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Abstract
We study Betti numbers of sequences of Riemannian manifolds which Benjamini–
Schrammconverge to their universal covers. Using the Price inequalities we developed
elsewhere, we derive two distinct convergence results. First, under a negative Ricci
curvature assumption and no assumption on sign of the sectional curvature, we have
a convergence result for weakly uniform discrete sequences of closed Riemannian
manifolds. In the negative sectional curvature case, we are able to remove the weakly
uniform discreteness assumption. This is achieved by combining a refined Thick–
Thin decomposition together with a Moser iteration argument for harmonic forms on
manifolds with boundary.

Keywords Price inequality · Benjamini–Schramm convergence · Thick–Thin
decomposition
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1 Introduction

Let (Mn, g) be a closed Riemannian manifold. Define the normalized Betti numbers
and L2-Betti numbers respectively as:
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b̃k,g(M) := bk(M)

V ol(M)
and b̃(2)

k,g(M) := b(2)
k (M)

V ol(M)
, (1)

where bk(M) denotes the kth Betti number of M and b(2)
k (M) denotes the kth L2-Betti

number. In an influential paper [15], Lück shows that if M is a closed manifold with
residually finite fundamental group, then

b̃(2)
k,g(M) = lim

l→∞ b̃k,g(Ml), (2)

for any tower of coverings {Ml}l of M associated to a cofinal filtration of its fundamen-
tal group. The L2-Betti numbers were originally defined analytically by Atiyah in [3],
and Lück’s theorem provides a remarkable connection between analysis and topology
which has inspired considerable mathematics in the last two or three decades, see for
example the bibliography of [16].

More recently, Abert et al. in [1] and [2] generalized Luck’s approximation theorem
in the context of lattices in Lie groups and in the context of finite volume manifolds of
negative curvature. To describe this generalization, we first recall a rather weak notion
of convergence of Riemannian manifolds, Benjamini–Schramm convergence, which
is adapted from graph theory [5]. In Riemannian terms, this convergence is given as
follows.

Definition 3 Let (Ml , gl)l be a sequence of closed Riemannian manifolds which share
a common universal Riemannian cover (X , g). Given x ∈ Ml , we denote by injgl

(x)

the injectivity radius of (Ml , gl) at x . We define the R-thin part of (Ml , gl), denoted
(Ml)<R , by

(Ml)<R := {x ∈ Ml | injgl
(x) < R}.

Define a relative measure of the thin regions of Ml by

ρ(Ml , R) := V olgl ((Ml)<R)

V olgl (Ml)
. (4)

We say that the sequence (Ml , gl)l Benjamini–Schramm converges to (X , g), if for
any R > 0 we have

lim
l→∞ ρ(Ml , R) = 0.

Finally, we say that the sequence (Ml , gl) is uniformly discrete, if there exists ε > 0
such that for any l ∈ N:

min
x∈Ml

injgl
(x) ≥ ε.

We can now state one of the main results in [1].
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Theorem 5 (Corollary 1.4 in [1]) Let {�l}l be a sequence of uniformly discrete, torsion
free lattices acting co-compactly on a symmetric space G/K of non-compact type. Let
{�l\G/K }l be the associated sequence of compact locally symmetric spaces. For any
k ≤ dim(G/K ), if {�l\G/K }l Benjamini–Schramm converges to G/K (equipped
with the standard symmetric metric), we have

lim
l→∞ b̃k,g(�l\G/K ) = β

(2)
k (G/K ),

where the k-th L2-Betti number of the symmetric space, β
(2)
k (G/K ), is defined in [1,

6.24], and satisfies b̃(2)
k,g(�\G/K ) = β

(2)
k (G/K ) for every cocompact torsion free �.

When {�l}l is a cofinal filtration of a given torsion free lattice acting co-compactly
on G/K (cf. Theorem 2.1 in [9]), the sequence of coverings {�l\G/K }l Benjamini–
Schramm converges to G/K , and Theorem 5 is a genuine generalization of Lück’s
original approximation theorem in the case of locally symmetric spaces. We also
observe that, for subgroups of a fixed lattice, Theorem 1.12 in [1] provides effective
bounds on the normalized Betti numbers.

In the real hyperbolic case G/K = H
n , Abert et al. in [1] obtain their strongest

result. Remarkably, they are able to remove the uniform discreteness assumption on
the lattices.

Theorem 6 (Theorem 1.8. in [1]) Let {�l\Hn}l be a sequence of compact hyperbolic
manifolds of dimension n that Benjamini–Schramm converge to H

n. For any k ≤ n,
we have

lim
l→∞ b̃k(�l\Hn) = β

(2)
k (Hn).

More recently, in the preprint [2], four of the seven authors of [1], extended Lück’s
approximation theorem to sequences of pinched negatively curved manifolds which
Benjamini–Schramm converge to their universal cover.

In this paper, we contribute to this circle of ideas by extending the techniques of [10]
to prove and quantify vanishing of normalized Betti numbers (in certain degrees) along
sequences of closed Riemannian manifolds which Benjamini–Schramm converge to
their universal covers. Whereas the focus of [1] and [2] is to relate normalized Betti
numbers and L2-Betti numbers, in this paper we concentrate on providing bounds and
vanishing results for these quantities. Here we consider geometries more general than
those considered in [2]. Our techniques are rather distant from those of [1] and [2].
Indeed, we rely on geometric inequalities for harmonic forms on negatively curved
Riemannian manifolds which we described in [10]. In particular, some of our results
do not require any direct assumption on the sectional curvature.

The next definition is tailored to our analytical techniques, and it will be used
throughout this paper. This definition is related to the notions of convergence
considered in [1] and [2], but at the same time it contains some new elements.
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Definition 7 Let (Ml , gl)l be a sequence of closed Riemannian manifolds which
share a common universal Riemannian cover (X , g). We say a sequence of mani-
folds (Ml , gl)l is weakly uniformly discrete and converges to (X , g) if there exists a
sequence {Rl}l ⊂ (0,∞) with

lim
l→∞ Rl = ∞,

such that

lim
l→∞

(
1 + 1

injgl
(Ml)

)n
ρ(Ml , Rl) = 0.

Before listing our main results, it is important to state the precise connection
between the notion of convergence given in Definition 7 and the usual Benjamini–
Schramm convergence (cf. [1] and [2]).

