)](ug + v2)?
+ [A(z,u0 +v1)? — Ay (2, u0 + v2)?)(ug + v2)3
+ (gr (2, u0 + v1) — @ (2, up 4+ v2)) (1 + v2)?.
For the first term, we obtain
11 e ) < C{luollcr @) + llviller @) + llvaller@)llvr = vall e )
+ (uollzr ) + llv1ll ey + lv2llLr @) lor — v2llcr @) }
< Cllluollwzr(a) + lvillwzr(e) + lv2llwzr@)llvr — vallw2r (o)
< C(e +0)|Jvr — va|lwzw (-
For 11, we have
I Lo @) < Clluo +v2l1Ea @) {ID - [Ar(z, w0 +01)] = D - [Ar(z, u0 +v2)]l| Lo ()
+ | Ar(z, u0 + v1) — Az, u0 + v2) || e ()
+ Nl (2, u0 + v1) — g (2, 1o + v2)| Lo (0) }-

By (A.5) and that D -0, A(x, 2), 0*A(x, 2), 0, A(z, 2) and 92¢(x, z) are all Lipschitz
in z (where the Lipschitz constants are independent of = by the boundedness of 9% A
and 9%q), we obtain

0| Lo () < Clluo + v2llEa oy llvr — v2llwrr(@) < C(e* + 62) o1 — v2llw2r ()
Combining above estimates together, we obtain
[F(v1) = F(v2)llLro) < C0 4+ 6% +&2)[lor — vallwz()-

Therefore, Ly 1o F is a contraction on Xs for ¢ and § small enough. Using the
contraction mapping theorem, there exists a unique fixed point v € X; of L Lo F,
namely,

(Lo' o F)(v) =,
and hence v solves (A.4). Substituting the fixed point v into the second inequality of
(A.6), we then have

”v”W?vP(Q) < C(€||f||w2—1/m(a§z) + 5||UHW2’P(Q))-

For § small enough, this gives

[vllwze) < Cllfllwa-1/p.0(00)-
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Finally, we obtain u = ug +v € W2P(Q) which solves (1.9) and satisfies

lullwzr ) < Cllfllwz-1/r00)

Appendix B. An alternative proof of the full boundary data result

In this section, we provide a separate proof to show that the nonlinear potentials
can be uniquely recovered when the boundary data are given on the whole boundary.

Proof of Theorem 1 (when T'y = T's = 9Q). We will begin by reproving Proposition 3
here when I'y = 9. From identity (3.2), we substitute harmonic function

Ut = €57,
into (3.2), where ¢ € C™ satisfy ¢ - { = 0. Then we have
(B.1) F(z)-(+g(z) = 0.

Since ( is arbitrary with ¢ - ( = 0, we can take
g = he1 + ihej
for j =2,...,n and h € R. We then obtain from (B.1) that

(B.2) F(z)-(e1+1ie;) =0
as h — oco. Similarly, we can take

¢' = hey —ihey,
then we have
(B.3) F(z) - (e1 —iej) = 0.

Adding these two equations (B.2) and (B.3) together, we get
F(z)-e; =0,

which implies the first component of F' vanishes. Following similar argument as above,
we can then conclude F = 0 in Q. Thus, from (3.2), we can also derive g = 0 if we
have known F = 0.

Finally, by following a similar argument as in the Proof of Theorem 1 for the partial
data setting in Section 3, we obtain the uniqueness result with complete data. O
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