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ABSTRACT Multiple-particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thou-
sands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments,
including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT data sets to predict
the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such as biological age. In this study,
we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised clas-
sification and feature importance calculations. We first validate the pipeline on three related but distinct MPT data sets from the
living brain ECS—age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with
86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury
across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare
features between healthy control conditions and injury induced by two different oxygen glucose deprivation exposure times. We
then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy
control, 0.5 h OGD treatment, and 1.5 h OGD treatment with 59% accuracy in the cortex and 66% in the striatum, and identifies
nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates
that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically
relevant features of nanoparticle diffusion.

SIGNIFICANCE Multiple particle tracking (MPT) is a microscopy technique that uses nanopatrticle trajectory tracking to
perform microrheological characterization of biological environments, including the vitreous of the eye, mucosal
membranes, intracellular environments, and the brain extracellular space. MPT can generate gigabytes of data and is a
prime candidate to benefit from advancements in machine learning and artificial intelligence to extract deeper insights. We
present a robust and novel approach to control for correlation between related MPT trajectories to ensure the validity of
predictions between healthy and diseased states of brain tissue. Our work demonstrates that machine learning applied to
MPT data can predict biological variables with high accuracy across multiple biological systems and can identify
biologically relevant subsets of features from nanoparticle diffusion data unique to each data set.

INTRODUCTION aminoglycans (6-10). Specific components of the ECM
play a crucial role in the maintenance of brain homeostasis
including memory (11) and regulation of cellular processes
(1). The structure and composition of the ECM not only dif-
fers temporally during development and aging (7), but also
spatially, with known differences in structure (12) and pro-
tein expression (13) across brain regions.

Changes to the structure and composition of the ECS and

The extracellular space (ECS) is a critical component of the
brain that affects neurodevelopment (1), neuronal health
(2,3), and transport of substances (4,5). Within the ECS is
the brain extracellular matrix (ECM), a negatively charged
scaffold-like structure made of proteoglycans and glycos-
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been connected to the pathophysiology of psychosis (14,15).
Neurodegenerative diseases such as Parkinson’s and Alz-
heimer’s have shown altered parameters of diffusion in the
ECS (16-20) and involvement of ECM components in path-
ological processes (21). Changes to fluid flow and expres-
sion of ECM components have been shown to occur in
response to traumatic brain injury (22,23). Developing
methods to detect changes in the brain microstructure can
therefore be critical to understanding how pathological pro-
cesses alter the brain ECS and the ECM.

Early studies that measured diffusion in the brain ECS to
explore brain microstructure focused on two key parameters
of ECS microstructure: volume fraction and tortuosity. Vol-
ume fraction is defined as the total volume of the ECS
divided by the total volume of the entire brain tissue (24).
Experiments using real-time iontophoresis of tetramethy-
lammonium ions (TMA+) demonstrated that the ECS
contributed to 20% of brain tissue volume (25). Tortuosity
is calculated as the ratio between diffusivity in free medium
compared the local ECS diffusivity (25), and measures the
hindrance to diffusion caused by cellular obstruction and
ECS connectivity (24). Both volume fraction and tortuosity
vary during brain development (26); however, a critical
finding by Kume-Kick et al. showed that there was a level
of independence between the two parameters when ECS ge-
ometry changes (27). When the size of the ECS was altered
by manipulation of NaCl content, the tortuosity increased as
the volume fraction decreased, but when volume fraction
increased the tortuosity value plateaued (27). Volume frac-
tion and tortuosity have also been characterized across a
number of disease and injury conditions (28-30), demon-
strating that diffusion in the brain ECS can be used to detect
changes in brain microstructure due to pathological
conditions.

Advancements in the probes used for diffusion experi-
ments have led to deeper understanding of the brain micro-
structure. Analysis of fluorescent dextran molecules
revealed that dead space domains in the ECS exist in
greater quantities when the rat neocortex becomes
ischemic, leading to greater hindrance to diffusion due to
increased tortuosity (31). In 2006, diffusion analysis of
dextran molecules and quantum dots provided one of the
first estimations of ECS pore sizes in living tissue, predict-
ing the widths of pores to be between 38 and 64 nm (32). In
2012, diffusion of polystyrene-polyethylene glycol (PS-
PEG)-coated nanoparticles revealed that 30% of pore
widths in human brain tissue were greater than 110 nm
with the largest having a width of 225 nm (33), a significant
increase compared the previously reported value. The 2012
study showed that the surface functionalization of the
probe influenced the probe’s ability to diffuse, by taking
the quantum dots used in the 2006 PNAS study and refunc-
tionalizing them with a dense layer of PEG. These 2012
findings were later independently confirmed using single-
walled carbon nanotubes, where the researchers demon-
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strated that pore sizes in the rodent neocortex can reach a
width upward of 1 um (34,35).

The recent success in tracking the diffusion of PS-PEG-
coated nanoparticles and single-walled carbon nanotubes in
the brain ECS highlights the potential for nanoparticle-based
probes to uncover the nanoscale structure of the ECS, even
with the use of two different tracking techniques: single-par-
ticle tracking (SPT) and multiple-particle tracking (MPT).
SPT and MPT are both microscopy techniques capable of
measuring diffusion in living tissue. Both methods track flu-
orescently labeled nanoparticles that are introduced into the
biological system of interest. A key difference between
SPT and MPT is the length and number of trajectories
collected for each technique. For SPT, there are a low number
of trajectories collected but they can be tracked for several to
tens of minutes (36). SPT methods have been used exten-
sively to assess the organization of the brain ECS
(34,35,37), detect pathological changes (38), and determine
local rheological properties (34). MPT tracks trajectories at
much short time lengths but collects hundreds to thousands
of trajectories for a given video. MPT has enabled the study
of ECS structure such as the distribution of pore sizes (33)
and the effect of surface coating on nanoparticle diffusion
(33), changes to diffusion due to ischemic brain injury
(39,40), changes to the ECM during development (41), and
enzymatic degradation of the ECM (41).

