

Experimental study on tsunami-driven debris damming loads on columns of an elevated coastal structure

Myung Jin Koh^a, Hyoungsu Park^{b*}, Jayasekara R. Jayasekara^c, Sabarethinem Kameshwar^d, Kellen Doyle^e, Daniel Cox^f, and Pedro Lomonaco^g

^a Graduate Student, Department of Civil, Environmental, and Construction Engineering, University of Hawai'i at Manoa, Honolulu, HI, 96822; email: myungj@hawaii.edu

^b Assistant Professor, Department of Civil, Environmental, and Construction Engineering, University of Hawai'i at Manoa, Honolulu, HI, 96822; email: hpark9@hawaii.edu *Corresponding Author

^c Graduate Student, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803; email: jayas2@lsu.edu

^d Assistant Professor, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803; email: skameshwar1@lsu.edu

^c Graduate Student, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331; email: doyleke@oregonstate.edu

^fProfessor, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331; email: dan.cox@oregonstate.edu

^g Director, O.H. Hinsdale Wave Research Laboratory, College of Engineering, Oregon State University, Corvallis, OR 97331
email: pedro.lomonaco@oregonstate.edu

Abstract

This study presents experimental findings on debris damming loads on columns of an elevated coastal structure under tsunami-like wave conditions. A total of 183 cases (140 with and 43 without debris) were tested at a 1:20 scale to understand the impact of various factors on debris-driven damming loads, including wave characteristics, structure configurations, and debris shapes. The debris impact and damming processes were observed and quantified from optical measurements, and corresponding loads were measured on the entire structure using a force balance plate and on an individual column in the front row using a multi-axial load cell. The experimental results indicated the debris damming load on the entire column structure increased by up to 3.2 times compared to conditions without debris, while the load on the individual column increased by up to 11.0 times. The total damming loads for the whole structure increased, but the load for the individual column decreased at a reduced opening ratio. The smaller debris sizes relative to column spacing showed significantly lower chances of debris damming across different column configurations. Overall, the load on the whole structure showed stronger correlations between debris damming loads and hydro-kinematic variables such as flow depth, velocity, momentum flux, and Froude number compared to the loads on the individual column. Among these variables, momentum flux emerged as the most consistently influential across all categories.

Key words: tsunami, experiment, debris damming, damming loads, column structures

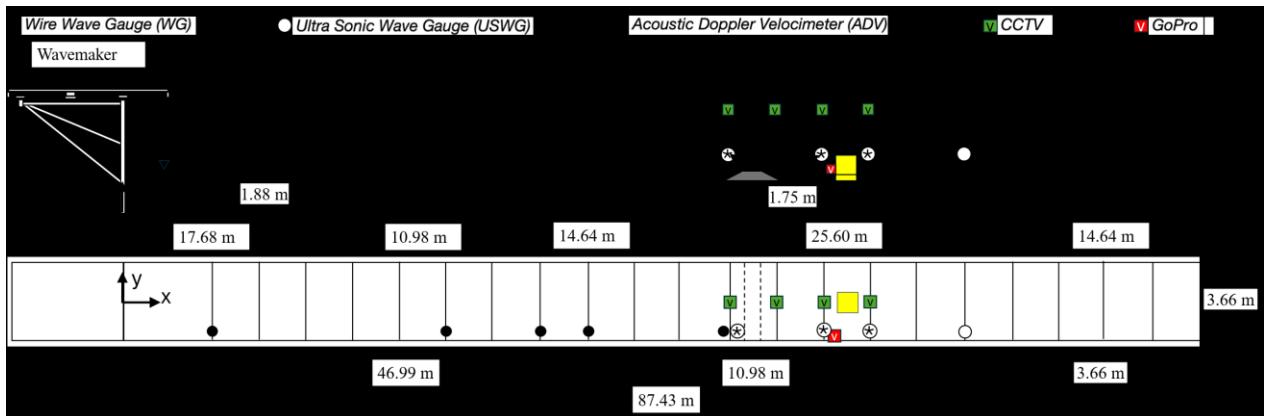
43 **1. Introduction**

44 Extreme overland flows, particularly those triggered by events like tsunamis, cause significant
45 damage in coastal communities. Particularly, the overland flow over a coastal community could transport
46 a substantial amount of water-borne debris inland, including marine vessels, shipping containers, wood
47 utility poles, logs, vehicles, and fragments of damaged or whole structures (e.g., Yeh, 2014; Naito et al.,
48 2014). Typical water-borne debris can worsen damage to the built environment by imposing additional
49 structural loads from impact and damming effects (Reese et al., 2007; Arikawa et al., 2007; Takahashi et
50 al., 2010). The aftermath often includes blocked access and reduced functionality of critical infrastructure
51 systems, especially transportation networks, as seen in the impact of debris accumulation on roads and
52 bridges following such events (e.g., Ghobarah et al., 2006; Kameshwar et al., 2021). Furthermore, debris
53 clearance and removal are vital for community recovery efforts, with associated costs often constituting a
54 substantial portion of total disaster recovery expenses (FEMA, 2007).

55 In general, tsunami-induced loads on structures can be primarily classified into two types: a) flow-
56 induced and b) debris-driven. Flow-induced hydrostatic and hydrodynamic loads are caused by the direct
57 interaction of the flow with structures and have been the focus of past studies (e.g., Santo and Roberson,
58 2010; Nouri et al., 2010; Nistor et al., 2011; Chock et al., 2016). Consequently, flow-induced loads have
59 been understood relatively well and adapted to the current design code in the US (ASCE 7, 2016). However,
60 debris-driven loadings are much more complicated and severe. Interactions between flow and debris (e.g.,
61 debris entrainment and transport) and consequent debris-structure interaction cause debris-induced loads.
62 Here, a collision between floating debris and structures results in initial impact loading. As the overland
63 flow continues, debris interacts with structures, and debris can block and accumulate in front of a structure
64 and increase flow obstruction, resulting in debris damming loading. At the same time, debris dams also
65 increase upstream water surface elevation and may alter flow fields significantly. This phenomenon
66 potentially obstructs openings and alters hydrostatic and hydrodynamic loads on the structure. For example,
67 the observations from events like the 2011 Tohoku Tsunami suggest that certain mitigation techniques,
68 such as breakaway walls, may be less effective due to transported debris blocking their intended openings
69 (Chock, 2016). Despite a good understanding of flow-induced hydrostatic and hydrodynamic loads, the
70 comprehension of debris-driven loads, particularly damming loads, remains quite limited. However,
71 predicting and quantifying these represent significant challenges due to complex interactions among flow
72 dynamics, debris behavior, and structural configurations (ASCE 7, 2022).

73 The comprehensive study of debris damming has primarily been limited to the context of river
74 engineering. Bocchiola et al. (2006) analyzed the spatial distribution of debris damming, revealing a
75 correlation between the length of debris and its capture rate, with longer debris more likely to form stable
76 dams through a "bridging" mechanism. Parola (2000) identified critical bridge piers located near the

77 thalweg of a channel due to secondary flows directing debris toward deeper, faster-flowing conditions.
78 Furthermore, Schmocker and Hager (2013) studied the formation of debris dams at debris racks in steady-
79 state flow, elucidating the temporal evolution of the debris dam formation process.


80 In the wake of the 2011 Tohoku tsunami, several studies have delved into the realm of tsunami
81 debris, utilizing scaled hydraulic experiments. These investigations by Yeom et al., 2009, Nouri et al., 2010,
82 Ko et al., 2015, Riggs et al., 2014, Shafiei et al., 2016, and Stolle et al., 2017 have predominantly focused
83 on assessing the impact loads of debris on structures, employing a relatively simple cuboid or cylinder-
84 shaped debris. Recently, experimental studies, including those by Stolle et al., 2018, Wüthrich et al., 2020,
85 and Shekhar et al., 2020, have sought to investigate debris accumulation behavior under varied debris and
86 building geometry conditions and its effects on structures. To be specific, Stolle et al., 2018 utilized five-
87 column structures as obstacles in the whole channel to measure damming effects on an entire structure and
88 tested with 1:50 scaled cuboid and cylinder-shaped debris. Wüthrich et al., 2020 examined the effect of
89 debris damming on a 1:30 scaled structure due to varied opening conditions. Shekhar et al., 2020 evaluate
90 debris (cuboid shape) impact and damming on an elevated but fully closed structure. Those studies
91 highlighted the need for innovative approaches to reduce experimental uncertainties and inform design
92 guidelines effectively, especially considering the lack of field data complicating experimental design
93 efforts. However, these studies focused on the damming effect on the entire structure, and research
94 simultaneously examining the damming loading on both entire structures and structural elements is
95 exceptionally rare.

96 This paper focused on introducing newly conducted 1:20 scaled experimental results that analyzed
97 debris damming loads on columns of elevated structures. The study quantified the debris damming process
98 and investigated factors such as debris size, flow conditions, and the number of columns (different
99 openings) on the structure that could characterize debris damming loads on an individual column and the
100 entire structure. The major objectives of this study are to 1) improve the understanding of multi-debris
101 transport, collision, and sequential debris damming on column structures, 2) quantify debris damming loads
102 under varied factors, including debris shape, flow conditions, and structural configurations with varied
103 openings, and 3) evaluate the dominant factors for the debris damming and quantify the correlations of
104 available variables with the damming loads and uncertainties. Section 2 introduces the experimental setup
105 and the test matrix. Section 3 presents preliminary hydrodynamic results on the test setup under clean water
106 (no debris) cases. Section 4 provides the debris damming process and loading characteristics from measured
107 gauges, sensors, and video data. Section 5 evaluates the correlation of flow variables and test conditions to
108 the debris damming loadings. Section 6 discusses the limits of current studies and future work. Section 7
109 summarizes the general findings and conclusions from this study.
110

111 **2. Physical Model Setup**112 **2.1 Flume and measurement setup**

113 Experiments of water-borne debris damming on a structure were conducted at the Large Wave
114 Flume (LWF) in Oregon State University's Hinsdale Wave Research Laboratory (HWRL). With adjustable
115 bathymetry, the LWF measured 104 m long, 3.66 m wide, and 4.60 m deep. The LWF was equipped with
116 a piston-type wavemaker that can generate various types of waves, including a solitary wave and transient
117 (tsunami-like) wave, utilizing the full stroke displacement of the wavemaker. This experiment aimed to
118 replicate the depth-limited breaking of incident waves, resulting in a broken tsunami-like bore spreading
119 over a wet bed across the level test section. This setup mimicked tsunami overland flow scenarios over
120 substantial debris sources, such as port container facilities, intending to examine the interaction between
121 such bores and potential debris, as well as other structures, within a controlled experimental setting.
122 However, it is worthy to note here that the applied tsunami-like wave in this experiment has a much shorter
123 period compared to real-world tsunamis and may have a limitation in that the wave energy diminishes
124 before the maximum debris dam is formed.

125 Fig. 1. displays the profile and plan view of the flume bathymetry and measurement device setup.
126 The flume bathymetry featured a flat offshore section extending 17.68 m from the neutral position of the
127 wavemaker before reaching the first bathymetric concrete slab (at Bay 3) — a horizontal slab measuring
128 3.64 m in length and rising 0.15 m above the baseline of the flume. The bathymetry consisted of two sloping
129 sections between Bay 4 to Bay 11. The first measured 10.98 m in length with a height of 0.92 m (~1:12
130 slope) while the second slope measured 14.64 m in length with a height of 0.61 m (~1:24 slope). Beyond
131 the two slopes, the bathymetry transitioned into a flat section from Bay 11 to Bay 18 for the debris platform
132 (gray trapezoid) and the structure (yellow box). The flat section was elevated 1.75 m above the flume's
133 bottom. This elevated flat section measured 25.60 m before leading to a 14.64 m long slope with a height
134 of 0.92 m (1:12 slope), extending to the end of the flume. This is an idealized coastal profile representing
135 urban coastlines and potential debris hazards from shipping containers and vehicles, which are located
136 inland (flat section).

137

138 Fig 1. Sketches of the Large wave flume for the experiment: A Profile view (top) and plan view (bottom).

139

140

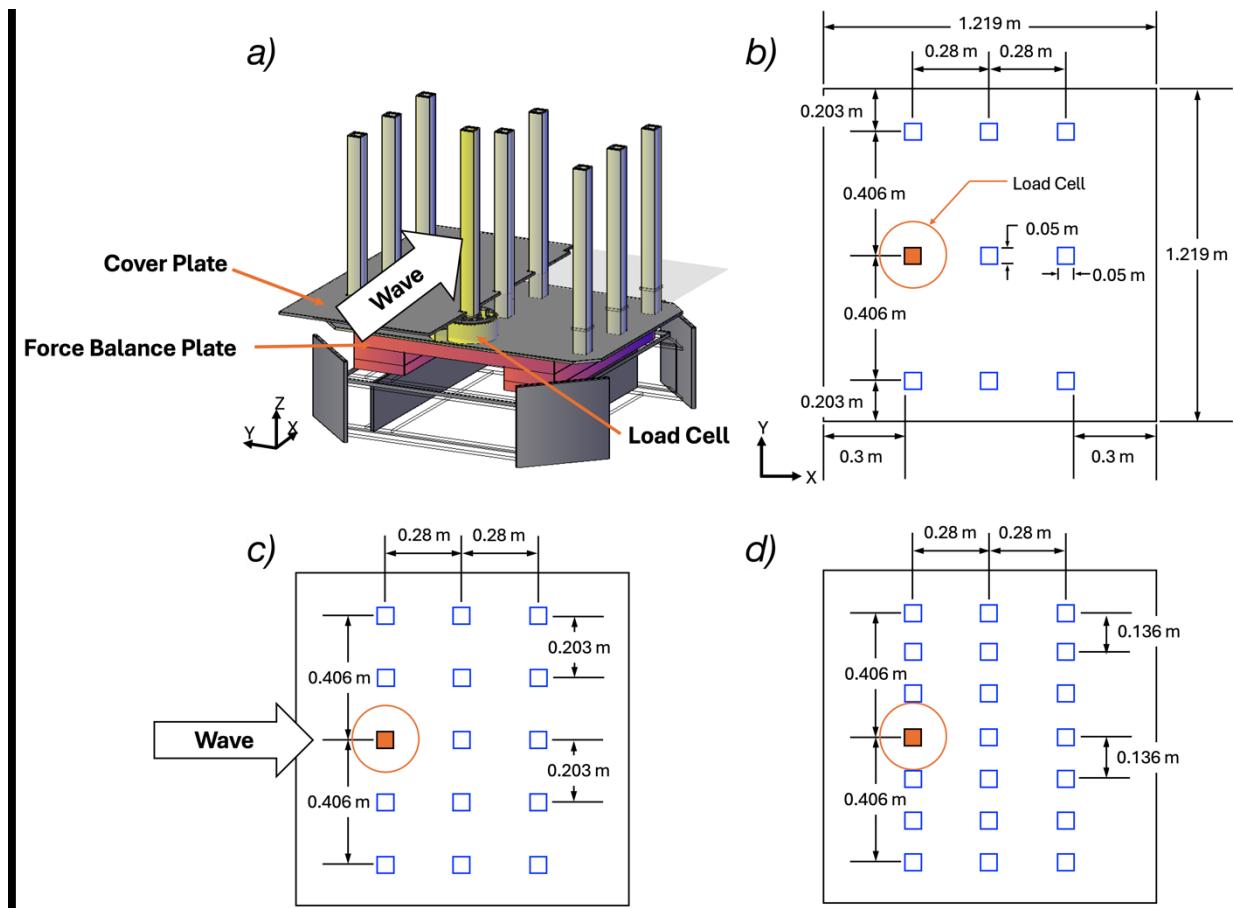
141 Water surface elevations were measured using five wire-resistance wave gauges (WG) along the
 142 flume and four ultrasonic wave gauges (USWG, TS-30S1-IV, Senix, 100 Hz). Three acoustic Doppler
 143 velocimeters (ADV, Nortek Vectrino+, Nortek, 100 Hz) were installed with USWGs at the debris platform,
 144 as well as at the front and back of the structure. However, ADVs were only used to measure flow velocities
 145 in conditions without debris. All three ADVs were removed during the trials with debris to avoid potential
 146 collisions and damage during the test. For the optical measurement of debris transport and damming process
 147 during the test, the plan view of debris was recorded through four overhanging CCTV (closed-circuit
 148 television, Reolink, 25 fps, 4K), and the side view of debris was recorded using an action camera (GoPro,
 149 60 fps, 5K) near the structure. Table 1 provides the location of the center point of each measurement device,
 150 including specific x , y , and z coordinates. In this context, the origin of the x and y coordinates indicates the
 151 center of the wavemaker, which is in a neutral position, as shown in Fig. 1. Additionally, $z = 0$ represents
 152 the flume bottom elevation.

153

Table 1. Instrument locations.

