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Abstract— We address path-planning for a mobile agent to
navigate in an unknown environment with minimum exposure
to a spatially and temporally varying threat field. The threat
field is estimated using pointwise noisy measurements from
a sensor network separate from the mobile agent. For this
problem, we present a new metric for optimal sensor placement
that quantifies reduction in uncertainty in the path cost,
rather than the environment state. This metric, which we call
the context-relevant mutual information (CRMI), couples the
sensor placement and path-planning problem. We propose also
an iterative coupled sensor configuration and path planning
(CSCP) algorithm. At each iteration, the algorithm places
sensors to maximize CRMI, updates the threat estimate using
new measurements, and recalculates the path with minimum
expected exposure to the threat. The iterations converge when
the path cost variance, which is an indicator of risk, reduces
below a desired threshold. Through numerical simulations we
demonstrate that the principal advantage of this algorithm
is that near-optimal low-variance paths are achieved using
far fewer sensor measurements as compared to a standard
decoupled method.

I. INTRODUCTION

We consider scenarios where a mobile agent navigating
in an unknown environment can leverage measurements col-
lected by a network of spatially distributed sensors. The un-
known environment may include various adverse attributes,
which we abstractly represent by a spatiotemporally-varying
scalar field and refer to as the threat field. The threat field
represents unfavorable areas within the workspace. It may
be associated with various natural or artificial phenomena,
such as wildfires, harmful gases in the atmosphere [1], or
the perceived risk of adversarial attack.

We address the problem of path-planning with minimum
threat exposure in such an environment. Because the environ-
ment is unknown, an important task is to place the sensors in
appropriate locations, which is called the sensor placement
problem, or more generally, the sensor configuration prob-
lem. If we had at our disposal an abundance of sensors and
computational resources to process large amounts of sensor
data, then the placement / configuration problem would be
trivial. We would simply place sensors to ensure maximum
area coverage and computational efforts would be directed
at the estimation problem.

In practical applications, however, sensor networks may
be constrained by size as well as energy usage. Consider,
for example, a sensor network of unmanned aerial vehicles
(UAVs) for surveillance of a threat field like wildfire in a
large area. Due to cost and battery limitations, it may not
be possible to achieve full area coverage quickly enough
to inform the actions of a ground robot to safely navi-
gate the environment. This situation exemplifies the broader

problem of path-planning with a minimal number of sensor
measurements, and in turn, highlights the need for optimal
sensor configuration in the context of path-planning. This
problem lies at the intersection of several areas including
estimation, path-planning, and sensor placement, which we
briefly review next. We note that the problem of interest
here is quite different from the simultaneous localization
and mapping (SLAM) problem, where the path-planning and
sensing is coupled due to the assumption of proprioceptive
(fully onboard) sensing, as opposed to exteroceptive sensing
considered here.

Of these areas, perhaps estimation is the most mature [2].
The literature on estimation involves different techniques
including Kalman filter, maximum likelihood estimator [2],
and Bayesian filter [3]. Application of the extended Kalman
filter (EKF), the unscented Kalman filter (UKF) [4], or
the particle filter [5] is common for nonlinear dynamical
systems.

Path- and motion-planning are similarly mature areas of
research. Generally, path-planning under uncertainty involves
finding paths that minimize the expected cost. Classical ap-
proaches to path-planning include cell decomposition, proba-
bilistic roadmaps, and artificial potential field techniques [6],
[7]. Dijkstra’s algorithm, A∗, and their variants are branch-
and-bound optimization algorithms that leverage heuristics
to effectively steer the path search towards the goal. More
recently, techniques based on reinforcement learning [8] and
fuzzy logic [9] are reported.

Different sensor placement approaches have been em-
ployed depending on the type of application and parameters
that need to be measured. Greedy approaches based on
information-based metrics [10]–[12] are studied. Machine
learning-based sensor placement techniques are reported for
efficient sensing with a minimal number of sensors and
measurements as possible [13], [14]. Information-theoretic
based sensor placement techniques utilize performance met-
rics that include Fisher information matrix (FIM) [15], en-
tropy [16], Kullback-Leibler (KL) divergence [17], mutual
information [18], and frame potential [10], for maximiz-
ing the amount of valuable information gathered from the
surrounding environment. Another example of information-
theoretic metric [19] utilizes two metrics, one associated
with mutual information based on objection detection, and
another with mutual information based on classification of
the detected objects. With all these performance metrics,
the intention is to maximally reduce some quantification of
the uncertainty. More recently, sensing and path-planning
method based on reinforcement learning [20] that evaluates
the performance of a called Proximal Policy Optimization