Remark 8 If a sequence of manifolds (Ml , gl)l Benjamini–Schramm converges, then
there is always a sequence {Rl}l converging to ∞ such that

lim
l→∞ ρ(Ml , Rl) = 0. (9)

Hence every uniformly discrete sequence which Benjamini–Schramm converges is
weakly uniformly discrete.

On the other hand, weakly uniformly discrete sequences may well have injectivity
radius that goes to zero along a subsequence, and therefore need not be uniformly
discrete in the sense of Definition 3.

We can now state our first resultwhich requires only a negativeRicci curvature assump-
tion, and no uniform lower bound on the injectivity radius. On the other hand, we
require the weakly uniformly discrete assumption (cf. Definition 7).

Theorem 10 Let (Xn, g) be a simply connected manifold without conjugate points
and with −1 ≤ secg ≤ 1. Assume there exists δ > 0 such that

−Ricg ≥ δg.

Let (Ml , gl) be a weakly uniformly discrete sequence of closed manifolds converging
to (X , g). Then for any k ∈ N such that δ > 4k2, we have

lim
l→∞ b̃k,g(Ml) = 0.

We remark that, in [10, Theorem 122], under the same curvature assumptions as in
Theorem 10, we proved the following vanishing theorem for L2-Betti numbers:

b(2)
k (Ml) = 0, for all l.
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Thus, Theorem 10 asserts the convergence along the Benjamini–Schramm sequence
of certain normalized Betti numbers to the corresponding L2-Betti number.

Ifwe assume the sectional curvature to be strictly negative, the techniques developed
in [10] cover a larger range of Betti numbers. Using this fact, we are able to prove the
following (see Theorem 79 for a stronger statement and details of the proof).

Theorem 11 Let (Xn, g) be a simply connected manifold with

−a2 ≤ secg ≤ −1,

and a ≥ 1. Let (Ml , gl) a sequence of closed Riemannian manifolds BS-converging
to (Xn, g). For any k ∈ N such that

an,k := (n − 1) − 2ka ≥ 0,

we have

lim
l→∞ b̃k,g(Ml) = 0.

Once again, under the same curvature assumptions as in Theorem 11, we have
elsewhere proved the following vanishing theorem for L2-Betti numbers

b(2)
k (Xn) = 0 ⇒ b(2)

k (Ml) = 0 for all l;

see Sect. 7 and Proposition 126 in [10] (cf. also Proposition 4.1 in [12] when an,k > 0,
and [11] when a = 1). Hence Theorem 11 is already a consequence of the preceding
references and [2]. None the less, our convergence result is completely independent
of the theory of L2-Betti numbers, and it follows directly from the Price inequalities
for harmonic forms we developed in [10]. Indeed all of the analysis can be performed
directly on the sequence of compact manifolds, without the need of studying L2-
harmonic forms on the universal Riemannian cover.

Observe that Theorem 11, unlike Theorem 10, does not require any uniform dis-
creteness assumption. This greater generality is present in [2] and Theorem 6 as well,
and it depends crucially on the fact that in the negative sectional curvature regime,
thanks to theGromov–Margulis lemma (cf. [4]), we understand quitewell the topology
of regions with small injectivity radius. On the other hand, our proof is substantially
different from the approach presented in [2].

2 Dimension Estimates Revisited

Let (Mn, g) be a closed Riemannian manifold, and denote by Hk
g(M) the finite

dimensional vector space of harmonic k-forms. Define normalized Betti numbers

b̃k,g(M) := bk(M)

V olg(M)
. (12)
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In Sect. 5 of [10] and again in Lemma 15, we show

b̃k,g(M) ≤
(

n
k

)
max{‖α‖2L∞

‖α‖2
L2

: α ∈ Hk
g(M) \ {0}}. (13)

Under various hypotheses on the Ricci curvature or the Riemannian curvature and k, in
[10] we showed exponential or polynomial bounds in the injectivity radius for the nor-
malized Betti numbers. Those estimates, in conjunction with (13) suffice to establish
convergence to zero of sequences of normalized Betti numbers of closed Riemannian
manifolds whose injectivity radii diverge, for example, sequences of real hyperbolic
manifolds associated to a cofinal filtration of a given torsion free co-compact lattice
in Iso(Hn) = P O(n, 1), with k 
= n

2 . On the other hand, for sequences of closed
Riemannian manifolds that converge in the Benjamini–Schramm sense, it is not nec-
essarily the case that the injectivity radius goes to infinity (even if the pointed injectivity
radius goes to infinity almost everywhere). Thus, we modify the dimension estimate
forHk

g(M) used in Sect. 5 of [10], in order to obtain vanishing results in this broader
context.

Let K (·, ·) denote the Schwarz kernel for the L2 orthogonal projection ontoHk
g(M).

Thus for x, y ∈ M ,

K (x, y) ∈ Hom(�k T ∗
y M,�k T ∗

x M).

Given an L2-orthonormal basis {α j }l
j=1 for Hk

g(M), we have

K (x, y) =
l∑

i=1

α j (x)〈·, α j (y)〉. (14)

Next, we derive a pointwise estimate on the trace of K (x, x).

Lemma 15 Given K (·, ·) as above, we have for any x ∈ M

0 ≤ T r K (x, x) ≤
(

n

k

)
sup

α∈Hk
g(M):||α||2

L2
=1

|α(x)|2.

Proof Fix a point x ∈ M , and let {ei }(
n
k)

i=1 be a local orthonormal frame for �k T ∗M in
a neighborhood of x . Then

T r K (x, x) =
(n

k)∑
i=1

〈K (x, x)(ei ), ei 〉 =
l∑

i=1

|αi |2x ≥ 0.

Next, given a point p ∈ M , there exists a unit eigenvector z of K (p, p) with maximal
eigenvalue say λ. Thus, by construction

〈K (p, p)z, z〉 = λ|z|2p = λ,
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with

〈K (p, p)z, z〉 =
l∑

i=1

〈z, αi (p)〉〈z, αi (p)〉.

Thus

∫

M
〈K (x, p)z, K (x, p)z〉dμg =

∫

M

〈 l∑
i=1

αi (x)〈z, αi (p)〉,
l∑

j=1

α j (x)〈z, α j (p)〉
〉
dμg

=
l∑

i, j=1

〈z, αi (p)〉〈z, α j (p)〉
∫

M
〈αi (x), α j (x)〉dμg

=
l∑

i, j=1

〈z, αi (p)〉〈z, α j (p)〉δi j = λ.