Both SPT and MPT present opportunities for the use of
machine learning (ML) due to the high dimensionality of
data generated. For SPT, the high dimensionality of the
data is not the number of trajectories, but the length of tra-
jectories. The long length and timescale of diffusing parti-
cles captured by SPT has led to accurate predictions of
diffusion modes from interpretable models such as linear
discriminant analysis, random forests, and gradient boosted
decision trees (42-46), and most prominently by using neu-
ral networks (45-55). Due to the number of nanoparticles
that can be tracked during MPT experiments, ML models
can be trained directly on trajectories tracked in biological
environments. For example, artificial neural networks
were trained on MPT and accurately predicted nanoparticle
size, surface functionality, stiffness, and viscosity based on
nanoparticle behavior in hydrogels and rodent ex vivo brain
slices (56). Neurodevelopmental age of rodent ex vivo brain
slices was then predicted using a gradient boosted decision
tree model (41) trained on trajectories from MPT videos
captured in rodent ex vivo brain slices. Both studies demon-
strate that ML can be used to detect changes in MPT data
that relate to the microenvironment of the ECS.

Driven by these earlier studies using ML, more work is
needed to ensure that additional complex biological vari-
ables can be accurately predicted using MPT data, and
that further optimization of the tools and methods can glean
insightful information from these robust data sets. Whereas
MPT has previously been used to characterize changes in
diffusion as a result of an induced disease condition (39),
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it is unknown whether a ML algorithm can accurately distin-
guish between healthy and diseased tissue states based on
MPT data. In addition, aside from the diffusion coefficient,
which has been shown to change because of a disease con-
dition, it is not known whether other features of nanoparticle
trajectories are different between a healthy and diseased
state.

To address these questions, we develop and validate an
explainable ML pipeline to predict changes to the ECS
due to age differences, regional differences, and enzymatic
degradation. We then use the pipeline to predict between
healthy tissue and two disease states in two different regions
and determine subsets of predictive features. By applying
explainable ML to multiple different systems, we determine
whether supervised ML models can learn unique nonlinear
relationships between features for different biological states
that are not identified by traditional linear statistics.

MATERIALS AND METHODS
Data acquisition

All data utilized in this study exist in published databases as described in the
results. No animal studies were performed in this study; however, all pub-
lished data collected were performed in animal studies in strict accordance
with the recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health (NIH). All animals were
handled according to approved institutional animal care and use committee
(IACUC) protocols (no. 4383-02) of the University of Washington. The
University of Washington has an approved Animal Welfare Assurance
(no. A3464-01) on file with the NIH Office of Laboratory Animal Welfare
(OLAW), is registered with the United States Department of Agriculture
(USDA, certificate no. 91-R-0001), and is accredited by AAALAC Interna-
tional. OWH brain slices were prepared from male Sprague-Dawley rat
pups (Charles River, Wilmington, MA) at varying ages for the age data
set (41) and at postnatal day 10 (P10) for all other data sets.

After euthanasia, brains were extracted, immersed in room temperature
(22°C) dissection medium, and cut into hemispheres with a razor blade.
Coronal slices (300 um thick) were prepared from each hemisphere using
a Mcllwain tissue chopper (Ted Pella, Redding, CA) (40). Individual
OWH slices were plated on 30 mm cell culture inserts (MilliporeSigma,
Burlington, MA) in nontreated 6-well plates (USA Scientific, Ocala, FL)
filled with 1 mL slice culture medium and incubated in sterile conditions
at 37°C and 5% CO,. For OWH slices obtained from P14, P35, and P70
pups for the age data set, MPT was preformed within 6 h (acute) after slice
explantation. For OWH slices from P10 rats to assess regional differences in
diffusion, slices were cultured for 4 days in vitro (DIV) before MPT. For
OWH slices exposed to enzymes, slices were obtained from P35 rats and
immediately after explantation were treated with either chondroitinase
ABC (ChABC) for 120 min before MPT (41). For oxygen glucose depriva-
tion (OGD) (57) exposure in OWH slices, OGD medium was made by add-
ing 120 mM sodium chloride (NaCl, MilliporeSigma), 2.8 mM potassium
chloride (KCI, Sigma), 1 mM calcium chloride (CaCl,, MilliporeSigma),
and 10 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer so-
lution (HEPES, Gibco, Waltham, MA) to deionized water, which was then
titrated using 1 M hydrochloric acid (Thermo Fisher Scientific, Waltham,
MA) or 1 M sodium hydroxide (Thermo Fisher Scientific) to a pH of 7.4.
The medium was then bubbled with nitrogen gas (Praxair, Danbury, CT)
for 10 min. OGD was performed by adding 1 mL OGD medium to OWH
samples, which were then incubated at 37°C while in a nitrogen-purged
Hypoxia Incubator Chamber (STEMCELL Technologies, Vancouver,
British Columbia, Canada) for 0.5 or 1.5 h. At the end of OGD exposure,
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OGD medium was removed and slices were returned to normal slice culture
medium and 5% CO, conditions at 37°C.

For MPT analysis for all studies, nanoparticle probes were applied topi-
cally to slices and incubated for 30 min before imaging. Nanoparticle
probes were 40 nm fluorescent carboxylate (COOH)-modified PS nanopar-
ticles (PS-COOH) (Fisher Scientific, Hampton, NH) covalently modified
with methoxy (MeO)-PEG-amine (NH,) (5 kDa MW, Creative PEG Works,
Winston-Salem, NC) by carboxyl amine reaction (58). The MPT videos
used in this study were collected through fluorescent microscopy using a
CMOS camera (Hamamatsu Photonics, Hamamatsu City, Japan) mounted
on a confocal microscope. Each MPT video was collected using a frame
rate of 33.3 frames per second for 651 frames at 100x magnification (oil
immersion, 1.45 numerical aperture, Nikon, Melville, NY).

Statistical analysis

To compare individual MPT features between different OGD groups, linear
mixed effects models were performed using the Ime4 software package in R
(59,60). A model was fit for each locally averaged feature for each individ-
ual MPT trajectory to determine fixed effects of the OGD group using the
healthy control (HC) condition as the reference group. Each model included
random effects of both slice and MPT video to account for correlation be-
tween individual MPT trajectories taken from the same slice as well as tra-
jectories from particles whose data were collected in the same video at the
same time. When comparing across multiple groups, differences were
compared using linear combinations derived from the emmeans package,
and p values < 0.05 were defined as statistically significant.

eXtreme Gradient Boosting

XGBoost (eXtreme Gradient Boosting) is a ML software package that uses
boosted decision trees for its models (61). A boosted decision tree model is
built by sequentially adding weak prediction models fit to a subset of the
full data set, continuing until a specific number of weak models is reached
or the loss function of the model converges. Final predictions of the model
are made through a weighted average of the predictions of each of the weak
learners (62). XGBoost was chosen, as tree-based models, including
XGBoost, have been shown to be successful at ML tasks related to particle
tracking predictions both for classification accuracy, as well as interpreting
which statistical features of MPT data contributed the most to predictions
(41,43,44).

