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Abstract. We consider an inverse problem for the nonlinear Boltzmann equation with a time-
dependent kernel in dimensions n ≥ 2. We establish a logarithm-type stability result for the
collision kernel from measurements under certain additional conditions. A uniqueness result is
derived as an immediate consequence of the stability result. Our approach relies on second-order
linearization, multivariate finite differences, as well as the stability of the light-ray transform.

1. Introduction

This article studies an inverse problem for the Boltzmann equation, which describes the
evolution of a dilute gas with binary collisions between particles. Let Ω ⊂ Rn, n ≥ 2, be an
open bounded and convex domain with smooth boundary ∂Ω. We denote

U := Ω× Rn, UT := (0, T )× U, ΓT
± := (0, T )× Γ±,

where T > 0. The incoming (Γ−) and outgoing (Γ+) sets are defined as follows:

(1.1) Γ± := {(x, v) ∈ ∂Ω× Rn : ±v · n(x) > 0}
with the unit outer normal vector n(x) at x ∈ ∂Ω. Suppose that F ≡ F (t, x, v) is the distribution
function for the particles at time t ≥ 0 and position x ∈ Ω with velocity v ∈ Rn. It satisfies the
following initial boundary value problem for the Boltzmann equation:

(1.2)

 ∂tF + v · ∇xF = Q(F, F ) in UT ,
F = g on ΓT

−,
F = h on {0} × U.

The collision operator Q describes particles’ binary interactions and takes the form
(1.3)

Q(F1, F2)(t, x, v) =

∫
Rn

∫
Sn−1

K(t, x, v, u, w)[F1(t, x, u
′)F2(t, x, v

′)− F1(t, x, u)F2(t, x, v)] dωdu,

where u and v are velocities before a collision of particles with post-collision velocities

(1.4) u′ = u− [(u− v) · ω]ω and v′ = v + [(u− v) · ω]ω
at an angle ω ∈ Sn−1. It is clear that they satisfy u′ · ω = v · ω and v′ · ω = u · ω. Here the
function K is the collision kernel.

We say K is in the admissible set M if K ∈ L∞(UT ;L
1(Rn × Sn−1)) and satisfies

(1.5) ∥K∥L∞(UT ;L1(Rn×Sn−1)) :=

∥∥∥∥∫
Rn

∫
Sn−1

|K(t, x, v, u, ω)| dωdu
∥∥∥∥
L∞(UT )

< M

for some constant M > 0. As shown in Theorem 2.1, these conditions guarantee that the
problem is well-posed with small data (g, h). Specifically, there exist κ > 0 and a constant
C > 0 such that when

(1.6) (g, h) ∈ Xκ := {(g, h) ∈ L∞(ΓT
−)× L∞(U) : ∥g∥L∞(ΓT

−) + ∥h∥L∞(U) ≤ κ},
1
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the initial boundary value problem (1.2) has a unique solution F ∈ L∞(UT ) satisfying ∥F∥L∞(UT ) ≤
Cκ. Hence we can now define the measurement operator AK : Xκ → L∞(ΓT

+)×L∞(U), mapping
from the incoming and initial data to the outgoing and final data, as follows:

(1.7) AK := (Aout
K ,AT

K) : (g, h) 7→ (F |ΓT
+
, F (T, ·, ·))

with the norm

∥AK(g, h)∥L∞(ΓT
+)×L∞(U) := ∥Aout

K (g, h)∥L∞(ΓT
+) + ∥AT

K(g, h)∥L∞(U).

The inverse problem here is to recover properties of the kernel K from AK , which collected
data from the surface of the domain, initial data, and final data. To understand the underlying
essential details of entangled particle interactions, described by the collision operators, has been
attractive not only because of theoretical interests but also its potential applications [37].

In recent years, relevant studies on identifying coefficients in the Boltzmann equation and
transport equation have made substantial progress in both analytical and numerical aspects.
They are motivated by a broad domain of fields, such as medical imaging [1], astronomy [50], and
remote sensing [39, 41], see also the review articles [4, 43, 45]. In particular, analytic methods
for the determination of both absorption and scattering coefficients in the radiative transfer
equation (RTE), known as the linear Boltzmann equation, are well-established. One crucial
strategy, established in [12, 14] for the uniqueness result, is to analyze the singular decomposition
of the kernel of the Albedo operator, which maps from incoming data to outgoing data. As a
result, the absorption and scattering coefficients can be reconstructed separately because of their
appearance in the components with different degrees of singularities. The demonstration of the
method was discussed in [12, 13, 14, 15, 42, 47] for the uniqueness result and in [5, 6, 7, 27, 51, 52]
for the corresponding stability estimate. The application of Carleman estimates is another basic
strategy to recover unknown coefficients by using suitable Carleman weight in an L2 weighted
estimate for a solution to a transport equation with large parameters [19, 20, 21, 22, 26, 30, 40].
The highlight of this approach is that a single measurement is sufficient to recover the linear
coefficient in many cases. And lastly, in dealing with time-dependent coefficients in the linear
Boltzmann equation, [10] gave the uniqueness and logarithmic stability results for the time-
dependent absorption coefficient and [11] considered the uniqueness for the time-dependent
scattering coefficient.

The literature on inverse problems for nonlinear Boltzmann equations is relatively sparse
compared to the linear ones. One key factor that contributes to recovery difficulty is the special
feature of the collision kernel in (1.3), which highly depends on the velocities before and after
a collision. Recently, the higher-order linearization technique has been utilized to deal with
inverse problems for various types of nonlinear PDEs. See for instance, [25, 35, 48] for nonlinear
hyperbolic equations and [2, 3, 18, 23, 24, 31, 32, 33] for nonlinear elliptic equations. The
technique was generalized to the stationary nonlinear Boltzmann equation in [29], in which the
collision kernel was uniquely recovered under a monotonicity condition and a reconstruction
formula was given. For the dynamic nonlinear Boltzmann equation, the uniqueness result was
achieved in [36] by performing linearization near the equilibrium. See also [8] for the nonlinear
Boltzmann equation on Lorentzian space-time with unknown metric, where the unknown metric
was determined up to an isometry from a source-to-solution map. Additionally, the RTE with
nonlinear terms was investigated in [28, 30].

1.1. Main result. The goal of the present work is to give uniqueness and stability results
for the nonlinear Boltzmann equation with a time-dependent collision kernel with given AK .
Specifically, we will study the case that K has a product structure, i.e.,

K(t, x, v, u, ω) = Φ(t, x, |v|)Ψ(v, u, ω).
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Here the unknown function Φ depending on (t, x, v) ∈ R×Rn×Rn is a radial function in v, which
depends only on the speed, not the direction. Let us denote r = |v| > 0 and write Φ = Φ(t, x, r).
The given nonnegative function Ψ satisfies

Ψ(v, ·, ·) ≥ c0 > 0 in B3(v)× Sn−1(1.8)

for some constant c0 > 0 independent of v. Note that this lower bound condition will be crucial
to control the light ray transform of Φ, see Section 4 for details. The notation Bα(x) is used
to represent an open ball of radius α > 0 and center x in both Rn and Rn+1 if no ambiguities
arise. When x = 0, we simply denote Bα ≡ Bα(0).