Instrument description	Instrument	x (m)	y (m)	z (m)
Wavemaker displacement	WMDISP	-	-	-
Wavemaker wave gage	WMWG	-	-	-
Resistive wave gage	WG 1	10.301	-1.385	-
Resistive wave gage	WG 2	28.591	-1.377	-
Resistive wave gage	WG 3	35.891	-1.377	-
Resistive wave gage	WG 4	39.545	-1.374	-
Resistive wave gage	WG 5	50.484	-1.460	-
Ultrasonic wave gage	USWG 1	50.505	-0.926	3.030
Ultrasonic wave gage	USWG 2	57.787	-1.372	3.334
Ultrasonic wave gage	USWG 3	61.437	-1.363	3.334
Ultrasonic wave gage	USWG 4	68.759	-1.367	3.330
Acoustic Doppler velocimeter	ADV 1	50.486	-1.294	1.769

Acoustic Doppler velocimeter	ADV 2	57.787	-1.636	1.765
Acoustic Doppler velocimeter	ADV 3	61.424	-1.647	1.771
Force Balance Plate	FBP	59.612	-	-
Load cell	LC	59.505	-0.013	1.769
Closed-circuit television	CAM 1	50.695	-0.059	5.289
Closed-circuit television	CAM 2	54.299	0.018	5.223
Closed-circuit television	CAM 3	57.944	-0.040	5.208
Closed-circuit television	CAM 4	61.624	-0.006	5.220
Handheld Digital Camera	GoPro	59.070	-1.688	2.797

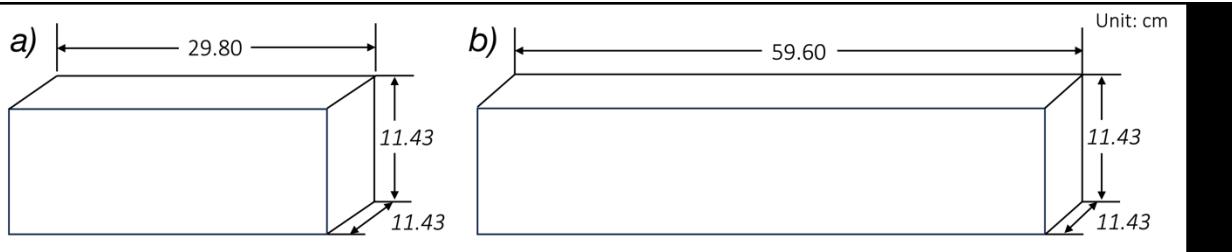

154

155 **2.2 Test structure setup**

156 The 1:20 length scale for this study was designed considering an elevated coastal structure focusing
 157 on the potential debris damming exerted on the columns. The test structure was installed on the centerline
 158 ($y = 0$) of the flat section measuring 1.219 m long and 1.219 m wide, including the cover plate, and consisted
 159 of nine aluminum tubing (0.051 m outside width) columns in a 3 x 3 arrangement with 0.458 m between
 160 each column's center to others as a default configuration. Each column had a height of 0.65 m, and this
 161 fixed height was sufficient to avoid overtopping of columns during the experiment. In our test, a
 162 superstructure above the column was not considered to ensure clear visibility for measuring the debris
 163 damming process on the structure.

164 Fig. 2a shows a detailed 3-D view of the test structure. Two types of measurement devices were
 165 installed below the cover plate to measure time-varying loading on the test structure. First, the Force
 166 Balance Plate (FBP, AF 32-12-K, Advanced Mechanical Technology Inc, 1,000 Hz) was located at the very
 167 bottom of the test structure. The FBP is a box-shaped device that consists of four tri-axial load cells mounted
 168 on a stiff frame at each corner to measure the total loading on the structure. Second, a pancake-shaped
 169 single multi-axial load cell (LC, Omega191 SI 7200-1400, ATI, 100 Hz) was installed under the column in
 170 the middle of the front row to measure the loading at the single column (Fig. 2a). The FBP is a single
 171 instrument mounted on a reaction frame, and the LC is attached to the FBP by means of an interface
 172 aluminum plate. The whole force measuring system is laid underneath the bed level, minimizing its
 173 interference with the flow. This setup allowed for the measurement of the 3-dimensional forces and
 174 moments exerted on the whole column structure and the targeted single column separately. To prevent
 175 potential bottom profile changes and unnecessary turbulence effects from the ground, an aluminum cover
 176 plate, 121.9 cm by 121.9 cm, covered the whole bottom surface of the column structure, and both FBP and
 177 LC were completely buried under this cover plate. The surface of the structure cover plate met the same
 178 elevation as the ground level ($z = 1.750$ m).

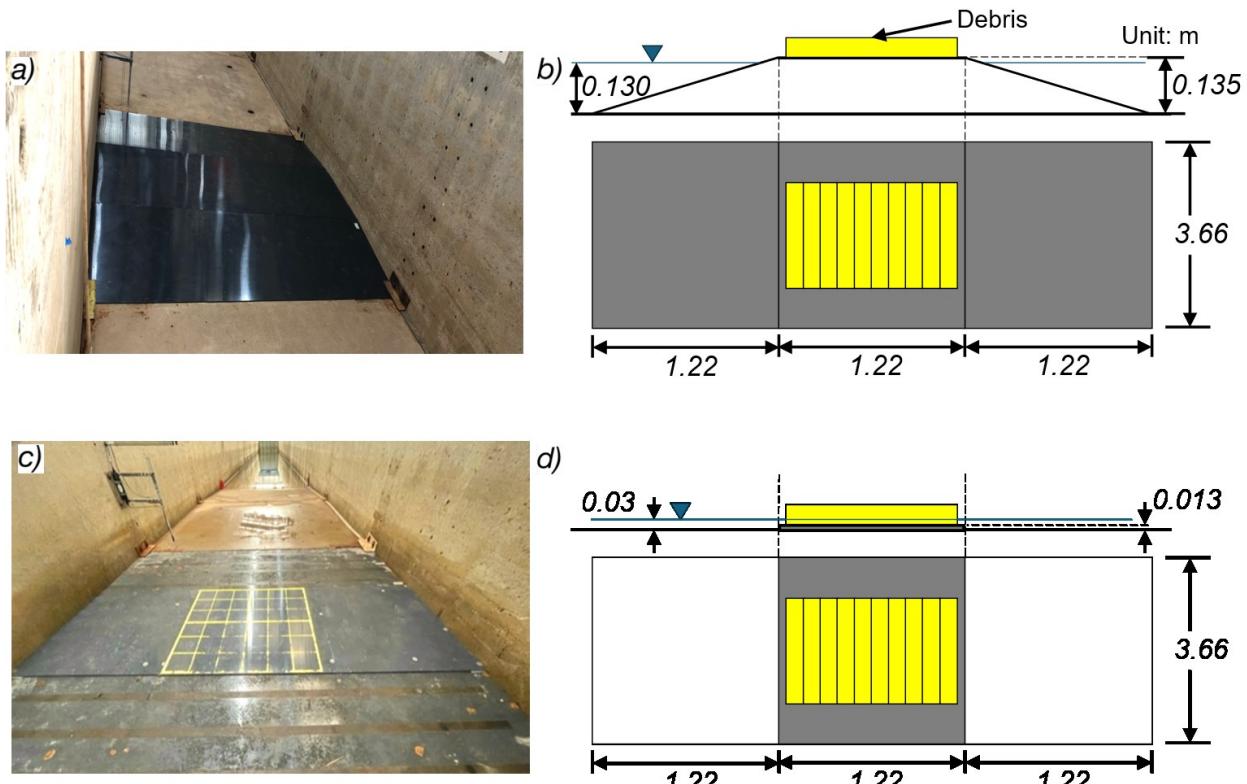
179 Detailed dimensions and plan views of the three configurations are provided in Fig. 2b, 2c, and 2d.
 180 A 3 x 3 arrangement of columns was utilized as a default setup, providing the largest opening width (40.7
 181 cm) between two columns perpendicular to the tsunami waves. To study various opening conditions in the
 182 experiment, the column arrangement was adjusted to 3 x 5 and 3 x 7 by adding additional rows of columns,
 183 resulting in 17.8 cm and 10.17 cm spacing, respectively. Each configuration, 3 x 3, 3 x 5, and 3 x 7, had a
 184 frontal closure ratio of 15.8%, 26.4%, and 36.9%. The frontal closure ratio is defined as the ratio of the
 185 projected area of columns in the first row to the overall frontal area of the structure, measured from the
 186 outline of the columns, i.e., 96.7 cm.



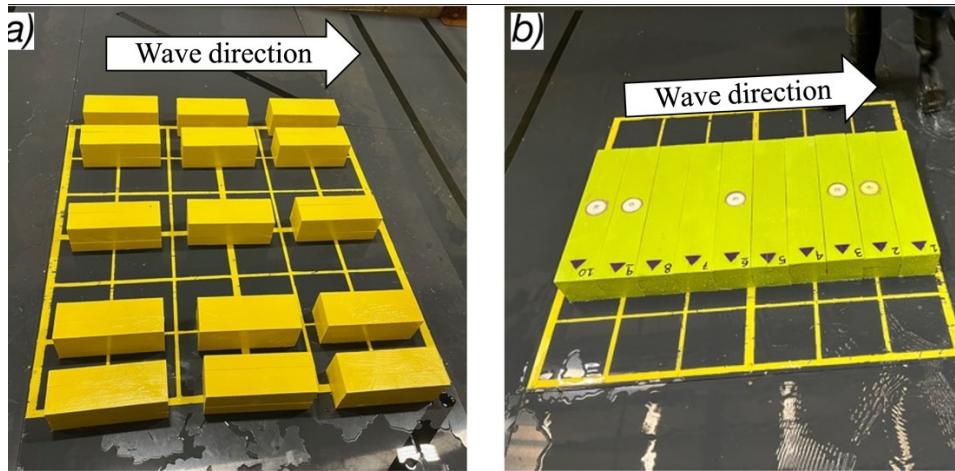
187
 188 Fig 2. Sketch of the test structure with detailed dimensions. a) 3-D view of the structure, including the Force
 189 Balance Plate and Load cell. b) Configuration 1, 3 x 3 columns, c) Configuration 2, 3 x 5 columns, and d)
 190 Configuration 3, 3 x 7 columns.

191 2.3 Debris setup and debris platform

192 A total of 2 different wooden debris shapes, fabricated at a 1:20 length scale was utilized in this
 193 experiment. The debris shape represented an idealized 6.1 m (20 ft) shipping container, and a 12.2 m (40
 194 ft) shipping container (Fig 3). The scaled debris measured: a) 6.1 m shipping container, 29.80 cm long,
 195 11.43 cm wide, and 11.43 cm high; b) 12.2 m shipping container, 59.60 cm long, 11.43 cm wide, and 11.43


197 cm high. The debris was coated with water-resistant paint to minimize potential damage and density
 198 changes and to increase visibility during the test. The measured mean density of two types of painted debris
 199 was 544 kg/m^3 . Here, it is worth noting that the exact density and length (width and height) of shipping
 200 containers were not scaled. The weights and centroid of actual shipping containers vary, but a uniform
 201 weight for debris was used for simplicity. Therefore, the current debris setup may exceed the maximum
 202 weight capacity of shipping containers. After several preliminary tests underwater, the debris was
 203 reweighted, and less than a $\pm 2\%$ change in the density compared to the original mean density was observed.

204
 205 Fig 3. Sketch and dimensions of debris in cm: a) 6.1 m shipping container, and b) 12.2 m shipping container.
 206


207 The debris entrainment (incipient motion) process and the repeatability of the test are sensitive to
 208 the initial position of debris and the bottom friction on the ground. It was observed that high friction (e.g.,
 209 with concrete) on the ground may cause unnecessary damage to debris during repeated tests (Park et al.,
 210 2021). To minimize uncertainties related to ground friction, a debris platform, framed with wood and
 211 covered with polyvinyl chloride (PVC) plate, was installed (Fig. 4). The debris platform is a symmetrical
 212 trapezoid installed between Bay 12 and 13 on the flat section covering the entire width of the flume, starting
 213 at $x = 50.65 \text{ m}$ (Fig. 4a). The platform dimensions were 3.66 m long, 3.66 m wide, and 0.130 m high, with
 214 1:9.4 slopes at the front and back. The elevation of the middle flat section at the debris platform was $z =$
 215 1.885 m, allowing debris to be located 0.5 cm above the still water depth, $z = 1.880 \text{ m}$ (Fig. 4b). It's
 216 noteworthy that the flat ground elevation at the structure was set as $z = 1.750 \text{ m}$, as shown in Fig. 1. The
 217 net water depth was 0.130 m above the flat ground elevation of the structure. Once the leading edge of the
 218 tsunami-like wave reaches the debris platform, the entrained debris by water moves toward the platform
 219 and floats without much dragging due to this initial water depth above the flat ground. Moreover, this initial
 220 water depth maintains debris floating during the whole wave propagation so that any bottom friction effects
 221 on the damming process can be excluded, except at the initial dragging during entrainment.

222 In addition, tests were also conducted with the PVC cover plate case, which involved installing
 223 only the PVC cover plate without the trapezoidal wood frame (Fig. 4c and d). In this case, the elevation of
 224 the middle flat section at the PVC cover was $z = 1.763 \text{ m}$, allowing debris to be located about 1.7 cm under
 225 the still water depth, $z = 1.780 \text{ m}$. More details will be provided in Section 2.4 Wave condition and test
 226 matrix.

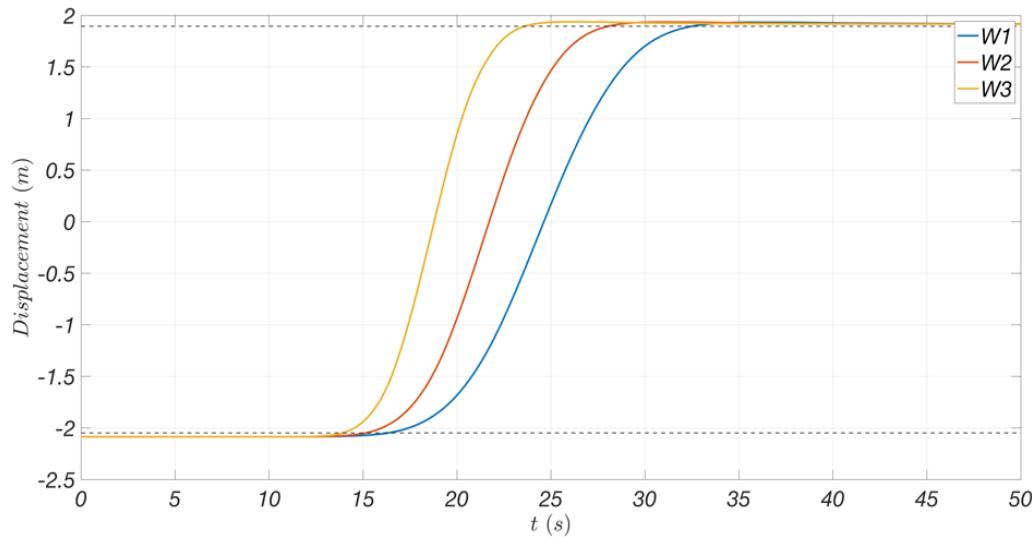
229 Fig. 4. a) Picture of the debris platform, b) from top to bottom: side and top views of the platform, c)
 230 picture of the PVC cover plate, and d) side and top views of the plate and sample debris (12.2 m shipping
 231 containers) at the beginning of each trial.

The distance from the debris platform to the structure was set as 6.71 m (center of the debris platform to the front of the column structure) after the preliminary test before installing the structure. For consistency of initial debris positioning during the experiment, yellow grid lines were painted at the center of the flat area on the debris platform. The grid line area measures 1.20 m by 1.20 m squares with a spacing of 0.20 m. During the preliminary test, various initial placements and amounts of debris were tested to determine the optimal initial position of debris for maximizing debris damming at the structure. After numerous trials, we determined the initial position and number of debris units for each debris shape that maximizes debris damming on the structure. Fig. 5 illustrates each selected initial debris placement developed for the damming test of each debris group: a) fifteen 6.1 m shipping containers, and b) ten 12.2 m containers.

243

244 Fig. 5. Initial configuration of a) 6.1 m shipping container, and b) 12.2 m shipping container.

245


246 The static friction coefficient (μ_s) was measured to quantify friction of debris to the debris platform
 247 under dry and slightly wet conditions using $\mu_s = \tan\theta$, where θ is the slope of a plate that is impending a
 248 slide. Debris was placed on a PVC plate, and then the slope of the plate was increased until the debris started
 249 to slide down. Average μ_s equal to 0.328 and 0.320 were observed for dry and slightly wet conditions,
 250 respectively, and the tests were repeated five times each for averaging values. Also, by using $\mu_k = \tan\theta -$
 251 $\frac{a}{g\cos\theta}$, the kinetic friction coefficient (μ_k) was also obtained as 0.271 for dry and 0.204 for wet condition
 252 where a is the acceleration of debris measured by a Xsens DOT IMU sensor (www.xsens.com) and g is the
 253 gravitational acceleration. The Xsens DOT accelerometer (Alaka et al., 2023; Shultz, J., 2022) has a
 254 compact size (< 3.6 cm in length), waterproof design, and lightweight (~10 g). Fig. 5b shows the white cap
 255 on some debris elements designed to place the IMU inside.

256

257

258

259 A total of six tsunami-like (transient) waves were utilized in our experiment. The 4 m full-stroke
 260 of the piston-type wavemaker in the LWF was utilized to give a maximum flow duration. The speed of each
 261 full stroke of the wavemaker was determined by paddle displacement data, as shown in Fig. 6. As the paddle
 262 speed increases, the consequential wave has a shorter length but a more significant wave height in general.
 263 This transient wave condition was utilized in previous physical modeling studies for tsunamis (e.g., Park et
 264 al., 2013; Ko et al., 2015; Park et al., 2021). During a preliminary test with debris, more than ten different
 265 paddle displacement time series were tested, and three representative wave conditions were selected. All
 266 three wave conditions showed flow depths sufficient to exceed the maximum draft of each piece of debris
 267 and flow speed was high enough to transport all debris from the platform to the structure, allowing a debris
 268 dam to form at the structure without significant dragging along the bottom.

269
270 Fig 6. Three selected wavemaker paddle displacement time series to generate W1 (blue), W2 (orange),
271 and W3 (yellow) tsunami-like wave conditions.
272

273 While three wavemaker displacement inputs were utilized for waves, two different still-water depth
274 conditions were adopted: 1) $h = 1.880$ m for “with debris platform case” and 2) $h = 1.780$ m for “with PVC
275 cover plate case.” Therefore, a total of six wave conditions were tested. Initially, three paddle displacement
276 functions (W1, W2, and W3) were selected and tested with the debris platform (shown in Fig. 4 and 5) as
277 a default test setup. To distinguish the other three sets with “PVC cover plate case,” we refer to the default
278 wave conditions as W1A, W2A, and W3A. Subsequently, another three sets of waves refer to W1B, W2B,
279 and W3B, which utilized the same paddle displacement functions as W1, W2, and W3, while lowering
280 water depth and removing the debris platform except a PVC cover plate, which has 1.2 cm thickness. In the
281 PVC cover plate case, debris couldn’t be secured without lowering the water depth due to a higher initial
282 water depth (13 cm) than the draft of debris. To keep posing debris at the same position and minimize
283 potential dragging during the damming process, the still water depth was decreased to $h = 1.780$ m, resulting
284 in a 3.0 cm initial water depth above the ground at the structure. So, debris is partially submerged about 1.8
285 cm (3.0 cm – 1.2 cm), while it is secured by its weight.