Shapley additive explanations

Shapley additive explanation (SHAP) values were calculated for each statis-
tical feature in each of the data sets to determine the contribution of each
feature to model predictions across each data set (63). SHAP values originate
from the game theory approach of Shapley values, and are calculated for each
feature by averaging how much that feature contributes to each prediction
instance (63). Calculating SHAP values for MPT data is useful as each of
the 33 features used to train the model captures a unique aspect of the
data. Determining which subsets of features are most important for different
MPT data sets can inform which aspects of nanoparticle trajectory diffusion
are being impacted by the microenvironment they experience.

XGBoost predictions

The XGBoost software package generated classification predictions on
each of the four data sets. Data were cleaned by removing trajectories
that had missing or infinite values for any of the features. To prevent over-
fitting, data sets were rebalanced through majority class under sampling to
ensure that each class had the same number of data points. To ensure that
there was no data leakage between the training and testing data, trajectories
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TABLE 1 XGBoost metrics for each class in the age data set,
and for the overall model, reported as median and interquartile
range from 50 models trained on random, downsampled
subsets of data

Evaluation P14 P35 P70 Total

Normal model

Accuracy 0.88 £ 0.02 0.80 = 0.03 090 = 0.04 0.86 = 0.02
Precision 091 = 0.03 0.79 £ 0.03 0.89 = 0.02 0.86 = 0.01
Recall 0.88 = 0.02 0.80 = 0.03 090 = 0.04 0.86 = 0.01
F1 score 0.89 = 0.02 0.80 = 0.03 0.89 = 0.02 0.86 = 0.02
Y-scrambled model

Accuracy 0.34 = 0.02 034 +£0.04 033 =£0.02 034 = 0.01
Precision 0.33 £ 0.02 034 +£0.02 034 =002 034 = 0.01
Recall 0.34 = 0.02 034 +£0.02 033 £002 0.34 = 0.01
F1 score 0.34 = 0.02 034 +£0.02 034 =002 034 = 0.01

from the same local environment were binned together such that, when split
for training and testing, trajectories from the same bin were only in the
training set or test set, never both. Training and testing data sets were cho-
sen by randomly assigning bins to each such that the split is 80:20. During
model training, 10% of the training data were used for internal validation,
which left a total of 70% of the class balanced data set for training.

Feature data consisted of the statistical features (Table S1) generated
with diff_classifier, and the target variable was either age, region, or treat-
ment type. A cross-validation hyperparameter search was used to determine
the optimal hyperparameters of an XGBoost model for each of the different
data sets (Table S2). SHAP values were used to determine the importance of
each feature to the model’s predictive ability. Y-scrambling, where the
target variables were randomly reassigned for each feature row, was used
in conjunction with XGBoost to determine the likelihood of chance
predictions.

RESULTS
Data collection

For this study, we developed an explainable ML pipeline
capable of predicting between injury states based on nano-
particle diffusion. We used linear effects modeling to
compare features of MPT data between conditions in the
injury model. Before predicting between injury states, we
validated the pipeline on three sets of MPT data collected
from distinct biological conditions in OWH slices—nano-
particles tracked in the cortex at different brain ages, nano-
particles tracked in different brain regions at the same age,
and nanoparticles tracked in the HC or in enzymatically
degraded ECM conditions in the cortex. We then applied
the linear mixed models and the explainable ML pipeline
to MPT data from an OGD injury model in OWH slices.
Nanoparticle diffusion data were previously obtained us-
ing MPT in rat 300 um OWH thick brain slices from three
independent experiments. Although no new raw data were
generated in this article, the experimental methods that pro-
duced the data sets are briefly described in the materials and
methods. In the first experiment, age-dependent diffusion
data were acquired from OWH slices collected from the cor-
tex of male pups at P14, P35, and P70 (41), defined as the
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age data set. In the second experiment, brain region-depen-
dent diffusion data were acquired from OWH brain slices
from P10 male pups that included the cortex, striatum,
and hippocampus, defined as the region data set. The third
experimental data set contains diffusion data from P35
male pup brain slices exposed to enzymatic degradation of
ECM structures using ChABC and HC slices, defined as
the treatment data set (41). The fourth experimental data
were from P10 male pup slices from the striatum or cortex
from HC slices, slices treated with 0.5 h OGD (57) or
1.5 h OGD treatment (39). Data from OGD-treated slices
were chosen due to it being a well-characterized disease
state, where OGD increases cell death and cell proliferation
regionally and temporally (40), reduces glutathione produc-
tion (39), drives changes to the morphology of microglia
(39,64), and increases proinflammatory and oxidative stress
markers (39,64). From the acquired diffusion data, we
generated statistical features for each nanoparticle trajectory
with the open-sourced diff_classifier package (65). A list
and description of the features is provided in Table S1.

XGBoost accurately predicts complex biological
variables across multiple data sets

To establish the likelihood of correct predictions occurring
by chance, XGBoost models were trained on Y-scrambled
data for each data set and had accuracy scores close to
that of random guessing for the age data set (Table 1), the
region data set (Table 2), and the treatment data set (Table 3).
Precision, recall, and F1 score metrics of the Y-scrambled
models show the lack of any predictive capacity for these
models. Predictions on the age data set (Table 1) and region
data set (Table 2) with the normal XGBoost model are
higher than predictions with the Y-scrambled XGBoost
model (40.52 and +0.56, respectively). Predictions using
normal XGBoost of the treatment data set (Table 3) were
also higher by +0.19 compared with the Y-scrambled
XGBoost model. A confusion matrix of a model trained
on all five regions showed that trajectories from the thal-
amus were almost equally likely to be predicted as hippo-
campus as they were thalamus, which is one possible
reason that interchanging hippocampus for thalamus led to
similar model accuracy. The hippocampus was chosen
over the thalamus for the final model because it was pre-
dicted correctly at a higher rate when a model was trained
on all five regions.