Theorem 1.1. Let Ω ⊆ Rn, n ≥ 2, be an open bounded and convex domain with smooth
boundary ∂Ω. Let Ψ ∈ C1(Rn × Rn × Sn−1) be a nonnegative function satisfying (1.8), and let
Φℓ ∈ C1((0, T )× Ω× (0,∞)) for ℓ = 1, 2. Suppose for fixed r = |v| > 0, we have

∥Φℓ(·, ·, r)∥C((0,T )×Ω) ≤M1 and supp(Φ1 − Φ2)(·, ·, r) ⊂ (0, T )× Ω

for a fixed constant M1 > 0.
Let AKℓ

be the measurement operator of the problem (1.2) with the collision kernel

Kℓ(t, x, v, u, ω) = Φℓ(t, x, r)Ψ(v, u, ω),

satisfying Kℓ, ∇xKℓ, ∇vKℓ ∈ M. Suppose that there exist constants κ > 0 and 0 < δ < 1 so
that

(1.9) ∥(AK1 −AK2)(g, h)∥L∞(ΓT
+)×L∞(U) ≤ δ for all (g, h) ∈ Xκ.

Then there exists µ ∈ (0, 1) depending on n, T , and Ω such that

∥(Φ1 − Φ2)(·, ·, r)∥H−1((0,T )×Ω) ≤ C
(
δ

µ
2(n+3) + | log δ|−1

)
.

Here C > 0 depends only on r, n, κ, c0, Ω, T , M , and M1.
Moreover, let s > [n+1

2 ] + 1. Suppose that Φℓ ∈ Hs((0, T )× Ω× R) for ℓ = 1, 2, satisfies

∥Φℓ(·, ·, r)∥Hs((0,T )×Ω) ≤M2 and supp(Φ1 − Φ2)(·, ·, r) ⊂ (0, T )× Ω

for some fixed constant M2 > 0. Then there exists θ ∈ (0, 1) depending on s such that

∥(Φ1 − Φ2)(·, ·, r)∥L∞((0,T )×Ω) ≤ C
(
δ

µ
2(n+3) + | log δ|−1

)θ
,

where C > 0 depends on r, n, κ, c0, s, Ω, T , M , and Mj for j = 1, 2.

The proof of Theorem 1.1 is given in Section 4. In order to fully recover the unknown Φ, we
rely on boundary measurements, initial data, and final data.

As an immediate consequence of Theorem 1.1, we have the following uniqueness result.

Theorem 1.2. Under the same hypotheses in Theorem 1.1, instead of (1.9), suppose that we
have

AK1(g, h) = AK2(g, h) for all (g, h) ∈ Xκ.

Then Φ1 = Φ2 in (0, T )× Ω× (0,∞).

All the aforementioned results for the Boltzmann equations and transport equations, except
[10, 11], are concerned with time-independent coefficients. To the best of our knowledge, the
developed methodologies, including singular decomposition method and the Carleman estimate,
have been applied only for this setting. In particular, when applying the Carleman estimate, the
unknown coefficients are encoded in the initial data of the solution so that it is not applicable
to deal with the time-dependent coefficients, see for instance [20, 40] for the detailed discussions
of the method.
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In the present work, inspired by [10], we rely on several techniques to determine the time-
dependent kernel in (1.2). To begin with, we perform the higher-order linearization method
by applying the multivariate finite differences method, introduced in [34] for semi-linear wave
equations. Through this, one can decompose the solution of the nonlinear Boltzmann equa-
tion into three components, including the solution to the linear equation, the solution to the
nonhomogeneous linear equation, and the remainder higher-order term. Due to quadratic-like
nonlinearity in the collision operator, it is sufficient to introduce two small parameters in the
data in this linearization process. Next, by suitably choosing linear solutions, for each fixed v,
the scaled light-ray transform of Φ(t, x, |v|), defined by

LrΦ(x, v, r) :=

∫
R

Φ(s, x+ sv, r)ds for (x, v) ∈ Rn × rSn−1,

can be extracted from the integral identity. This further leads to the stability estimate of

the partial Fourier transform of Φ (denoted by Φ̂(τ, ξ, |v|)) with respect to t and x variables
in the spacelike cone. More general results on the injectivity, and support theorems of the
light-ray transform can be found in [44, 46]. The main result in Theorem 1.1 then follows

by generalizing the stability to the timelike cone by noting the analyticity of Φ̂ if Φ(·, ·, |v|) is
compactly supported, see Section 4. The uniqueness result in Theorem 1.2 can be viewed as a
complement of the earlier work [29].

The structure of the paper is as follows. In Section 2, we introduce preliminary results for
a linear transport equation and establish the well-posedness of the Boltzmann equation (1.2)
for small data. We derive an integral identity in Section 3 that bridges the unknown coefficient
and the given data by using multivariate finite differences. Section 4 is devoted to the proof of
Theorem 1.1 and Theorem 1.2.

2. Preliminaries

In this section, we introduce preliminary results for a linear transport equation and establish
the well-posedness of the Boltzmann equation (1.2) for small data.

2.1. Notations. We define the forward exit time τ+(x, v) and the backward exit time τ−(x, v)
for every (x, v) ∈ Ω× Rn by

τ±(x, v) := sup{s ≥ 0 : x± sv ∈ Ω}.

In other words, τ+(x, v) and τ−(x, v) are the time at which a particle x leaves the domain Ω
with velocity v and velocity −v, respectively.

We define the space Lp(ΓT
±; dξ), 1 ≤ p <∞, with the norm

∥f∥Lp(ΓT
±;dξ) =

(∫ T

0

∫
Γ±

|f |p dξdt
)1/p

,

where dξ = |n(x) · v|dσxdv is the measure on Γ± with the measure dσx on ∂Ω. For p = ∞, we
denote L∞(U), L∞(UT ), and L

∞(ΓT
±) to be the standard spaces consisting of all functions that

are essentially bounded.