286 Table 2 provides a summary of the selected wave properties characterized by wavemaker
287 displacement time, T_{WMDISP} , still water depth at the flume bottom, h , still water depth at the structure, d_0 ,
288 the maximum free surface elevation, η_{max} at WG1 (near the wavemaker at Bay 1), and the maximum flow
289 depth above the ground, d_{max} at USWG 2 (near the structure at Bay 14). The wavemaker displacement
290 time (T_{WMDISP}) was defined as the effective displaced time of the paddle between 99% of minimum and
291 maximum locations (dashed lines in Fig. 6). The range of T_{WMDISP} are 16.19 s for W1, 12.97 s for W2, and
292 9.80 s for W3, respectively. An increase in η_{max} and d_{max} for shorter T_{WMDISP} was observed as the

293 increase of paddle velocities in general. In the case of the wave with the PVC cover plate, because of
 294 lowered h , slightly lower d_{max} was observed.

295

296 Table 2. Experimental wave conditions.

Debris Platform Type	Wave Type	T_{WMDISP} (s)	h (m)	d_0 (m)	η_{max} (m)	d_{max} (m)
					WG 1	USWG 2
Debris Platform (A)	W1A	16.19	1.88	0.13	0.325	0.318
	W2A	12.97	1.88	0.13	0.371	0.352
	W3A	9.80	1.88	0.13	0.454	0.399
PVC cover plate (B)	W1B	16.19	1.78	0.03	0.225	0.211
	W2B	12.97	1.78	0.03	0.269	0.232
	W3B	9.80	1.78	0.03	0.349	0.277

297

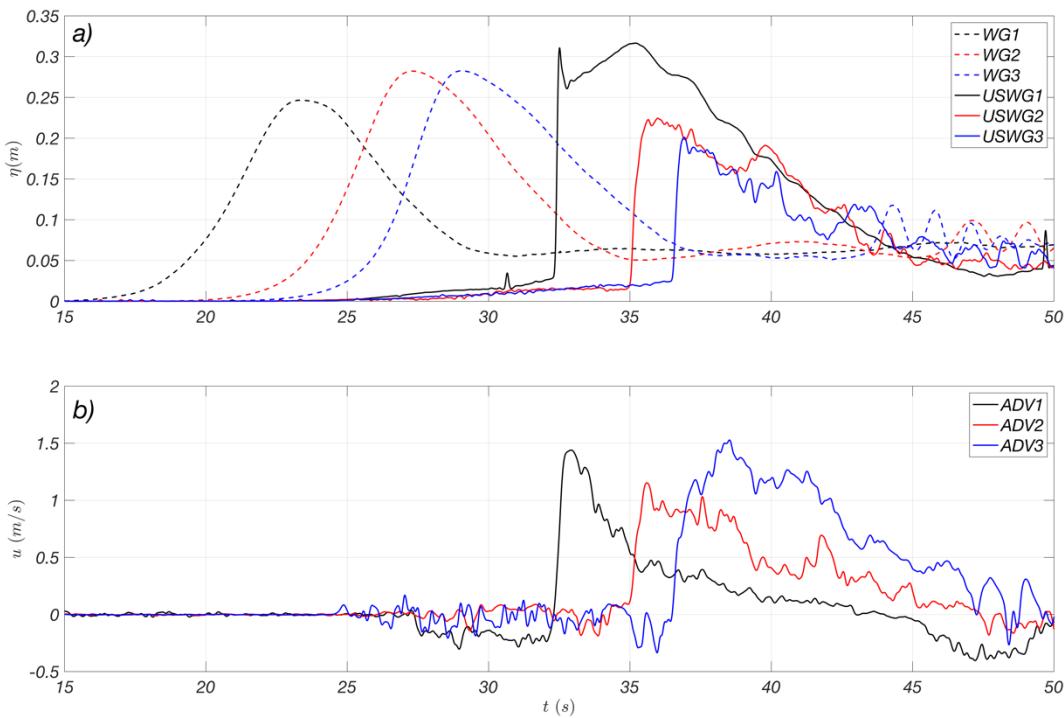
298

299 In this experimental study, a total of 183 tests, including 43 tests without debris, were conducted
 300 based on the combination of debris platforms, waves, configurations of the structure, and debris shape to
 301 understand the effect of these variables on debris-driven damming loadings on the structure. Table 3 shows
 302 the summary of test conditions and the number of repeats. Here, Conf. 2 in W1B, W2B, and W3B is marked
 303 with an asterisk because those total 27 cases were excluded from this analysis due to unclear patterns in the
 304 Force Balance Plate. In the end, 156 trials were selected and analyzed herein.

305

Table 3. Combination of experimental cases and number of repeats

Debris Platform Type (DPT)	Wave Type	Configuration (Columns)	Debris type		
			non-debris		Homogeneous
			Hydro	D1	D2
Debris Platform (A)	W1A	Conf. 1 (3 x 3)	4	3	7
		Conf. 2 (3 x 5)	3	6	6
		Conf. 3 (3 x 7)	1	6	3
	W2A	Conf. 1 (3 x 3)	4	3	8
		Conf. 2 (3 x 5)	3	6	6
		Conf. 3 (3 x 7)	1	11	8
PVC cover plate (B)	W3A	Conf. 1 (3 x 3)	4	3	6
		Conf. 2 (3 x 5)	3	6	5
		Conf. 3 (3 x 7)	1	6	3
	W1B	Conf. 1 (3 x 3)	3	3	4
		*Conf. 2 (3 x 5)	4	3	2
		Conf. 1 (3 x 3)	3	3	4
	W2B	*Conf. 2 (3 x 5)	3	3	3
		Conf. 1 (3 x 3)	3	3	4
	W3B	*Conf. 2 (3 x 5)	3	3	3
Total		183	43	68	72


306

307

Asterisk marks show the excluded trials due to unclear pattern in loading data.

308 **3. Hydrodynamic analysis (non-debris conditions)**
309310 **3.1 Characteristics of hydro kinematics**
311

312 The hydro kinematics are fundamental variables to understand debris damming on structures and
313 corresponding loading conditions. The Hydro (non-debris) case in Table 3 was utilized to understand the
314 hydro kinematics, including the surface elevation and flow velocity at the debris platform and near the
315 structure, and to understand the time-dependent hydraulic loadings without debris on the structure. All
316 measured hydro kinematics data from wave gauges and ADVs were synchronized with the load cell, Force
317 Balance Plate data, and recorded video to quantify the accurate relation between wave and loading
318 conditions. The initial bore arrival time at the seaward side of the columns was used as a reference to
319 synchronize the recorded video with the corresponding data time series. Here, the synchronization between
320 videos and DAQ data was performed utilizing the LED ramp that was connected to DAQ and recorded by
321 videos. The initial bore arrival time at the seaward side of the columns was used as a reference to
322 synchronize the recorded video with the corresponding data time series. The data acquisition system (DAQ)
323 and FBP recorded data for 200 seconds, with sampling rates of 100 Hz for the DAQ and 1,000 Hz for the
324 FBP, respectively. Fig. 7 shows the time series of a sample trial with a W2A wave and Conf. 3 (3 x 7)
325 structure without introducing any debris (non-debris case). Fig. 7a shows free surface elevations (η)
326 obtained from WG 1~3 and USWG 1~3. It shows that the free surface profile shoaled over the slope and
327 broke before reaching the structure. The maximum elevation is measured at WG 3 ($\eta_{max} = 0.28$ m). Peak
328 velocity of the flow in the x-direction yields 1.44 m/s at ADV 1, 1.15 m/s at ADV 2, and 1.52 at ADV 3.
329 (Fig. 7b). The measured results show that free surface elevation at offshore (USWG2) was higher than the
330 rear of the structure (USWG3). In contrast, velocity increased when passing the structure.

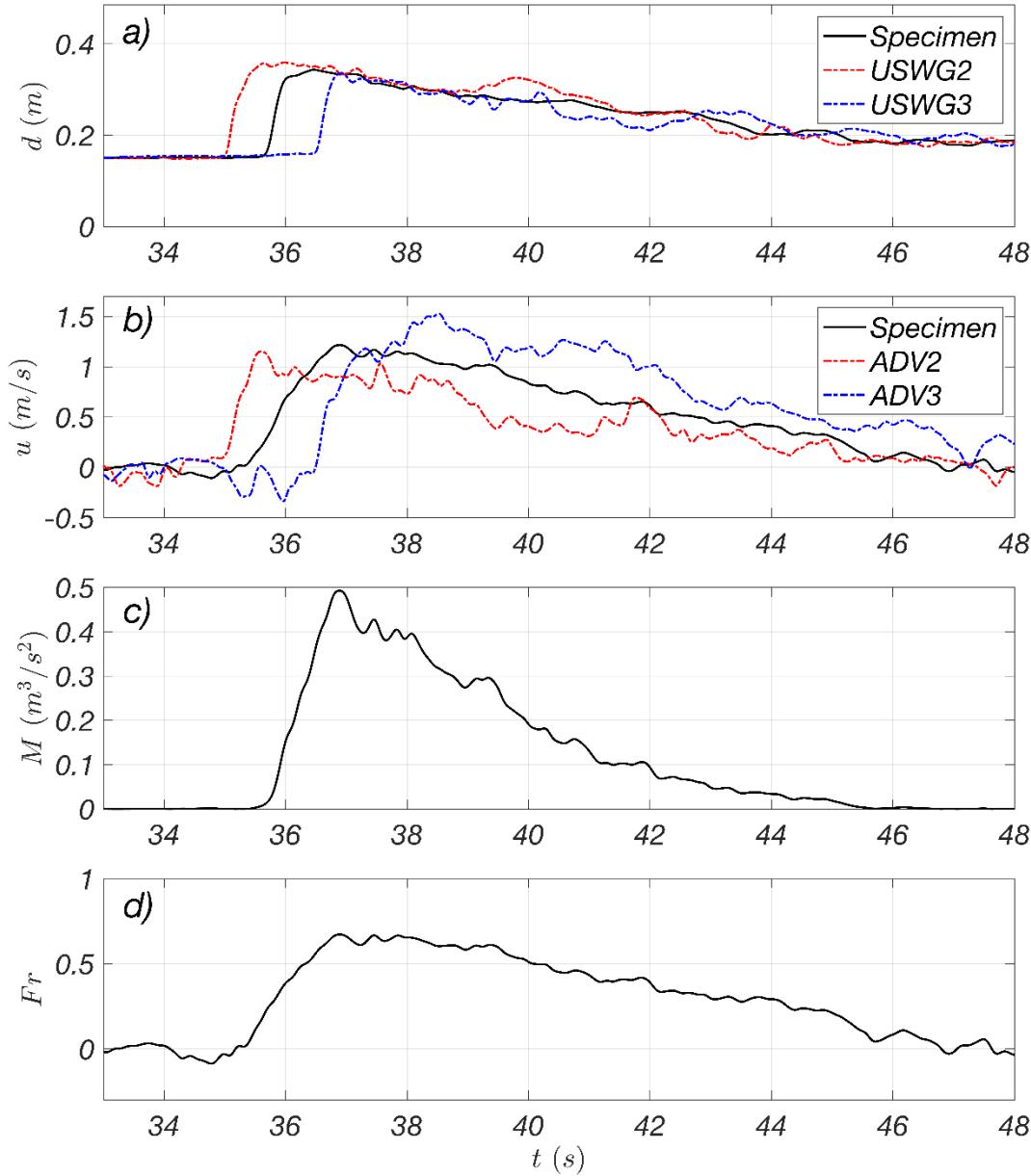

331
332
333
334

Fig. 7. Time series of (a) surface elevation at wave gauges and (b) x-velocities for non-debris conditions at W2A and Conf.3.

335 In the current physical model setup, no instruments were installed at the structure to avoid
336 disruptions in video recording. To get kinematic data at the structure (frontal column position, $x = 59.49$
337 m), data obtained from the two pairs of measuring instruments (USWG 2, 3 and ADV 2, 3) that were
338 installed in front ($x = 57.79$ m) and behind ($x = 61.44$ m) of the structure, was interpolated. Fig. 8 shows the
339 time series for W2A obtained from USWGs, ADVs, and interpolated data according to the relative distance
340 from the sample position to the structure. Fig 8a shows the flow depth, d at USWG 2 (red dash-dot), USWG
341 3 (blue dash-dot), and the structure (black solid) for the W2A wave condition. Here, flow depth, $d = \eta + d_0$,
342 is the net flow surface elevation. Additionally, d_0 is the still water depth at the structure above the ground,
343 so $d_0 = 13$ cm for the case with the debris platform. Fig. 8b displays the velocity along the x-direction, u , at
344 ADV 2 and 3 (red and blue dash-dot) and the structure (black solid). Those interpolated kinematic data
345 provided averaged values between two measured points, and Figs. 8c and 8d show the calculated
346 momentum flux ($M = du^2$) and Froude number ($Fr = u / \sqrt{gd}$) calculated by using the interpolated d and u .

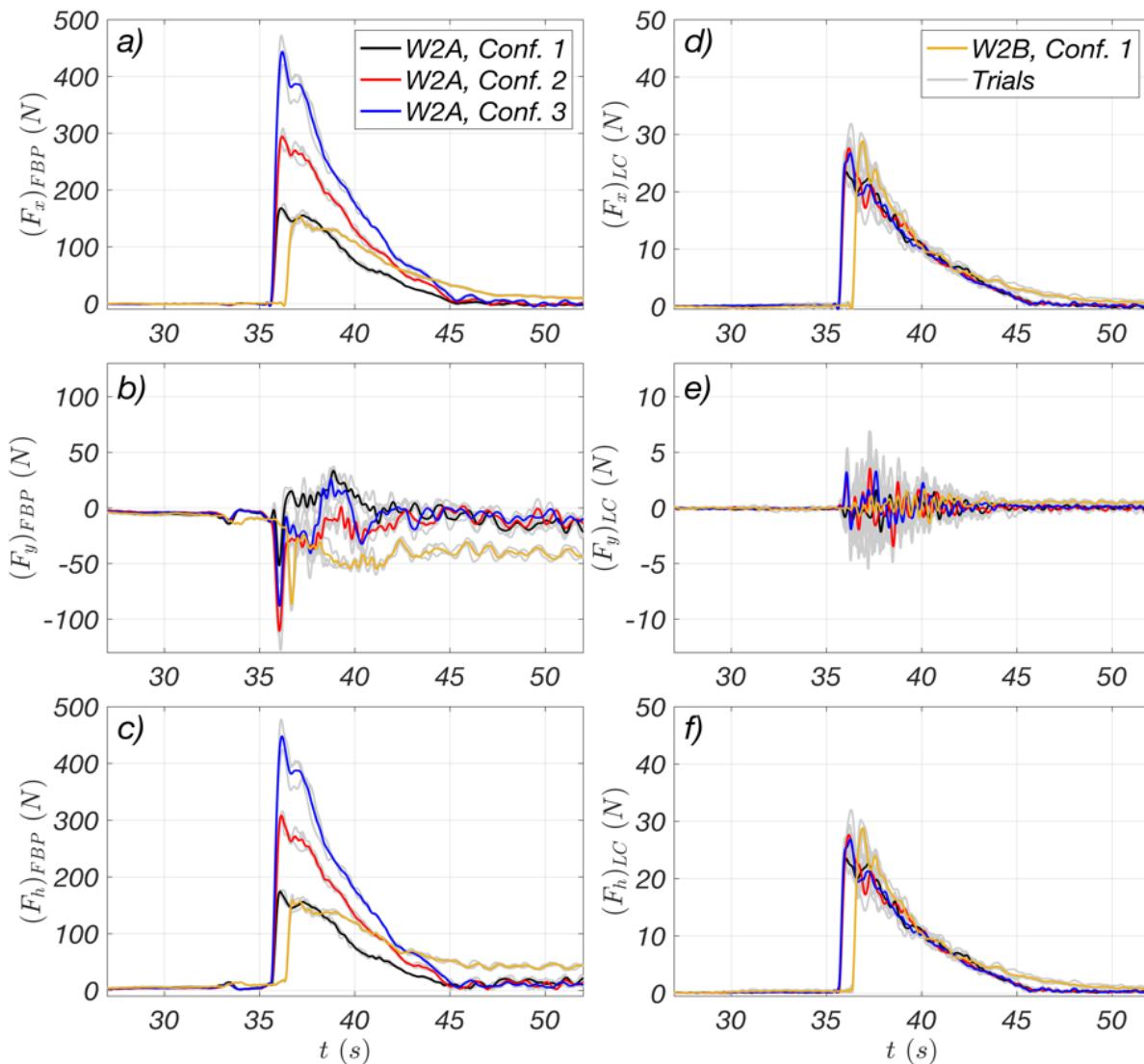
347 As the tsunami-like wave inputs utilized the full stroke of wavemaker displacement, both flow
348 depth and x-velocity eventually decreased once they reached their peak, albeit at slightly different phases.
349 Specifically, Fig. 8a and 8b illustrate the overall decrease of both flow depth and velocity. Flow depth
350 maintained relatively constant values between 36 and 38 seconds, while the velocity remained relatively

351 constant between 37 and 39 seconds. The corresponding momentum flux showed a clear peak at 37 seconds
 352 and displayed much sharper decreases thereafter.

353
 354 Fig 8. Sample time series of ensemble average of transient wave kinematics for W2A wave at the front of
 355 the structure ($x=59.49$ m): a) flow depth, b) x -velocity, c) momentum flux, and d) Froude number; red
 356 dash-dot, blue dash-dot, and black solid lines indicate the data obtained at USWG 2 and ADV 2(in front of
 357 the structure), USWG 3 and ADV 3 (behind the structure), and interpolated at the structure, respectively.
 358

359 Overall, the fluctuation in flow kinematics is more substantial compared to realistic tsunami waves,
 360 which are defined by pseudo-steady flow conditions. Therefore, the measured debris damming loads in our
 361 test are also influenced by the timing of when the debris damming occurs. However, the Froude number, a
 362 dimensionless parameter used to characterize flow conditions, showed relatively mild variations between

363 36 and 42 seconds. As will be shown later, most debris damming occurred during this time frame.
 364 Specifically, Froude numbers were mostly stationary between 36.5 and 40.0 seconds, and the ranges were
 365 approximately 0.5 to 0.6, while the range of momentum fluxes was between $0.2 \sim 0.5 \text{ m}^3/\text{s}^2$, respectively.