SHAP shows mean diffusion as most important
feature

A significant benefit of using a boosted decision tree model
on MPT data is that, in addition to seeing whether a model
can predict complex biological variables, feature impor-
tance methods can be used to determine which features
were used to generate predictions and learn patterns in the
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TABLE 2 XGBoost metrics for each class in the region data
set, and for the overall model, reported as median and
interquartile range from 50 models trained on random,
downsampled subsets of data
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TABLE 3 XGBoost metrics for each class in the treatment
data set, and for the overall model, reported as median and
interquartile range from 50 models trained on random,
downsampled subsets of data

Evaluation Cortex Hippocampus Striatum Total Evaluation ChABC treated Nontreated Total
Normal model Normal model

Accuracy  0.88 = 0.08 096 = 0.01 0.86 = 0.02 0.90 = 0.03 Accuracy 0.66 = 0.02 0.72 + 0.03 0.69 + 0.02
Precision 0.85 = 0.04 098 = 001 0.86 = 0.04 0.90 = 0.03 Precision 0.70 = 0.03 0.68 = 0.02 0.69 = 0.02
Recall 0.88 = 0.08 096 = 0.01 0.86 = 0.02 0.90 = 0.03 Recall 0.67 = 0.02 0.72 = 0.03 0.69 = 0.02
F1 score 0.86 = 0.06 097 £ 0.01 0.86 = 0.02 0.90 = 0.03 F1 score 0.69 = 0.02 0.70 = 0.02 0.69 = 0.02
Y-scrambled model Y-srambled model

Accuracy  0.34 = 0.02 033 =£0.02 033 = 0.02 0.34 = 0.01 Accuracy 0.48 = 0.01 0.52 = 0.03 0.50 = 0.01
Precision 033 = 0.02 034 =002 033 =0.02 0.34 = 0.01 Precision 0.50 = 0.01 0.50 = 0.01 0.50 = 0.01
Recall 033 = 0.02 034 £0.02 034 =0.02 0.34 = 0.01 Recall 0.48 = 0.01 0.52 = 0.03 0.50 = 0.01
F1 score 034 = 0.02 033 £0.02 034 +0.02 0.34 = 0.01 F1 score 0.49 = 0.01 0.51 = 0.02 0.50 = 0.01

data. By finding the most important features in an MPT data
set, it is possible to gain insight into how the trajectories
differ between independent classes. We can begin to under-
stand the biological and chemical differences that led to the
model being able to generate predictions much higher than
random guessing.

SHAP feature importance from an XGBoost model
trained on the age data set showed that the mean diffusion
coefficient at 0.33 s (mean Deffl) was the most important
feature, with a magnitude of 2.4 (Fig. 1 A). That magni-
tude was more than double that of the second most
important feature, the mean fitted anomalous diffusion co-
efficient (mean D_fit), which had a magnitude of 1.1. Four
other features had a magnitude above 0.5: mean bounded-
ness, mean trappedness, mean straightness, and mean
fractal_dim. The top 12 features were all locally average
mean features, demonstrating the value that local aver-
aging of the trajectory data adds to predictive capacity.
These magnitude values were all much higher than
the SHAP values determined for the Y-scrambled
XGBoost model (Fig. 1 B). In the Y-scrambled model
the top feature, kurtosis, had a magnitude of 0.086, only
greater than the 15th ranked feature by 0.026. The low-
magnitude SHAP values and similarity in magnitude
across the top 15 features indicates that the high magni-
tudes found in the normal XGBoost model are representa-
tive of key components of the data that differentiate
trajectories from different age groups.

Similar to the results from the age data set, the top feature
for the region data set was mean Defflwith a magnitude of
2.3 (Fig. 1 C). Mean fractal_dim was the only other feature
above 1.0 with a magnitude of 1.3 and mean Deff2 (mean
diffusion coefficient at 3.3 s), mean D_fit, and mean kurtosis
were all above (.5, indicating the key features driving differ-
entiation between trajectory motion in the different regions.
SHAP values of an XGBoost model trained on Y-scrambled
data showed features with magnitudes all below 0.04
(Fig. 1 D), demonstrating the lack of predictive power
from the Y-scrambled features.

SHAP feature importance for an XGBoost model trained
on the treatment data showed much lower magnitudes
compared with the age and region data sets (Fig. 1 E), which
was unsurprising due to the comparatively lower prediction
accuracies on the treatment data set. Mean Deffl was again
the top feature but had a magnitude of only 0.55. Mean
D_fit, with a magnitude of 0.12, was the only other feature
with a magnitude above 0.1. SHAP values from an XGBoost
model trained on Y-scrambled data from the treatment data
set all fell below 0.015 (Fig. | F), again showing no predic-
tive power from the Y-scrambled data. The low magnitudes
of the SHAP values from the normal XGBoost model on
the treatment data set indicate that mean Deffl was the
only feature the model could consistently use to differentiate
between trajectories from the two classes. Despite the
low magnitude, the even lower SHAP values of the
Y-scrambled model indicate there are true differences in
the diffusion coefficients of trajectories from HC and
ChABC-treated slices that can be identified by the XGBoost
model.

SHAP captures statistically significant features
across age

To validate that the most important features determine by
SHAP were indicative of regional and neurodevelopmental
differences, a linear mixed effects model was used to
determine whether features differed between age groups
and brain regions when accounting for potential random ef-
fects due to slice variability. Three of the top 6 most impor-
tant features—mean Deffl, mean straightness, and mean
D_fit—followed the same trend, where the mean value of
the feature was highest in the P14 group and decreased in
each of the P35 and P70 groups (Fig. 2, A—C), with each
age group being statistically significant from each other
for each feature. For mean Deffl, the mean value
was 22.84 for P14 (95% confidence interval of [19.94,
25.74]), which decreased to 7.56 ([4.66, 10.45],
p < 0.001) for P35 and was lowest for P70 at 2.20
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([-0.733, 5.12], p < 0.001 compared with P14 and
p < 0.05 compared with P35) (Fig. 2 A). The mean value
at P14 for mean straightness was 0.34 ([0.317, 0.364]),
0.217 ([0194, 0.241], p < 0.001 compared with P14) at
P35, and 0.146 ([0.122, 0.170], p < 0.001 compared with
both P14 and P35) at P70 (Fig. 2 B). Mean D_fit had a
mean value of 29.52 ([26.24, 32.8]) at P14, which
decreased to 17.19 ([13.93, 20.5], p < 0.01 compared
with P14) at P35 and 6.48 ([3.15, 9.8], p < 0.001 compared
with both P14 and P35) at P70 (Fig. 2 C). Mean trapped-