2.2. Forward problems. We first study the existence and stability of solutions to the initial
boundary value problem for a linear transport equation. The following lemma can be found
in [16, Proposition 4, Chapter 21], in which more discussions on the well-posed problems for
transport equations are addressed. In the general geometry setting, we refer to [30] for details.
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Lemma 2.1. Suppose that f ∈ L∞(UT ), g ∈ L∞(ΓT
−) and h ∈ L∞(U). Then the problem

(2.1)

 ∂tF + v · ∇xF = f in UT ,
F = g on ΓT

−,
F = h on {0} × U,

has a unique solution F in L∞(UT ) satisfying

F (t, x, v) = g(t− τ−(x, v), x− τ−(x, v)v, v)H(t− τ−(x, v)) + h(x− tv, v)H(τ−(x, v)− t)

+

∫ t

0
f(t− s, x− sv, v)H(τ−(x, v)− s) ds,(2.2)

where H is the Heaviside function satisfies H(s) = 0 if s < 0 and H(s) = 1 if s > 0. Moreover,
F satisfies

(2.3) ∥F∥L∞(UT ) ≤ ∥g∥L∞(ΓT
−) + ∥h∥L∞(U) + T∥f∥L∞(UT ).

With the above result, we then show that the initial boundary value problem for (1.2) is
well-posed for small data by applying the contraction mapping principle.

Theorem 2.1 (Well-posedness of the Boltzmann equation). Let Ω ⊆ Rn, n ≥ 2, be an open
bounded and convex domain with smooth boundary ∂Ω. Suppose K ∈ M. Then there exist
constants κ > 0 and C > 0 such that when (g, h) ∈ Xκ, the problem (1.2) has a unique solution
F ∈ L∞(UT ) satisfying

∥F∥L∞(UT ) ≤ C
(
∥g∥L∞(ΓT

−) + ∥h∥L∞(U)

)
,

where the constant C depends on κ, M , and T .

Proof. Given (g, h) ∈ Xκ, from Lemma 2.1, there exists a solution F̃ ∈ L∞(UT ) to the following
homogeneous equation: 

∂tF̃ + v · ∇xF̃ = 0 in UT ,

F̃ = g on ΓT
−,

F̃ = h on {0} × U,

satisfying

(2.4) ∥F̃∥L∞(UT ) ≤ ∥g∥L∞(ΓT
−) + ∥h∥L∞(U) ≤ κ.

To show the existence of solution F of (1.2), we observe that if we set G := F − F̃ , then G
will satisfy  ∂tG+ v · ∇xG = Q(F̃ +G, F̃ +G) =: Q0(G) in UT ,

G = 0 on ΓT
−,

G = 0 on {0} × U.

Equivalently, G solves G = (L−1 ◦ Q0)(G), where L−1 denotes the solution operator of (2.1)
with g = h = 0. To find G, we will apply the contraction mapping principle and show L−1 ◦Q0

is a contraction map on a subset X of L∞(UT ), which is defined as follows:

(2.5) X := {φ ∈ L∞(UT ) : φ|ΓT
−
= 0, φ|t=0 = 0, and ∥φ∥L∞(UT ) ≤ c}

with some c > 0 to be determined later.
For each φ ∈ X, by using the fact that K ∈ M and (2.4), Lemma 2.1 yields that

∥(L−1 ◦Q0)(φ)∥L∞(UT ) ≤ T∥Q0(φ)∥L∞(UT ) ≤ 2MT
(
∥F̃∥L∞(UT ) + ∥φ∥L∞(UT )

)2
≤ 2MT (κ+ c)2 .
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Moreover, for φ1, φ2 ∈ X, we can derive that

∥(L−1 ◦Q0)(φ1)− (L−1 ◦Q0)(φ1)∥L∞(UT ) ≤ T∥Q0(φ1)−Q0(φ2)∥L∞(UT )

≤ 4MT (κ+ c)∥φ1 − φ2∥L∞(UT ).

We take κ and c sufficiently small so that 0 < κ < c < 1 and

2MT (κ+ c)2 ≤ c and 4MT (κ+ c) < 1.

This implies that L−1 ◦ Q0 is a contraction map. By the contraction mapping principle, there
exists a unique fixed point G ∈ X so that G satisfies G = (L−1 ◦Q0)(G) and

∥G∥L∞(UT ) = ∥(L−1 ◦Q0)(G)∥L∞(UT )

≤ 2MT
(
∥F̃∥L∞(UT ) + ∥G∥L∞(UT )

)2
≤ 2MT (κ+ c)

(
∥F̃∥L∞(UT ) + ∥G∥L∞(UT )

)
.

Due to the choice of c and κ, we have 2MT (κ+ c) < 1, which implies that the second term on
the right-hand side above can be absorbed by the left. Thus,

∥G∥L∞(UT ) ≤ C∥F̃∥L∞(UT )

for some constant C > 0. We now conclude that F = F̃ +G is a solution of (1.2) and satisfies

∥F∥L∞(UT ) ≤ ∥F̃∥L∞(UT ) + ∥G∥L∞(UT ) ≤ C
(
∥g∥L∞(ΓT

−) + ∥h∥L∞(U)

)
by noting that (2.4). This completes the proof. □

3. Integral Identity

The section aims to derive an integral identity for the unknown coefficient. To do so, we study
the expansion formula for a family of solutions depending on small parameters ε = (ε1, ε2) by
applying multivariate finite differences.

3.1. Multivariate finite difference. Let f ≡ f(ε1, ε2) represent a function of two variables
ε := (ε1, ε2), εj ≥ 0, j = 1, 2. We define the second-order finite difference operator D2

ε1,ε2 of the
function f at the point ε = 0 for εj > 0, j = 1, 2 by

D2
ε1,ε2 |ε=0f :=

1

ε1ε2
(f(ε1, ε2)− f(ε1, 0)− f(0, ε2)− f(0, 0)) .

By Theorem 2.1, for given data gj ∈ L∞(ΓT
−) and hj ∈ L∞(U), j = 1, 2 with sufficiently small

parameters ε1 ≥ 0 and ε2 ≥ 0 such that
∑2

j=1 εj

(
∥gj∥L∞(ΓT

−) + ∥hj∥L∞(U)

)
≤ κ, there exists a

unique solution F εh
εg ≡ F ε1h1+ε2h2

ε1g1+ε2g2 ∈ L∞(UT ) to the initial boundary value problem:

(3.1)


∂tF

εh
εg + v · ∇xF

εh
εg = Q(F εh

εg , F
εh
εg ) in UT ,

F εh
εg = ε1g1 + ε2g2 on ΓT

−,

F εh
εg = ε1h1 + ε2h2 on {0} × U.

Moreover, the solution satisfies the estimate

(3.2) ∥F εh
εg ∥L∞(UT ) ≤ C

(
∥ε1g1 + ε2g2∥L∞(ΓT

−) + ∥ε1h1 + ε2h2∥L∞(U)

)
.