Now, set

α(x) := K (x, p)z√
λ

∈ Hk
g(M),

with

‖α‖L2 = 1.

In sum, we have found an α ∈ Hk
g(M) such that

||α||2L2 = 1, |α(p)|2 = λ.

As λ was the largest eigenvalue of K (p, p), we have the estimate

T r K (p, p) ≤
(

n

k

)
λ ≤

(
n

k

)
sup

||α||2
L2

=1

|α(p)|2.

Since p is an arbitrary point in M , the proof is complete. ��
The following lemma is the usual elliptic regularity for harmonic forms in bounded

geometry. One proof is a standard application of Moser iteration. See for example [14,
Proposition2.2],where the theorem is proved for hyperbolicmanifolds andProposition
51, where it is proved for manifolds with boundary.

Lemma 16 Let (Mn, g) be a closed Riemannian manifold with

−a ≤ secg ≤ 1,

and let
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injg(M) := min
p∈M

injg(p) > 0

be the global injectivity radius. Given a harmonic k-form α ∈ Hk
g(M), for any p ∈ M

and L < min(injg(M), 1) there exists a strictly positive constant d(n, a, k, L) :=
d(n, a, k)(1 + 1

L )n such that

||α||2L∞(B L
2

(p)) ≤ d(n, a, k, L)||α||2L2(BL (p))
.

Combining Lemma 15 with Lemma 16, we get the key estimate of this section.

Lemma 17 Given (Mn, g), and K (·, ·) as above, there exists a constant d0 =
d0(n, a, k, injg(M)) > 0 such that

0 ≤ T r K (x, x) ≤ d0(n, a, k, injg(M)),

for any x ∈ M.

Proof By Lemma 15, we have

0 ≤ T r K (x, x) ≤
(

n

k

)
sup

α∈Hk
g(M):||α||2

L2
=1

|α(x)|2.

Now apply Lemma 16 to obtain the desired estimate. ��

3 Negative Ricci Curvature

In this section, we study manifolds with negative Ricci curvature.

Definition 18 Let (M, g) be a complete Riemannian manifold. Given any R > 0, we
define the R-thin part of (M, g) as

M<R := {x ∈ M | injg(x) < R},

where injg(x) is the injectivity radius of (M, g) at the point x . We define the R-thick
part, denoted by M≥R , as the complement of the R-thin part.

The proof of [10, Theorem 66], implies the following theorem.

Theorem 19 Let (Mn, g) be a compact manifold with −1 ≤ secg ≤ 1. Given k ∈ N,
assume there exists δ > 4k2 such that

−Ric ≥ δg.
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Let ρ be large enough so that

√
δ

2
coth(

√
δρ) − k coth (ρ) ≥ ε > 0.

There exists c(n, k, δ, ε) > 0 so that for any α ∈ Hk
g(M) and p ∈ M with injg(p) >

ρ + 2, we have

∫

Bρ(p)

|α|2dv ≤ c(n, k, δ, ε)e−(
√

δ−2k)(injg(p)−ρ−2)‖α‖2L2(M,g)
. (20)

A corollary of this estimate is the following result for sequences of Riemannian
manifolds which Benjamini–Schramm converge to their universal cover.

Theorem 21 Let (Xn, g) be a simply connected manifold without conjugate points
with −1 ≤ secg ≤ 1. Assume there exists δ > 0 such that

−Ricg ≥ δg.

Let (Ml , gl) be a weakly uniformly discrete sequence of closed manifolds converging
to (X , g). Then for any k ∈ N such that δ > 4k2, we have

lim
l→∞

bk(Ml)

V olgl (Ml)
= 0.

Proof Observe that for any (k, R) ∈ N× (0,∞) such that δ > 4k2 and R > max{ρ +
2, R0}, with ρ as defined in Theorem 19, we have the estimate:

bk(Ml)

V olgl (Ml)
=

∫
(Ml )<R

T r K (x, x)dμgl

V olgl (Ml)
+

∫
(Ml )≥R

T r K (x, x)dμgl

V olgl (Ml)

≤
(

n

k

)
d(n, a, k)

(
1 + 1

injgl
(Ml)

)n
ρ(Ml , R)

+ c(n, k, δ)e−(
√

δ−2k)(R−ρ−2). (22)

Choose R = Rl for some sequence {R j } j given by the definition of weakly uniformly
discrete (Definition 7), and the result follows. ��
Remark 23 Theorem 122 in [10] implies that, under the curvature assumptions of
Theorem 21, we have

b(2)
k (Ml) := dim�l (Hk

2(X)) = 0,

for any k ∈ N such that δ > 4k2. Thus, Theorem 21 can alternatively be rephrased
by saying that the normalized k-Betti number converge along the sequence to the
corresponding k-th L2-Betti number.
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4 Pinched Negative Sectional Curvature

In this section,we study sequences ofRiemannianmanifoldswith negative andpinched
sectional curvaturewhichBenjamini–Schrammconverge. The starting point is as usual
the Price inequality for harmonic forms onmanifolds with negative sectional curvature
established in [10].

4.1 Uniformly Discrete Sequences

We start with sequences of uniformly discrete, negatively curved and pinched mani-
folds which BS-converge. The key technical point is a Price inequality for harmonic
k-forms. For convenience, we assemble in a single statement three results stated
distinctly in [10].

Theorem 24 (Theorems 87 & 96 and Corollary 108 in [10]) Let (Mn, g) be a compact
manifold of dimension n ≥ 3. Assume the sectional curvature is pinched:

−a2 ≤ secg ≤ −1

with a ≥ 1. Let k be a non-negative integer such that

an,k := (n − 1) − 2ka > 0.

There exists a constant c(n, k) > 0, so that for any α ∈ Hk
g(M) and for any geodesic

ball BR(p) ⊂ M, with 1 + ln (2)
an,k

< R < injg(p),

∫

B1(p)

|α|2dv ≤ c(n, k)e−an,k R‖α‖2L2(M,g)
.

