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Abstract

We study Betti numbers of sequences of Riemannian manifolds which Benjamini—
Schramm converge to their universal covers. Using the Price inequalities we developed
elsewhere, we derive two distinct convergence results. First, under a negative Ricci
curvature assumption and no assumption on sign of the sectional curvature, we have
a convergence result for weakly uniform discrete sequences of closed Riemannian
manifolds. In the negative sectional curvature case, we are able to remove the weakly
uniform discreteness assumption. This is achieved by combining a refined Thick—
Thin decomposition together with a Moser iteration argument for harmonic forms on
manifolds with boundary.
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1 Introduction

Let (M", g) be a closed Riemannian manifold. Define the normalized Betti numbers
and L?-Betti numbers respectively as:
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b (M)
Vol(M)’

by (M)

b (M) = Vol (M)

and 15,(3;,(M) = (1)

where b (M) denotes the kth Betti number of M and bl((z) (M) denotes the kth L2-Betti
number. In an influential paper [15], Liick shows that if M is a closed manifold with
residually finite fundamental group, then

b2 (M) = lim by o(M)), )

8 [—o0

for any tower of coverings {M;}; of M associated to a cofinal filtration of its fundamen-
tal group. The L?-Betti numbers were originally defined analytically by Atiyah in [3],
and Liick’s theorem provides a remarkable connection between analysis and topology
which has inspired considerable mathematics in the last two or three decades, see for
example the bibliography of [16].

More recently, Abert et al. in [1] and [2] generalized Luck’s approximation theorem
in the context of lattices in Lie groups and in the context of finite volume manifolds of
negative curvature. To describe this generalization, we first recall a rather weak notion
of convergence of Riemannian manifolds, Benjamini—Schramm convergence, which

is adapted from graph theory [5]. In Riemannian terms, this convergence is given as
follows.

Definition 3 Let (M;, g;); be a sequence of closed Riemannian manifolds which share
a common universal Riemannian cover (X, g). Given x € M), we denote by inj a (x)
the injectivity radius of (M, g;) at x. We define the R-thin part of (M;, g;), denoted
(M) <R, by

(Mp)<g := {x € M |inj, (x) < R}.
Define a relative measure of the thin regions of M; by

Volg (M) <r)

M;, R) :=
o(M;, R) Voly (M)

“

We say that the sequence (M, g;); Benjamini—Schramm converges to (X, g), if for
any R > 0 we have

lim p(M;, R) = 0.
[—o0

Finally, we say that the sequence (M, g;) is uniformly discrete, if there exists € > 0
such that for any / € N:

min inj, (x) > €.
xeM; Jg[

We can now state one of the main results in [1].
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Benjamini-Schramm Convergence Page 3 of 26 16

Theorem 5 (Corollary 1.4in [1]) Let {I";}; be a sequence of uniformly discrete, torsion
free lattices acting co-compactly on a symmetric space G /K of non-compact type. Let
{[''\G/K}; be the associated sequence of compact locally symmetric spaces. For any
k < dim(G/K), if {I'\G/K}; Benjamini—Schramm converges to G /K (equipped
with the standard symmetric metric), we have

Jim by o (T\G/K) = B (G/K).

where the k-th L>-Betti number of the symmetric space, ,3,52)(G /K), is defined in [1,
6.24], and satisfies l;l(czi, ('\G/K) = ﬁ,ﬁz)(G/K)for every cocompact torsion free T'.

When {I';}; is a cofinal filtration of a given torsion free lattice acting co-compactly
on G/K (cf. Theorem 2.1 in [9]), the sequence of coverings {I';\G/K}; Benjamini—
Schramm converges to G/K, and Theorem 5 is a genuine generalization of Liick’s
original approximation theorem in the case of locally symmetric spaces. We also
observe that, for subgroups of a fixed lattice, Theorem 1.12 in [1] provides effective
bounds on the normalized Betti numbers.

In the real hyperbolic case G/K = H", Abert et al. in [1] obtain their strongest
result. Remarkably, they are able to remove the uniform discreteness assumption on
the lattices.

Theorem 6 (Theorem 1.8. in [1]) Let {T';\H"}; be a sequence of compact hyperbolic
manifolds of dimension n that Benjamini—Schramm converge to H". For any k < n,
we have

Jlim b (T \E") = g7 (.

More recently, in the preprint [2], four of the seven authors of [1], extended Liick’s
approximation theorem to sequences of pinched negatively curved manifolds which
Benjamini—Schramm converge to their universal cover.

In this paper, we contribute to this circle of ideas by extending the techniques of [10]
to prove and guantify vanishing of normalized Betti numbers (in certain degrees) along
sequences of closed Riemannian manifolds which Benjamini—Schramm converge to
their universal covers. Whereas the focus of [1] and [2] is to relate normalized Betti
numbers and L>-Betti numbers, in this paper we concentrate on providing bounds and
vanishing results for these quantities. Here we consider geometries more general than
those considered in [2]. Our techniques are rather distant from those of [1] and [2].
Indeed, we rely on geometric inequalities for harmonic forms on negatively curved
Riemannian manifolds which we described in [10]. In particular, some of our results
do not require any direct assumption on the sectional curvature.