366 Based on the measurements from Fig. 8, Table 4 lists the maximum values of the interpolated d ,
 367 u , M , Fr , \bar{Fr} , and σ (standard deviation of Fr). Here, \bar{Fr} is the timely averaged Froude number over the
 368 specific time ranges when the momentum flux exceeded 20% of its maximum value ($M > 0.2 \times M_{max}$).
 369 Here, we chose 20% for the effective time span during which the most significant debris damming was
 370 observed in most trials. This time span corresponds to 36 seconds to 42 seconds for W2A as shown in Fig.
 371 8c and only used to estimate \bar{Fr} . In general, d_{max} , u_{max} , and M_{max} show increasing values from W1A to
 372 W3A for debris platform cases, and from W1B to W3B, for PVC cover plate cases. The maximum and
 373 averaged Froude numbers from the experiments have ranged from 0.676 to 0.985 and from 0.515 to 0.729,
 374 respectively.

375 Table 4. Hydrodynamic characteristics at the structure (non-debris case)

Wave Type	d_{max} (m)	u_{max} (m/s)	M_{max} (m^3/s^2)	Fr_{min}	Fr_{max}	\bar{Fr}	σ
W1A	0.310	1.135	0.367	0.096	0.683	0.515	0.116
W2A	0.338	1.216	0.497	0.112	0.676	0.542	0.114
W3A	0.385	1.637	0.982	0.159	0.882	0.646	0.124
W1B	0.203	0.983	0.190	0.130	0.738	0.594	0.097
W2B	0.225	1.134	0.284	0.175	0.815	0.610	0.099
W3B	0.254	1.532	0.594	0.223	0.985	0.729	0.125

376
 377 **3.2 Characteristics of hydrodynamic loadings (non-debris case)**
 378

379 The forces exerted on the whole structure were measured through the Force Balance Plate (FBP),
 380 and the forces exerted on the front column from the Load Cell (LC) were measured in non-debris cases.
 381 Fig.9 shows the x -direction force (F_x), y -direction force (F_y), and horizontal force, $F_h = \sqrt{F_x^2 + F_y^2}$ exerted
 382 on both the structure and the middle column during W2A and W2B. The trials for W2A-Conf. 1, W2A-
 383 Conf. 2, W2A-Conf. 3, and W2B-Conf. 1 were repeated more than three times each. Each black, blue, and
 384 red line shows the ensemble-averaged time series of each case, W2A-Conf. 1, 2, and 3, respectively, and
 385 the yellow line shows W2B-Conf. 1. Here, the light gray line shows repeated single trials in each case.

386

387 Fig. 9. Time series of x, y, and total horizontal forces at the structure, FBP, (a, b, and c) and the middle
 388 column, LC (d, e, and f). Each black, red, blue, and yellow line shows the ensemble-averaged time series
 389 of each case, and the light gray line shows repeated single trials in each case.

390

391 In the case of x-directional force at the structure, $(F_x)_{FBP}$, the largest force was measured for Conf.
 392 3 (3 x 7 columns), and the smallest force was measured for Conf. 1 (3 x 3 columns), as seen in Fig. 9a. As
 393 expected, forces increase in the flow direction as the projected area of the structure increases with additional
 394 columns at the structure. Here, we can measure a similar time series of force between W2A-Conf. 1 (black)
 395 and W2B-Conf. 1 (yellow) as they utilized the same wavemaker paddle function. However, the force from
 396 W2B-Conf. 1 was measured with a delay of about 0.8 s because of a relatively smaller flow depth, as
 397 observed in Table 2.

398 Both results of F_y on the structure (Fig. 9b) and the middle column (Fig. 9e) showed slightly
 399 asymmetric forces, but the magnitudes of F_x are larger than F_y , and the moment of peak forces are mostly
 400 dominated by flow directional force. Thus, the horizontal force, F_h , showed a very similar maximum peak
 401 value and pattern to that of F_x (Fig. 9c and 9f). All other wave conditions were evaluated for non-debris
 402 cases, and the maximum horizontal forces for the structure and the middle column were examined and
 403 summarized in Table. 5. Results show that the largest forces were found for W3A or W3B in each
 404 configuration, as expected due to the wave height. As we observed in Fig. 9, there was a significant increase
 405 in the maximum force at the structure, $\langle F_{FBP} \rangle_{max}$, for all other wave conditions as the number of columns
 406 increased from Conf. 1 to Conf. 3. While the maximum force at the loadcell, $\langle F_{LC} \rangle_{max}$ showed relatively
 407 minor differences across among different configurations and the smallest force is found at Conf. 1.
 408

409 Table 5. Maximum horizontal forces, F_h exerted on the single column (F_{LC}) and the structure (F_{FBP})

Wave & DPT	$\langle F_{FBP} \rangle_{max}$ (N)			$\langle F_{LC} \rangle_{max}$ (N)		
	Conf. 1	Conf. 2	Conf. 3	Conf. 1	Conf. 2	Conf. 3
W1A	124.4	215.5	301.0	20.5	23.1	24.0
W2A	175.7	308.8	472.3	25.9	31.9	29.4
W3A	245.6	469.0	667.5	45.5	47.7	48.6
W1B	123.6	-	-	22.9	-	-
W2B	157.8	-	-	30.2	-	-
W3B	212.7	-	-	46.3	-	-

410

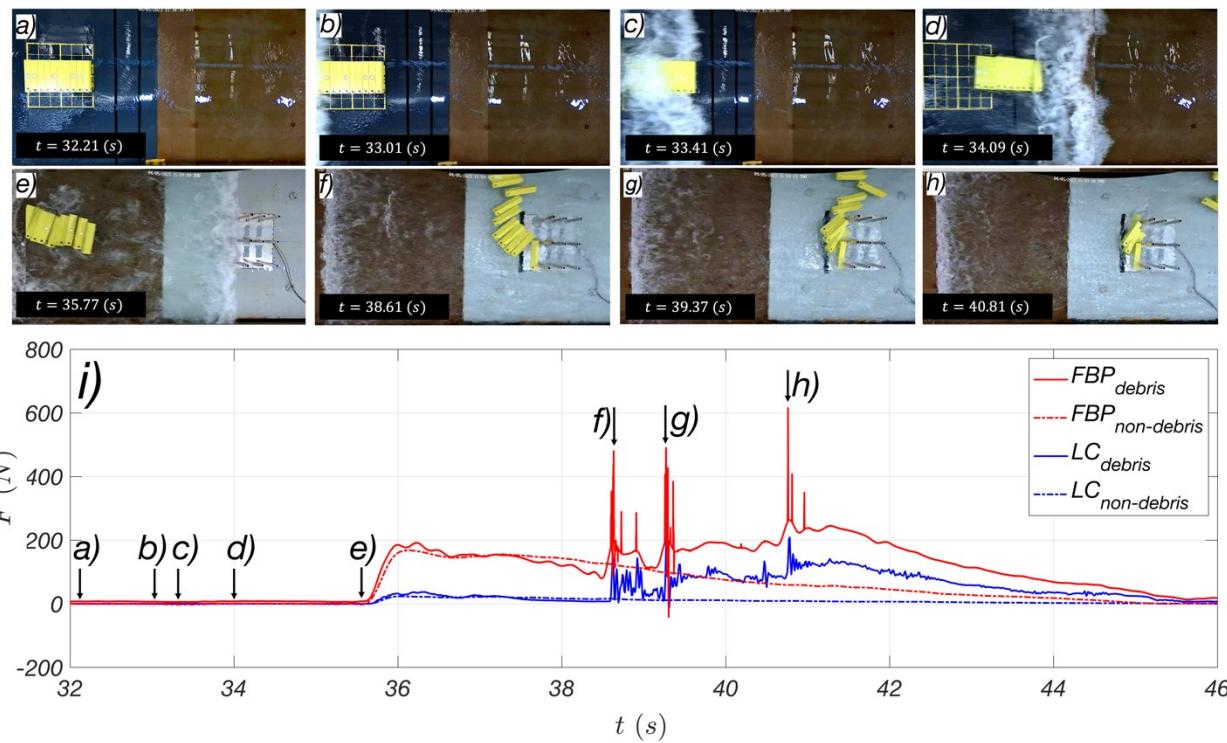
411 4. Debris loadings results

412

413

414 Debris damming loading is greatly affected by the temporal variation of flow dynamics, leading to
 415 complex changes in the behavior of debris damming and sequential loadings over time. Thus, to provide a
 416 thorough interpretation of debris damming loading phenomena, it is important to carefully examine the
 417 interactions among waves, debris, and structural elements across temporal scales. In this section, a
 418 synchronized analysis for damming loadings incorporating recorded video footage and time series data of
 419 hydrokinetic parameters, such as surface elevation, velocity, momentum flux, and Froude number, were
 420 utilized alongside the corresponding debris damming loading exerted on the whole structure and at its
 421 central column.

422


423 4.1 Frequency filtering for impact and damming loads

424

425

Fig. 10 shows a series of snapshots of the sample trial of the experiment for the W2A - Conf. 1 - D2 case (Fig. 10a through 10h) and a recorded time series of raw data for the structure and the middle column (Fig. 10i) for the same trial. D2 indicates that this trial tested with 10 of 12.2 meters shipping

426 containers. Each snapshot from Fig. 10a to Fig. 10h shows the process of debris transport and development
 427 of debris dam on the structure, including initial placement of debris, wave-debris interaction represented as
 428 debris entrainment and debris transportation, and wave-debris-structure interaction such as wave impact,
 429 debris impact, and debris damming. Specifically, Fig. 10b through 10d show that the incident wave passes
 430 over the debris platform, and a bore-type wave is developed while flowing across the debris platform,
 431 initiating the transportation of debris. The leading edge of flow reaches the structure at 35.77 s before debris
 432 and results in pure-hydrodynamic loads first (Fig. 10e). Then, transported debris collides with the structure
 433 at 38.61 s and yields the impact and damming loads (Fig. 10f). Also, the additional impact loads were also
 434 observed (Fig. 10g and 10h) sequentially. The experiment recorded a certain amount of default noise for
 435 the whole time series for the FBP, thus noise removal was conducted, and Fig. 10 showed the results after
 436 the noise filtering.

437
 438

439 Fig. 10. Snapshots of debris transport and damming process for the W2A-Conf.1-D2 case in a) through b),
 440 and i) time series of horizontal force data of with debris case (solid) and without debris case (dash-dot) at
 441 the structure (red) and the middle column (blue).

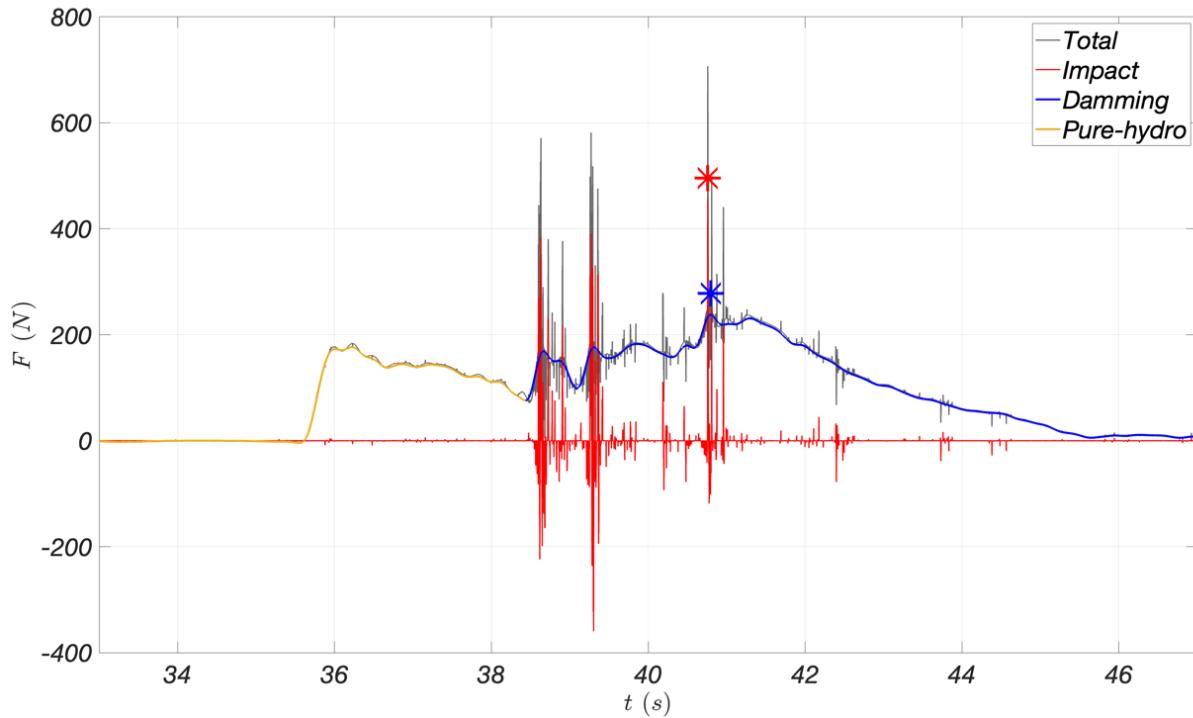
442

443

444

445

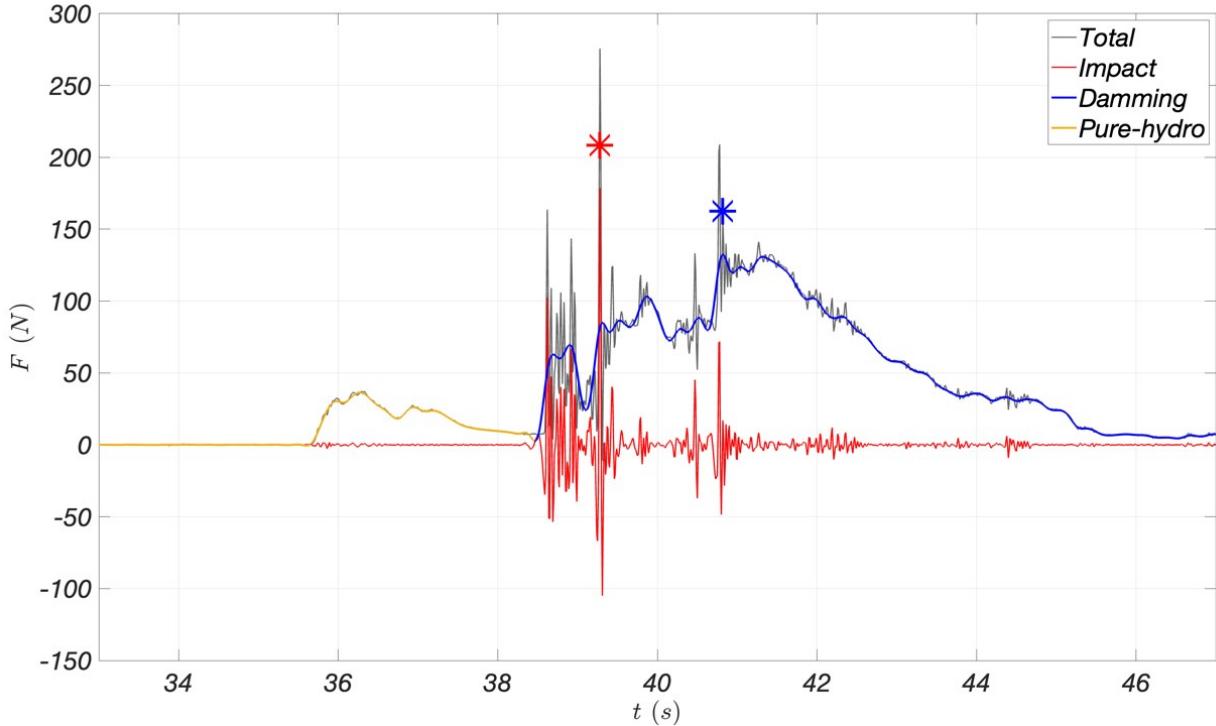
446


447

In this study, the water-borne debris load on the structure was considered to have two major loading components. The first is debris impact load, where the debris momentum (because of the collision) is rapidly transferred to the structure. Therefore, the time series of impact load has a very high frequency and short duration. The second is the hydrodynamic load, which corresponds to the inertia and drag forces on the structure because of the changes in flow. When debris collision exits, both the pure hydrodynamic load and

448 the debris damming load are observed before and after the collision of debris on the structure as parts of
449 the overall hydrodynamic load. A larger accumulation of debris at the structure increases the cross-sectional
450 area, which in turn increases the hydraulic drag (hydrodynamic) loads on the structure. Therefore, the
451 damming process is essential for quantifying the debris damming load by separating the force-time histories
452 into impact phases.