(PPO) is reported.
In this paper we consider the problem of optimal sensor

configuration coupled with path-planningin an unknown dy-
namic environment. Stated differently, we are interested in
sensor placement to collect information of most relevance to
the path-planning problem. The objective is to find a near-
optimal path with high confidence, i.e., low variance in the
path cost, with a minimal number of sensor measurements.
We aim to compare such a coupled sensor configuration and
path-planning (CSCP) method against decoupled methods,
where sensor configuration is achieved by optimizing a
metric independent of the path-planning problem.

This is a relatively new research problem. Prior works by
the second author and co-workers address this problem for
static environments. A heuristic task-driven sensor placement
approach called the interactive planning and sensing (IPAS)
for static environments is reported in [21]. The IPAS method
is shown to outperform several decoupled sensor placement
methods in terms of the total number of measurements
needed to achieve near-optimal paths. Sensor configuration
for location and field-of-view is reported in [22], also for
static fields. Sensor placement for multi-agent path-planning
based on entropy reduction is reported in [23].

The novelty of this work is that we consider a time-varying
threat field and provide a new sensor placement metric
for CSCP. Specifically, we develop the so-called context-
relevant mutual information (CRMI) metric. Informally, this
metric quantifies the amount of information in configuration-
dependent sensor measurements in the context of reducing
uncertainty in path cost, rather than the environment state
estimation error (as a decoupled method would do). We
develop an iterative algorithm for CSCP. At each iteration, a
threat estimate is first computed using sensor measurements.
Next, a path-planning algorithm finds a path of minimum ex-
pected threat. Next, optimal sensor placements are computed
to maximize the path-dependent CRMI, and the iterations
repeat. We compare this CSCP-CRMI method to a decoupled
method that finds optimal sensor placement by maximizing
the “standard” mutual information (SMI). The metric of
comparison is based on the number of measurements needed
to achieve a path cost with variance no greater than a user-
specified threshold. We show that the CSCP-CRMI method
significantly outperforms the decoupled method.

II. PROBLEM FORMULATION

Let R represent the set of real numbers, and N the set of
natural numbers. For any N ∈ N, we denote by [N ] the set
{1, 2, . . . , N}, and by I(N) the identity matrix of size N .

Consider a closed square region denoted by W ⊂ R2 and
referred as the workspace, within which the mobile agent and
sensors operate. In this workspace, consider a grid consisting
of Ng uniformly spaced points. The coordinates of these
points in a prespecified Cartesian coordinate axis system
are denoted by xi, for each i ∈ Ng. The distance between
the adjacent grid points is denoted by δ. The mobile agent
traverses grid points according to the “4-way adjacency rule”,
such that the adjacent points are top, down, left, and right. We
formulate the path planning problem for a actor as a graph

search problem on a graph, G = (V,E) with V = [Ng]
such that each vertex in V is uniquely associated with a grid
point. The set of edges E in this graph consists of pairs of
grid points that are geometrically adjacent to each other.

A threat field, denoted as c : W × R⩾0 → R>0, is a
time-varying scalar field that takes strictly positive values,
indicating regions with higher intensity that are potentially
hazardous and unfavorable. A path between two prespecified
initial and goal vertices, is, ig ∈ V , is defined as a finite
sequence v = {v0, v1, . . . , vL} of successively adjacent
vertices. This sequence starts at the initial vertex v0 = is
and ends at the goal vertex vL = ig , where L ∈ N represents
the number of vertices in the sequence. The edge transition
costs, which account for the expenses incurred when an actor
moves between vertices in a graph, are determined by a scalar
function g : E → R>0. This function assigns a value to each
edge in the graph, representing the associated cost or effort
required for traversal and is defined as,

g((i, j), t) = c(xj , t), for i, j ∈ [Ng], (i, j) ∈ E (1)

The cost J(v) ∈ R>0 indicates the total threat expo-
sure for an actor on its traversal along a path v and
is defined as the sum of edge transition costs, J(v) =∑L