The next definition is tailored to our analytical techniques, and it will be used
throughout this paper. This definition is related to the notions of convergence
considered in [1] and [2], but at the same time it contains some new elements.
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16 Page4of 26 L. F. Di Cerbo, M. Stern

Definition 7 Let (M, g/); be a sequence of closed Riemannian manifolds which
share a common universal Riemannian cover (X, g). We say a sequence of mani-
folds (My, g1); is weakly uniformly discrete and converges to (X, g) if there exists a
sequence {R;}; C (0, oo) with

lim R; = oo,
[— 00

such that

li

1t — Y o Ry =0
13&( +injgl(M1)) p(M, Ri) = 0.

Before listing our main results, it is important to state the precise connection
between the notion of convergence given in Definition 7 and the usual Benjamini—
Schramm convergence (cf. [1] and [2]).

Remark 8 1f a sequence of manifolds (M, g;); Benjamini—Schramm converges, then
there is always a sequence {R;}; converging to oo such that

lim p(M;, R;) = 0. ©)]
[—o0

Hence every uniformly discrete sequence which Benjamini—Schramm converges is
weakly uniformly discrete.

On the other hand, weakly uniformly discrete sequences may well have injectivity
radius that goes to zero along a subsequence, and therefore need not be uniformly
discrete in the sense of Definition 3.

We can now state our first result which requires only a negative Ricci curvature assump-
tion, and no uniform lower bound on the injectivity radius. On the other hand, we
require the weakly uniformly discrete assumption (cf. Definition 7).

Theorem 10 Let (X", g) be a simply connected manifold without conjugate points
and with —1 < secg < 1. Assume there exists § > 0 such that

—Ricg > 6g.

Let (M, g1) be a weakly uniformly discrete sequence of closed manifolds converging
to (X, g). Then for any k € N such that § > 4k?, we have

lim by o (M) = 0.
[— o0

We remark that, in [10, Theorem 122], under the same curvature assumptions as in
Theorem 10, we proved the following vanishing theorem for L?-Betti numbers:

bP (M) =0, forall I.
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Benjamini-Schramm Convergence Page 5 of 26 16

Thus, Theorem 10 asserts the convergence along the Benjamini—Schramm sequence
of certain normalized Betti numbers to the corresponding L2-Betti number.

If we assume the sectional curvature to be strictly negative, the techniques developed
in [10] cover a larger range of Betti numbers. Using this fact, we are able to prove the
following (see Theorem 79 for a stronger statement and details of the proof).

Theorem 11 Let (X", g) be a simply connected manifold with
—a? < secg < —1,

and a > 1. Let (M, g1) a sequence of closed Riemannian manifolds BS-converging
to (X", g). For any k € N such that

apny = m—1)—2ka >0,
we have
lim by o (M) = 0.
[—>o0

Once again, under the same curvature assumptions as in Theorem 11, we have
elsewhere proved the following vanishing theorem for L2-Betti numbers

bP(xm =0 = bPM)=0 forall I;

see Sect. 7 and Proposition 126 in [10] (cf. also Proposition 4.1 in [12] when a,, x > O,
and [11] when a = 1). Hence Theorem 11 is already a consequence of the preceding
references and [2]. None the less, our convergence result is completely independent
of the theory of L2-Betti numbers, and it follows directly from the Price inequalities
for harmonic forms we developed in [10]. Indeed all of the analysis can be performed
directly on the sequence of compact manifolds, without the need of studying L>-
harmonic forms on the universal Riemannian cover.

Observe that Theorem 11, unlike Theorem 10, does not require any uniform dis-
creteness assumption. This greater generality is present in [2] and Theorem 6 as well,
and it depends crucially on the fact that in the negative sectional curvature regime,
thanks to the Gromov—Margulis lemma (cf. [4]), we understand quite well the topology
of regions with small injectivity radius. On the other hand, our proof is substantially
different from the approach presented in [2].

2 Dimension Estimates Revisited

Let (M", g) be a closed Riemannian manifold, and denote by 'Hi‘, (M) the finite
dimensional vector space of harmonic k-forms. Define normalized Betti numbers

b (M)

bk’g(M) = W

12)
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In Sect. 5 of [10] and again in Lemma 15, we show

2
br.g (M) < (Z) max{% Lo e HE M)\ {0)). (13)
L2

Under various hypotheses on the Ricci curvature or the Riemannian curvature and k, in
[10] we showed exponential or polynomial bounds in the injectivity radius for the nor-
malized Betti numbers. Those estimates, in conjunction with (13) suffice to establish
convergence to zero of sequences of normalized Betti numbers of closed Riemannian
manifolds whose injectivity radii diverge, for example, sequences of real hyperbolic
manifolds associated to a cofinal filtration of a given torsion free co-compact lattice
in IsoH") = PO(n, 1), with k # % On the other hand, for sequences of closed
Riemannian manifolds that converge in the Benjamini—Schramm sense, it is not nec-
essarily the case that the injectivity radius goes to infinity (even if the pointed injectivity
radius goes to infinity almost everywhere). Thus, we modify the dimension estimate
for H’;(M ) used in Sect. 5 of [10], in order to obtain vanishing results in this broader
context.

Let K (-, -) denote the Schwarz kernel for the L2 orthogonal projection onto ng, (M).
Thus for x, y € M,

K(x,y) € Hom(Q'T; M, Q“T} M).

Given an L2-orthonormal basis {« j}lj:1 for H’; (M), we have

I
K, y) =Y a0, (). (14)

i=1
Next, we derive a pointwise estimate on the trace of K (x, x).