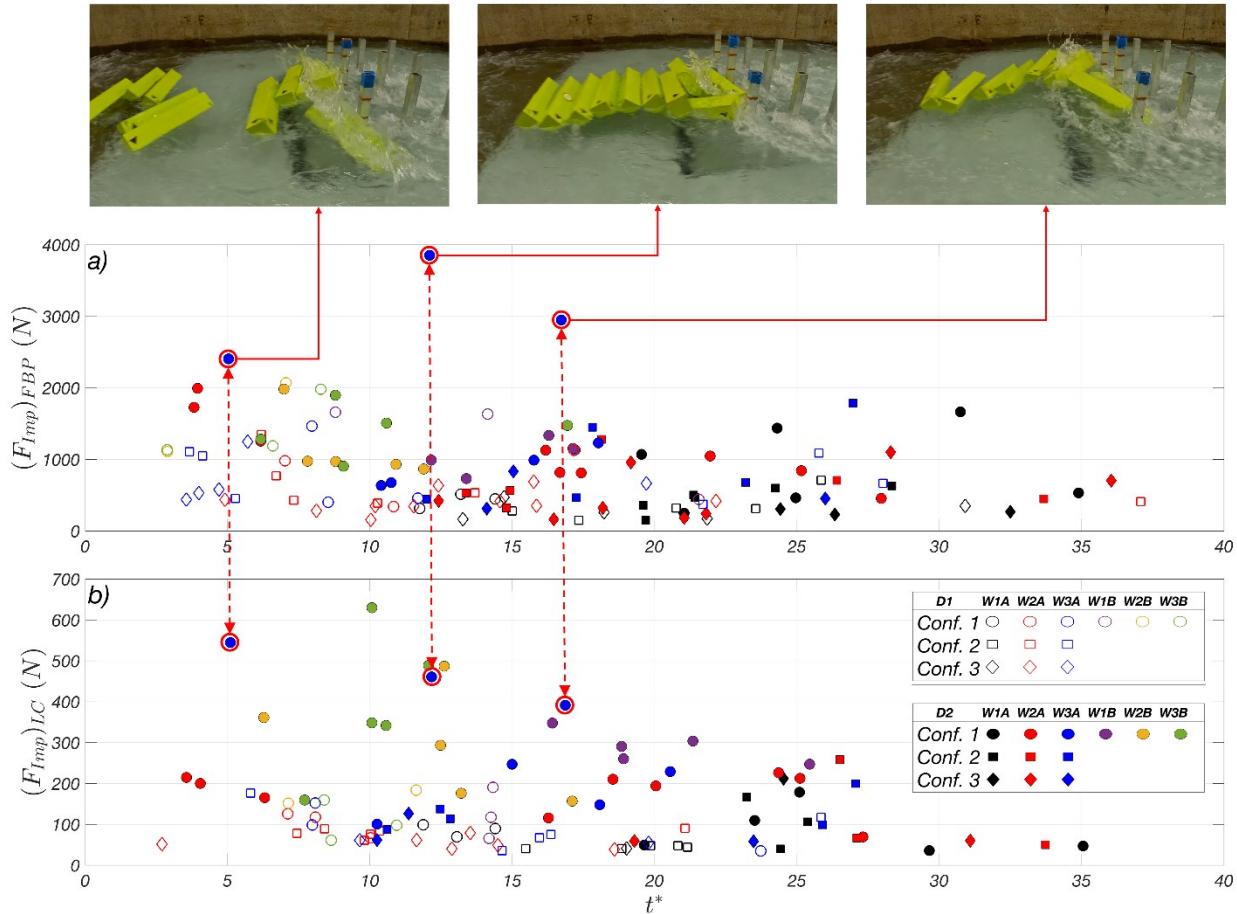
453 For this isolating process, original signals were converted into frequency-domain by fast Fourier
454 transform (FFT), and two filters were applied to the converted signal: A low-pass filter and a high-pass
455 filter following the previous work from Shekhar et al. (2020). The low-pass filter was designed to eliminate
456 frequencies above a predefined limit. For debris damming load, frequencies above 5.0 Hz were completely
457 removed, with a transition zone between 2.5 and 5.0 Hz following the previous work. As a result,
458 frequencies less than 2.5 Hz from the raw force signal are fully visible for the damming load (hydrodynamic
459 loadings). In contrast to the low-pass filter, the high-pass filter was applied to completely filter out
460 frequencies below 2.5 Hz with the same transition zone for impact load. Once the filtering process has been
461 completed, inverse FFT converts the filtered frequency signals back into the time domain.


462 Fig. 11 displays the total loads (black line), impact loads (red line), damming loads (blue line), and
463 pure-hydrodynamic loads (yellow line) measured at the FBP. As the leading flow arrived at the structure at
464 $t = 35.70$ s, the pure-hydrodynamic loads were observed before the effective debris collision would occur
465 at $t = 38.50$ s. Once debris interacts with the structure, we could observe the major impact loads and
466 fluctuations of damming loads from $t = 38.5$ s to $t = 44.0$ s due to multiple collisions of debris to the structure
467 during these time spans. The maximum total load at the structure was found at $t = 40.76$ s with 706.9 N,
468 where the maximum impact load was also observed at the same timestamp with 456.0 N (red asterisk).
469 Here, the maximum damming load (blue asterisk) was found at $t = 40.80$ s with 238.0 N, almost the same
470 time stamp as the maximum impact load, although the timestamp of each maximum impact and damming
471 loads were found to be different in other trials.

472
 473 Fig 11. Sample application of low and high pass filter to the FBP measured data at the structure. Each
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486

487 In a similar manner, Fig. 12 shows three loads from the LC after the frequency filtering process at

488 the same trial. Similar to the FBP results, the pure-hydrodynamic loads were observed before the effective
 489 debris collision occurred at $t = 38.50$ s. The maximum total load of 275.7 N occurred at $t = 39.28$ s, and the
 490 peak impact loading was 178.5 N (red asterisk) at the same time stamp as the maximum total load. However,
 491 the maximum damming loads of 130.4 N were observed at $t = 40.83$ s (blue asterisk) about 2.3 s later. This
 492 example showed the clearly different time stamps of each peak load for impact and damming loads at the
 493 central column. We observed the peak damming load occurred slightly after the impact load at $t = 40.80$ s.
 494 This example showed the clearly different time stamps of each peak load for impact and damming loads at
 495 the central column. We observed the peak damming load occurred slightly after the impact load at $t = 40.80$
 496 s. However, this impact load is neither maximum impact nor total load.


488
 489 Fig 12. Sample application of low and high pass filter to the LC measurements at the middle column:
 490 Each black, red, and blue line shows total load, impact load, and damming load. Here, each red and blue
 491 asterisk indicates the maximum impact and damming loads.

492
 493 In most trials, before and after the maximum impact and damming loads, a series of peak impact
 494 or damming loads were also observed. Generally, the maximum peak impact loads occurred earlier than
 495 the maximum peak damming loads, but some cases showed only impact loads without debris damming
 496 loads when debris didn't effectively create the debris dam at the front.

497 The time series of impact and damming loads generally showed different characteristics between
 498 the total structure (from the FBP) and the frontal middle column (from the LC). Besides, the magnitude and
 499 timestamp of each peak, the number of peak damming loads, and the number of impact loadings were also
 500 different for each trial. Furthermore, these patterns are inconsistent even for the exact same wave, debris
 501 shape and configuration conditions as the debris motions are highly dependent on the complicated flows
 502 (turbulences) over the platform and some randomness on the flow and debris interactions at the initial debris
 503 entrainment.

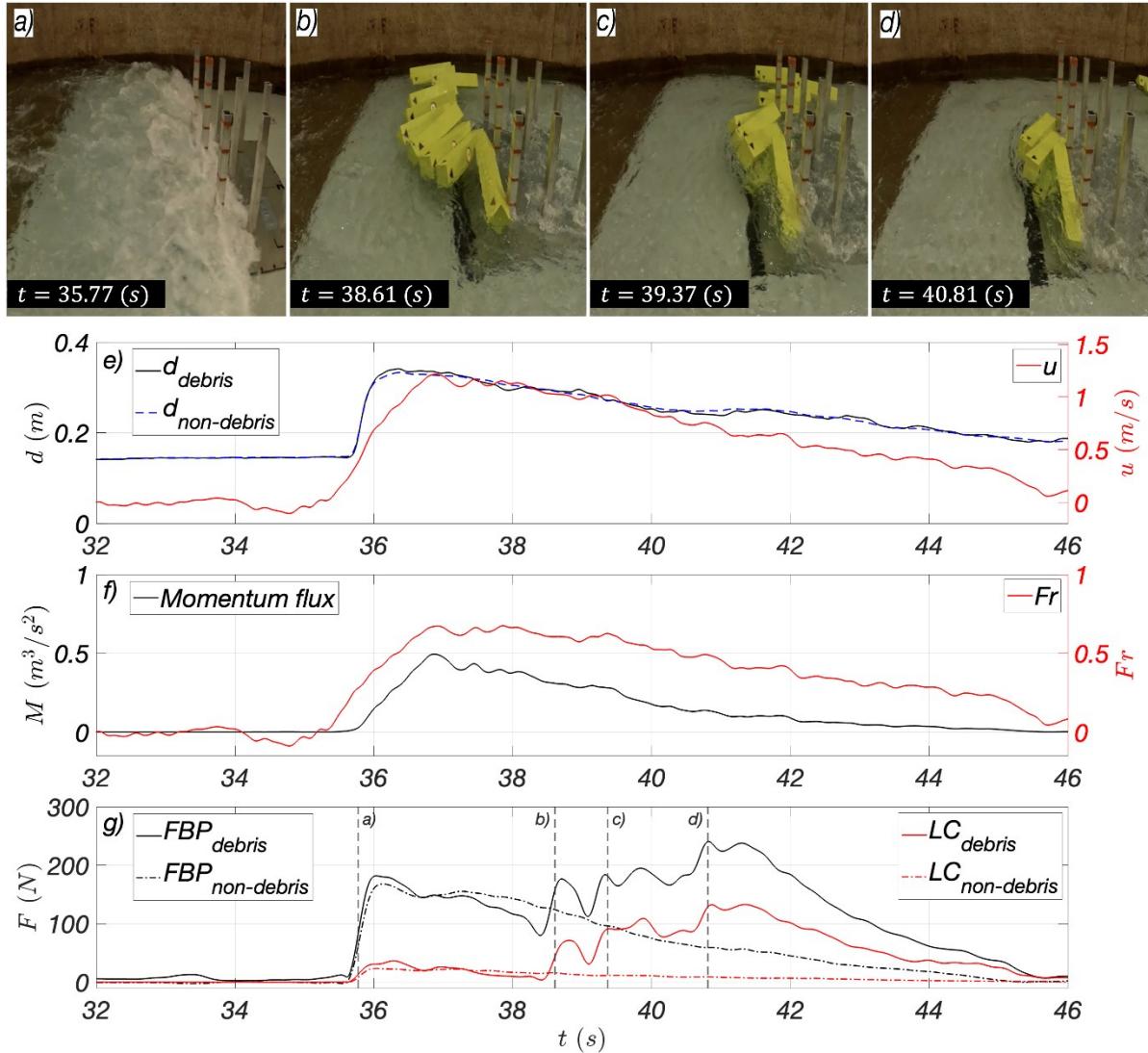
504 Fig. 13 illustrates the maximum impact loads on the structure, as measured by the FBP (Fig. 13a)
 505 and the impact loading on the middle column, as measured by the LC (Fig. 13b) in a normalized time
 506 domain, $(t^* = (t_{Imp} - t_0)/\sqrt{g/d_{max}})$. Here, t_{Imp} is the time of peak impact loads at each trial and t_0 is
 507 the time of leading-edge flow that exceeded 1% of the d_{max} . In this figure, each marker indicates different
 508 configurations of the structure such as circle for Conf. 1, square for Conf. 2, and diamond for Conf. 3. Also,

509 the wave and platform conditions are defined by colors such as black, red, and blue with debris platform
 510 (A), and purple, orange, and green with PVC plate cover (B) for three waves, W1, W2, and W3,
 511 respectively. The hollow and filled symbols indicate two different debris shapes, D1 (6.1 meters containers)
 512 and D2 (12.2 meters containers), respectively. Dashed line in color presents a timestamp of leading-edge
 513 flow arrival to the structure for each wave and platform condition.

514
 515 Fig 13. Impact loads on the structure (a) and the middle column (b) and in a normalized time, t^* for the
 516 different wave conditions, platform scenarios and debris shapes. The upper panel figure shows a sample
 517 snapshot at that time of maximum impact loading for trial for W3A-Conf.1-D2.
 518

519 Within the impact loads on the structure (Fig. 13a), it was observed that higher impact load typically
 520 occurred at D2 (larger debris) and W3, but the magnitude of these impact loadings is also governed by the
 521 number of impacting debris and configuration types. Specifically, within the W3A wave conditions for D2
 522 (blue circle with arrows) depicted in Fig. 13a, one can observe the three highest impact loads, which are
 523 about 2,405 N, 3,854 N, and 2,950 N, respectively. Among the three, as shown in the upper panel, the
 524 largest impact load occurred with 10 debris at $t^* = 12$, and the ratio is shown up to 15.7 times of the
 525 maximum load of the non-debris case. The second and third impact load occurred with 7 debris elements
 526 and 5 debris elements at $t^* = 17$, and 5, respectively. Additionally, the relatively larger impact loads,

527 including the three highest impact loadings, were all observed in Conf. 1 and much smaller loading in Conf.
 528 3. This may be caused by the stronger backflow intensity at the frontal columns as they have a smaller
 529 opening ratio for Conf. 3. As the leading-edge flow reaches to the structure earlier than the debris, the
 530 reflected flow in a subcritical flow condition ($Fr < 1$) could reduce the collision speed of the debris.


531 In the case of loads at the middle column (Fig. 13b), the maximum impact load was also measured
 532 at Conf. 1, which aligns with the impact load at the structure. Specifically, the maximum impact load, i.e.,
 533 544 N, was observed to be about 13 times higher than the non-debris case, which showed the third largest
 534 impact load at the structure. This discrepancy on the maximum impact loads between the whole structure
 535 and the middle column is attributed to the debris predominantly impacting the middle column, thereby
 536 concentrating the loads onto a single column, while in other cases, impact loads were distributed across
 537 multiple columns.

538 Overall, the time of the peak impact loads for W1 (black and purple symbols) ranging from $12 < t^* < 35$ for both the structure and the middle column and are slower than those of the other waves. The peak
 539 impact loads for W2 and W3 are ranged from $3 < t^* < 37$ and there are no clear patterns on the timestamp
 540 of impact loads depending on configurations or debris type.
 541

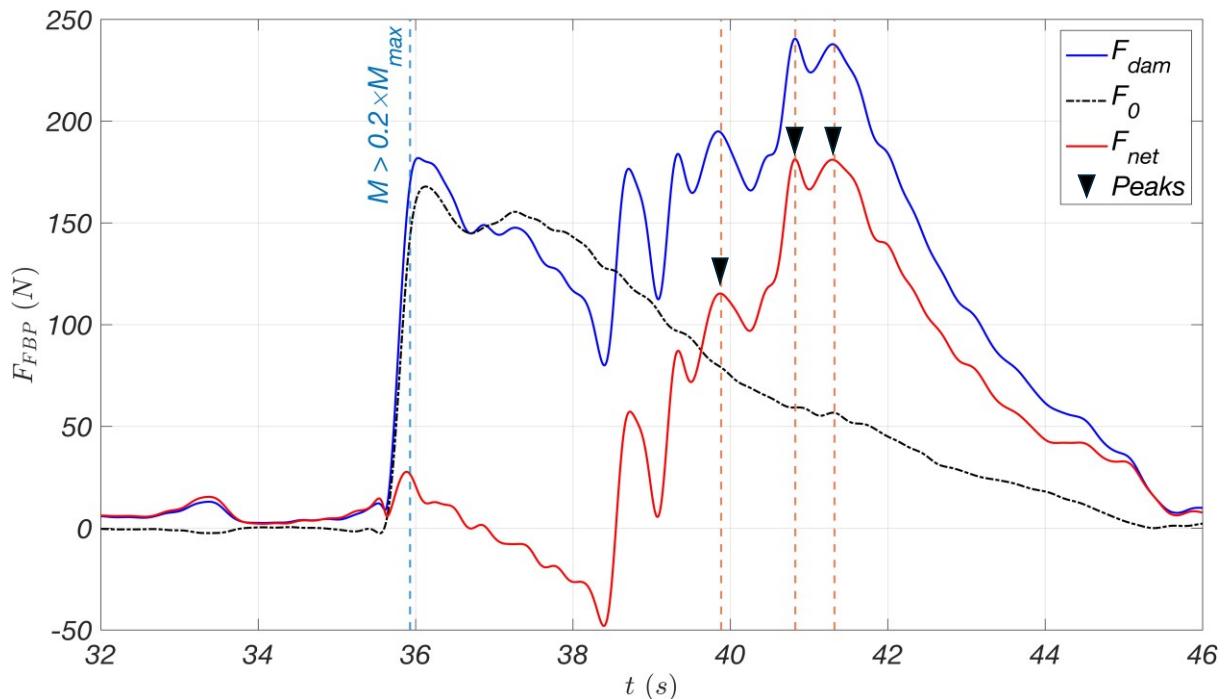
542 4.2 Characteristics of debris damming loads

543

544 For a better understanding of the debris-driven damming loading mechanism, the time varying
 545 changes in damming loads and corresponding flow kinematics were evaluated. However, measuring the
 546 time varying changes in flow fields due to debris and structure interactions directly from the measured data
 547 was challenging. For example, velocity readings were not available in this experimental setup at the
 548 structure due to potential debris collisions with the sensor that may cause damage. Additionally, installing
 549 too many wave sensors would have obstructed camera views and hindered tracking of debris motion near
 550 the structure. Therefore, herein, the hydro-kinematic data measured in Section 3 (non-debris case) without
 551 debris as flow conditions during debris damming was used, assuming that hydrodynamics on non-debris
 552 cases are very similar to the one with debris and they are still crucial factors in defining the timely debris
 553 damming process. The high pass filtered time series loading data and recorded videos were synchronized
 554 with the time series of non-debris data (flow depth, velocity, etc.) in Fig. 14.
 555

556

557 Fig 14. Synchronizing data with recorded video, 12.2 m shipping container: a) leading edge arrives at the
 558 structure, b) the first damming peak, c) the second peak, and d) the maximum peak damming loads at the
 559 structure, and time series of d with and without debris, u , ηu^2 , Fr , and forces measured by FBP and LC
 560 in e) through g).