Finally, if k is a non-negative integer such that

an,k := (n − 1) − 2ka = 0,

then there exists a constant d(n, k) > 0, so that for any geodesic ball BR(p) ⊂ M,
with 1 < R < injg(p),

∫

B1(p)

|α|2dv ≤ d(n, k)(R − 1)−1‖α‖2L2(M,g)
.

Remark 25 The proof of this theorem requires only that α be closed and coclosed in
BR(p) and that the curvature pinching holds within this ball. Hence the result extends
to manifolds with boundary (if d(p, ∂ M) ≥ R), with any boundary condition, and to
noncompact manifolds.

As in Sect. 3, a Price inequality has an immediate consequence for weakly uniformly
discrete sequences of Riemannian manifolds which Benjamini–Schramm converge.
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Corollary 26 Let (Xn, g) be a simply connected manifold of dimension n ≥ 3 with

−a2 ≤ secg ≤ −1,

and a ≥ 1. Let (Ml , gl) be a weakly uniformly discrete sequence of closed manifolds
converging to (X , g). For any k ∈ N such that

an,k = (n − 1) − 2ka ≥ 0,

we have

lim
l→∞

bk(Ml)

V olgl (Ml)
= 0.

Remark 27 Proposition 126 in [10] implies that, under the curvature assumptions of
Corollary 26, we have

b(2)
k (Ml) := dim�l (Hk

2(X)) = 0,

for any k ∈ N such that an,k ≥ 0 (cf. also Proposition 4.1 in [12] when an,k > 0, and
[11] when a = 1). Thus, Corollary 26 can alternatively be rephrased by saying that
the normalized k-Betti number converge along the sequence to the corresponding k-th
L2-Betti number.

4.2 Thick–Thin Decomposition Revisited

In this section, we construct an effective Thick–Thin decomposition for closed mani-
folds with negative sectional curvature. This Thick–Thin decomposition builds upon
a construction of Buser, Colbois, and Dodziuk (cf. [6]) which we refine for our pur-
poses. These additions are needed for our Moser iteration argument on manifolds with
boundary (cf. Sect. 4.3).

Let (M, g) be a compact of dimension n ≥ 3, with sectional curvatures satisfying

−a2 ≤ secg ≤ −1,

for some constant a ≥ 1. A first geometric consequence of the so-called Gromov–
Margulis’ Lemma (cf. Section 8 in the book [4]) is that there is a positive constant

μ = a−1cn,

cn > 0 depending on the dimension only, so that if the set

Mμ := {x ∈ M | inj(x) < μ}

is not empty, it is then the union of a finite number of disjoint tubes {Tγi } around short
closed geodesics {γi }. For convenience, we will require μ < 1. For every tube Tγ ,
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the core geodesic γ has length l(γ ) < 2μ. For every point p ∈ γ , and every tangent
vector v ∈ Tp M perpendicular to γ ′(0), let δp,v(t) denote the unit speed geodesic ray
emanating from p in the direction of v. We call these rays radial arcs and their tangent
vector fields the radial vector field R.

Lemma 28 Let γ be a geodesic in M satisfying (34). Then

div(R)(x) ≤ (n − 1)a coth(ad(x, γ )). (29)

Proof The proof is a Riccati comparison argument, which we include for the conve-
nience of the reader. (See [7, Sect. 2].) Let ρ denote distance to γ . Then |dρ| = 1,
and the Bochner formula gives

0 = �
1

2
|dρ|2 = −|∇dρ|2 − Ric(dρ, dρ) + 〈d�ρ, dρ〉. (30)

Set m := −�ρ = divR. Since ∇RR = 0, Hess(ρ) has rank ≤ n − 1. Hence
Cauchy-Schwarz implies m2 ≤ (n − 1)|∇dρ|2. Applying these inequalities to (30)
yields the following equation for the value of m = m(t) along a geodesic ray δp,v(t).

∂m

∂t
+ m2

n − 1
≤ −Ric(dρ, dρ) ≤ (n − 1)a2. (31)

Set y := (n − 1)a coth(at). Then ẏ + y2

n−1 = (n − 1)a2. Thus we have

∂(m − y)

∂t
+ (m + y)

n − 1
(m − y) ≤ 0. (32)

limt→0(m − y) = −∞. Hence the Riccati comparison principle [17, Subsect. 6.4.1]
implies

m(t) ≤ y(t),

for all t > 0. ��
In every interval [0, t0] such that i(δp,v(t)) ≤ μ for t ∈ [0, t0], the function t →
i(δp,v(t)) is strictly monotonic increasing. Thus, there exists Rp,v > 0 depending on
the initial condition of the geodesic ray such that i(δ(Rp,v)) = μ and i(δp,v(t)) < μ

for any t ∈ [0, Rp,v). The arc δ([0, Rp,v]) is called the maximal arc. Also, different
radial arcs are disjoint except possibly for their initial points. Thus, their union Tγ is
homeomorphic to γ × Bn−1 where Bn−1 is a closed ball insideRn−1, and this explains
why they are called tubes. On the other hand, different maximal radial arcs in Tγ may
have very different lengths and the boundary of Tγ is not smooth in general. Thus,
these object are not great if you want to do calculus on them. We therefore employ a
controlled Thick–Thin decomposition due to Buser, Colbois and Dodziuk [6] which
we now briefly describe. First, we state the following lemma, observed in [6].

123



Benjamini–Schramm Convergence Page 13 of 26    16 

Lemma 33 There exist constants c1, c2 depending only on the dimension n, such that
if

l(γ ) ≤ c1 exp(−c2a)μnan−1, (34)

then d(x, γ ) ≥ 10 for every x ∈ Tγ with inj(x) = μ
2 .

Proof This is a consequence of Lemma 2.4 in [6]. ��
From now on, we will regard a geodesic small if and only if its length satisfies the

bound (34) of Lemma 33. This means we disregard possibly many small geodesics
in the usual Thick–Thin decomposition of M . Thus, we only look at small geodesics
which posses fatMargulis tubes around them. This fact plays a role in the constructions
that follow.

Next, given a geodesic γ satisfying (34) and λ ∈ (0, 1), we define the following
tube around it:

Uλ
γ := {x ∈ Tγ | inj(x) ≤ λμ}. (35)

Again, there is no a priori reason to believe that the boundary ∂Uλ
γ is well behaved

from a geometric point of view. Thus, we appeal to the following theorem of Buser,

Colbois and Dodziuk which ensures the existence of a small deformation of U
1
2
γ with

many nice geometric properties.