Lemma 15 Given K (-, -) as above, we have for any x € M

0<TrK(x,x) < (") sup lor (x)?.
aeHE (M):lll?,=1

Proof Fix a point x € M, and let {e,'},.(i)l be a local orthonormal frame for Q¥7*M in
a neighborhood of x. Then

® !
TrK(x,x) = Y (K(x,x)(e), &) = Y leil; = 0.
i=1

i=1

Next, given a point p € M, there exists a unit eigenvector z of K (p, p) with maximal
eigenvalue say A. Thus, by construction

(K(p. p)z.2) = Alzl} = A,
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Benjamini-Schramm Convergence Page 7 of 26 16

with
l
(K(p, p)z.2) Z (z, @i (P))(z, 2i (p)).

Thus

l I
/M<K(x,p>z,1<(x,p>z>dug = /M <Zai(x><z, m(p)),Zaj<x)<z,aj<p>>>dug
i=1 j=1
I
= >z aip)iz a(p) fM (i (x), 0 () d g
i,j=l1
I

= Z (z, 0;(P))(z, 0t (p))Sij = A.

Now, set
K(x, p)z k
a(x) := ————— € H,(M),
N §
with
lell ;2 = 1.

In sum, we have found an @ € H’g (M) such that

leell7, =1, Ja(p)|* =

As A was the largest eigenvalue of K (p, p), we have the estimate

TrK(p. p) < (”)x < (”) sup [ee(p)]>.
k k

2 _
o2, =1

Since p is an arbitrary point in M, the proof is complete. O

The following lemma is the usual elliptic regularity for harmonic forms in bounded
geometry. One proof is a standard application of Moser iteration. See for example [14,
Proposition 2.2], where the theorem is proved for hyperbolic manifolds and Proposition
51, where it is proved for manifolds with boundary.

Lemma 16 Let (M™, g) be a closed Riemannian manifold with
—a <secg <1,

and let
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injg(M) = Irjréiﬂl}linjg(p) >0

be the global injectivity radius. Given a harmonic k-form o € Hfg‘, (M), foranyp e M
and L < min(injg (M), 1) there exists a strictly positive constant d(n,a, k, L) :=

d(n,a, k)(1 + )" such that

2

eIz s, (pyy < A0 a ks DIl T2, (-
2

Combining Lemma 15 with Lemma 16, we get the key estimate of this section.

Lemma 17 Given (M",g), and K(-,-) as above, there exists a constant dy =
do(n,a,k, injg(M)) > 0 such that

0<TrK(x,x) <do(n,a,k,inj,(M)),

forany x € M.

Proof By Lemma 15, we have

0<TrK(x,x) < <n> sup |a(x)|2.
k acHE(M):lell? =1

Now apply Lemma 16 to obtain the desired estimate. O

3 Negative Ricci Curvature

In this section, we study manifolds with negative Ricci curvature.

Definition 18 Let (M, g) be a complete Riemannian manifold. Given any R > 0, we
define the R-thin part of (M, g) as

M_g:={xeM| injg(x) < R},

where inj, (x) is the injectivity radius of (M, g) at the point x. We define the R-thick
part, denoted by M g, as the complement of the R-thin part.

The proof of [10, Theorem 66], implies the following theorem.

Theorem 19 Let (M", g) be a compact manifold with —1 < sec, < 1. Given k € N,
assume there exists § > 4k* such that

—Ric > dg.
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Let p be large enough so that

5
“/7_ coth(v/3p) — k coth (p) > € > 0.

There exists c(n, k, 8, €) > 0 so that for any a € H/;,(M) and p € M with injg(p) >
p + 2, we have

]n a2 dv < c(n, k, 8, €)e VPR (=p=2) 62 (20)
B, (p)

(M.g)

A corollary of this estimate is the following result for sequences of Riemannian
manifolds which Benjamini—Schramm converge to their universal cover.

Theorem 21 Let (X", g) be a simply connected manifold without conjugate points
with —1 < secy < 1. Assume there exists 6 > 0 such that

—Ricg > dg.

Let (M, g1) be a weakly uniformly discrete sequence of closed manifolds converging
to (X, g). Then for any k € N such that § > 4k, we have

br(M;)
m — =
=00 Volg, (M)

Proof Observe that for any (k, R) € N x (0, oo) such that § > 4k%and R > max{p+
2, Rp}, with p as defined in Theorem 19, we have the estimate:

b (M) _ f(Ml)<R TrK(x, x)dpg, f(M/)ZR TrK(x,x)dug

Volg, (M) Volg, (M) Volg, (M;)
n 1 n
< d s Uy k l YN M ) R
_Q>ma)(+mﬂwﬂp(1)
+e(n, k, 8)e~ (V3—2O(R=p=2) 22)

Choose R = R, for some sequence {R}; given by the definition of weakly uniformly
discrete (Definition 7), and the result follows. O

Remark 23 Theorem 122 in [10] implies that, under the curvature assumptions of
Theorem 21, we have

b? (My) := dimr, (H5(X)) =0,
for any k € N such that § > 4k>. Thus, Theorem 21 can alternatively be rephrased

by saying that the normalized k-Betti number converge along the sequence to the
corresponding k-th L2-Betti number.
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4 Pinched Negative Sectional Curvature

In this section, we study sequences of Riemannian manifolds with negative and pinched
sectional curvature which Benjamini—Schramm converge. The starting pointis as usual
the Price inequality for harmonic forms on manifolds with negative sectional curvature
established in [10].