ℓ=1 g((vℓ−1, vℓ), ℓ∆ts, δ). The main problem of interest
is to find a path with a minimum cost, v∗. Since the threat
field is unknown and is changing dynamically, estimation of
the threat field in the environment is essential. A network of
Ns sensors, where Ns ≪ Ng, can be used to measure the
intensity of threat. These sensor measurements are denoted
z(x, t; q) = {z1(x, t; q), z2(x, t; q), . . . , zNs(x, t; q)} will
be used to define the filter required for estimating the state
of the dynamic system. Sensors are placed at distinct grid
points, and the set of this grid points is called the sensor
configuration, q = {q1, q2, . . . , qNs} ⊂ [Ng].

The threat field is modeled in parametric form as
c(x, t) := 1 +

∑NP

n=1 θn(t)ϕn(x) = 1 + Φ(x)⊺Θ(t), with
Φ(x) := [ϕ1(x) . . . ϕNP

(x)]⊺, and ϕn(x) := exp(−(x −
xn)

⊺(x − xn)/2an) representing the basis functions for
each n ∈ [NP ]. Here, NP represents the number of threat
parameters involved to define the threat field. The values of
the constants an ∈ R>0 and xn ∈ W are prespecified and
chosen in such a manner that the combined interiors of the
significant support regions cover the entire workspace [21].
The parameter Θ(t) := [θ1(t) . . . θNP

(t)]⊺ is to be estimated.
The temporal evolution of the threat is modeled by Θ̇(t) =

AcΘ(t) + ω(t), where ω(t) ∼ N (0, Qc) is a white process
noise with Qc := σP I(NP ). The matrix Ac represents the
evolution of threat parameters Θ(t). This evolution model
may be derived from an underlying physical model of the
threat. For example, the solution to a heat diffusion equation,
∂c
∂t = α( ∂

2c
∂x2 + ∂2c

∂y2 ) can be approximated by c(x, t) = 1 +
Φ(x)⊺Θ(t). It can be shown that the parameters Θ(t) satisfy
Θ̇(t) = α Φ⊺

|Φ|2∇
2ΦΘ(t), such that Ac = α Φ⊺

|Φ|2∇
2Φ.

To discretize the system, the continuous state transition
matrix Ac and noise covariance matrix Qc can be used
to obtain the infinite series expansion of the sampled ma-
trices as, A := I(NP ) + Ac∆tf +

(Ac)
2(∆tf )

2

2! + . . . and



Q := Qc∆tf +
(AcQc+QcA

⊺
c )(∆tf )

2

2! + . . . [2]. The time
difference ∆tf is considered to be sufficiently small, thus
the terms involving (∆tf )

2 are neglected. The discretized
system dynamics are

Θk = AΘk−1 + ωk−1, (2)

where ωk−1 ∼ N (0, Q) for each k ∈ N.
The measurements obtained from each sensor are modeled

by zk := c(xqk , t) + ηk = Hk(q)Θk + ηk, where

Hk(q) =
[
Φ(xqk,1

) Φ(xqk,2
) . . .Φ(xqk,Ns

)
]⊺

,

and ηk ∼ N (0, R) is zero mean measurement noise with
covariance R ≻ 0.

The threat parameters Θ(t) are unknown quantities, and
therefore we generate stochastic estimates with mean value
Θ̂(t) and estimation error covariance P. For any path, v =
{v0, v1, . . . , vL} in G, the cost of the path is

J(v) := L+ δ
∑L

l=1Φ(xl)
⊺Θ(t).

The cost J becomes a random variable with distribution
dependent on the estimate Θ.

An important characteristic associated with the conver-
gence of the path-planning algorithm is the risk of the path.
If J is Gaussian, then the risk of the path v is defined as
ρ(v) := Ĵ(v)+

√
Var[J(v)] [24]. Since Ns ≪ Ng, repeated

iterative measurements are required.

Problem 1. For a prespecified termination threshold, ϵ > 0
and some finite iterations k = 0, 1, . . . ,M , find a sequence
of sensor configurations q∗

k and a path v∗ with minimum
expected cost Ĵ(v∗) and such that Var[J(v∗)] ⩽ ϵ.