In particular, by the definition of the second-order finite difference, we have

(3.3) D2
ε1,ε2 |ε=0F

εh
εg =

1

ε1ε2

(
F εh
εg − F ε1h1

ε1g1 − F ε2h2
ε2g2

)
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due to the fact that the solution F εh
εg is identically 0 when ε1 = ε2 = 0.

In order to express F εh
εg in terms of εj , we define two solutions Vj and W(k1,k2) as follows.

First, let Vj , j = 1, 2 be the unique solution to the problem:

(3.4)

 ∂tVj + v · ∇xVj = 0 in UT ,
Vj = gj on ΓT

−,
Vj = hj on {0} × U,

and by Lemma 2.1, it satisfies that

(3.5) ∥Vj∥L∞(UT ) ≤ ∥gj∥L∞(ΓT
−) + ∥hj∥L∞(U).

In addition, for k1, k2 ∈ {0, 1, 2} satisfying k1 + k2 = 2, Lemma 2.1 shows that there exist
solutions W(k1,k2) ∈ L∞(UT ) to the nonhomogeneous equation:

(3.6)


∂tW(k1,k2) + v · ∇xW(k1,k2) = S(k1,k2) in UT ,

W(k1,k2) = 0 on ΓT
−,

W(k1,k2) = 0 on {0} × U,

where the source terms S(k1,k2) are defined as follows:

S(2,0)(t, x, v) :=

∫
Rn

∫
Sn−1

K(t, x, v, u, ω)[V1(t, x, u
′)V1(t, x, v

′)− V1(t, x, u)V1(t, x, v) dωdu,

S(1,1)(t, x, v) :=

∫
Rn

∫
Sn−1

K(t, x, v, u, ω)[V1(t, x, u
′)V2(t, x, v

′) + V1(t, x, v
′)V2(t, x, u

′)

− V1(t, x, u)V2(t, x, v)− V1(t, x, v)V2(t, x, u)] dωdu,(3.7)

and

S(0,2)(t, x, v) :=

∫
Rn

∫
Sn−1

K(t, x, v, u, ω)[V2(t, x, u
′)V2(t, x, v

′)− V2(t, x, u)V2(t, x, v) dωdu.

Proposition 3.1. Suppose that there exists κ > 0 such that if gj ∈ L∞(ΓT
−) and hj ∈ L∞(U)

and εj ≥ 0, j = 1, 2, satisfy
∑2

j=1 εj

(
∥gj∥L∞(ΓT

−) + ∥hj∥L∞(U)

)
≤ κ, then there exists a unique

solution F εh
εg to (3.1) satisfying the estimate (3.2). Moreover, F εh

εg can be expanded in ε1 and ε2
in the following form:

(3.8) F εh
εg = ε1V1 + ε2V2 + ε21W(2,0) + ε1ε2W(1,1) + ε22W(0,2) +Rε,

where Vj, j = 1, 2, solve (3.4) and W(k1,k2), k1, k2 ∈ {0, 1, 2}, k1 + k2 = 2 solve (3.6).
Moreover, the remaining function Rε solves the nonhomogeneous equation:

(3.9)

 ∂tRε + v · ∇xRε = Q(F εh
εg , F

εh
εg )− ε21S(2,0) − ε1ε2S(1,1) − ε22S(0,2) in UT ,

Rε = 0 on ΓT
−,

Rε = 0 on {0} × U,

and satisfies the following estimate

(3.10) ∥Rε∥L∞(UT ) ≤ C
(
∥ε1g1 + ε2g2∥L∞(ΓT

−) + ∥ε1h1 + ε2h2∥L∞(U)

)3
,

where C depends on κ, M , and T .

Proof. It remains to show the existence of the solution Rε and (3.10). To this end, we first
denote the function Fε by

Fε := F εh
εg − ε1V1 − ε2V2.
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Then Fε ∈ L∞(UT ) solves ∂tFε + v · ∇xFε = Q(F εh
εg , F

εh
εg ) with zero initial and boundary data.

Applying Lemma 2.1 and K ∈ M, we have

∥Fε∥L∞(UT ) ≤ T∥Q(F εh
εg , F

εh
εg )∥L∞(UT ) ≤ 2MT∥F εh

εg ∥2L∞(UT ).(3.11)

Moreover, we denote the nonhomogeneous term in (3.9) by

Sε(t, x, v) := Q(F εh
εg , F

εh
εg )− ε21S(2,0) − ε1ε2S(1,1) − ε22S(0,2).

With (3.2), (3.11) and K ∈ M, for (t, x, v) ∈ UT , a direct computation gives

(3.12)

|Sε(t, x, v)| =
∣∣∣∣ ∫

Rn

∫
Sn−1

K
[
Fε(t, x, u

′)F εh
εg (t, x, v

′) + (ε1V1 + ε2V2)(t, x, u
′)Fε(t, x, v

′)

−Fε(t, x, u)F
εh
εg (t, x, v)− (ε1V1 + ε2V2)(t, x, u)Fε(t, x, v)

]
dωdu

∣∣∣∣
≤ 4M2T∥F εh

εg ∥2L∞(UT )

(
∥F εh

εg ∥L∞(UT ) + ∥ε1V1 + ε2V2∥L∞(UT )

)
≤ C

(
∥ε1g1 + ε2g2∥L∞(ΓT

−) + ∥ε1h1 + ε2h2∥L∞(U)

)3
.

Finally, applying Lemma 2.1 to Rε, we obtain (3.10). □

Using the expansion of F εh
εg in (3.8), we can rewrite the finite difference D2

ε1,ε2 |ε=0F
εh
εg , defined

in (3.3), as follows:

(3.13) D2
ε1,ε2 |ε=0F

εh
εg =W(1,1) +D2

ε1,ε2 |ε=0Rε.

Therefore, by applying the transport operator ∂t + v · ∇x to both sides of (3.13), since Rε is a
solution of (3.9), we obtain

(3.14) (∂t + v · ∇x)D
2
ε1,ε2 |ε=0F

εh
εg = S(1,1) +D2

ε1,ε2 |ε=0Sε.

3.2. An integral identity. Equipped with the definitions and discussions above, we are ready
to derive the key identity. Let φ ≡ φ(x, v) be a function in the space C∞

c (Rn × Rn) and then
take

ψ(t, x, v) := φ(x− tv, v)

for (t, x, v) ∈ R× Rn × Rn. It is clear that ψ is the solution to the transport equation

∂tψ + v · ∇xψ = 0 in R× Rn × Rn

with the initial data ψ|t=0 = φ. We have the following integral identity.