4.1 Uniformly Discrete Sequences

We start with sequences of uniformly discrete, negatively curved and pinched mani-
folds which BS-converge. The key technical point is a Price inequality for harmonic
k-forms. For convenience, we assemble in a single statement three results stated
distinctly in [10].

Theorem 24 (Theorems 87 & 96 and Corollary 108 in [10]) Let (M™, g) be a compact
manifold of dimension n > 3. Assume the sectional curvature is pinched:

—a? <secg < —1
with a > 1. Let k be a non-negative integer such that
apk = —1)—2ka > 0.
There exists a constant c(n, k) > 0, so that for any a € Hg (M) and for any geodesic

ball Bg(p) C M, with 1 + % < R < inj(p),

2 - 2
/ joaPdv < cn, K)e R a2,
Bi(p)

Finally, if k is a non-negative integer such that
ank:=m—1)—2ka =0,

then there exists a constant d(n, k) > 0, so that for any geodesic ball Br(p) C M,
withl < R < injg(p),

2 —1 2
/Bl(p) |Ol| dv = d(n, k)(R - 1) ”a”LZ(M,g)'

Remark 25 The proof of this theorem requires only that « be closed and coclosed in
Bgr(p) and that the curvature pinching holds within this ball. Hence the result extends
to manifolds with boundary (if d(p, 9M) > R), with any boundary condition, and to
noncompact manifolds.

As in Sect. 3, a Price inequality has an immediate consequence for weakly uniformly
discrete sequences of Riemannian manifolds which Benjamini—Schramm converge.
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Benjamini-Schramm Convergence Page 11 of 26 16

Corollary 26 Let (X", g) be a simply connected manifold of dimension n > 3 with
—a? <secg < —1,

and a > 1. Let (M, g1) be a weakly uniformly discrete sequence of closed manifolds
converging to (X, g). For any k € N such that

apk = (n—1) —2ka > 0,

we have

br(M;)
im ————— =
=00 Volg, (M)

Remark 27 Proposition 126 in [10] implies that, under the curvature assumptions of
Corollary 26, we have

b? (My) := dimr, (H5(X)) =0,

for any k € N such that a, x > 0 (cf. also Proposition 4.1 in [12] when a, ¢ > 0, and
[11] when a = 1). Thus, Corollary 26 can alternatively be rephrased by saying that
the normalized k-Betti number converge along the sequence to the corresponding k-th
L2-Betti number.

4.2 Thick-Thin Decomposition Revisited

In this section, we construct an effective Thick—Thin decomposition for closed mani-
folds with negative sectional curvature. This Thick—Thin decomposition builds upon
a construction of Buser, Colbois, and Dodziuk (cf. [6]) which we refine for our pur-
poses. These additions are needed for our Moser iteration argument on manifolds with
boundary (cf. Sect.4.3).
Let (M, g) be a compact of dimension n > 3, with sectional curvatures satisfying
—a’ < secg < —1,

for some constant a > 1. A first geometric consequence of the so-called Gromov—
Margulis’ Lemma (cf. Section 8 in the book [4]) is that there is a positive constant

nw=a cp,
cn > 0 depending on the dimension only, so that if the set
M, :={xeM|injx) < u}

is not empty, it is then the union of a finite number of disjoint tubes {7}, } around short
closed geodesics {y;}. For convenience, we will require 4 < 1. For every tube T,,,
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the core geodesic y has length I(y) < 2u. For every point p € y, and every tangent
vector v € T, M perpendicular to y’(0), let §,, , (t) denote the unit speed geodesic ray
emanating from p in the direction of v. We call these rays radial arcs and their tangent
vector fields the radial vector field R.

Lemma 28 Let y be a geodesic in M satisfying (34). Then
div(R)(x) < (n — Dacoth(ad(x, y)). (29)

Proof The proof is a Riccati comparison argument, which we include for the conve-
nience of the reader. (See [7, Sect. 2].) Let p denote distance to y. Then |dp| = 1,
and the Bochner formula gives

1
0= A§|dp|2 = —|Vdp|* — Ric(dp,dp) + (dAp, dp). (30)

Set m := —Ap = divR. Since VR R = 0, Hess(p) has rank < n — 1. Hence
Cauchy-Schwarz implies m?> < (n — 1)|Vdp|?. Applying these inequalities to (30)
yields the following equation for the value of m = m(t) along a geodesic ray §, ().

om m?

— < —Ric(dp,dp) < (n — )a*. 31)
at n—1

Set y := (n — 1)a coth(at). Then y + % = (n — 1)a?. Thus we have

om—y) (m+y)

—y) <0. 32
-y < (32)
lim;_,o(m — y) = —o0o. Hence the Riccati comparison principle [17, Subsect. 6.4.1]
implies
m(t) < y(1),
forallr > 0. m]

In every interval [0, 7o] such that (8, ,(t)) < u fort € [0, t], the function r —
i(8p,v(t)) is strictly monotonic increasing. Thus, there exists R, , > 0 depending on
the initial condition of the geodesic ray such that i (§(Rp,y)) = pand i(5,,,(1)) < u
for any t € [0, Ry ). The arc 8([0, R}, ,]) is called the maximal arc. Also, different
radial arcs are disjoint except possibly for their initial points. Thus, their union 7), is
homeomorphic to y x B"~! where B"~! is a closed ball inside R"~!, and this explains
why they are called tubes. On the other hand, different maximal radial arcs in T,, may
have very different lengths and the boundary of 7, is not smooth in general. Thus,
these object are not great if you want to do calculus on them. We therefore employ a
controlled Thick—Thin decomposition due to Buser, Colbois and Dodziuk [6] which
we now briefly describe. First, we state the following lemma, observed in [6].
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Benjamini-Schramm Convergence Page 13 of 26 16