III. COUPLED SENSING AND PLANNING

Coupled sensor configuration and path-planning (CSCP) is
an iterative approach to solve Problem 1. At each iteration, a
sensor configuration is determined, and measurements of the
threat field are collected. The optimal sensor configuration
is found by maximizing a new information metric that we
call context-relevant mutual information (CRMI). Next, these
sensor measurements are used to update the threat field
estimates in an estimator. Next, the path plan is modified
based on the new threat field estimate, and this process
continues until the path cost variance is reduced below a
prespecified threshold ϵ. In what follows, we provide details
of this iterative process, analysis, and an illustrative example.

Any estimator may be used to estimate the state parame-
ters. We implement an Unscented Kalman Filter (UKF, [4])
for generality, although the examples provided in this paper
are restricted to linear threat evolution models.

A. Mutual Information

1) Mutual Information of State and Measurement: For
any time step k, the mutual information (MI) between the
state Θk and measurement zk is defined by [25]

I(Θk; zk) :=

∫ ∫
p(Θk, zk) log

(
p(Θk, zk)

p(Θk)p(zk)

)
dΘk dzk,

where p(Θk), p(zk) and p(Θk, zk) represent the probability
density functions (PDFs) of state, measurement and a joint
PDF of state and measurement, respectively. Considering the
Gaussian PDFs, the joint PDF p(Θk, zk) can be represented
using the estimated states, estimated measurements and joint
error covariance as

p(Θk,zk) = N
([

Θk
zk

]
:

[
Θ̂k|k−1

ẑk

]
,

[
PΘΘk|k−1

PΘzk|k−1

P ⊺
Θzk|k−1

Pzzk|k−1

])
.

Here, PΘΘk|k−1
is the same as P−

k in (4). The covariance
of the measurement random vector Pzzk|k−1

and cross co-
variance between the state and measurement random vectors
PΘzk|k−1

depend on the sensor configuration q. At each grid
point, these covariances are determined as

Pzzk|k−1
= Hk(q)PΘΘk|k−1

H⊺
k (q) +Rk, (3)

PΘzk|k−1
= PΘΘk|k−1

H⊺
k (q). (4)

An expression for the mutual information between the state
and measurement variables can then be written as [26]:

I(Θk;zk(q)) =
1

2
log

 |PΘΘk|k−1
|

|PΘΘk|k−1
− PΘzk|k−1

P−1
zzk|k−1

P ⊺
Θzk|k−1

|

 .

(5)

2) Mutual Information between Path Cost and Measure-
ment (CRMI): The mutual information between the path
cost and the measurements, which we call CRMI is an
information metric that provides most relevant information to
a concurrent path-planning problem. Informally, the CRMI
takes into account the locations that lies within the vicinity
of the path planning, and the locations that lies far from the
concurrent path are not considered.

For any path v, the expected cost is Ĵ(v) := L +
δ
∑L

l=1 Φ(xl)
⊺Θ̂(t). The joint PDF p(Jk, zk) between the

path cost and measurement variables is

p(Jk, zk) = N
([

Jk
zk

]
:

[
Ĵk|k−1

ẑk

]
,

[
PJJk|k−1

PJzk|k−1

P ⊺
Jzk|k−1

Pzzk|k−1

])
.

The variance of the path cost is

PJJk|k−1
:= E

[(
J(v)− Ĵ(v)

)2]

= E

(δ L∑
l=1

Φ⊺(xvl
)
(
Θ(t)− Θ̂(t)

))2
 ,

= δ2
L∑

l=1

(Φ(xvl
)⊺Pkl

Φ(xvl
))

+ 2δ2
L∑

l<m, l,m∈[L]

(Φ(xvl
)⊺Pklm

Φ(xvm
)) . (6)

The calculation of PJJk|k−1
requires the determination of Φ

and the error covariance P for every grid point vl lying on
the path. Pkl

and Pklm
are determined by propagating the

UKF prediction steps for a time steps for traversing between
grid points. The covariance of the measurement and the



cross covariance between the path cost and the measurement
random vector are formulated as:

PJzk|k−1
= E

[
(z − ẑ)

(
J(v)− Ĵ(v)

)]
= δ

L∑
l=1

(Φ(xvl
)⊺Pkl

)H⊺
k (q), (7)

Pzzk|k−1
= Hk(q)PΘΘk|k−1

H⊺
k (q) +Rk. (8)

Finally, the CRMI is calculated as

I(Jk; zk(q)) =

1

2
log

(
|PJJk|k−1

|
|PJJk|k−1

− PJzk|k−1
P−1
zzk|k−1

P ⊺
Jzk|k−1

|

)
. (9)

B. CSCP Algorithm

The coupled sensing and planning algorithm described in
Algorithm 1 initializes with Θ̂0 = 0 and P0 = χI(NP ),
where χ is a large arbitrary number. The initial sensor
placement q0 is arbitrary. At the initial iteration, an optimal
path v∗

0 of minimum expected cost E [J(v∗
0)] is calculated.