6 Biophysical Journal 123, 1-16, November 19, 2024

ness and mean boundedness followed similar trends where
there P14 and P35 did not differ significantly, while P70
was lower compared with both other ages (Fig. 2, D and
E). For mean trappedness, the mean values for P14 and
P35 were both —0.194 ([—0.193, —0.195]) while the
mean value for P70 was —0.204 ([—0.203, —0.205],
p < 0.001 compared with both P14 and P35). For P14
and P35, the mean values of mean boundedness were
0.110 ([0.107, 0.114]) and 0.109 ([0.106, 0.133]), respec-
tively, decreasing to 0.0758 ([0.072, 0.080], p < 0.001
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compared with both P14 and P35) for the P70 group. Mean
fractal_dim was lowest in the P14 group with a value of
1.53 ([1.48, 1.59]) and was significantly different
compared with both P35 at 1.75 ([1.70, 1.81], p < 0.001)
and P70 and 1.81 ([1.75, 1.87], p < 0.001) (Fig. 2 F).
Mean fractal dimension was not significantly different be-
tween the P35 and P70 groups.

The most important SHAP features for the region data
set also captured regional differences that were found to
be statistically significant. Mean Deffl, mean D_fit, and
mean efficiency showed similar trends where all regions
where comparisons between all regions showed statisti-
cally significant differences with data the value from the
hippocampus being the highest across each feature.
Mean Deff1l was lowest in the striatum with a mean value
of 0.66 ([0.34, 0.97], p < 0.001), slightly higher in the
cortex at 0.81 ([0.49, 0.1.12], p < 0.001), and had a value
of 11.55 ([11.23, 11.87], p < 0.001) in the hippocampus
(Fig. 3 A). The mean value of mean D_fit was lowest in
the cortex at 1.69 ([—0.322, 3.7], p < 0.001), increased

in the striatum at 2.49 ([0.49, 4.5], p < 0.001) and was
16.44 ([14.43, 18.40], p < 0.001) in the hippocampus
(Fig. 3 B). Mean efficiency was lowest in the striatum at
0.26 ([0.14, 0.39, p < 0.001]), with a value of 0.44
([0.31, 0.56], p < 0.001) in the cortex and 1.02 ([0.89,
1.14], p < 0.001) in the hippocampus (Fig. 3 C). Mean
values for mean kurtosis and mean fractal dim differed
across each region with each feature following similar
trends. Mean kurtosis was lowest in the hippocampus at
3.32 ([2.22, 4.42], p < 0.001), increased to 4.10 ([3.00,
5.20], p < 0.001) in the cortex, and was highest in
the striatum at 4.55 ([3.45, 0.32], p < 0.001) (Fig. 3 D).
Similarly, mean fractal_dim had a value of 1.80 ([1.36,
2.25], p < 0.001) in the hippocampus, 2.18 ([1.74,
2.63], p < 0.001) in the cortex, and was 2.31 ([1.87,
2.76], p < 0.001) in the striatum (Fig. 3 E). Mean Deff2
was found to be not significant between the cortex and
striatum with mean values of 0.141 (—0.03, 0.31) and
0.143 ([-0.03, 0.32]), respectively, while the value of
mean Deff2 hippocampus was significantly different
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compared with both cortex and striatum at 1.098 ([0.92,
1.27], p < 0.001) (Fig. 3 F).

Distribution of geometric features shows
differences between healthy and disease
conditions

To decrease model complexity and increase interpretability,
we used a decreased number of features published in previous
literature (43). The features fall under three primary cate-
gories: those related to the MSD data (Deffl and mean
Deff1l, MSD_ratio mean MSD_ratio, alpha and mean alpha,
trappedness and mean trappedness), those related to the
radius of gyration tensor (kurtosis and mean kurtosis, asyme-
metry1, and mean asymmetry 1), and those related to the steps
in a trajectory (fractal_dim and mean fractal_dim, straight-
ness and mean straightness, efficiency and mean efficiency).
To determine any effects due to brain slice variability and tra-
jectory length, we used a linear mixed effects model and as-
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sessed whether the mean of each locally averaged feature was
significantly different between the HC data and each treat-
ment condition while accounting for slice effects and trajec-
tory length effects. Correlation plots between each feature
and trajectory length are shown in Fig. S1, where there was
not a common directionality of effect of the trajectory length
on individual features. For the cortex data, mean MSD_ratio
feature was significant for the 0.5 and 1.5 h OGD conditions
when accounting for slice effects, while mean fractal_dim
was significant for the 0.5 h OGD condition. The mean of
the mean MSD_ratio feature was 0.88 for the HC, which
decreased to 0.60 (95% confidence interval of [0.528,
0.672], p = 0.037) in the 0.5 h OGD condition and to 0.633
([0.561, 0.706], p = 0.037) in the 1.5 h OGD condition
(Fig. 4 A). The mean of the mean fractal_dim feature was
1.98 in the HC condition, decreasing to 1.74 (95% confidence
interval of [1.63, 1.82], p =0.041) in the 0.5 h OGD condition
and to 1.76 ([1.66, 1.84], p =0.051) in the 1.5 h OGD condi-
tion (Fig. 4 B).
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For the striatum data, mean straightness and mean effi-
ciency were statistically significant for both treatment
groups, while mean fractal_dim and mean alpha were only
significant for the 1.5 h OGD treatment condition. The
mean of the mean alpha feature was 0.76 for the HC,
increasing to 0.9 (95% confidence interval of [0.863,
0.937], p = 0.055) in the 0.5 h OGD condition and to
0.94 ([0.889, 0.963], p = 0.036) in the 1.5 h OGD condition
(Fig. 5 A). Mean straightness had a mean of 0.09 in the HC,
which increased to 0.19 ([0.164, 0.208], p = 0.021) in the
0.5 h OGD condition and was 0.21 ([0.184, 0.229], p =
0.011) in the 1.5 h OGD condition (Fig. 5 B). The mean
of the mean efficiency feature was 0.22 in the HC, 0.78
([0.661, 0.877], p = 0.012) in the 0.5 h OGD condition,
and 0.89 ([0.743, 0.959], p = 0.008) in the 1.5 h OGD con-
dition (Fig. 5 C). For mean fractal_dim the mean was 2.46 in
the HC, which decreased to 1.78 ([1.61, 2.02], p = 0.058) in
the 0.5 h OGD condition and further to 1.71 ([1.57, 1.98],
p = 0.046) in the 1.5 h OGD condition (Fig. 5 D).