Lemma 33 There exist constants c1, ¢ depending only on the dimension n, such that

if
I(y) < c1exp(—coa)ua" 1, (34)

thend(x,y) > 10 for every x € T, with inj(x) = 5.
Proof This is a consequence of Lemma 2.4 in [6]. O

From now on, we will regard a geodesic small if and only if its length satisfies the
bound (34) of Lemma 33. This means we disregard possibly many small geodesics
in the usual Thick—Thin decomposition of M. Thus, we only look at small geodesics
which posses fat Margulis tubes around them. This fact plays arole in the constructions
that follow.

Next, given a geodesic y satisfying (34) and A € (0, 1), we define the following
tube around it:

U = {x €Ty | inj(x) < iu}. (35)

Again, there is no a priori reason to believe that the boundary SU; is well behaved
from a geometric point of view. Thus, we appeal to the following theorem of Buser,

1
Colbois and Dodziuk which ensures the existence of a small deformation of U},2 with
many nice geometric properties.

Theorem 36 (Theorem 2.14 in [6]) Let y be a geodesic in M satisfying (34). There
exists a smooth hypersurface H, contained in T, \ y with the following properties:

o The angle 0 between the radial vector field R and the exterior normal of H,, is
less that w/2 — « for a constant @ = «(a, n) € (0, 7 /2).

o The sectional curvatures of H, with respect to the induced metric are bounded in
absolute value by a constant1 depending only on a and n.

e H, is homeomorphic to E)Uy7 by pushing along radial arcs. The distance between
1
x € H, and its image x € Uy, satisfies d(x, %) < pu/50.

Next, we explicitly observe the following consequence of Theorem 36. This
corollary plays a role in the elliptic estimates presented in Sect. 4.3.

Corollary 37 H,, is locally the graph of a Lipschitz function with Lipschitz constant
A g dependent only on a and n.

Proof This follows readily from the estimates in [6, p.12] required to prove Theorem
306, in particular from the multiplicative bounds on the gradient of the defining function
of Hy. O

We can now define the tubes in our refined Thick—Thin decomposition. Given a
geodesic y satisfying (34), we consider the tube V,, around it defined by:

H, =0V,, andy € V,. (38)
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16  Page 140f 26 L. F. Di Cerbo, M. Stern

In particular, these new tubes always have smooth boundaries. We now derive a few
lemmas concerning the tubes V), that are not directly found in [6]; so, we provide all
details of the proof. Let

Lemma 39 Let y be a geodesic in M satisfying (34). For any point x € H,,, we have

6 e 2
—_— n — .
50/ = Mg = 551

24 26

In particular, UV?0 cVv,C UVST).

Proof Given x € H,, denote by X the point of intersection with dU,, of the radial arc
from y to x. We have the standard estimate:

d(x,x) = [inj,(x) — inj, (x)]. (40)
By definition of Uy, we have inj, (x) = 5. Thus, by Theorem 36 we have:

26 . woow 24
= ggh z () 25— 5

ﬁ = —U
50 50 507

n
50 + 2
Next, we show that these tubes are uniformly separated.

Lemma 41 Ify # ¢ are two distinct closed geodesics in M satisfying (34), then

aw,, V) 48
, > —U.

Proof Let 8 be a unit speed geodesic realizing the distance between the compact sets
V, and V. There exist 11, 2 € (0,d(V,, V;)) such that B(¢1) € 0T, and B(12) € 97T%.
By Lemma 39 we have

. 26 26
1= p—injg(B(t) = 1 — %Mv dVy,Ve) =) = pn— %M,

so that

d(V, V)>24 +24 +d(T,, T;) 48
— — > — .
A L L A L L

Note that by the usual Thick-Thin decomposition, the Margulis tubes T,, and T; are
disjoint. O

We also need to know that each V), contains a “quantum” of volume. This is essential
in studying sequences that BS-converge (cf. Lemma 72). In [6], the authors show this
is the case for the tubes T;,. We show that their argument can be extended to the tubes
vV, CT,.

¥ ¥
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Lemma42 [fy is a closed geodesic satisfying (34), then

Vol(U}) > c(%u) (43)

and therefore
6 n
Vol(Vy) > ¢, (g,u) .

A
Proof Let x € dU,;, and let y be such that inj, (y) = Ap/2.
We claim that B Lig (y), the open geodesic ball of radius %A,u centered at y, is

entirely contained in Ujf. In fact, for any z € B Lin (y) we have

1 1
E)LM >d(z,y) = |inj,(z) — EML ,

which forces inj,(z) < Aw. Thus, we conclude that B L (y) C U)),‘. By volume
comparison with Euclidean space we have:

Vol(U?) > Vol(BW(y)) > cn(%,w)".

24 n
Since V), D U,°, we have Vol(V,) > ¢, (%A,u) . O

We continue deriving effective estimates for the sizes of tubes in the Buser—Colbois—
Dodziuk Thick—Thin decomposition.