Algorithm 1: CSCP Algorithm

1 Set k = 0, Θ̂0 = 0, and P0 = χI(NP )

2 Initialize sensor placement q0 ⊂ [Ng]

3 Find v∗
0 = argmin(Ĵ0(v))

4 while Var[(J(v∗
k)] ⩽ ϵ do

5 Determine I(Jk; zk(q)) per (5) or (9)
6 Find optimal sensor configuration

q∗
k = argmaxq I(Jk; zk(q))

7 Obtain new sensor measurements zk(q
∗
k)

8 Update Θ̂k, Pk

9 Find v∗
k := argmin(Ĵk(v))

10 Increment iteration counter k = k + 1
11 end

The description in Algorithm 1 is quite general, and its
various steps can be implemented using different methods
of choice by the user.

At each iteration k, the algorithm calculates the variance
Var[J(v∗

k)] of the cost of the path v∗
k per (6). The algorithm

terminates whenever the variance of the path cost reduces
below a prespecified threshold ϵ > 0. The method of
computation of the optimal path v∗

k is the user’s choice: for
most practical applications, Dijkstra’s algorithm (our choice
for implementation) or A∗ algorithm will suffice.

The optimal sensor configuration in Line 6 can be cal-
culated by optimizing the metric chosen. In a decoupled
method, we may optimize the standard MI in (5). In the
proposed coupled method, we optimize the CRMI in (9).
The method of optimization is left to the user, and is not
the focus of this paper. We note that SMI is known to be
submodular [18], and therefore, the proposed CRMI is also
submodular. Greedy optimization algorithms provide near-
optimal results for submodular functions. For a small number
of grid points, we can determine q∗

k by mere enumeration.

Fig. 1. Visualization of CSCP-CRMI process for NP = 25 and Ng = 49.

With an optimal sensor placement, a new set of measure-
ments is recorded, which are then used to update the state
estimate for Θ. Yet again, the specific method of estimation
is the user’s choice. This iterative process continues until
the termination criteria Var[(Ĵ(v)] ⩽ ϵ is satisfied. The
computational complexity of the CSCP algorithm mainly
depends on the complexity of CRMI optimization, which
further depends on the type of optimization method chosen.

IV. RESULTS AND DISCUSSION

This section first provides an illustrative example of the
proposed CSCP-CRMI method. Next, we compare the pro-
posed method against a decoupled method that finds opti-
mal sensor placement using the standard (path-independent)
MI; for brevity we call this decoupled method CSCP-
SMI. Finally, we study the effects of varying numbers of
sensors, threat parameters, and grid points on the CSCP-
CRMI method. All numerical simulations are performed
within a square workspace W = [−1, 1]× [−1, 1] using non-
dimensional units.

A. Illustrative Example
The implementation of CSCP-CRMI algorithm on an

illustrative example is shown in Fig. 1. The number of threat
parameters, grid points, and sensors are NP = 25, Ng = 49,
and Ns = 2, respectively. The initial and the goal points
are represented by the bottom left and the top right grid
points in the map. The threat parameters NP , indicated by
the black dots are uniformly spaced in the workspace and the
white dots represent the grid points, Ng . The locations of the
threat parameters, which are the center of the basis function
Φ, do not change with time. The evolution of the threat



(a) (b)

Fig. 2. log diagonal values of error covariance at final iteration with CSCP-
CRMI (a) and with CSCP-SMI (b).

Fig. 3. Path cost of CSCP-CRMI method.

field estimate ĉ for different time steps, namely k = 1, 5, 11,
and 15 is shown by a color map. The path v∗

k of minimum
estimated cost is indicated by red circles, and the sensor
placement qk is shown by white circles, as illustrated in the
Fig. 1(a)-(d). For a specified threshold ϵ = 0.1, the algorithm
terminates at k = 15 iterations.