561

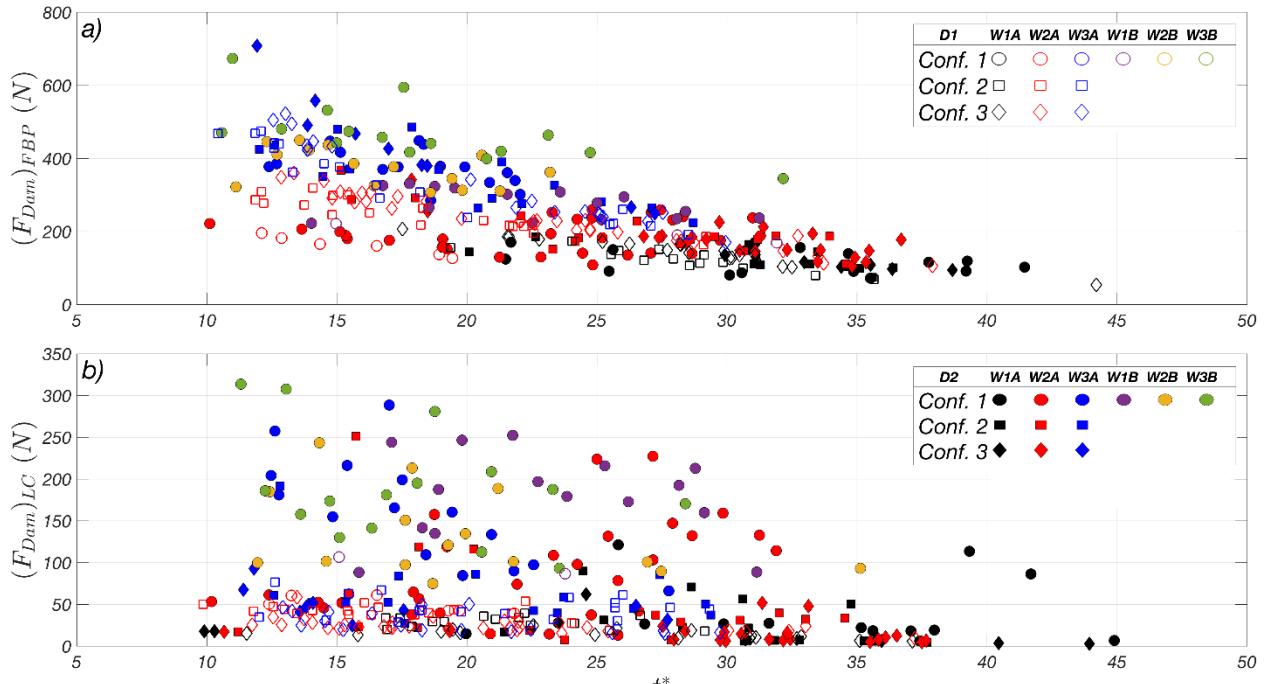
562 The upper panel of Fig. 14 shows four representative timestamps that are marked for notable
 563 changes in the debris damming loads history at the structure, such as the time of leading-edge arrival (Fig.
 564 14a), near the first peak debris damming (Fig. 14b), the second peak debris damming (Fig. 14c), and the
 565 maximum peak debris damming (Fig. 14d). The lower panel shows the time series of flow depth, d , x -
 566 directional velocity, u , x -directional momentum flux, ηu^2 , Froude number, Fr , for the non-debris cases for
 567 reference, and the time series of horizontal loading data of debris damming in the structure (F_{FBP}) and the
 568 middle column (F_{LC}) after each filtering. Particularly, Fig. 14e compares the ensemble averaged flow depth
 569 in conditions with debris (solid black) and without debris (dashed blue), showing almost identical flow

570 depth profiles. Here, flow depths were measured near the wall (uswg1 and uswg2) of the flume. This
 571 indicates that the overall hydro kinematics with and without debris would be very similar in the flume and
 572 there are no blockage issues (e.g., Stolle et al., 2018; Wüthrich et al., 2020) under our test condition.
 573 However, we could observe local changes on flow depth and velocity at debris damming process through
 574 videos near the structure.

575 From b) to d) the overall damming loads at the time of debris dam formation (or deformation of
 576 debris dams) result in varied peak points while time series of damming loads on the structure will generally
 577 decrease as flow depth, velocity and momentum flux decrease in our test conditions. However, the
 578 maximum damming load was observed at point d). From the timestamp c) to d), the transient motion of
 579 debris at the front was settled down and eventually increased the debris damming loads as a more secure
 580 debris dam was stabilized.

581 Besides this sample trial shown in Fig. 14, complicated fluctuations in the time series of damming
 582 load from different trials under varied conditions of debris, wave, and configuration were observed. To
 583 characterize debris damming loads, three largest peaks damming loads were selected from each trial as
 584 representative. Through the observation, we decided to utilize only three peak points per each trial among
 585 multiple peak points avoiding too many overlaps, while representing various debris dams at a single trial.
 586 Fig. 15 illustrates a sample of our peak detection methodology for damming loads from the same sample
 587 case utilized in Fig 14. The figure displays the time series of damming loads, F_{dam} (blue solid line),
 588 hydrodynamic loading at the no-debris case, F_0 (black dash-dot line), and the differences between these
 589 two loads, F_{net} (red solid line), which is $F_{dam} - F_0$. As observed in Section 3, the hydrodynamic loads on
 590 the structure in non-debris case decreased after the initial peak at $t = 36.1$ s in this figure. To quantify the
 591 net debris-driven damming loads on the structure, the time stamps of three points were extracted
 592 corresponding to the times of the largest differences in loads to effectively characterize damming loads
 593 (reverse triangle) from the time series values of F_{net} . Once, we found three-time stamps, the peak damming
 594 loads were read from F_{dam} (blue line) at those three-time stamps. In a similar manner, three peak damming
 595 loads were also extracted from the center column by utilizing the LC data.

596


597 Fig 15. Example of local peak detection on the structure. Measured time series of hydrodynamics (F_0) and
 598 total loads on the structure (F_{dam}), as well as net damming loads (F_{net}) with the identification of the three
 599 peak time stamps (Peaks).

600 Following the peak detection methodology, Fig. 16 shows the measured peak damming loads and
 601 time on the structure and middle column for all trials. Fig. 16 utilized the exact same format as Fig. 13.
 602 Each circle, square, and diamond shape indicates Conf. 1, Conf. 2, and Conf. 3. Also, the wave and platform
 603 conditions are defined as colors, and dashed lines in color present timestamp of leading-edge flow. The
 604 hollow and filled symbols indicate two different debris shapes, D1 and D2, respectively.

605 Peak values on the structure (Fig. 16a) show that there was a distinct relationship between waves
 606 and damming loads, with the highest load occurring at W3 and the lowest at W1. Furthermore, D2 (filled
 607 symbol) consistently exhibited larger loads compared to D1 (void symbol), with observed differences of
 608 the maximum damming loads up to approximately 40%. The largest damming loads on the structure was
 609 observed in Conf. 3 and the value is about 710 N. In addition, it is worth noting that the overall damming
 610 loads during Conf. 3 are larger than Conf. 1 and 2 for all flow conditions. This pattern is expected
 611 considering the smaller opening in Conf. 3, which causes relatively more debris damming.

612 However, the maximum peak damming loads at the middle column (measured with the LC) was
 613 observed during Conf. 1 (Fig. 16b) and this value was 311 N. Here, Conf. 1 exhibited much higher loading
 614 compared to Conf. 2 and 3, attributed to the concentration of damming over the middle column in Conf. 1,
 615 as opposed to the distribution of damming across more columns in Conf. 2 and 3. However, regarding
 616 debris size, the damming loads of D1 in Conf. 1 (void circle) was significantly lower or not measured due

617 to the larger spacing between columns relative to the size of the debris, rendering the formation of debris
 618 damming more challenging.

619
 620 Fig 16. Peak damming loads for all trials on the whole structure (a) and the middle column (b) in a
 621 normalized time, t^* for the different wave conditions, platform scenarios and debris shapes.

622 Similarly, it was observed that the wider spacing of Conf. 1 resulted in less frequent damming
 623 occurrences at the front of the structure, and subsequently limited availability of damming data. This was
 624 further highlighted when focusing on the D1 case, where the distance between columns measures 40.7 cm
 625 for Conf. 1, which is wider than the 29.80 cm length of D1. In a total of eighteen trials of Conf. 1 with D1,
 626 only 17% (three trials) displayed effective debris damming, compared to seventeen out of eighteen trials
 627 (91%) in Conf. 2 and twenty-three out of twenty-three (100%) in Conf. 3. In contrast, D2, with a length of
 628 59.60 cm, longer than the column spacing in Conf. 1, the occurrence of damming on the structure was
 629 insensitive to column spacing and showed a consistent probability of damming formation in every
 630 configuration, such as thirty-five out of forty (88%) for Conf. 1, fifteen out of seventeen (88%) for Conf.
 631 2, and twelve out of fourteen (86%) for Conf. 3.

632 Compared with impact loads, the quantity and pattern of debris damming loads were different
 633 between the whole structure and middle (single) column. The maximum damming loading was 3.4 times
 634 lower than the observed maximum impact loading at the whole column structure and 1.8 times lower than
 635 that observed at the single column. The larger damming loads were observed for Conf. 1, while the larger
 636 impact loading was observed for Conf. 3 on the structure. However, the larger damming and impact
 637 loadings were generally observed for Conf. 1 rather than Conf. 2 and 3 on the middle column. In addition,

638 the earliest timestamp of the peak damming load is $t^* = 10$, and the maximum damming loads are measured
 639 around $t^* = 12$ for both the structure and the middle column, after which the overall damming loads
 640 decrease. This pattern is also observed in the impact loads in Fig. 13, as the flow kinematics (e.g., flow
 641 depth, velocity) are overall decreased over time in our test conditions. However, no clear patterns were
 642 observed in the timestamps of damming loads based on configurations or debris type.

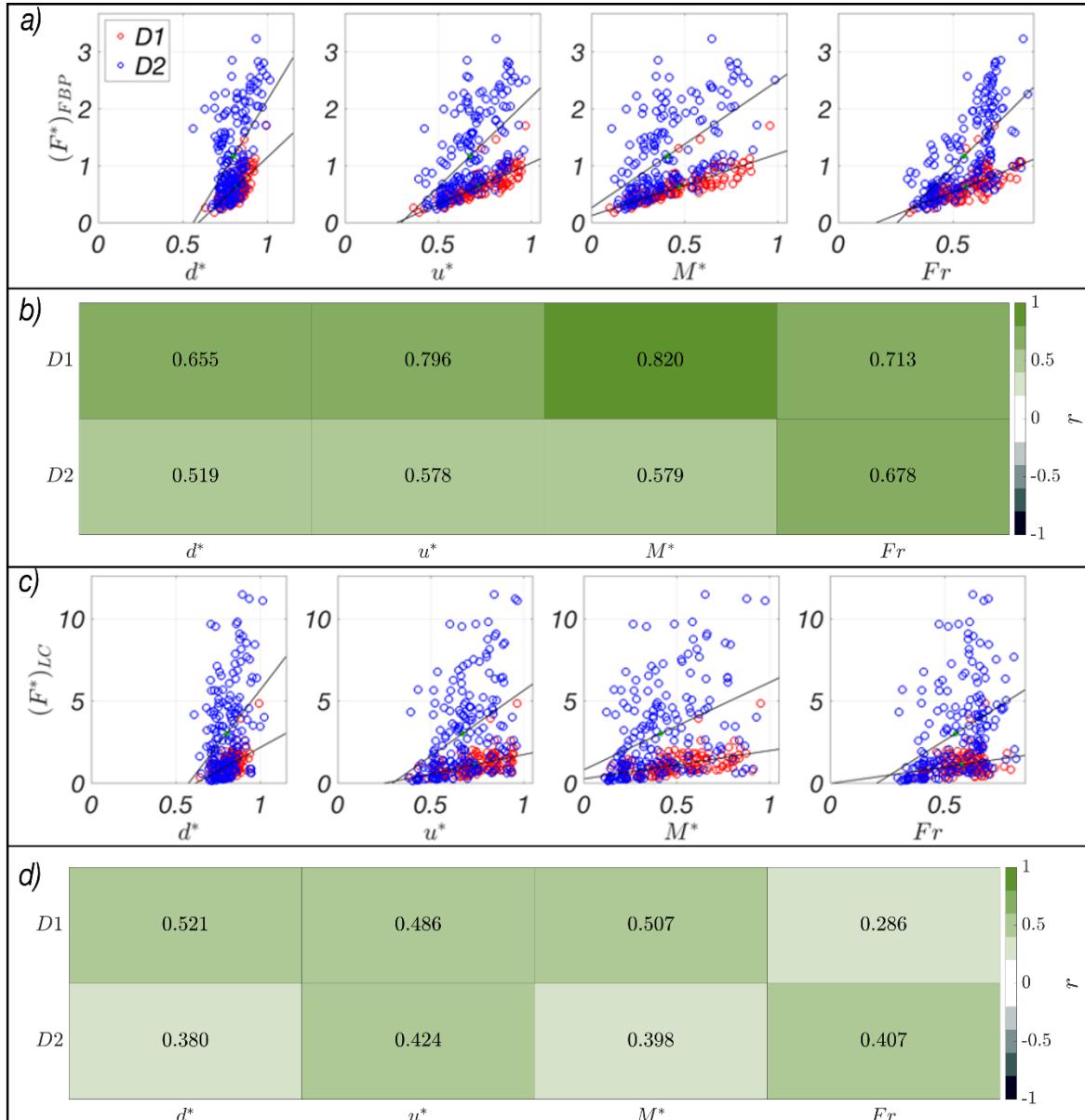
643

644 **5. Correlation of debris damming loading**

645

646 **5.1 Linear Correlation with hydro-kinematics**

647


648 In this section, the connection between hydro-kinematics and debris damming loads were analyzed
 649 by assessing how each peak debris damming loads correlate with flow variables. Here, flow depth (d), x -
 650 directional velocity (u), momentum flux (M), and Froude number (Fr) at the time of debris damming were
 651 used as the representative variable to characterize flow conditions. Specifically, the linear correlation
 652 between loads and flow variables was evaluated by quantifying the correlation coefficient, r , which is the
 653 ratio between the covariance of two variables and the product of their standard deviations (Snedecor and
 654 Cochran, 1980). In addition, the normalization for the peak damming loads was performed by dividing the
 655 measured peak damming loads by the maximum hydrodynamic loadings (non-debris case) that were listed
 656 in Table 4 about specific wave and configuration conditions. Similarly, for the flow variables, the values at
 657 the timestamp of a peak damming loading are divided by the maximum values of those variables in the
 658 non-debris case. In sum, all variables are normalized following $X^* = X_{peak}/\{X_0\}_{max}$. Where, X indicates
 659 a variable, such as $(F_{dam})_{FBP}$, $(F_{dam})_{LC}$, d , u , and M . X_{peak} is the value at peak damming loads in the
 660 structure or the central column, and corresponding flow variables at that time, and $\{X_0\}_{max}$ is the maximum
 661 variable in the non-debris case.

662

663 **5.1.1 Effect of debris types**

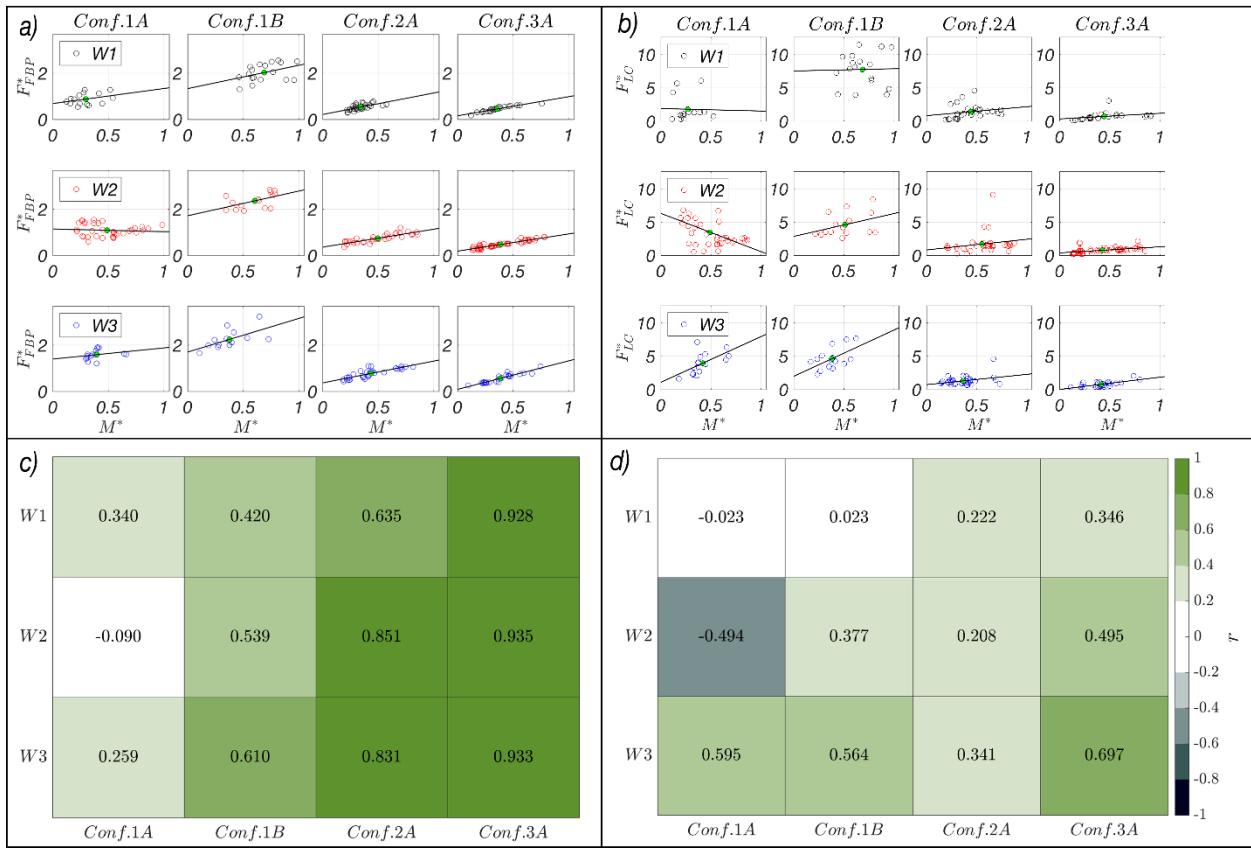
664 Fig. 17 compares the scatter maps of the normalized damming forces and corresponding flow
 665 variables (d^* , u^* , M^* , and Fr) at two different debris types, D1 (red circle) and D2 (blue circle) with a linear
 666 correlation. Here, Fig. 17a shows four scatter maps of each flow variable and normalized damming loadings
 667 on the structure, and Fig. 17b showed the matching correlation coefficient value (r) as a heatmap. Overall,
 668 a positive correlation ($r > 0.5$) was observed for all variables related to damming loads on the structure,
 669 with a stronger correlation seen at debris type D1 (red circle) than D2 (blue circle) across all variables.
 670 Specifically, the range of r is from 0.655 to 0.820 in D1, while it ranges from 0.519 to 0.678 in D2. The
 671 highest correlation was observed at the normalized momentum flux, M^* , for D1, and at the Froude number

672 for D2. Notably, the correlation for M^* for D2 remains relatively high at 0.579, indicating a significant
 673 relationship between momentum flux and debris-induced loading overall.