Let 6, ,(?) be a unit speed radial arc, and let 1 = R;, be the first time the radial arc
intersects the boundary of U;. We have the estimate

A
0(7") < I(p)a~"V sinh" ' (aRy). (44)

In order to prove (44), we argue as follows. Let y € §, ([0, R;]) be a point such that

inj )= 134t. Then the inclusion B aw (y) C U% follows from the proof of Lemma
2

42. Next, we claim that

Biu(y) Clz €U} | d(z,y) < Ry}

""‘R

This follows from the triangle inequality since for any z € B (y)
2

AL Al
d(z,y) <d(y,y)+d(y,z) < Ry — > + 5 = R,.
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Thus, by volume comparison with a space of constant sectional curvature —a”, we

obtain the claimed inequality (44). We therefore conclude there exists k = k(a, n, A) >
0 such that

In(-
Ry, > 1) +k(a,n, 1). (45)
(n—1a

Thus, if we denote by Rpin 2 (y) the length of the shortest radial arc reaching 9 U;‘ we
have that

lim Rmin,)»(]/) —> OQ.
I(y)—0

4.3 Pointwise Bounds for Harmonic Forms on Manifolds with Boundary

Let My := M\ U, V;, where the V), are the modified tubes defined in (38). We will
need elliptic estimates for harmonic forms in M7 satisfying Neumann or Dirichlet
boundary conditions on d Mr. In order to keep track of both the dependence of the
estimates on the geometry of the Margulis tube and on the local injectivity radius, in
this section we provide a proof of these estimates.

Let ||f||L%(BR(p),g) and ”f”L%(BR(p),Euclidean) denote the Sobolev norm

2 2
AV N A TEIEOON

computed with respect to g and with respect to the Euclidean metric induced by the
exponential map, respectively.

Proposition 46 Let (M", g) be compact with —a? < secg < —1. There is a constant
S(a, n) depending only on a and n so that for all geodesic balls Bgr(p) C M, with
R <1, andall f € CX(Br(p) N Mr), one has

2 ol £12

Proof For R < min{inj, (p), 1}, there are constants ¢, j and Cq, j, j = 0, 1 depending
only on a and »n so that for any domain A C Bg(p),

caoll FII 2 <If

2 <C 2 ; , 48
L2 (A,Euclidean) — ”Lﬁ(A,g) = CaolfliL (A,Euclidean) (43)

and

a1 1/ 22 A Buctideany = 1 122¢a.g) = Ca1I1F 11124 Buctidean) - (49)

By [18, Theorem 5] and its proof (see also [13]), there exists a bounded extension
map

ETRp: W(}’Z(BR(p) N M7, Euclidean) — L%(R", Euclidean),
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satisfying ET g p f — f = 0 on Br(p) N M7 and

IET R pf”LZ(Rn Euclidean) = < B(Am, ”)||f||L2(BR(p) Euclidean)®

with bound B(A g, n) depending only on dimension and the Lipschitz constant A gy
for a defining function for 9 Mt (cf. Corollary 37). Hence we have

1A% 2 < C20|If||2
L” 2 (Br(p)NM7,8) L =2 (Bg(p)NM7 ,Euclidean)
2
2 (n 1)
C W ”d(ET R, pf)”LZ(Rn Euclidean)
<2, 02 SB(Au. n)?| 113
- 0( 2)2 1 L%(Bgr(p)NMr,Euclidean)
C20 (n—1)?
2 2
Set
. 0 (n—1)° 2
S(a,n) == ( — 2)2B(AH,n)
to obtain the desired result. ]

Given Proposition 46, we can now prove the main estimate of this section.

Proposition 51 Let h be a strongly harmonic form on Myt satisfying Dirichlet or
Neumann boundary conditions on dMt. Then there exist ¢;, € (0, 00) independent
of M and Cg > 0 depending on the second fundamental form of H,,, the Margulis
constant of M, and the Riemann curvature tensor of M such that for any p € Mr,
and L < 1,

ny 1 3
2 4 2 2
Mo 3, (pyy = €nS(a )2 (_Lz + CG) W2y - (52)
In particular, choosing L = %, we have

B (p) < r(@, A2, () (53)
2

where r(a, n) := c,S(a, nﬁ(i—? + CG)%'

Proof By Lemma 41, the connected components of d M7 are uniformly apart. Without
loss of generality, we assume # satisfies Dirichlet boundary conditions: the pullback
to the boundary of & and d*h vanishes. Let ¢ be a smooth function supported in My
(but not necessarily compactly supported in M 2). Then we have
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0=f (A, ¥2h)dv
M

= | (Vi V@2R) + (R h, y>h))dv — / (Voh, ¥*h)do,  (54)
Mr IMr

where v is an outward pointing unit normal and R"?¢" denotes the curvature oper-
ator given in a local orthonormal frame {e;}; and dual coframe {w'}; by R"" =
—e(@)e*(w! )R (¢;, e i), with e(w?) denoting exterior multiplication on the left
by w?, e*(wP) its adjoint, and R"'¢" (-, -) the Riemannian curvature 2 form. Since /
is strongly harmonic, we have

dh = Ze(w")ve,.h =0, d*h=-— Ze*(w")ve,,h =0,
=1 jz1

so that if e; = v on d M, we obtain the identities

Voh ==Y ((e*(@")e(@) — e*(@)e(@") Ve, h. (55)
j>1

Since # satisfies Dirichlet boundary conditions, we have e(a)l)h =0 on 0My. Thus,
we have

—(Voh, yPh) = = Y (" (@)le(@"), V;1h, y*h) = (ITh, ¥°h),  (56)

j>1
where /1 denotes the second fundamental form operator
Il = Iljke*(a)j)e(a)k).