Proposition 3.2. Suppose all the hypotheses in Proposition 3.1 are satisfied. Then the following
integral identity holds:
(3.15)∫

UT

ψS(1,1) dtdxdv =

∫
U
ψ

[
D2

ε1,ε2 |ε=0AT
K(ε1g1 + ε2g2, ε1h1 + ε2h2)

]
(T, x, v) dxdv

+

∫
ΓT
+

(v · n(x))ψ
[
D2

ε1,ε2 |ε=0Aout
K (ε1g1 + ε2g2, ε1h1 + ε2h2)

]
dtdσxdv

−
∫
UT

ψ
[
D2

ε1,ε2 |ε=0Sε

]
dtdxdv,

where dσx is the surface measure of ∂Ω.
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Proof. Based on the definition of D2
ε1,ε2 |ε=0F

εh
εg , it has trivial initial and boundary data, that is,(

D2
ε1,ε2 |ε=0F

εh
εg

) ∣∣∣
t=0

=
(
D2

ε1,ε2 |ε=0F
εh
εg

) ∣∣∣
ΓT
−
= 0.

With this, multiplying (3.14) by ψ and integrating over the domain UT yield that

(3.16)

∫
UT

ψS(1,1) dtdxdv =

∫
U
ψ
[
D2

ε1,ε2 |ε=0F
εh
εg

]
(T, x, v) dxdv −

∫
UT

ψ
[
D2

ε1,ε2 |ε=0Sε

]
dtdxdv

+

∫
ΓT
+

(v · n(x))ψ
[
D2

ε1,ε2 |ε=0F
εh
εg

]
(t, x, v) dtdσxdv.

This ends the proof by recalling the definitions of Aout
K and AT

K in (1.7). □

4. Recovery of the collision kernel

In this section, we will mainly focus on the stability estimate stated in Theorem 1.1 since
the uniqueness result in Theorem 1.2 follows directly. Initiating from the integral identity in
Proposition 3.2, the central step is to control the light ray transform of Φ by suitably choosing
functions φ localizing at a given point (x∗, v∗).

Let F (ℓ) solve the problem (3.1) with the collision kernel K replaced by

Kℓ(t, x, v, u, ω) = Φℓ(t, x, |v|)Ψ(v, u, ω)

in the collision operator Q for ℓ = 1, 2. We denote the functions V
(ℓ)
j , W (ℓ), S

(ℓ)
(k1,k2)

, R(ℓ)
ε ,

and S
(ℓ)
ε , ℓ = 1, 2, to be the corresponding functions Vj , W , S(k1,k2), Rε and Sε in Section 3.

Moreover, for the purpose of simplifying the notations in Proposition 4.1 below, we denote the

difference of the sources S
(ℓ)
(1,1) and also the difference of the unknown coefficients Φℓ by

S̃ := S
(1)
(1,1) − S

(2)
(1,1) and Φ̃ := Φ1 − Φ2.

Note that since V
(ℓ)
j , ℓ = 1, 2, are independent of the unknown kernel Kℓ and have the same

initial and boundary data, by the well-posedness result for the linear transport equation, we
deduce that

V
(1)
j = V

(2)
j =: Vj , j = 1, 2.

Proposition 4.1. Suppose that all the hypotheses in Proposition 3.1 and (1.9) hold. Suppose
that Φℓ ∈ C1((0, T )× Ω× (0,∞)) for ℓ = 1, 2 satisfies

supp(Φ1 − Φ2)(·, ·, |v|) ⊂ (0, T )× Ω.

Then

(4.1)

∣∣∣∣∫
R

∫
Rn

∫
Rn

φ(y, v)S̃(t, y + tv, v) dydvdt

∣∣∣∣
≤ C

ε1ε2
δ
(
∥ψ∥L1({T}×U) + ∥ψ∥L1(ΓT

+;dξ)

)
+

C

ε1ε2
∥ψ∥L1(UT )

 2∑
j=1

εj

(
∥gj∥L∞(ΓT

−) + ∥hj∥L∞(U)

)3

,

where C is a positive constant depending on κ, M , and T .
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Proof. Applying the integral identity (3.15) for Kℓ, ℓ = 1, 2 and taking the difference, we obtain

(4.2)

∫
UT

ψ(t, x, v)S̃(t, x, v) dtdxdv

=

∫
U
ψ(T, x, v)

[
D2

ε1,ε2 |ε=0(AT
K1

−AT
K2

)(ε1g1 + ε2g2, ε1h1 + ε2h2)

]
(T, x, v) dxdv

+

∫
ΓT
+

(n(x) · v)ψ
[
D2

ε1,ε2 |ε=0(Aout
K1

−Aout
K2

)(ε1g1 + ε2g2, ε1h1 + ε2h2)

]
dtdσxdv

−
∫
UT

ψ

[
D2

ε1,ε2 |ε=0(S
(1)
ε −S(2)

ε )

]
dtdxdv.

On one hand, since (Φ1 − Φ2)(·, ·, |v|) is compactly supported in (0, T ) × Ω for each fixed

v ∈ Rn, from the definition of S
(ℓ)
(1,1) in (3.7), we can extend S̃(·, ·, v) to R×Rn by 0 outside the

domain (0, T )×Ω while preserving the regularity. Hence, by performing the change of variable
y = x− tv, the left-hand side of (4.2) becomes∫

R

∫
Rn

∫
Rn

φ(y, v)S̃(t, y + tv, v) dydvdt

by recalling that ψ(t, x, v) = φ(x− tv, v).
On the other hand, let us take ε1 and ε2 small enough and use (1.9) and (3.12) such that the

absolute value of the right-hand side of (4.2) is bounded above by

C

ε1ε2
δ
(
∥ψ∥L1({T}×U) + ∥ψ∥L1(ΓT

+;dξ)

)
+

C

ε1ε2
∥ψ∥L1(UT )

 2∑
j=1

εj

(
∥gj∥L∞(ΓT

−) + ∥hj∥L∞(U)

)3

,

where C depends on κ, M , and T . This ends the proof of the proposition. □

The light ray transform L of a function q ∈ L1(Rn+1) is defined by

Lq(x, v) :=

∫
R
q(s, x+ sv) ds for (x, v) ∈ Rn × Sn−1.

Recall that Φ̃ is a radial function in v, for our purpose, for r > 0, we define the scaled light ray

transform of Φ̃ by

LrΦ̃(x, v, r) :=

∫
R
Φ̃(s, x+ sv, r)ds for (x, v) ∈ Rn × rSn−1.

Proposition 4.2. Suppose that all the hypotheses of Theorem 1.1 hold. For any (y∗, v∗) ∈
Rn × rSn−1, we have the following estimate:

(4.3)
∣∣∣LrΦ̃(y∗, v∗, r)

∣∣∣ ≤ Cδ
1

n+3 ,

where C depends on r, n, κ, c0, M , Ω, and T .