674
 675 Fig 17. Scatter plots of normalized forces F^* to d^* , u^* , M^* , and Fr and Heatmap of correlation coefficients
 676 according to debris type.
 677

678 Similarly, Fig. 17c and 17d depict scatter maps of flow variables and damming loads for the middle
 679 column and the heatmap of r values. As we had observed in Fig. 16, there were more uncertainties in the
 680 damming loads on the middle column than on the structure. Thus, the correlations on the middle column
 681 were generally lower compared to those observed on the structure, ranging from 0.380 to 0.521 for D1 and
 682 from 0.424 to 0.507 for D2. Despite being lower, these correlations still highlight the influence of

683 normalized variables on debris-induced loading, with M^* exhibiting the strongest correlation among the
684 variables considered.


685 It is also noteworthy that the value of normalized force was clearly dominated by the debris size.
686 Mostly, smaller debris, D1 showed higher correlations with flow variables than D2 at the both structure and
687 middle column. The maximum value of $(F^*)_{FBP}$ at D1 is 1.7, while it is 3.2 at D2. Similarly, the maximum
688 value of $(F^*)_{LC}$ at D1 is about 5.0, while it is 11.0 at D2. These results indicate that larger damming loads
689 are expected from larger debris at both the structure and the middle column. Additionally, we can observe
690 the maximum value of normalized force at $(F^*)_{LC}$ is significantly larger than the one at $(F^*)_{FBP}$. This
691 indicates that there may be much amplification of loading due to debris damming on a single column
692 (component) rather than the whole structure.

693

694 **5.1.2 Effect of structural configurations and flow conditions.**

695

696 We noticed relatively lower correlations with D2 (12.2 m shipping container). In Figure 18, results
697 are presented for each structural configurations and flow conditions (Conf. 1A, Conf. 1B, Conf. 2A, Conf.
698 3A) as scatter plots of the normalized damming forces at D2 versus normalized momentum flux, (M^*). We
699 chose M^* as a representative flow variable because it showed the most correlation to damming forces in Fig.
700 17. Fig. 18a and b show the scatter map results on the structure and the middle column, while each Fig. 19c
701 and 19d show corresponding correlation coefficient values in a heatmap format following the same structure
702 as in Figs. 17. Conf. 1A and Conf. 1B indicate the same configuration and two different debris platforms
703 (with debris platform and PVC cover plate).

704
705 Fig 18. Correlations plots (a, b) and heat maps (c, d) of correlation coefficient between F^* and M^* according
706 to the wave condition and configuration. Here, each color black, red, and blue indicates three different flow
707 conditions (W1~W3).
708

709 In Fig. 18a and 18c, when we refined damming loads for each configuration and flow condition,
710 one can observe a stronger correlation of $(F^*)_{FBP}$ to M^* at Conf. 3A and ranges from 0.928 to 0.935. A
711 relatively small but still significant correlation is found at Conf. 2A, ranging from 0.635 to 0.831.

712 A significant difference in patterns was observed between Conf. 1A and Conf. 1B across all flow
713 conditions. Conf. 1B, utilizing the PVC plate and lower initial water depth, showed consistently higher and
714 positive correlations ranging from 0.420 to 0.610. In contrast, Conf. 1A, utilizing the debris platform,
715 exhibited relatively poor and sometimes negative correlations ranging from -0.090 to 0.340. During tests
716 with the debris platform, mild hydraulic jumps and stronger turbulence were observed downstream of the
717 platform, potentially introducing additional uncertainties in damming loads, unlike the tests with the PVC
718 plate, where no hydraulic jump occurred. This sensitivity is particularly notable in determining damming
719 patterns, especially in Conf. 1, which features a larger column space. Remarkably, correlations generally
720 increased progressively from Conf. 1 to Conf. 3 within each flow condition. Notably, higher correlations
721 were observed at W3 and W2 compared to W1.

722 In the case of $(F^*)_{LC}$ in Fig. 18b and 18d, an increase in correlation can also be observed as the flow
723 conditions change. Specifically, the range of correlation coefficient at Conf. 3 is 0.346 to 0.697, while a

724 relatively smaller correlation was observed at Conf. 2 and Conf. 1. Similarly, poor correlation was found at
 725 Conf. 1A and better correlation at Conf. 1B, depending on the debris platform condition. Additionally, a
 726 clearer dependency on the correlation to wave condition can be observed here, with higher correlation found
 727 at W3 and smaller correlation at W2 and W1.

728 Negative correlations were observed at Conf.1A at W2 for both $(F^*)_{FBP}$ and $(F^*)_{LC}$. This trend is
 729 caused by the complex timing of debris dam formation and the number of debris dams. At W2
 730 (Configuration 1A), we observed that a smaller number of debris pieces formed debris dams earlier, while
 731 a greater number of debris pieces formed debris dams at a relatively later time. This pattern resulted in an
 732 unexpected negative correlation only at W2.

733 Additional heatmap of correlation coefficients for other variables, such as d^* , u^* , and Fr with the
 734 same format as in Fig. 18c and 18d are available in the Appendix at Fig. A2.

735
 736 **5.2 Combined effect of parameters on the Damming Load**

737 The above section investigated the individual effects of η^* , u^* , M^* , and Fr on the normalized debris
 738 damming loads based on categories of debris type (size), column configuration, and wave (flow) type. The
 739 results indicated there is a considerable amount of variation in the normalized loadings that cannot be
 740 explained by an individual variable. Therefore, as the next step, an n-way analysis of variance (Larson,
 741 1992) was done to identify the combined effect of all the independent variables and their interactions on
 742 the normalized loads. Out of all the independent variables employed in this experiment, there are four
 743 continuous variables (η^* , u^* , M^* , and Fr) and three categorical variables (debris type, column configuration,
 744 and wave type). Therefore, the analysis of the combined effect of these independent variables needed an
 745 Analysis of covariance (ANCOVA) test which includes both categorical and continuous predictors.
 746 However, the dependent variable for the normalized forces failed to satisfy the normality and homogeneous
 747 variance assumptions for an ANCOVA test. Therefore, the analysis was continued with the PERmutational
 748 Multivariate ANalysis Of VAriance (PERMANOVA) test which is a semiparametric statistical test which
 749 is less sensitive to non-homogeneous variances (Anderson et al., 2017; Anderson and Walsh, 2013).
 750 Although PERMANOVA was originally used in the domain of multivariate analysis, it can also be used for
 751 univariate analysis. This analysis was performed using the *adonis2* function from the *vegan* package in R
 752 which considers Type I Sum of Squares (sequential SS) within the analysis. Furthermore, this function has
 753 the capability of handling both categorical and continuous variables together.

754 Since the sequential SS method was used in this analysis, the results of the PERMANOVA test
 755 depends on the order of the variables. Therefore, one-way analysis of variance tests was performed for each
 756 individual input variable. After that, the variables were sorted in the descending order of their importance
 757 based on the Type I SS. The order of variables presented in Tables 6 and 7 represents the sequence obtained

758 from one-way analysis of variance of loading on the structure, and load on the middle column, respectively.
 759 In addition to the individual effects, the analysis focused on how the interactions between variables affect
 760 the variation in the normalized loads. Therefore, the PERMANOVA test considered the second-order
 761 interaction effects between the variables as well. The results of the PERMANOVA test for normalized
 762 loads on the structure and the single column are presented in Tables 6 and 7, respectively.

763 The continuous variables used in the variation analysis were tested for multicollinearity using
 764 Spearman's correlation coefficient matrix and variance inflation factor (VIF) (Fox and Weisberg, 2011).
 765 Momentum flux (M^*) was found to be highly correlated with the other continuous variables. However,
 766 momentum flux was still included in the PERMANOVA tests since it was the most influential variable on
 767 both normalized forces on the structure and middle column. Also, one of the main objectives is to determine
 768 the percentage of variation in damming forces that can be explained by the independent variables
 769 combinedly.

770 Table 6: Results of the n-way PERMANOVA test on the normalized forces on the structure.

	Degree of Freedom	Sum of Sq	R^2	$Pr (> F^*)$
Wave type	5	9.23×10^1	7.26×10^{-1}	0.001
Column Conf.	2	1.74×10^1	1.36×10^{-1}	0.001
Fr	1	4.84×10^0	3.80×10^{-2}	0.001
M^*	1	8.16×10^{-3}	6.41×10^{-5}	0.565
u^*	1	2.18×10^{-1}	1.71×10^{-3}	0.004
η^*	1	3.14×10^{-1}	2.47×10^{-3}	0.004
Debris type	1	4.50×10^{-1}	3.54×10^{-3}	0.001
Wave type: Column Conf.	4	1.77×10^0	1.39×10^{-2}	0.001
Wave type: Fr	5	4.77×10^{-1}	3.75×10^{-3}	0.003
Wave type: M^*	5	4.50×10^{-1}	3.53×10^{-3}	0.002
Wave type: u^*	5	2.93×10^{-1}	2.30×10^{-3}	0.032
Wave type: η^*	5	4.49×10^{-1}	3.53×10^{-3}	0.004
Wave type: Debris type	3	9.18×10^{-1}	7.21×10^{-3}	0.001
Column Conf.: Fr	2	5.78×10^{-1}	4.54×10^{-3}	0.001
Column Conf.: u^*	2	1.43×10^{-1}	1.12×10^{-3}	0.046
$u^* : \eta^*$	1	1.64×10^{-1}	1.29×10^{-3}	0.011
Residual	255	6.20×10^0	4.87×10^{-2}	N/A
Total	314	1.27×10^2	1.00	N/A

771
 772 Table 7: Results of the n-way PERMANOVA test on the normalized forces on the single column.

	Degree of Freedom	Sum of Sq	R^2	$Pr (> F^*)$
Wave type	5	8.05×10^2	4.78×10^{-1}	0.001
Column conf.	2	2.44×10^2	1.45×10^{-1}	0.001
Debris type	1	5.80×10^0	3.44×10^{-3}	0.001
η^*	1	1.59×10^1	9.41×10^{-3}	0.565

Fr	1	6.04×10^0	3.59×10^{-3}	0.004
u^*	1	3.50×10^0	2.08×10^{-3}	0.004
M^*	1	5.65×10^{-1}	3.35×10^{-4}	0.001
Wave type: Column Conf.	4	2.40×10^1	1.43×10^{-2}	0.001
Wave type: Debris type	3	2.28×10^1	1.35×10^{-2}	0.003
Wave type: η^*	5	2.61×10^1	1.55×10^{-2}	0.002
Wave type: Fr	5	2.68×10^1	1.59×10^{-2}	0.032
Column Conf.: η^*	2	2.35×10^1	1.40×10^{-2}	0.004
Residual	254	4.26×10^2	2.53×10^{-1}	N/A
Total	313	1.68×10^3	1.00	N/A

773

774

775

776

777

778

779

780

781

782

783

784

785

The results of the one-way PERMANOVA tests for each single variable showed that all seven variables have a statistically significant effect on the normalized debris damming loadings. However, in the n-way analysis, some individual variables are observed to be statistically insignificant in relation to their effect on the normalized loadings. For example, in the n-way analysis for normalized forces on the structure, the effect of momentum flux, M^* is statistically insignificant. This happens since the Type I (Sequential) SS is considered in the n-way PERMANOVA test and due to multicollinearity between variables, the variation assigned to M^* in the one-way analysis is already accounted for by the three variables which are preceding M^* in the order of variables. Furthermore, the results of the interaction effects which are not within the level of significance 0.05 were removed from the original outputs of the PERMANOVA test when presenting Tables 6 and 7. However, it is important to note that every possible second-order interaction effect showed a statistically significant impact on the normalized loadings on both the structure and the middle column during one-way analysis.

786

787

788

789

790

791

792

793

794

795

796

797

798

As depicted by the results of the PERMANOVA test, wave type and column configuration account for the highest variations in the normalized debris damming loadings on the structure and the single column. However, the relative significance of debris type compared to other variables differs in the two models. Although debris type was the third most significant variable in the model for the single column loads, it was the least significant variable with the structure loadings. The lower rank of debris type in the structure normalized loading model, compared to the combined model of the single column, can be attributed to the high contribution of pure hydrodynamic forces to the loads on the structure. This reasoning was supported by having debris type as the third variable in the single column model where the contribution to the output loading was less. It further indicates that when debris damming loadings were dominating compared to pure hydrodynamic loads, the debris type had a significant effect on the loading acting on the middle column. When the effect of interactions between input variables was considered, almost similar interactions are observed to be significant in both models. However, the two interactions between wave type and u^* and M^* did not show a significant effect in the combined model for the single column, although these

799 interactions were included in the model for the structure. This also can be possibly due to the less
 800 contribution pure hydrodynamic loads to the normalized forces of the single column.

801 As a measure of the ability of all variables to explain the variation in the normalized forces in a
 802 combined model, the R^2 values for the n-way PERMANOVA test were 0.94 and 0.74 for the structure and
 803 the single column, respectively. The R^2 value for the structure indicated that all the independent variables
 804 could combinedly account for nearly 95% of the variation in the normalized forces on the structure. On the
 805 other hand, it is noteworthy that only 75% of the variation was explained by the combined model for the
 806 normalized loads on the single column. It suggests that either more predictors are needed for explaining the
 807 remaining variation in the single column loadings or the remaining variation can be due to the high natural
 808 randomness associated with damming loadings, which meets our observations in Fig. 16 and Section 5.1.
 809

810 **6. Discussion**

811 Considering the complexity of the tsunami-driven flow-debris-structure interactions including all
 812 debris impact and damming process in the fields, our experiment studies had to rely on test limits and
 813 several assumptions that can be further discussed.

814 We applied a transient wave to simulate specific characteristics of tsunamis, including their single,
 815 localized waveform and their ability to propagate over long distances without significant dispersion. The
 816 generated overland flows maintained mostly uniform Froude number ranged 0.5 and 0.7 at the test platform
 817 during the period of significant debris damming under the quasi-steady flow conditions. This Froude
 818 number is lower than the typical Froude number of 1.0 observed in the field. Therefore, we may expect a
 819 relatively larger F_{dam} / F_0 at higher Froude numbers, as we measured positive correlation between F_{dam} / F_0
 820 and Froude number in Fig. 17.

821 Our observations indicated that the debris damming process reached a "saturation" point, where a
 822 maximum number of debris elements could be contained by the columns. Any additional debris arriving
 823 after this saturation point was reached were "deflected" by the hydrodynamic processes. Further analysis
 824 involving individual debris motion tracking, and the probability of impact and damming will be necessary
 825 to quantify these phenomena, although such advanced analysis is beyond the scope of the current study.

826 In addition, the ratio of F_{dam} / F_0 in our test showed relatively larger values than those found in
 827 previous damming studies (physical models) that used smaller amounts of debris. For example, the
 828 maximum F_{dam} / F_0 values for shipping containers debris, reported by Stolle et al. (2018) and Wuthrich et
 829 al. (2020) were 1.09 and 1.27 for shipping containers, while our test revealed ratios of 1.7 for D1 (6.1 meters
 830 shipping container) and 3.2 for D2 (12.2 meters shipping container). However, it's important to note that
 831 the duration of our tested wave is shorter compared to real-world tsunamis. Thus, longer-duration waves,
 832 such as dam-break waves are expected to exhibit higher damming loading at the time of maximum damming

833 occurrence due to sustained wave energy throughout the event. Therefore, in future work, experimenting
 834 with waves of longer duration or incorporating additional factors such as dam-break waves or transient
 835 waves with a current will be recommended for more conservative results.

836 The scale of this study was set at 1:20 and presenting a whole structure rather than the part of the
 837 structure. This makes it the largest scale experiment compared to previous studies on damming loads (Stolle
 838 et al., 2018; Wüthrich et al., 2020). However, the actual size and number of columns in our study did not
 839 conform to exact structural design standards. The primary objective of this study was to elucidate the debris
 840 damming process and the resultant loads, rather than focusing on debris impact loading. For simplicity, we
 841 manufactured the debris as rigid bodies with uniform wood density. Since impact load is highly dependent
 842 on the stiffness of the debris itself, the measured quantification of the impact load in our study may not
 843 fully represent the actual impact load from prototype debris, such as shipping containers.

844 The direct correlation between flow variables and damming loads highlights the importance of
 845 considering hydrodynamic factors in structural design and risk assessment. Additionally, configuration
 846 adjustments, such as column spacing, were found to significantly impact damming occurrences and loading
 847 distribution. However, the current study only concentrated on two major homogeneous cases that
 848 represented shipping containers, disregarding the non-homogeneous nature of tsunami-induced debris
 849 observed in real-world scenarios. Consequently, in a forthcoming research endeavor, it is recommended to
 850 rectify this limitation by exploring non-homogeneous debris scenarios. This may involve incorporating a
 851 diverse range of debris shapes, sizes, and density.

852

853 7. Conclusion

854 Tsunami-driven debris damming phenomenon and consequent debris damming loading are
 855 investigated through 1:20 scale physical model studies. These experimental studies utilized 10 and 15
 856 cuboid shaped debris as a group, representing an ideally scaled 12.2- and 6.1 meters shipping containers.
 857 Flow kinematics and loading conditions at the test structure that was composed of a number of different
 858 columns were measured under varied tsunamis-like wave conditions. A total of 228 test trials were
 859 performed accounting for two debris shapes, six wave conditions, and three structural configurations with
 860 different numbers of columns. The whole process of debris transport including debris entrainments,
 861 transports, collision, and damming were recorded by cameras and utilized to understand debris damming
 862 process and quantifying the time varying damming characteristics. The time series loadings data measured
 863 at the single column by the Loadcell (LC) and on the whole column structure by the Force Balance Plate
 864 (FBP) were resolved into impact and damming loading portions through low and high frequency filtering.
 865 Using the peak loading data, we quantified characteristics of debris damming loading under varied waves,
 866 debris size and configurations, and examined the correlation of the loadings to hydro-kinematics conditions.