Theorem 36 (Theorem 2.14 in [6]) Let γ be a geodesic in M satisfying (34). There
exists a smooth hypersurface Hγ contained in Tγ \ γ with the following properties:

• The angle θ between the radial vector field R and the exterior normal of Hγ is
less that π/2 − α for a constant α = α(a, n) ∈ (0, π/2).

• The sectional curvatures of Hγ with respect to the induced metric are bounded in
absolute value by a constant depending only on a and n.

• Hγ is homeomorphic to ∂U
1
2
γ by pushing along radial arcs. The distance between

x ∈ Hγ and its image x̄ ∈ ∂U
1
2
γ satisfies d(x, x̄) ≤ μ/50.

Next, we explicitly observe the following consequence of Theorem 36. This
corollary plays a role in the elliptic estimates presented in Sect. 4.3.

Corollary 37 Hγ is locally the graph of a Lipschitz function with Lipschitz constant
�H dependent only on a and n.

Proof This follows readily from the estimates in [6, p.12] required to prove Theorem
36, in particular from themultiplicative bounds on the gradient of the defining function
of Hγ . ��

We can now define the tubes in our refined Thick–Thin decomposition. Given a
geodesic γ satisfying (34), we consider the tube Vγ around it defined by:

Hγ = ∂Vγ , and γ ∈ Vγ . (38)
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In particular, these new tubes always have smooth boundaries. We now derive a few
lemmas concerning the tubes Vγ that are not directly found in [6]; so, we provide all
details of the proof. Let

Lemma 39 Let γ be a geodesic in M satisfying (34). For any point x ∈ Hγ , we have

26

50
μ ≥ injg(x) ≥ 24

50
μ.

In particular, U
24
50
γ ⊂ Vγ ⊂ U

26
50
γ .

Proof Given x ∈ Hγ , denote by x̄ the point of intersection with ∂Uγ of the radial arc
from γ to x . We have the standard estimate:

d(x, x̄) ≥ |injg(x) − injg(x̄)|. (40)

By definition of Uγ , we have injg(x̄) = μ
2 . Thus, by Theorem 36 we have:

μ

50
+ μ

2
= 26

50
μ ≥ injg(x) ≥ μ

2
− μ

50
= 24

50
μ.

��
Next, we show that these tubes are uniformly separated.

Lemma 41 If γ 
= ζ are two distinct closed geodesics in M satisfying (34), then

d(Vγ , Vζ ) >
48

50
μ.

Proof Let β be a unit speed geodesic realizing the distance between the compact sets
Vγ and Vζ . There exist t1, t2 ∈ (0, d(Vγ , Vζ )) such that β(t1) ∈ ∂Tγ and β(t2) ∈ ∂Tζ .
By Lemma 39 we have

t1 ≥ μ − injg(β(t1)) ≥ μ − 26

50
μ, (d(Vγ , Vζ ) − t2) ≥ μ − 26

50
μ,

so that

d(Vγ , Vζ ) ≥ 24

50
μ + 24

50
μ + d(Tγ , Tζ ) >

48

50
μ.

Note that by the usual Thick–Thin decomposition, the Margulis tubes Tγ and Tζ are
disjoint. ��

Wealso need to know that eachVγ contains a “quantum” of volume. This is essential
in studying sequences that BS-converge (cf. Lemma 72). In [6], the authors show this
is the case for the tubes Tγ . We show that their argument can be extended to the tubes
Vγ ⊂ Tγ .
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Lemma 42 If γ is a closed geodesic satisfying (34), then

V ol(Uλ
γ ) > cn

(λ

2
μ

)n
, (43)

and therefore

V ol(Vγ ) > cn

( 6

25
μ

)n
.

Proof Let x ∈ ∂U
λ
2
γ , and let y be such that in jg(y) = λμ/2.

We claim that B 1
2λμ(y), the open geodesic ball of radius 1

2λμ centered at y, is

entirely contained in Uλ
γ . In fact, for any z ∈ B 1

2λμ(y) we have

1

2
λμ > d(z, y) ≥

∣∣∣injg(z) − 1

2
λμ

∣∣∣,

which forces injg(z) < λμ. Thus, we conclude that B 1
2λμ(y) ⊂ Uλ

γ . By volume
comparison with Euclidean space we have:

V ol(Uλ
γ ) > V ol

(
B 1

2λμ(y)
)

≥ cn

(1
2
λμ

)n
.

Since Vγ ⊃ U
24
50
γ , we have V ol(Vγ ) ≥ cn

(
6
25λμ

)n
. ��

Wecontinue deriving effective estimates for the sizes of tubes in theBuser–Colbois–
Dodziuk Thick–Thin decomposition.

Let δp,v(t) be a unit speed radial arc, and let t = Rλ be the first time the radial arc
intersects the boundary of Uλ

γ . We have the estimate

cn

(λμ

2

)n ≤ l(γ )a−(n−1) sinhn−1(a Rλ). (44)

In order to prove (44), we argue as follows. Let y ∈ δp,v([0, Rλ]) be a point such that
injg(y) = 1

2λμ. Then the inclusion B λμ
2

(y) ⊂ Uλ
γ follows from the proof of Lemma

42. Next, we claim that

B λμ
2

(y) ⊂ {z ∈ Uλ
γ | d(z, γ ) ≤ Rλ}.

This follows from the triangle inequality since for any z ∈ B λμ
2

(y)

d(z, γ ) ≤ d(γ, y) + d(y, z) ≤ Rλ − λμ

2
+ λμ

2
= Rλ.
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Thus, by volume comparison with a space of constant sectional curvature −a2, we
obtain the claimed inequality (44).We therefore conclude there exists k = k(a, n, λ) >

0 such that

Rλ ≥ ln( 1
l(γ )

)

(n − 1)a
+ k(a, n, λ). (45)

Thus, if we denote by Rmin,λ(γ ) the length of the shortest radial arc reaching ∂Uλ
γ we

have that

lim
l(γ )→0

Rmin,λ(γ ) → ∞.

4.3 Pointwise Bounds for Harmonic Forms onManifolds with Boundary

Let MT := M \ ∪γ V ◦
γ , where the Vγ are the modified tubes defined in (38). We will

need elliptic estimates for harmonic forms in MT satisfying Neumann or Dirichlet
boundary conditions on ∂ MT . In order to keep track of both the dependence of the
estimates on the geometry of the Margulis tube and on the local injectivity radius, in
this section we provide a proof of these estimates.