Figure 2(a) shows the estimation error covariance P at
the final iteration, mapped to the spatial regions of the
environment using the centers of spatial basis functions Φ.
In a slight departure from convention, Fig. 2 shows the
logarithms of the diagonal values of P, which explains the
negative values despite P being symmetric positive definite.

The white regions in Fig. 2(a) with high error covariance
represents the areas where few if any sensors are placed
throughout the execution of CSCP-CRMI. By contrast, the
brown and black regions represent areas where sensors were
placed to reduce the estimation error covariance values orders
of magnitude below the white-colored regions. Compare
Fig. 2 to the optimal path found in Fig. 1(d), and we find
that the CSCP-CRMI sensor placement is such that areas
close to the optimal path are those with low estimation error
covariance. Note, crucially, the novelty of this approach:
the optimal path is at first unknown, and that the sensor
placement and path-planning are performed iteratively to
arrive at these results.

The comparison between the true and estimated path
cost is illustrated in Fig. 3. Upon termination, the true and
estimated path costs are nearly identical, with J(v∗

k) =

16.46 and Ĵ(v∗
k) = 16.77, respectively. Figure 4 shows the

convergence of the CSCP-CRMI algorithm. The path cost
variance Var[(Ĵ(v∗

k)] iteratively decreases and the algorithm
terminates when Var[(Ĵ(v∗

k)] falls below ϵ = 0.1.

Fig. 4. Convergence of CSCP-CRMI algorithm.

Fig. 5. Comparison of path cost variance for Ns = 2..

B. Comparative Study
For comparison, now consider the execution of CSCP-SMI

on the same example as discussed above. Figure 2(b) shows
the estimation error covariance P of CSCP-SMI method. By
contrast to Fig. 2(a) for CSCP-CRMI, we note here spatially
uniform covariance values. This means that in CSCP-SMI,
the sensors are placed in such a way that the error covari-
ances in all regions of the environment are low compared
to CSCP-CRMI. Whereas this would be of benefit if we
were merely trying to map the threat in the environment,
this uniformly low error covariance is indicative of wasteful
sensor placement in the context of path-planning. In the case
of CSCP-CRMI, whereas some regions are not explored, the
outcome of the path-planning algorithm is near-optimal.

Figure 5 shows a comparison between the path cost
variance Var[J(v∗

k)] of the two methods. Note that for
ϵ = 0.1, the CSCP-SMI algorithm requires 39 iterations
for convergence, which is 160% larger than the number of
iterations required for CSCP-CRMI. Figure 6 shows similarly
large differences in convergence rates with different numbers

(a) Ns = 3. (b) Ns = 4.

Fig. 6. Further comparisons of path cost variance.



(a) (b)

Fig. 7. Convergence of CSCP-CRMI algorithm for different numbers of
sensors (a) and parameters (b).

of sensors.
Figure 7(a) shows the variation of path cost variance

with varying number of sensors. For a specified number
of threat parameters NP = 49 and the grid points Ng =
49, a better convergence is achieved with more number of
sensors. Using a single sensor will require a relatively large
number of iterations for convergence. The convergence of
the CSCP-CRMI algorithm for different number of threat
parameters NP is shown in Fig. 7(b). For Ns = 2 and
Ng = 81, a threat with NP = 9 or 16 will lead to faster
convergence relative to threats with NP = 64 or 81. We
also performed comparative analysis for specific number of
sensors and parameters with varying number of grid points.
It is observed that the path cost and the path cost variance
remain unchanged for different number of grid points, which
is due to appropriate scaling in the path cost formulation.

V. CONCLUSIONS

In this paper, we discussed a new metric of information
for optimal sensor placement to capture coupling of the
sensor placement problem with a path-planning problem.
This metric, which we call the context-relevant mutual in-
formation (CRMI), quantifies the reduction in uncertainty in
the path cost, rather than the environment state as is standard
practice. We also presented a coupled sensor placement and
path-planning algorithm that iteratively places sensors based
on CRMI-maximization, updates the environment threat es-
timate, and plans paths with minimum expected cost. A
comparative study between CSCP-CRMI and a decoupled
CSCP-SMI method was performed. We showed via numer-
ical simulation examples that the CSCP-CRMI algorithm
converges in less than half as many iterations compared to
CSCP-SMI algorithm.
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