XGBoost and SHAP predict healthy and OGD-
treated data and determine key features

To ensure that slice effects of nonstatistically significant fea-
tures did not impact the XGBoost model predictions, all tra-
jectories from one slice for each condition were held out as
the test set during model training and the remaining data
were used for training. Model accuracy was then calculated
based on predictions on the held-out data. Fifty models were
trained for each region, with the mean accuracy on the
cortex data being 58.70 = 0.06% and the mean accuracy
on the striatum data being 66.46 = 0.05%. By training an
XGBoost model on the MPT data and using SHAP values
to determine feature importance, we aimed to determine
whether the model could accurately distinguish between
nanoparticles diffusing in disease compared with healthy
conditions and find features that could be further investi-
gated to understand changes to the ECM with disease onset.

XGBoost models were able to accurately classify
trajectories from healthy brain slices in both the cortex
(Fig. 6 A) and striatum (Fig. 6 C), rarely predicting trajec-

“+ &

OGD 0.5h

FIGURE 4 Distributions of statistically signifi-
cant features from cortex when accounting for fixed
effects. (A) Violin plots showing the distributions
of the mean MSD_ratio feature for HC, OGD
0.5 h, and OGD 1.5 h conditions in the cortex.
(B) Violin plots showing the distribution of the
mean fractal_dim feature for HC, OGD 0.5 h, and
OGD 1.5 h conditions in the cortex. Statistical sig-
nificance compared with HC (¥*p < 0.05).

OGD 1.5h

tories from healthy slices as from an injured slice. While
the accuracy of the XGBoost models did decrease when
making predictions on the two injury conditions in both
the cortex and striatum, the predictive accuracy for each
class was still well above random guessing. In addition,
the mistakes were primarily the model predicting one injury
condition as the other injury condition, rather than incor-
rectly classifying a trajectory from an injury condition as
one from a healthy condition. These results demonstrate
that an XGBoost model can accurately determine the trends
on the data that differentiate trajectories moving in healthy
brain slices compared with ones treated with OGD and can
detect enough differences between the two OGD conditions
to predict at an accuracy above random guessing.

Calculating SHAP values for each feature reveals
regional differences in what features most contribute to an
XGBoost model’s predictions. For the striatum data, the to-
tal magnitude of the mean fractal dimension is more than
three times greater than the second most important feature
(Fig. 6 D). While mean fractal dimension was also the top
feature for the cortex data set (Fig. 6 B), the magnitudes
of the top 5 features were much closer compared with the
striatum data. These results indicate that changes to the
brain microenvironment as a result of OGD treatment are
regionally dependent, supporting prior biological character-
ization of regional diffusion data (39).

SHAP analysis demonstrates region- and
treatment-condition-specific changes to diffusion

By further analyzing the top features as determined by
SHAP for each condition from each region, it is possible
to gain increased insight into how diffusion changes in
each unique microenvironment. This approach enables a
deeper understanding of how the magnitude of each feature
helps distinguish healthy data from OGD-treated data, and
differences between each OGD condition.

For the cortex data, a high mean fractal dimension value,
high value of mean asymmetry, and high value of mean
alpha, were key features used to distinguish between healthy
and either of the OGD classes (Fig. 7, A-C). Mean
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straightness appeared to specifically be useful in differenti-
ating between HC (Fig. 7 A) and 1.5 h OGD (Fig. 7 C) treat-
ment data. Low values of mean straightness were highly
important for HC (Fig. 7 A) and high values for 1.5 h treat-
ment (Fig. 7 C), but it does not appear as a top 5 feature for
0.5 h OGD treatment (Fig. 7 B). Mean Deff1 was the most
important feature for the 1.5 h OGD treatment condition,
second most important for 0.5 h OGD treatment condition,
and also appeared in the top 5 for the HC. Medium to
high values of mean Deff] were indicative of both the 0.5
and 1.5 h OGD treatment conditions (Fig. 7, B and C),
which could help explain why the model struggled to differ-
entiate between the two conditions, while low values of
mean Deffl (Fig. 7 A) were associated with the HC
condition.

For the striatum data, a high value of mean fractal_dim
was also associated with HC compared with low values
associated with both OGD conditions (Fig. 7, D-F), with
mean kurtosis having the same trend. Mean asymmetryl
appeared to help distinguish specifically between HC
(Fig. 7 D) and 0.5 h OGD (Fig. 7 E), where high values
were associated with HC and low values associated with
0.5 h OGD data. To further distinguish between HC and
1.5 h OGD data, the model found the mean efficiency to
be important, with low values associated with HC (Fig. 7
D) and average to high values being associated with
1.5 h OGD (Fig. 7 F). Mean Deffl and mean trappedness
were in the top 5 features for both OGD conditions (Fig. 7,
E and F) but not the HC, indicating that these features may
indicate an exposure time difference in the response to
OGD treatment.
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ciency feature for HC, OGD 0.5 h, and OGD
1.5 h conditions in the striatum. (D) Violin plots
showing the distributions of the mean fractal_dim
feature for HC, OGD 0.5 h, and OGD 1.5 h condi-
tions. Statistical significance compared with HC
(*p < 0.05).

OGD 1.5h

Notably, feature distributions of the top predictors in the
SHAP plots show that many predictors have nonlinear rela-
tionship with the outcome being predicted (Fig. 7). For
example, when predicting HC in the cortex, SHAP values
for mean Deffl are near zero when mean Deffl is high,
but non-zero (both negative and positive) SHAP values are
seen when mean Deff1 is low. This is one example of how
SHAP analyses allow for better visualization of complex
nonlinear relationships that exist between the predictors
and the outcome variables.