Let ‖ f ‖L2
1(BR(p),g) and ‖ f ‖L2

1(BR(p),Euclidean) denote the Sobolev norm

‖ f ‖2L2(BR(p))
+ ‖d f ‖2L2(BR(p))

computed with respect to g and with respect to the Euclidean metric induced by the
exponential map, respectively.

Proposition 46 Let (Mn, g) be compact with −a2 ≤ secg ≤ −1. There is a constant
S(a, n) depending only on a and n so that for all geodesic balls BR(p) ⊂ M, with
R ≤ 1, and all f ∈ C∞

c (BR(p) ∩ MT ), one has

S(a, n)‖ f ‖2
L2
1(BR(p)∩MT )

≥ ‖ f ‖2
L

2n
n−2 (BR(p)∩MT )

. (47)

Proof For R < min{injg(p), 1}, there are constants ca, j and Ca, j , j = 0, 1 depending
only on a and n so that for any domain A ⊂ BR(p),

ca,0‖ f ‖
L

2n
n−2 (A,Euclidean)

≤ ‖ f ‖
L

2n
n−2 (A,g)

≤ Ca,0‖ f ‖L2(A,Euclidean), (48)

and

ca,1‖ f ‖L2
1(A,Euclidean) ≤ ‖ f ‖L2

1(A,g) ≤ Ca,1‖ f ‖L2
1(A,Euclidean). (49)

By [18, Theorem 5] and its proof (see also [13]), there exists a bounded extension
map

ET ,R,p : W 1,2
0 (BR(p) ∩ MT ,Euclidean) → L2

1(R
n,Euclidean),
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satisfying ET ,R,p f − f = 0 on BR(p) ∩ MT and

‖ET ,R,p f ‖L2
1(R

n ,Euclidean) ≤ B(�H , n)‖ f ‖L2
1(BR(p),Euclidean),

with bound B(�H , n) depending only on dimension and the Lipschitz constant �H

for a defining function for ∂ MT (cf. Corollary 37). Hence we have

‖ f ‖2
L

2n
n−2 (BR(p)∩MT ,g)

≤ C2
a,0‖ f ‖2

L
2n

n−2 (BR(p)∩MT ,Euclidean)

≤ C2
a,0

(n − 1)2

(n − 2)2
‖d(ET ,R,p f )‖2L2(Rn ,Euclidean)

≤ C2
a,0

(n − 1)2

(n − 2)2
B(�H , n)2‖ f ‖2

L2
1(BR(p)∩MT ,Euclidean)

≤ C2
a,0

c2a,1

(n − 1)2

(n − 2)2
B(�H , n)2‖ f ‖2

L2
1(BR(p)∩MT ,g)

(50)

Set

S(a, n) := C2
a,0

c2a,1

(n − 1)2

(n − 2)2
B(�H , n)2

to obtain the desired result. ��
Given Proposition 46, we can now prove the main estimate of this section.

Proposition 51 Let h be a strongly harmonic form on MT satisfying Dirichlet or
Neumann boundary conditions on ∂ MT . Then there exist cn ∈ (0,∞) independent
of M and CG > 0 depending on the second fundamental form of Hγ , the Margulis
constant of M, and the Riemann curvature tensor of M such that for any p ∈ MT ,
and L ≤ 1,

‖h‖2L∞(BL (p)) ≤ cn S(a, n)
n
2

( 1

L2 + CG

) n
2 ‖h‖2L2(B2L (p))

. (52)

In particular, choosing L = μ
4 , we have

|h|2(p) ≤ r(a, n)‖h‖2L2(B μ
2

(p))
. (53)

where r(a, n) := cn S(a, n)
n
2
( 16

μ2 + CG
) n
2 .

Proof By Lemma 41, the connected components of ∂ MT are uniformly apart. Without
loss of generality, we assume h satisfies Dirichlet boundary conditions: the pullback
to the boundary of h and d∗h vanishes. Let ψ be a smooth function supported in MT

(but not necessarily compactly supported in M0
T ). Then we have
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0 =
∫

MT

〈�h, ψ2h〉dv

=
∫

MT

(〈∇h,∇(ψ2h)〉 + 〈Rriemh, ψ2h〉)dv −
∫

∂ MT

〈∇νh, ψ2h〉dσ, (54)

where ν is an outward pointing unit normal and Rriem denotes the curvature oper-
ator given in a local orthonormal frame {ei }i and dual coframe {ωi }i by Rriem =
−e(ωi )e∗(ω j )Rriem(ei , e j ), with e(ωp) denoting exterior multiplication on the left
by ωp, e∗(ωp) its adjoint, and Rriem(·, ·) the Riemannian curvature 2 form. Since h
is strongly harmonic, we have

dh =
∑
j≥1

e(ωi )∇ei h = 0, d∗h = −
∑
j≥1

e∗(ωi )∇ei h = 0,

so that if e1 = ν on ∂ MT , we obtain the identities

∇νh = −
∑
j>1

〈(e∗(ω1)e(ω j ) − e∗(ω j )e(ω1))∇e j h. (55)

Since h satisfies Dirichlet boundary conditions, we have e(ω1)h = 0 on ∂ MT . Thus,
we have

−〈∇νh, ψ2h〉 = −
∑
j>1

〈(e∗(ω j )[e(ω1),∇ j ]h, ψ2h〉 = 〈I I h, ψ2h〉, (56)

where I I denotes the second fundamental form operator

I I = I I jke∗(ω j )e(ωk).

From (54) and (56), we obtain a Bochner formula for harmonic forms satisfying
Dirichlet boundary conditions:

0 =
∫

MT

(〈∇h,∇(ψ2h)〉 + 〈Rriemh, ψ2h〉)dv +
∫

∂ MT

〈I I h, ψ2h〉dσ. (57)

This equality now allows us to proceed with the usual proof of Moser iteration with
one additional modification required for controlling the boundary term. We repeat the
standard argument and add in the contribution from the boundary. We will follow the
treatment in [8].