Proof. The proof is split into three steps.
Step 1: Solutions to the linear equations. We first choose suitable smooth functions φ in
C∞
c (Rn;C(Rn)) to be applied in the integral identity (4.1). To this end, let χ ∈ C∞

0 (Rn) be a
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smooth function satisfying 0 ≤ χ ≤ 1, χ(0) = 1, and ∥χ∥L1(Rn) = 1 with support supp(χ) ⊆ B1.

For a fixed (y∗, v∗) ∈ Rn × rSn−1, we define

φλ(y, v) =
1

λ2n
χ

(
y − y∗
λ

)
χ

(
v − v∗
λ

)
, 0 < λ < 1.

Then φλ ∈ C∞
c (Rn×Rn) and ∥φλ∥L1(Rn×Rn) = 1. Let ψλ(t, x, v) = φλ(x− tv, v), which satisfies

∥ψλ∥L1({T}×U) ≤ ∥φλ∥L1(Rn×Rn) = 1,(4.4)

∥ψλ∥L1(UT ) ≤ ∥ψλ∥L1((0,T )×Rn×Rn) = T∥φλ∥L1(Rn×Rn) = T,(4.5)

and

∥ψλ∥L1(ΓT
+;dξ) ≤

∫ T

0

∫
Rn

∫
∂Ω

|v · n(x)|φλ(x− tv, v) dσxdvdt

≤ (r + 1)Tλ−n|∂Ω|
∫
Rn

λ−nχ

(
v − v∗
λ

)
dv = (r + 1)Tλ−n|∂Ω|,(4.6)

where |v · n(x)| ≤ r + 1 due to the compact support of χ and |v| ≤ |v∗|+ λ < r + 1. Here |∂Ω|
is the measure of the boundary ∂Ω.

The solutions to the linear equations are chosen as follows:

V1(v) = e−|v−v∗|2 and V2 ≡ 1.

Moreover, the boundary and initial data are taken as gj = Vj |ΓT
−

and hj = Vj |t=0. We then

substitute such Vj in the integral (3.7) and, to simplify the expression, we define the function P
by

P (v, u, ω) := V1(u
′)V2(v

′) + V1(v
′)V2(u

′)− V1(u)V2(v)− V1(v)V2(u)

= e−|u′−v∗|2 + e−|v′−v∗|2 − e−|u−v∗|2 − e−|v−v∗|2 .

Then straightforward computations give

∥P∥L∞(Rn×Rn×Sn−1) ≤ 4 and ∥∂vP∥L∞(Rn×Rn×Sn−1) ≤ C

for some constant C > 0. In particular, applying (1.4), we obtain that when v = v∗,

P (v∗, u, ω) = (1− e|(u−v∗)·ω|2)(e−|(u−v∗)·ω|2 − e−|u−v∗|2),

which indicates P (v∗, u, ω) ≤ 0 and P (v∗, u, ω) = 0 only when ω ⊥ (v∗ − u) or ω = ± v∗−u
|v∗−u| .

Step 2: Upper bound of
∫
S̃dt. We consider the following estimate

(4.7)

∣∣∣∣∫
R
S̃(t, y∗ + tv∗, v∗) dt

∣∣∣∣
≤
∣∣∣∣∫

R

∫
Rn

∫
Rn

φλ(y, v)S̃(t, y + tv, v) dydvdt

∣∣∣∣
+

∣∣∣∣∫
R

∫
Rn

∫
Rn

φλ(y, v)
(
S̃(t, y + tv, v)− S̃(t, y∗ + tv∗, v∗)

)
dydvdt

∣∣∣∣ =: I1 + I2,

where we used the fact that ∥φλ∥L1(Rn×Rn) = 1. Notice that ∥gj∥L∞(ΓT
−) ≤ 1 and ∥hj∥L∞(U) ≤ 1.

For the first term on the right-hand side, we then apply the above estimates (4.4) - (4.6) for ψλ

and Proposition 4.1 to derive

I1 ≤
C

ε1ε2
δ(1 + λ−n) +

C

ε1ε2
(ε1 + ε2)

3 ,(4.8)

where C depends on r, κ, n, M , Ω, and T .
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To estimate I2, its integral domain for t variable can be shrunk back to (0, T ) since (Φ1 −
Φ2)(·, ·, |v|) is compactly supported in (0, T ) × Ω. By making change of variables y = y∗ + λỹ
and v = v∗ + λṽ and denoting

z∗ = y∗ + tv∗ and z̃ = ỹ + tṽ,

we have

I2 =

∣∣∣∣∫ T

0

∫
B1

∫
B1

χ(ỹ)χ(ṽ)
(
S̃(t, z∗ + λz̃, v∗ + λṽ)− S̃(t, z∗, v∗)

)
dỹdṽdt

∣∣∣∣
=
∣∣∣ ∫ T

0

∫
B1

∫
B1

χ(ỹ)χ(ṽ)
(∫

Rn

∫
Sn−1

[
K̃(t, z∗ + λz̃, v∗ + λṽ, u, ω)P (v∗ + λṽ, u, ω)

− K̃(t, z∗, v∗, u, ω)P (v∗, u, ω)
]
dudω

)
dỹdṽdt

∣∣∣
≤
∫ T

0

∫
B1

∫
B1

χ(ỹ)χ(ṽ)Ξ1(t, ỹ, ṽ) dỹdṽdt+

∫ T

0

∫
B1

∫
B1

χ(ỹ)χ(ṽ)Ξ2(t, ỹ, ṽ) dỹdṽdt,

where we denote

K̃ := K1 −K2 = (Φ1 − Φ2)Ψ.

Moreover, the functions Ξ1 and Ξ2 are defined as follows: for (t, ỹ, ṽ) ∈ (0, T )×B1 ×B1,

Ξ1(t, ỹ, ṽ) :=

∫
Rn

∫
Sn−1

∣∣∣K̃(t, z∗ + λz̃, v∗ + λṽ, u, ω)
∣∣∣ |P (v∗ + λṽ, u, ω)− P (v∗, u, ω)| dudω

≤Mλ∥∂vP∥L∞(B2×Rn×Sn−1),

and

Ξ2(t, ỹ, ṽ) :=

∫
Rn

∫
Sn−1

∣∣∣K̃(t, z∗ + λz̃, v∗ + λṽ, u, ω)− K̃(t, z∗, v∗, u, ω)
∣∣∣ |P (v∗, u, ω)| dudω

≤Cλ

∫
Rn

∫
Sn−1

|∇vK̃(t, z∗, v∗ + s1ṽ, u, ω)| dudω

+ Cλ

∫
Rn

∫
Sn−1

|∇xK̃(t, z∗ + s2z̃, v∗, u, ω)| dudω,

≤CMλ, 0 < s1, s2 < λ.