From (54) and (56), we obtain a Bochner formula for harmonic forms satisfying
Dirichlet boundary conditions:

0= ((Vh,V(wzh))+(R’ie’”h,w2h))dv+/ (ITh, ¥*h)do. (57)
Mr IMt

This equality now allows us to proceed with the usual proof of Moser iteration with
one additional modification required for controlling the boundary term. We repeat the
standard argument and add in the contribution from the boundary. We will follow the
treatment in [8].

Given p € Mr,letn : R — [0, 1] be a smooth function identically 1 on (—o0, L]
and supported on (—oo, 2L], with |dn| < %.Set ne(x) = n(Zk(d(x, p)—L)).Observe
that the function 7, (¢) is equal to one on (—oo, L(1 + 2751, and it is supported on
(=00, L(1 + 2175)]. Let Xk denote the characteristic function of By := B(p, L(1 +
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27K)). Then
Xk < Mk < Xk—1, (58)
and
k+1
ldni| < Xkl (59)

Now we choose 1 = ni|k|P*~! in (57) with py to be chosen later to get

/ Vel 1P ) P = f (d (1P IR = (RTM B, 2| P2 R))d
Mt My

—/ (ITh, n}|h|*P*"2h)do. (60)
oMt

Expanding and rearranging terms yields

(Pk—l

] 1 2
[ v tpa = | Y nelhl7) + ——d ol (v
Mr Mr Pk
_/ <Rriemh,nlzlh|2pk72h>dv

Mt

—/ (ITh, n}|h|*P*"2h)do. (61)
oMt

Observe that after some manipulation

Jo

(Pk -1
Pk

1
) el + —drolhl™
Pk

2 1
av = (1=—) [ idenmirPao
Pk’ Jm

T
1
+— | ldlh|P Pdv.
Pk J My
Now Kato’s inequality implies the pointwise bound

IV i1 1P )| > 1d (el 179

so that

1 1
— | 1dlhP)Pdv < — / |d (i) || P* 2 dv + CR / ngh|*Pxdv
pk MT pk MT MT

e / R2Ih 2 do, 62)
IMy
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where Cy; = ||II||L°°(8MT)» and CR = ||Rriem||L0<>(MT). Let ¢ be a C! cutoff
function compactly supported in [0, 2 50 L) satisfying

6() =1, fort < 2 and |dg (1)) < -2
= or —, an _—
TS50 = T2u

Then ¢ (d(x, H)) is Lipschitz with Lipschitz constant 2 u and by construction, it is
identically equal to one on 9 M7. Now, let R be the radial vector field as defined in
Theorem 36. Also, let 0 be the angle between R and the unit normal v on 0 M7. We
then have

(v, R) =cosf > cos (/2 —a) = sinc,

where « € (0, 7/2) is as in the first statement of Theorem 36. Thus, by applying the
divergence theorem to R

CII[ ni1h|*Pkdo
My

Crr

~ sin(@) Jam,
Crr

sin(a)

nih1*PE (v, Rydo

d(n,%|h|2pk¢<d(x, H))irdv)

( ) lL2¢aep)

Crr
sin(a)

25 2
(— + acoth(l()a)) lelh P12 0

Cri (@ peCrr

I h|Pk||2 , (63
e 3 sinte ) P 2y (69)

1
< — |l d (i |h|P5)|1?
= 2pk ” (77k| | )||L2(MT) +

where we have used Lemmas 28 and 33 to bound the covariant derivative of iz above.
Inserting this inequality back into (62) gives

41 100pCrr - pECY,
L2 ursin(a)  2sin?(«)

2
FCr ) I,

(64)

P
e lh1 12, = 2(

Now we follow the usual Moser iteration proof as in [8]. By Proposition 46, we
have

Pk |2 Pk
It 1?42 ) < SG@ I lAIPN 2

—2 (M)

so that

Ikl 1411 5,
Ln=2(Mr)
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451 100pCr; - piC? 1 5
<2S,( U 1 R —)h”" . (65
<28@m(—7 + Zsn@) | 2sin’(e) +Cr A+ S )R 2y 5,y 69
Set
100C;; c?, 1
= " + C + —~. 66
¢ u?sin(er) 2 sin?(a) RT3 (66)
For py > 1,
2pi 2 1k+1 1 2pr
1", <28 mpid (73 +Co) IS5, (67)
n=2 (B)
Choose now py = (nnTz)k- Then taking py roots of (67) and iterating yields
5 k B 2 £
p D J
1413 20s 5y < [ SC@m ™82 7 (54 Ca) M, o (68)
j=0 '
Taking the limit as k — oo and setting
O k2
cni=[]47 (69)
k=1
yields
172117 < cStam (5 +Co) Il (70)
Le(Br(py) = nd &)=\ 75 T LG L2(Byr(p)
If a harmonic form /4 satisfies Dirichlet boundary conditions, then A satisfies Neu-
mann boundary conditions, and | * | = |h|. Hence the Dirichlet estimate implies the
Neumann estimate. ]

4.4 Non Uniformly Discrete Sequences

Let (X", g) be a simply connected manifold of dimensionn > 3. Assume the sectional
curvature is pinched:

—a? <secy < —1

with a > 1. Let (M, g;) be a sequence of closed manifolds BS-converging to (X, g),
which we now assume not to be uniformly discrete. For any element (M, g;) in the
sequence, consider a small geodesic y such that

n—1

I(y) < crexp(—c2a)p"a
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as in (34) of Lemma 33. Remove from M; the union of the modified tubes V)f to geta
manifold with boundary

M7 =M \U, V), M1 =UyH,.