Given p ∈ MT , let η : R → [0, 1] be a smooth function identically 1 on (−∞, L]
and supported on (−∞, 2L], with |dη| ≤ 2

L . Set ηk(x) = η(2k(d(x, p)−L)). Observe
that the function ηk(t) is equal to one on (−∞, L(1 + 2−k)], and it is supported on
(−∞, L(1 + 21−k)]. Let χk denote the characteristic function of Bk := B(p, L(1 +
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2−k)). Then

χk ≤ ηk ≤ χk−1, (58)

and

|dηk | ≤ 2k+1

L
χk−1. (59)

Now we choose ψ = ηk |h|pk−1 in (57) with pk to be chosen later to get

∫

MT

|∇(ηk |h|pk−1h)|2dv =
∫

MT

(|d(ηk |h|pk−1)|h||2 − 〈Rriemh, η2k |h|2pk−2h〉)dv

−
∫

∂ MT

〈I I h, η2k |h|2pk−2h〉dσ. (60)

Expanding and rearranging terms yields

∫

MT

|∇(ηk |h|pk−1h)|2dv =
∫

MT

∣∣∣
( pk − 1

pk

)
d(ηk |h|pk ) + 1

pk
d(ηk)|h|pk

∣∣∣
2
dv

−
∫

MT

〈Rriemh, η2k |h|2pk−2h〉dv

−
∫

∂ MT

〈I I h, η2k |h|2pk−2h〉dσ. (61)

Observe that after some manipulation

∫

MT

∣∣∣
( pk − 1

pk

)
d(ηk |h|pk ) + 1

pk
d(ηk)|h|pk

∣∣∣
2
dv ≤

(
1 − 1

pk

) ∫

MT

|d(ηk |h|pk )|2dv

+ 1

pk

∫

MT

|d(ηk)|h|pk |2dv.

Now Kato’s inequality implies the pointwise bound

|∇(ηk |h|pk−1h)| ≥ |d(ηk |h|pk )|,

so that

1

pk

∫

MT

|d(ηk |h|pk )|2dv ≤ 1

pk

∫

MT

|d(ηk)|h|pk |2dv + CR

∫

MT

η2k |h|2pk dv

+ CI I

∫

∂ MT

η2k |h|2pk dσ, (62)
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where CI I := ‖I I‖L∞(∂ MT ), and CR := ‖Rriem‖L∞(MT ). Let φ be a C1 cutoff
function compactly supported in [0, 24μ

50 ) satisfying

φ(t) = 1, for t ≤ 12μ

50
, and |dφ(t)| ≤ 100

12μ
.

Then φ(d(x, H)) is Lipschitz with Lipschitz constant 25
3μ , and by construction, it is

identically equal to one on ∂ MT . Now, let R be the radial vector field as defined in
Theorem 36. Also, let θ be the angle between R and the unit normal ν on ∂ MT . We
then have

〈ν,R〉 = cos θ ≥ cos (π/2 − α) = sin α,

where α ∈ (0, π/2) is as in the first statement of Theorem 36. Thus, by applying the
divergence theorem toR

CI I

∫

∂ MT

η2k |h|2pk dσ

≤ CI I

sin(α)

∫

∂ MT

η2k |h|2pk 〈ν,R〉dσ

= CI I

sin(α)

∫

MT

d(η2k |h|2pk φ(d(x, H))iRdv)

≤ CI I

sin(α)
‖d(ηk |h|pk )‖L2‖φηk |h|pk ‖L2(MT )

+ CI I

sin(α)

( 25

3μ
+ a coth(10a)

)2‖ηk |h|pk ‖2L2(MT )

≤ 1

2pk
‖d(ηk |h|pk )‖2L2(MT )

+ CI I

sin(α)

(100
μ2 + pkCI I

2 sin(α)

)
‖ηk |h|pk ‖2L2(MT )

, (63)

where we have used Lemmas 28 and 33 to bound the covariant derivative of iR above.
Inserting this inequality back into (62) gives

‖ηk |h|pk ‖2
L2
1(MT )

≤ 2
(4k+1

L2 + 100pkCI I

μ2 sin(α)
+ p2k C2

I I

2 sin2(α)
+ CR + 1

2

)
‖h‖2pk

L2pk (Bk−1)
,

(64)

Now we follow the usual Moser iteration proof as in [8]. By Proposition 46, we
have

‖ηk |h|pk ‖2
L

2n
n−2 (MT )

≤ S(a, n)‖d(ηk |h|pk )‖L2
1(MT ),

so that

‖ηk |h|pk ‖2
L

2n
n−2 (MT )
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≤ 2S(a, n)
(4k+1

L2 + 100pkCI I

μ2 sin(α)
+ p2k C2

I I

2 sin2(α)
+ CR + 1

2

)
‖h‖2pk

L2pk (Bk−1)
. (65)

Set

CG := 100CI I

μ2 sin(α)
+ C2

I I

2 sin2(α)
+ CR + 1

2
. (66)

For pk ≥ 1,

‖h‖2pk

L
2npk
n−2 (Bk )

≤ 2S(a, n)p2k4
k+1

( 1

L2 + CG

)
‖h‖2pk

L2pk (Bk−1)
. (67)

Choose now pk = ( n
n−2 )

k . Then taking pk roots of (67) and iterating yields

‖h‖2
L2pk+1 (Bk )

≤
k∏

j=0

S(a, n)
1

p j 4
j+2
p j p

2
p j
j

( 1

L2 + CG

) 1
p j ‖h‖2

L2p j (B j−1)
. (68)

Taking the limit as k → ∞ and setting

cn :=
∞∏

k=1

4
k+2
pk (69)

yields

‖h‖2L∞(BL (p)) ≤ cn S(a, n)
n
2

( 1

L2 + CG

) n
2 ‖h‖2L2(B2L (p))

. (70)

If a harmonic form h satisfies Dirichlet boundary conditions, then ∗h satisfies Neu-
mann boundary conditions, and | ∗ h| = |h|. Hence the Dirichlet estimate implies the
Neumann estimate. ��

4.4 Non Uniformly Discrete Sequences

Let (Xn, g) be a simply connectedmanifold of dimension n ≥ 3. Assume the sectional
curvature is pinched:

−a2 ≤ secg ≤ −1

with a ≥ 1. Let (Ml , gl) be a sequence of closed manifolds BS-converging to (X , g),
which we now assume not to be uniformly discrete. For any element (Ml , gl) in the
sequence, consider a small geodesic γ such that

l(γ ) ≤ c1 exp(−c2a)μnan−1
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as in (34) of Lemma 33. Remove from Ml the union of the modified tubes V l
γ to get a

manifold with boundary

Ml,T := Ml \ ∪γ V l
γ , ∂ Ml,T = ∪γ Hl

γ .