867 The synthesis of the results provides the following conclusion that reveals the dynamics of debris-induced
868 loading on a columns structure:

- 869 1) Compared to non-debris, the maximum peak damming loads increase about 3.2 times at the
870 structure and 11.0 times at the single column. Additionally, the maximum damming loading was
871 3.4 times lower than the observed maximum impact loading at the whole column structure and 1.8
872 times lower than that observed at the single column.
- 873 2) Larger damming loadings were observed for larger debris (D2) and at higher intensity waves (W3)
874 for the both structure and single column. However, relatively larger damming loads were observed
875 at Conf. 3, the smallest spacing, for the structure, while at Conf. 1, the largest spacing, for the single
876 column.
- 877 3) The narrowing of the spacing columns elevated the probability of damming occurrences, especially
878 when debris size is smaller than the column spacing (e.g., D1 & Conf. 1), with only 17% of trials
879 showing debris dams, compared to 91% for Conf. 2 and 100% for Conf. 3. However, consistent
880 high probabilities of damming occurrence were observed regardless of the configurations when the
881 debris size (e.g., D2) is larger than the column spacing.
- 882 4) Overall, distinctly higher correlations of debris damming loads to hydro-kinematic variables were
883 observed at the structure than at the single column. Moreover, higher correlations were observed
884 when column spacings are smaller than the debris, and relatively stronger correlations at a lower
885 intensity wave (W1) compared to higher intensity wave (W3).
- 886 5) Normalized momentum flux (M^*) was observed to be the most influential variable affecting debris-
887 induced damming loads, consistently exhibiting the strongest correlations across all categories.
888 Additionally, u^* , d^* and Fr also demonstrated notable correlations, further highlighting their role
889 in predicting debris-induced damming loads.
- 890 6) The n-way PERMANOVA results show that independent variables collectively explain about 95%
891 of the variation in normalized loadings on the structure; while for the single column, only 75% of
892 the variation is accounted for. This indicates either the need for more predictors to explain the
893 remaining variation, or it could be attributed to the high natural randomness associated with
894 damming forces on the column.

895 Overall, our findings provide valuable insights into the complex interplay between debris
896 characteristics, structural configurations, and hydrodynamic variables in influencing debris-induced
897 loading on coastal structures. By elucidating the relationships between these factors, our study contributes
898 to the advancement of coastal engineering practices aimed at enhancing the resilience of coastal structures
899 against debris-induced hazards. Further research in this area is warranted to refine our understanding and
900 develop effective strategies for mitigating the risks associated with debris-induced load.

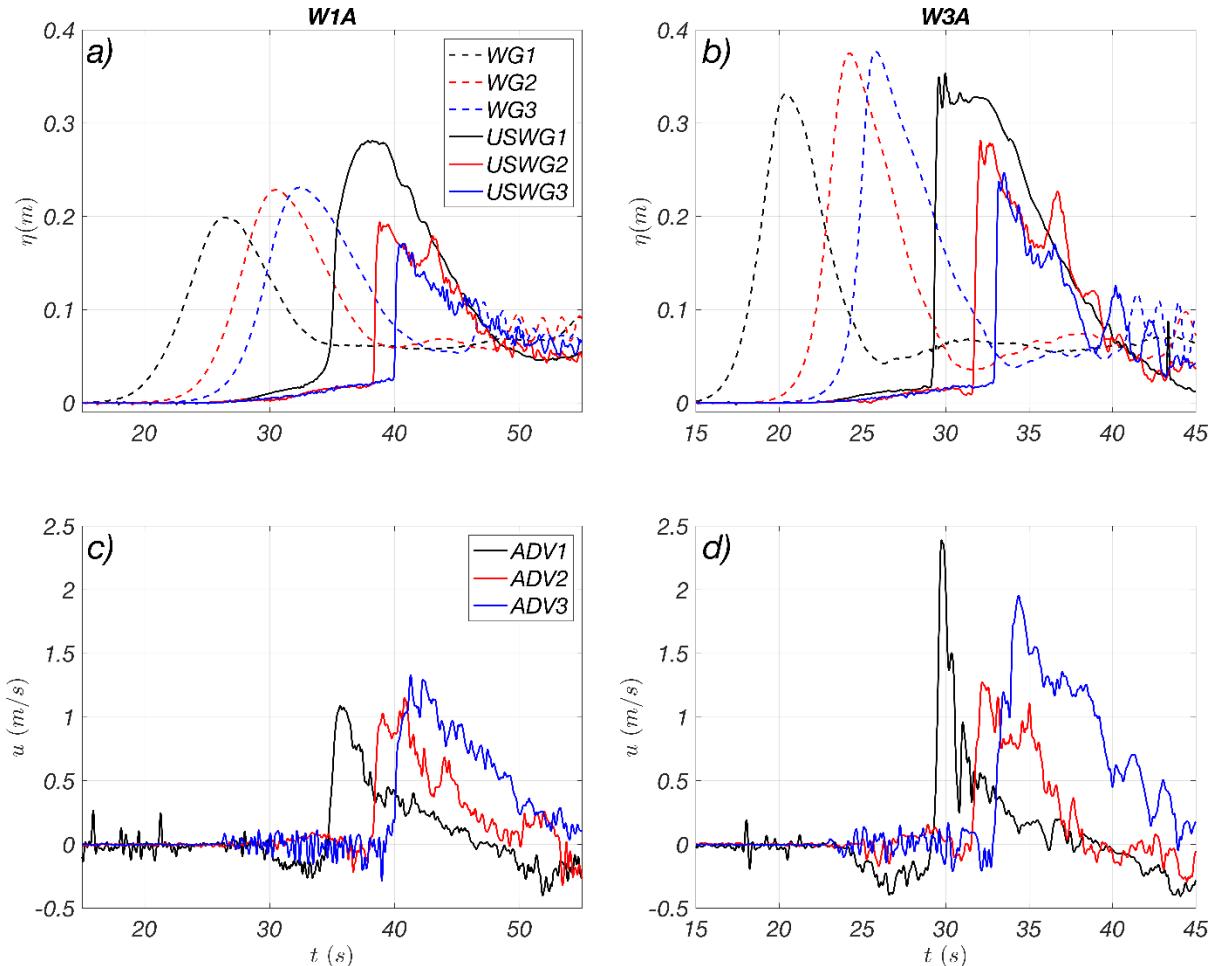
901 **Acknowledgment**

902 This material is based upon work supported by the National Science Foundation Division of Civil,
903 Mechanical, and Manufacturing Innovation (CMMI) and Natural Hazards Engineering Research
904 Infrastructure (NHERI) through Grants #2203131, #2203116 and #2037914. The content expressed in this
905 paper and the authors' view does not necessarily represent the views of the National Science Foundation.
906 The authors would like to thank Tim Maddux and Rebekah Miller at the Hinsdale Wave Research
907 Laboratory for their assistance in the experiment setup.

908 **References**

- 909
- 910 Alcala, E. R. D., Voerman, J. A., Konrath, J. M., & Vydyhanathan, A. Xsens DOT Wearable Sensor
911 Platform White Paper.
- 912 Applied Technology Council, National Earthquake Hazards Reduction Program (US) and National
913 Tsunami Hazard Mitigation Program (US), (2008). Guidelines for design of structures for vertical
914 evacuation from tsunamis. US Department of Homeland Security, Federal Emergency Management
915 Agency.
- 916 Arikawa, T., Ohtsubo, D., Nakano, F., Shimosako, K. and Ishikawa, N. (2007). Large model tests of drifting
917 container impact force due to surge front tsunami. In Proceedings of coastal engineering, JSCE (Vol.
918 54, pp. 846-850). Japan Society of Civil Engineers.
- 919 ASCE/SEI (2016) "Minimum design loads for buildings and other structures." ASCE/SEI 7-16, Reston,
920 VA.
- 921 ASCE/SEI (2022) "Minimum design loads for buildings and other structures." ASCE/SEI 7-22, Reston,
922 VA.
- 923 Bocchiola, D., Rulli, M. C., & Rosso, R. (2008). A flume experiment on the formation of wood jams in
924 rivers. *Water Resources Research*, 44(2).
- 925 Chock, G. Y. (2016). Design for tsunami loads and effects in the ASCE 7-16 standard. *Journal of Structural
926 Engineering*, 142(11), 04016093.
- 927 Fox, J. and Weisberg, S. (2018). *An R companion to applied regression*. Sage publications.
- 928 Ghobarah, A., Saatcioglu, M. and Nistor, I. (2006). The impact of the 26 December 2004 earthquake and
929 tsunami on structures and infrastructure. *Engineering structures*, 28(2), pp.312-326.
- 930 Kameshwar, S., Park, H., Cox, D.T. and Barbosa, A.R. (2021). Effect of disaster debris, floodwater pooling
931 duration, and bridge damage on immediate post-tsunami connectivity. *International journal of disaster
932 risk reduction*, 56, p.102119.
- 933 Ko, H.S., Cox, D.T., Riggs, H.R. and Naito, C.J. (2015). Hydraulic experiments on impact forces from
934 tsunami-driven debris. *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 141(3),
935 pp.04014043.
- 936 Larson, D.A., 1992. Analysis of variance with just summary statistics as input. *The American Statistician*,
937 46(2), pp.151-152.
- 938 Naito, C., Cercone, C., Riggs, H.R. and Cox, D. (2014). Procedure for site assessment of the potential for
939 tsunami debris impact. *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 140(2), pp.223-
940 232.
- 941 Nistor, I., Goseberg, N. and Stolle, J. (2017). Tsunami-driven debris motion and loads: A critical
942 review. *Frontiers in Built Environment*, 3, p.2.
- 943 Oudenbroek, K., Naderi, N., Bricker, J. D., Yang, Y., Van der Veen, C., Uijtewaal, W., ... & Jonkman, S.
944 N. (2018). Hydrodynamic and debris-damming failure of bridge decks and piers in steady
945 flow. *Geosciences*, 8(11), 409.
- 946 Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., and Shin, S. (2013). Tsunami inundation modeling in
947 constructed environments: A physical and numerical comparison of free-surface elevation, velocity,
948 and momentum flux. *Coastal Engineering*, 79, 9-21.
- 949 Park, H., Koh, M.J., Cox, D.T., Alam, M.S. and Shin, S. (2021). Experimental study of debris transport
950 driven by a tsunami-like wave: Application for non-uniform density groups and obstacles. *Coastal
951 Engineering*, 166, p.103867.

- 952
 953 Reese, S., Cousins, W.J., Power, W.L., Palmer, N.G., Tejakusuma, I.G. and Nugrahadi, S. (2007). Tsunami
 954 vulnerability of buildings and people in South Java—field observations after the July 2006 Java
 955 tsunami. *Natural Hazards and Earth System Sciences*, 7(5), pp.573-589.
 956 Schmocker, L., & Hager, W. H. (2011). Probability of drift blockage at bridge decks. *Journal of Hydraulic
 957 Engineering*, 137(4), 470-479.
 958 Schmocker, L., & Hager, W. H. (2013). Scale modeling of wooden debris accumulation at a debris
 959 rack. *Journal of Hydraulic Engineering*, 139(8), 827-836.
 960 Shekhar, K., Winter, A. O., Alam, M. S., Arduino, P., Miller, G. R., Motley, M. R., ... & Cox, D. T. (2020).
 961 Conceptual evaluation of tsunami debris field damming and impact forces. *Journal of Waterway, Port,
 962 Coastal, and Ocean Engineering*, 146(6), 04020039.
 963 Shekhar, K., Winter, A.O., Alam, M.S., Arduino, P., Miller, G.R., Motley, M.R., Eberhard, M.O., Barbosa,
 964 A.R., Lomonaco, P. and Cox, D.T. (2020). Conceptual evaluation of tsunami debris field damming and
 965 impact forces. *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 146(6), p.04020039.
 966 Shultz, J. (2022). Application of Motion Capture Technologies to Assess the Free Surface and Track
 967 Waterborne Debris in Wave Research Laboratories, Oregon State University, Master thesis.
 968 Snedecor, G. W. and Cochran, W. G. *Statistical Methods*, 7th ed. Ames, IA: Iowa State Press, p. 180, 1980.
 969 Stolle, J., Takabatake, T., Mikami, T., Shibayama, T., Goseberg, N., Nistor, I. and Petriu, E. (2017).
 970 Experimental investigation of debris-induced loading in tsunami-like flood events. *Geosciences*, 7(3),
 971 p.74.
 972 Stolle, J., Takabatake, T., Nistor, I., Mikami, T., Nishizaki, S., Hamano, G., Ishii, H., Shibayama, T.,
 973 Goseberg, N. and Petriu, E. (2018). Experimental investigation of debris damming loads under transient
 974 supercritical flow conditions. *Coastal Engineering*, 139, pp.16-31.
 975 Takahashi, S., Sugano, T., Tomita, T., Arikawa, T., Tatsumi, D., Kashima, H., Murata, S., Matsuoka, Y.
 976 and Nakamura, T. (2010). Joint survey for 2010 Chilean earthquake and tsunami disaster in ports and
 977 coasts. *Port and Airport Res Inst*.
 978 Wüthrich, D., Ylla Arbós, C., Pfister, M. and Schleiss, A.J. (2020). Effect of debris damming on wave-
 979 induced hydrodynamic loads against free-standing buildings with openings. *Journal of Waterway, Port,
 980 Coastal, and Ocean Engineering*, 146(1), p.04019036.
 981 Yeh, H., Barbosa, A.R., Ko, H. and Cawley, J.G. (2014). Tsunami loadings on structures: Review and
 982 analysis. *Coastal Engineering Proceedings*, 1(34), p.4.
 983


984 **Appendix.**

985

986 Fig. A1 The other two wave conditions used in this test.

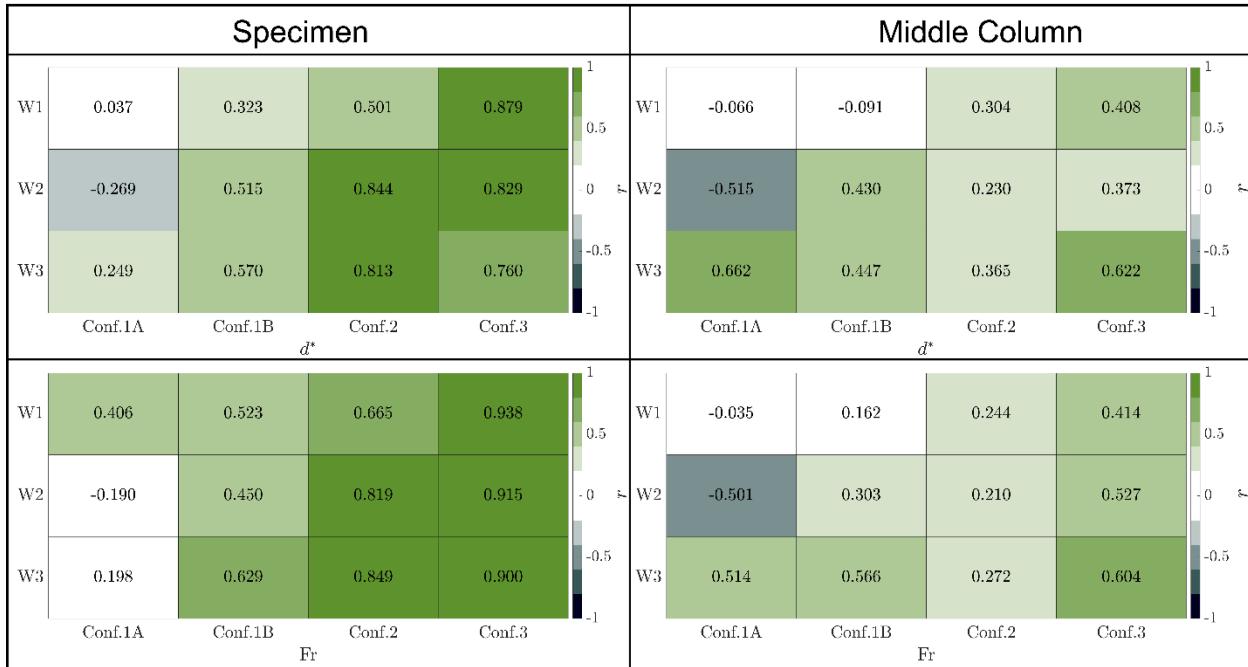
987 Each Fig. A1 (a) and (b) provides time-series of surface elevation (η) at wave gauges for W1A and
988 W3A conditions following the format of Fig. 7. In similar manner, each Fig. A1 (c) and (d) shows x-
989 directional velocity, u at three velocimeters for W1A and W3A.

990

991

992 Fig. A1. Time series of surface elevation at wave gauges at W1A and Conf (a). and at W3A, and Conf. 3
993 (b). The x-velocities for non-debris conditions at W1A and Conf. 3 (c), and at W3A and Conf. 3 (d).

994


995

996 Fig. A2 Correlations heatmap of correlation coefficients for other variables.

997 Fig. A2 shows the heatmap of the linear correlation coefficient values for d^* and Fr with the same
998 format as in Fig. 18b and 18d. In the case of the structure, it can be clearly observed that the configuration
999 of the structure had the most significant effect on the correlation, with different configurations resulting in

1000 varying levels of correlation at different flow conditions. Specifically, for d^* , the values of correlation
 1001 coefficients consistently increased from Conf. 1 to Conf. 3 across all flow conditions, which followed the
 1002 same pattern as in Fig. 18. This observation indicates that the arrangement and spacing of the columns in
 1003 the structure had a notable impact on the damming load patterns experienced by the structure.

1004

1005
 1006 Fig A2. Correlations heatmap of correlation coefficient for d^* (top panel) and Fr (bottom panel) according
 1007 to the wave condition and configuration.
 1008