Denote by N7 (M) the number of disjoint tubes V)f in M;. From the long exact sequence
in cohomology,

o> HY(My 7, 0M; 7 R) > H*(M;; R) - H*(U, V): R)
— H* Yy r oMy 7 R) — .

we obtain the inequality
br(My) < dimg H*(M; 7, 3M; 73 R) + N1 (M)). (71)

The next lemma shows that we can control N7 (M;) in terms of the total volume.

Lemma 72 Let (X", g) be a simply connected manifold of dimension n > 3 with
—a? <secg < —1,

and a > 1. If (My, g1) is a sequence of closed manifolds BS-converging to (X, g),
then

N7 (M) oM, 1)
Volg (M) . (21 '
81 Cn(m“)

(73)

Proof By Lemma 42, every Margulis tube V)f satisfies

21 \n
Vol(V)f) > cn(ﬁu) = €

where ¢, is a positive constant depending on the dimension only, and w(n, a) > 0is
the usual Margulis constant for a negatively curved a-pinched n-manifold. By Lemma
39, if y is a short geodesic satisfying Eq. (34), then

VL C (M) <y

Thus, we have

Nr(Mp) -6 _ X, Vol(Vy)

Vol = veiamy = PR
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Lemma74 Let (X", g) be a simply connected manifold of dimension n > 3 with
—a? <secg < —1,

and a > 1. Let (My, g;) be a sequence of closed manifolds BS-converging to (X, g).
For any k € N such that

ank = —1) —2ka > 0,
we have for all R > 1,

dimg H*(M;,7, 9M; 7; R)
Volg, (M;)

< (’]Z) r(a,n)p(Mj, R) + c(n, k)e @ R=D,

If an x = 0, we have for all R > 1,

dimg HX(M; 7, dM; 1; R)
Volgl (My)

< <’Z) ra,n)p(My, R) +d(n, k)(R —2)"".

Proof For any ! € N, denote by
i:oM;r — M r

the injection map. Recall that the relative cohomology H k My 7,0M; 7;R) is
isomorphic to the space of harmonic forms satisfying Dirichlet boundary conditions:

H (M7, 0M; 73 R) ~ {a € C™(QET* (M 7\dM;.1)) | Arer =0, i*a = 0}.

Let {«;}; be an L? orthonormal basis of harmonic forms satisfying Dirichlet boundary
conditions, and consider the function

TrK(x,x) =Y lei(x)[

which satisfies

f TrK(x,x)dv = dimg H*(M; 7, 9M; 7 R).
M T

By Proposition 51, for any unit norm harmonic k-form « satisfying Dirichlet boundary
conditions in M; r, there exists a constant r (a, n) > 0 such that

la(p)|* < r(a,n), (75)

forany p € M; r.0Onthe otherhandif we takeapointin p € M; 7 withlarge injectivity
radius, we can apply Theorem 24 to obtain much stronger bounds. Consider p € M;
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withinj,(p) = R > 1. We observe that any such point lies in M; 7 and must be quite
distant from dM; 7 C M;. Indeed, by Lemma 39, as any point g € 0M; 1t = U),H)l,

satisfies inj p (q@) < % W, we have

.. 26
dg,(p,q)Zlnjgl(p)—%M>R—u>R—l, (76)

as we have assumed u < 1. Thus if p € M; hasinj,, (p) > R >> 1, then Bg_1(p) C
MST. Set

My 1)<k =MD g N M T

and similarly (M; r)>r as its complement in M; 7. The Price inequality given in
Theorem 24 then tells us that for R >> 1,

K BD Vol (My 1)) if 0,
/ TrK(x,x)dv < c(n, k)e » ol((M;,7)>R) 1 an k >
(M, 1)>R d(l’l, k)(R — 2) VOZ((MI,T)ER) if an g = 0.

(77
Moreover, by (53)
/ TrK(x,x)dv < <Z)r(a,n)Vol((Ml,T)<R). (78)
(M1, T)<r
Combining (77) and (78) together with the inequalities
Volg, ((Mi,1)<R)
— 8 =2 < p(M), R),
Volg, (M)
we immediately obtain the desired inequalities. O

‘We now have the main theorem of this section.

Theorem 79 Let (X", g) be a simply connected manifold of dimension n > 3 with
—a? < secg < —1,

and a > 1. Let (My, g;) be a sequence of closed manifolds BS-converging to (X, g).
For any k € N such that

ank = —1) —2ka > 0,

we have for all R > 1,

bk(Ml) -1 n (R
Volg, (Mp) =(g + (k) r(a,n))p(Mj, R) + c(n, k)e @+ R,
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If an x = 0, we have for all R > 1,

bi(M;) o, . .
Vol (M = €0 +(k)r(a’”))P(Mz,R)+d(n,k)(R—2) ,

Consequently

br(M;)
m — =
=00 Volg, (M)

Proof The proof follows from (71), Lemmas 72, and 74, and the monotonicity of in
R of p(M, R). O
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