Denote by NT (Ml) the number of disjoint tubesV l
γ in Ml . From the long exact sequence

in cohomology,

... → Hk(Ml,T , ∂ Ml,T ;R) → Hk(Ml;R) → Hk(∪γ V l
γ ;R)

→ Hk+1(Ml,T , ∂ Ml,T ;R) → ...,

we obtain the inequality

bk(Ml) ≤ dimR Hk(Ml,T , ∂ Ml,T ;R) + NT (Ml). (71)

The next lemma shows that we can control NT (Ml) in terms of the total volume.

Lemma 72 Let (Xn, g) be a simply connected manifold of dimension n ≥ 3 with

−a2 ≤ secg ≤ −1,

and a ≥ 1. If (Ml , gl) is a sequence of closed manifolds BS-converging to (X , g),
then

NT (Ml)

V olgl (Ml)
<

ρ(Ml , μ)

cn

(
21
200μ

)n . (73)

Proof By Lemma 42, every Margulis tube V l
γ satisfies

V ol(V l
γ ) > cn

( 21

200
μ

)n := ε0

where cn is a positive constant depending on the dimension only, and μ(n, a) > 0 is
the usual Margulis constant for a negatively curved a-pinched n-manifold. By Lemma
39, if γ is a short geodesic satisfying Eq. (34), then

V l
γ ⊂ (Ml)<μ.

Thus, we have

NT (Ml) · ε0

V ol(Ml)
≤

∑
γ V ol(V l

γ )

V ol(Ml)
< ρ(Ml , μ).

��
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Lemma 74 Let (Xn, g) be a simply connected manifold of dimension n ≥ 3 with

−a2 ≤ secg ≤ −1,

and a ≥ 1. Let (Ml , gl) be a sequence of closed manifolds BS-converging to (X , g).
For any k ∈ N such that

an,k = (n − 1) − 2ka > 0,

we have for all R � 1,

dimR Hk(Ml,T , ∂ Ml,T ;R)

V olgl (Ml)
≤

(
n
k

)
r(a, n)ρ(Ml , R) + c(n, k)e−an,k (R−1).

If an,k = 0, we have for all R � 1,

dimR Hk(Ml,T , ∂ Ml,T ;R)

V olgl (Ml)
≤

(
n
k

)
r(a, n)ρ(Ml , R) + d(n, k)(R − 2)−1.

Proof For any l ∈ N, denote by

i : ∂ Ml,T → Ml,T

the injection map. Recall that the relative cohomology Hk(Ml,T , ∂ Ml,T ;R) is
isomorphic to the space of harmonic forms satisfying Dirichlet boundary conditions:

Hk(Ml,T , ∂ Ml,T ;R) � {α ∈ C∞(�k T ∗(Ml,T \∂ Ml,T )) | �kα = 0, i∗α = 0}.

Let {αi }i be an L2 orthonormal basis of harmonic forms satisfying Dirichlet boundary
conditions, and consider the function

T r K (x, x) =
∑

i

|αi (x)|2

which satisfies
∫

Ml,T

T r K (x, x)dv = dimR Hk(Ml,T , ∂ Ml,T ;R).

By Proposition 51, for any unit norm harmonic k-form α satisfying Dirichlet boundary
conditions in Ml,T , there exists a constant r(a, n) > 0 such that

|α(p)|2 ≤ r(a, n), (75)

for any p ∈ Ml,T .On the other hand ifwe take a point in p ∈ Ml,T with large injectivity
radius, we can apply Theorem 24 to obtain much stronger bounds. Consider p ∈ Ml
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with in jg(p) = R � 1. We observe that any such point lies in Ml,T and must be quite
distant from ∂ Ml,T ⊂ Ml . Indeed, by Lemma 39, as any point q ∈ ∂ Ml,T = ∪γ Hl

γ

satisfies injgl
(q) ≤ 26

50μ, we have

dgl (p, q) ≥ injgl
(p) − 26

50
μ > R − μ > R − 1, (76)

as we have assumedμ < 1. Thus if p ∈ Ml has injgl
(p) ≥ R >> 1, then B̄R−1(p) ⊂

M0
l,T . Set

(Ml,T )<R := (Ml)<R ∩ Ml,T

and similarly (Ml,T )≥R as its complement in Ml,T . The Price inequality given in
Theorem 24 then tells us that for R >> 1,

∫

(Ml,T )≥R

T r K (x, x)dv ≤
{

c(n, k)e−an,k (R−1)V ol((Ml,T )≥R) if an,k > 0,

d(n, k)(R − 2)−1V ol((Ml,T )≥R) if an,k = 0.

(77)

Moreover, by (53)

∫

(Ml,T )<R

T r K (x, x)dv ≤
(

n
k

)
r(a, n)V ol((Ml,T )<R). (78)

Combining (77) and (78) together with the inequalities

V olgl ((Ml,T )<R)

V olgl (Ml)
≤ ρ(Ml , R),

we immediately obtain the desired inequalities. ��
We now have the main theorem of this section.

Theorem 79 Let (Xn, g) be a simply connected manifold of dimension n ≥ 3 with

−a2 ≤ secg ≤ −1,

and a ≥ 1. Let (Ml , gl) be a sequence of closed manifolds BS-converging to (X , g).
For any k ∈ N such that

an,k = (n − 1) − 2ka > 0,

we have for all R � 1,

bk(Ml)

V olgl (Ml)
≤ (ε−1

0 +
(

n
k

)
r(a, n))ρ(Ml , R) + c(n, k)e−an,k (R−1).
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If an,k = 0, we have for all R � 1,

bk(Ml)

V olgl (Ml)
≤ (ε−1

0 +
(

n
k

)
r(a, n))ρ(Ml , R) + d(n, k)(R − 2)−1.

Consequently

lim
l→∞

bk(Ml)

V olgl (Ml)
= 0.

Proof The proof follows from (71), Lemmas 72, and 74, and the monotonicity of in
R of ρ(M, R). ��
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