Overall, these results align with the distributions of the
features used (Figs. 4 and 5), highlighting that the XGBoost
model is correctly detecting the trends that exist within the
data. While this is unsurprising, it is important to confirm
that the XGBoost model is picking up on trends in the
data known to be present. More importantly, these results
demonstrate that SHAP values can be used to go further
than the trends shown by the feature distributions and find
subsets of statistical features of diffusion, which may be
indicative of different responses in brain tissue due to
increased OGD exposure time, or due to how different re-
gions respond to OGD. While the results do not directly
reveal how the tissue has changed due to OGD treatment,
these results highlight aspects of diffusion that could be
probed with future experiments.

DISCUSSION

Determining changes to the brain microenvironment in
models of disease or injury is critical for the characterization
of ECS pathology. While diffusion has been shown to
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FIGURE 6 Confusion matrices and feature importance values for disease progression predictions. (A) XGBoost predictions of 0.5 h OGD, 1.5 h OGD, and
nontreated brain slices in the cortex. (B) SHAP feature importance values of 0.5 h OGD, 1.5 h OGD, and nontreated brain slices in the cortex. (C) XGBoost
predictions of 0.5 h OGD, 1.5 h OGD, and nontreated brain slices in the cortex. (D) SHAP feature importance values for 0.5 h OGD, 1.5 h OGD, and non-

treated brain slices in the cortex.

change due to injury (20,28,30,66,67), studies have focused
on bulk changes to diffusion and changes to pore size
(40,64). To increase the depth at which changes to diffusion
can be analyzed in injury states, we aimed to build a ML
pipeline to predict between heathy and injury states and to
investigate region and exposure time-specific changes to
statistical features of diffusion. To ensure the validity of
ML predictions, we first used a pipeline to make predictions
under three conditions: biological age, brain region, and
enzymatic degradation of ECM components. Because injury
across groups is typically measured with traditional statisti-
cal approaches, we used linear effects models to compare
MPT features across OGD conditions. This approach addi-
tionally presents a novel and robust approach to control
for correlation between related MPT trajectories when
analyzing MPT data. We then show that the ML pipeline
predicts between healthy and OGD conditions with good ac-
curacy and helps identify nonlinear relationships and pre-
dictors that traditional linear statistics cannot.

The consistency of the ML pipeline described in this pa-
per across multiple data sets demonstrates the feasibility of

applying a ML approach to MPT studies for pattern identi-
fication in the data that may be informative of biological un-
derpinnings. The application of the Y-scrambling method
shows that the technique can properly ensure that the accu-
racy of the supervised learning models is indeed caused by
the model uncovering patterns in the data. The random-
guess accuracy and low SHAP values of the XGBoost model
trained on Y-scrambled age data further indicate that there
are clear differences in diffusion between the P14, P35,
and P70 microenvironments that the model can detect.
Studies looking at changes in diffusion during the neurode-
velopmental process in rats has shown that the ECS volume
fraction decreases with age (26). In this study, a large
decrease in volume fraction between postnatal days 10
and 21 was observed, but not between P21 and adults
aged 90-120 days. Since some of the most important
features for the age data set are mean boundedness, mean
trappedness, and mean straightness, which relate to the
confinement of the nanoparticle trajectory, the model may
be picking up changes in nanoparticle diffusion related to
in ECS volume fraction between P14, which would have a

Biophysical Journal 123, 1-16, November 19, 2024 11



10.1016/j.bp;.2024.10.005

Please cite this article in press as: Schimek et al., High-fidelity predictions of diffusion in the brain microenvironment, Biophysical Journal (2024), https://doi.org/

Schimek et al.
Cortex
A Top 5 Features for HC High
Mean fractal_dim  -<{ijimssse—atiu— e
Mean asymmetry1 e s
Mean straightness — ez - - o
Mean alpha  ~————iiPup@e—- - %
Mean Deff1 —p o K
. Low
0 2
SHAP Value (impact on model output)
B Top 5 Features for OGD 0.5h High
Mean fractal_dim B e g
Mean Deff1  « wee S
Mean asymmetry1 B - et [
Mean alpha - gl - E
Mean straightness - e - 2
. . Low
-2 -1 0 1
SHAP Value (impact on model output)
C Top 5 Features for OGD 1.5h High
Mean Deffl  ———tjnnmcsiiipe— 2
Mean straightness —e e G - s
Mean alpha e ffe—— [3
Mean asymmetry1 sl 2
Mean trappedness -+—-—— ' e
' . Low
=1 0 1

SHAP Value (impact on model output)

Striatum
D
Top 5 Features for HC High

Mean fractal_dim 4= )

Mean efficiency e §

Mean kurtosis —porse— - [

Mean asymmetry1 = E

Mean MSD_ratio — 2

- 0 5 Low
SHAP Value (impact on model output)

E Top 5 Features for OGD 0.5h High
Mean fractal_dim  ==—eseaguot—aiiih e
Mean Deff1 T s
Mean kurtosis e I3
Mean trappedness el 2
Mean asymmetry1 —ogifi—— s

: Low

-1 0
SHAP Value (impact on model output)

F Top 5 Features for OGD 1.5h High
Mean fractal_dim ==———————e- g
Mean efficiency e K]
Mean Deff1 (e o
Mean straightness (e 2
Mean trappedness = o

. . 'Low

-2 -1 0 1

SHAP Value (impact on model output)

FIGURE 7 SHAP analysis of XGBoost models for each data set shows that mode of injury can be differentiated by unique subsets of trajectory features.
Top 5 features determined by SHAP for the cortex for (A) HC, (B) 0.5 h OGD treatment, and (C) 1.5 h OGD treatment. (D) Top 5 features determined in the
striatum by SHAP for (D) HC, (E) 0.5 h OGD treatment, and () 1.5 h OGD treatment.

relatively large volume fraction, and P70, which would have
a smaller volume fraction.

Regional volume in the OWH slices used in these studies
and more limited data sampling may also be a contributing
factor to distinguishing between different brain regions. In
this study, 10 videos were recorded and quantified from
both the striatum and cortex, but only 6 were collected
from each of the hippocampus, basal ganglia, and thalamus.
As a result, highlighted by the output of the Y-scrambled
model, the data collected from those three regions may
have provided enough of a difference in feature values for
a model to separate one of the classes from the striatum
and cortex, but not enough to differentiate between the three
regions that had lower data sampling. Future experimental
work could increase video collection in the regions that
contain the least number of particles tracked for a more
even sample size across brain regions, or account for subre-
gions within the specified brain regions.