Note that in the above estimates of Ξ1 and Ξ2, we used the fact that |P | ≤ 4, the mean value

theorem, and ∇σ1
x ∇σ2

v K̃ ∈ M with integers σj ≥ 0 satisfying 0 ≤ σ1 + σ2 ≤ 1. Combining these
estimates together yields that

I2 ≤ Cλ,(4.9)

where C depends on M and T . Therefore, from (4.7), (4.8), (4.9), and 1 < λ−n, by taking
ε1 = ε2 =: ε̂, we arrive at

(4.10)

∣∣∣∣∫
R
S̃(t, y∗ + tv∗, v∗)dt

∣∣∣∣ ≤ C

(
1

ε1ε2
δ(1 + λ−n) +

1

ε1ε2
(ε1 + ε2)

3 + λ

)
≤ Cm−1

(
ε̂−2λ−nmδ + ε̂+ λ

)
,

where m :=
(
κ
8

)n+3 1
Λ < 1 for some sufficiently large constant Λ > 1. Thanks to this extra

scaling m, it is clearer to see that ε̂ is controlled by κ, see Remark 4.1 below for details.
Now for δ ∈ (0, 1), we then optimize the above estimate by finding the critical point of

Eδ(ε̂, λ) := ε̂−2λ−nmδ + ε̂+ λ.
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A direct computation gives that

∂ε̂Eδ = −2ε̂−3λ−nmδ + 1 = 0, ∂λEδ = −nε̂−2λ−n−1mδ + 1 = 0,

which leads to the critical points

ε̂ = 2
n+1
n+3n−

n
n+3

(κ
8

)( δ
Λ

) 1
n+3

and λ = 2
−2
n+3n

3
n+3

(κ
8

)( δ
Λ

) 1
n+3

.

Here λ < 1 if κ is small enough. Thus, substituting ε̂ and λ into the right-hand side of (4.10)
gives

(4.11)

∣∣∣∣∫
R
S̃(t, y∗ + tv∗, v∗)dt

∣∣∣∣ ≤ Cδ
1

n+3 ,

where C depends on n, κ, M , Ω, and T .

Step 3: Estimate of the light ray transform of Φ̃. Recall that Ψ is nonnegative and
P (v∗, u, ω) ≤ 0. Hence, we have ΨP (v∗, u, ω) ≤ 0 in Rn × Rn × Sn−1.

For a fixed |v∗| = r > 0, we take u ∈ B1(v∗ + 2v̂∗) with unit vector v̂∗ = v∗/|v∗| and consider

ω ∈ Θ :=

{
ω ∈ Sn−1 : 0 < a ≤ ω · u− v∗

|u− v∗|
≤ b <

1

3

}
.

The following estimates follow directly:

(1) 1 ≤ |u− v∗|2 ≤ 9,

(2) |(u− v∗) · ω| ≥ |(u− v∗)|a ≥ a implies 1− e|(u−v∗)·ω|2 ≤ 1− ea
2
< 0,

(3) e−|(u−v∗)·ω|2 − e−|u−v∗|2 ≥ e−9b2 − e−1 > 0.

They imply

|P (v∗, u, ω)| ≥ (ea
2 − 1)(e−9b2 − e−1) for all u ∈ B1(v∗ + 2v̂∗), ω ∈ Θ,

where the lower bound of P is independent of r. Therefore, for each |v∗| = r, we derive∫
Rn

∫
Sn−1

Ψ(v∗, u, ω)|P (v∗, u, ω)| dωdu ≥
∫
B1(v∗+2v̂∗)

∫
Θ
Ψ(v∗, u, ω)|P (v∗, u, ω)| dωdu

≥ (ea
2 − 1)(e−9b2 − e−1)

∫
B1(v∗+2v̂∗)

∫
Θ
Ψ(v∗, u, ω) dωdu

≥ c0|Θ||B1(0)|(ea
2 − 1)(e−9b2 − e−1),(4.12)

by applying (1.8), that is, Ψ(v∗, u, ω) ≥ c0 in B3(v∗) × Sn−1. Note that this estimate (4.12) is
uniform in v∗ ∈ Rn. This yields that∣∣∣∣∫

R
S̃(t, y∗ + tv∗, v∗)dt

∣∣∣∣ = ∣∣∣∣∫
R
Φ̃(t, y∗ + tv∗, r) dt

∣∣∣∣ (∫
Rn

∫
Sn−1

Ψ(v∗, u, ω)|P (v∗, u, ω)| dωdu
)

≥ c1

∣∣∣LrΦ̃(y∗, v∗, r)
∣∣∣ ,

where the constant c1 > 0 depends on a, b, n, c0 and Θ. Finally, together with the upper bound

of
∫
S̃ dt in (4.11), we complete the proof. □

Remark 4.1. With a priori constants κ and δ in the forward problem, the choice of ε1 and ε2
above ensures that the data is in Xκ so that the well-posedness for the nonlinear equation hold.
Indeed, for 0 < δ < 1 < Λ, it follows that

ε̂ = 2
n+1
n+3n−

n
n+3

(κ
8

)( δ
Λ

) 1
n+3

< 2
(κ
8

)
=
κ

4
.
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The chosen boundary and initial data for the linear equations in the above proof satisfy ∥gj∥L∞(ΓT
−) ≤

1 and ∥hj∥L∞(U) ≤ 1, which leads to

∥ε1g1 + ε2g2∥L∞(ΓT
−) + ∥ε1h1 + ε2h2∥L∞(U) ≤ 4ε̂ < κ.

It follows that (ε1g1 + ε2g2, ε1h1 + ε2h2) ∈ Xκ with εj ≥ 0.

We denote the set Ar by

Ar := {(τ, ξ) ∈ R× Rn : |τ | ≤ r|ξ|}

and define the Fourier transform of q by

q̂(τ, ξ) :=

∫
R

∫
Rn

q(t, x)e−i(t,x)·(τ,ξ) dxdt.

In the next proposition, we show that the Fourier transform of Φ̃(·, ·, r) in Ar is controlled by
its scaled light ray transform. Since Ω is bounded, we assume that Ω is contained in a ball Bd

with d > 0.

Proposition 4.3. Under the same hypotheses of Theorem 1.1, the Fourier transform of Φ̃
satisfies

∥ ̂̃Φ(·, ·, r)∥L∞(Ar) ≤ Cδ
1

n+3 ,

where the constant depends on r, n, κ, c0, M , Ω, and T .

Proof. For a fixed r > 0, for any point (τ, ξ) ∈ Ar, we take the vector v ∈ rSn−1 to be

v = − τ

|ξ|2
ξ +

(
r2 − τ2

|ξ|2

)1/2

ζ,

where the vector ζ ∈ Sn−1 satisfies ξ · ζ = 0. Then τ = −v · ξ so that |τ | ≤ r|ξ|. Multiplying the

scaled light ray transform of Φ̃ by e−iy·ξ and integrating over Rn lead to∫
Rn

LrΦ̃(y, v, r)e
−iy·ξ dy =

∫
Rn

(∫
R
Φ̃(s, y + sv, r) ds

)
e−iy·ξ dy

=

∫
R

∫
Rn

Φ̃(s, x, r)e−i(s,x)·(−v·ξ,ξ) dxds

=
̂̃
Φ(−v · ξ, ξ, r) = ̂̃

Φ(τ, ξ, r)(4.13)

by applying the Fubini theorem and change of variable x = y+ sv. Inheriting from the compact

supportness of Φ̃(·, ·, r) in (0, T ) × Ω, the scaled light ray transform LrΦ̃(·, v, r) is supported
in the ball Bd+T |v|. Here we consider the vector v ∈ rSn−1 and Bd+T |v| = Bd+rT . Therefore,
deriving from (4.3) and (4.13), we obtain

| ̂̃Φ(τ, ξ, r)| ≤ ∫
Bd+rT

|LrΦ̃(y, v, r)| dy ≤ C|Bd+rT |δ
1

n+3 for (τ, ξ) ∈ Ar.

□

For
̂̃
Φ in the timelike region {(τ, ξ) ∈ R×Rn : |τ | > r|ξ|}, we need the following result in [49,

Theorem 1], see also [9, Lemma 3.4], to control its behavior.
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Proposition 4.4. Let r0, d0 > 0. Let D ⊂ Rn+1 be an open, bounded and connected set such
that {x ∈ D : d(x, ∂D) > r} is connected for any r ∈ [0, r0]. Let E ⊂ D be an open set such
that d(E, ∂D) ≥ d0. If q is an analytic function with

∥∂βq∥L∞(D) ≤
Π|β|!
ρ|β|

,

where β = (β1, . . . , βn+1) is a multiindex with nonnegative integer βk and |β| =
∑n+1

k=1 βk. Then

∥q∥L∞(D) ≤ (2Π)1−µ̃(|E|/|D|)∥q∥µ̃(|E|/|D|)
L∞(E) ,(4.14)

where µ̃ ∈ (0, 1) depends on d0, D, n, r0, ρ, and d(x, ∂D). Here d(·, ·) is the distance function.

In the proof below, we will take D = B2 and E to be an open subset of B1 in Proposition 4.4
so that (4.14) holds for all x ∈ B1, which will be sufficient for our purpose.

4.1. Proof of Theorem 1.1.

Proof of Theorem 1.1. We first estimate the Fourier transform of Φ̃ in a low-frequency region
|(τ, ξ)| ≤ α with the help of Proposition 4.4 for α > 0.

For fixed r, we consider the function qα(τ, ξ) :=
̂̃
Φ(α(τ, ξ), r) for (τ, ξ) ∈ Rn+1. Then qα is

analytic since Φ̃ is compactly supported. We deduce that

|∂βqα(τ, ξ)| =
∣∣∣∣∂β ̂̃Φ(α(τ, ξ), r)∣∣∣∣ = ∣∣∣∣(−iα)|β| ∫

Rn+1

(t, x)βΦ̃(t, x, r)e−iα(t,x)·(τ,ξ) dxdt

∣∣∣∣
≤ α|β|(T 2 + d2)

|β|
2

∫ T

0

∫
Ω
|Φ̃(t, x, r)| dxdt ≤ Ceα

|β|!
ρ|β|

,

where we took ρ = (T 2 + d2)−
1
2 and used α|β| ≤ |β|!eα. The constant C > 0 depends on M1, Ω,

and T . By Proposition 4.4 with Π = Ceα and µ = µ̃(|E|/|B2|) ∈ (0, 1), we have

∥qα∥L∞(B1) ≤ (2Π)1−µ∥qα∥µL∞(E),

where the set Aint
r is the interior of Ar defined by Aint

r := {(τ, ξ) ∈ R × Rn : |τ | < r|ξ|} and
E = Aint

r ∩B1. With this estimate at hand, it follows that for any (τ, ξ) ∈ Bα,̂̃
Φ(τ, ξ, r) = qα(α

−1(τ, ξ)) ≤ (2Π)1−µ∥qα∥µL∞(E) ≤ Ceα(1−µ)δ
µ

n+3 .(4.15)

Here the last inequality follows from Proposition 4.3 since α(τ, ξ) ∈ Ar if (τ, ξ) ∈ E, and C
depends on r, n, κ, c0, M , M1, Ω, and T .

Next, we compute theH−1-norm of Φ̃. Denote z = (τ, ξ) and ⟨z⟩ = (1+|z|2)1/2. By Plancherel
theorem and (4.15),

∥Φ̃(·, ·, r)∥2H−1(Rn+1) =

∫
|z|≤α

⟨z⟩−2| ̂̃Φ(z, r)|2 dz + ∫
|z|>α

⟨z⟩−2| ̂̃Φ(z, r)|2 dz
≤ Ce(2−2µ)αδ

2µ
n+3

(∫
|z|≤α

1 dz

)
+ α−2∥Φ̃(·, ·, r)∥L2(Rn+1)

≤ C
(
αn+1e(2−2µ)αδ

2µ
n+3 + α−2

)
≤ C

(
e(3−2µ)αδ

2µ
n+3 + α−2

)
,(4.16)
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where C is independent of δ. There exists 0 < δ < min{1,Λ} such that if (1.9) holds, then we
take

α =
µ

(3− 2µ)(n+ 3)
| log δ| > 0

and substitute it into (4.16). This implies

∥Φ̃(·, ·, r)∥H−1(Rn+1) ≤ C
(
δ

µ
2(n+3) + | log δ|−1

)
,

with C depends on r, n, κ, c0, M , M1, Ω, and T .
Lastly, we combine the above estimates together with Sobolev embedding theorem, that is,

H [n+1
2

]+1((0, T )× Ω) ↪→ C0,γ((0, T )× Ω) with some γ > 0 depending on n and then deduce

∥Φ̃(·, ·, r)∥L∞((0,T )×Ω) ≤ C∥Φ̃(·, ·, r)∥
H[n+1

2 ]+1((0,T )×Ω)
,

where C depends on n, T , and Ω, see [17, Theorem 6, Section 5.6], and Sobolev interpolation
theorem

∥Φ̃(·, ·, r)∥
H[n+1

2 ]+1((0,T )×Ω)
≤ C∥Φ̃(·, ·, r)∥θH−1((0,T )×Ω)∥Φ̃(·, ·, r)∥

1−θ
Hs((0,T )×Ω),

where C depends on n and 0 < θ < 1 depends on s, see [38, Section 12.4, Chapter 1]. This
completes the proof of Theorem 1.1. □
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