That each age or region class had a unique subset of
important features determined by SHAP demonstrates that
applying explainable ML techniques to SHAP values can
elucidate structural information, as it aligned with estab-
lished knowledge of perineuronal net (PNN) development
during aging (68,69). These results confirm that this method
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detects known differences in ECM structure. Key important
features other than those related to diffusion are also likely
to pick up differences in the ECM other than PNNs.
McKenna et al. suggested that the variance of composition
of ECM proteins across development (70,71) could play a
role in changing ECM viscosity and obstruction of nanopar-
ticle motion. In addition to effecting features relating to
diffusion, these changes could also impact important geo-
metric features relating to nanoparticle travel distance and
motion within a confined space (43). Regional differences
in diffusion align with results from MRI data in rodents,
where diffusivity is different across brain regions in rats
(72) and mice (73). Analysis of MRI data from cortex and
striatum in adolescent rats showed differences in four mea-
sure of diffusivity—T2, mean, axial, and radial—as well as
differences in volume and myelination (72). In addition,
studies have shown regional differences in microglia popu-
lations (74) and brain capillary density (75). Altogether,
these differences would alter the space and local structure
of the microenvironment through which nanoparticles
diffuse for each region, which could cause differences in
geometric features that relate to the space taken up by the
trajectory, such as mean fractal dimension and mean kurto-
sis (44).
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For the enzyme treatment data set, each enzyme may have
different mechanisms of action but degrade the same com-
ponents of the ECM. When brain slices are treated with
ChABC, the effective diffusion coefficient has been shown
to increase; however, the degree of degradation may not
be sufficient enough for a ML model to detect differences
in microstructural changes. The loss of PNNs due to
ChABC treatment may also result in neuronal cell death,
an inflammatory response, and activation of cells such as
microglia (76), which could alter the ECS and ECM, miti-
gating the effects of the loss of ECM structure. ECM degra-
dation may not be severe enough to cause the statistical
features to be different for many of the nanoparticle trajec-
tories. We see this highlighted when looking at Y-scrambled
model results and the SHAP values, as the best XGBoost
model accuracy was only 19% above random guessing,
and only one feature (mean Deff1) had a high impact on
the model.

Studies of OGD treatment in rodent brain slices have
shown clear differences in diffusion between HC and
OGD conditions. OGD treatment has shown an increase in
the effective diffusion coefficient (39,40), as well as changes
to the distribution of diffusion modes and ECM pore sizes
(39). As these measurements are all made from the statisti-
cal features that are related to the mean-squared displace-
ment that the model is trained with, it is unsurprising that
mean Deffl and mean alpha were important for the cortex
data, while mean Deffl and mean trappedness were used
for both OGD conditions in the region data. Unlike the
age, region, and treatment data sets, the top SHAP feature
for the OGD data set in both regions was not the mean
effective diffusion coefficient, but rather the mean fractal
dimension feature, which takes a value near 1 for straight
trajectories and direction motion, near 2 for random, Brow-
nian diffusion, and 3 for constrained trajectories (43,77).
One possible explanation is that changes to the fractal
dimension of the trajectories are related to conditions of
cytotoxic and oxidative stress. OGD slices have greater
cytotoxicity (39), which could lead to less cell density and
straighter, less-confined nanoparticle motion in the OGD
conditions compared with HC, as well as the age and region
data sets.

Regional differences in the brain ECS also seem to play
arole in the SHAP analysis of the XGBoost models trained
on the OGD data set, as each of the six classes had a unique
subset of top features. The difference in the top 5 features
between the cortex and striatum for both the 0.5 h OGD
condition and the 1.5 h OGD condition suggests that
XGBoost models are able to detect regional differences
in the ECS environment after OGD exposure. Regional dif-
ferences in features due to OGD exposure align with
regional differences of diffusion parameters in the ECS
due to hypoxia, namely volume fraction and tortuosity.
Volume fraction refers to the percentage of volume of the
brain ECS relative to the volume of the entire tissue, while
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tortuosity measures the degree of hindrance to diffusion in
tissue relative to free medium. In the striatum of adult rats,
volume fraction has been shown to decrease due to hypoxia
with no change to tortuosity (28), while in the cortex vol-
ume fraction has been shown to decrease while tortuosity
increases (66,67).

A benefit of training XGBoost models on MPT data
from OWH slices is that other modalities of data are
collected, allowing for comparison of changes to the
extracellular environment and other impacts of disease.
OGD is known to effect microglia populations (78), and
cellular-extracellular interactions may influence the
environment through which nanoparticles are diffusing.
Previous work showed that the morphology of microglia
became more heterogeneous compared with a healthy mi-
croglia population, as well as a reduced overall number of
microglia (39). A study looking at changes to microglia
over the course of 48 h shows changes to morphological
parameters such as perimeter, area, circularity, and aspect
ratio differed from normal conditions (64). The reduced
density of microglia due to OGD and change in shape
in response to disease could explain the high values of
features such as mean straightness in the cortex and
mean efficiency in the striatum were important to OGD
conditions, where reduced cellular density would reduce
hindrance to diffusing nanoparticles. Microglia may also
contribute to differences in important features across re-
gions. A study in ex vivo ferret brain treated with OGD
found region-dependent changes to microglia morphology
features such as perimeter, circularity, and area across the
cortex, corpus callosum, hippocampus, basal ganglia,
thalamus, and subcortical matter (79). While it is unclear
whether microglia impact the SHAP features in this study,
future studies may collect particle tracking data and mi-
croglia or other cell morphology data from the same
OWH slice to better understand the relationship between
nanoparticle diffusion and cellular changes under patho-
logical conditions.

The importance of locally averaged features across all
four data sets indicate that local averaging is a significant
contributor to model performance and can be beneficial to
include in future MPT ML work. It may also highlight
that it is not individual trajectories that provide robust infor-
mation to a data set, but the distribution and diversity of
nanoparticle motion within a given subspace. Research
into the structure of the brain ECS has shown there to be
void spaces connected via tortuous channels (5,32,80) and
reservoirs of space next to cells (81). As noted in McKenna
et al. (41), it is likely that neighboring nanoparticles
diffusing in these voids will be experiencing nearly identical
environments and have similar diffusive behavior, while tra-
jectories moving in an ECS channel of varying width will
have different diffusive behavior. The ECS is also known
to vary across age, brain region, and disease (5,32). Locally
averaged features as the top feature across all four data sets
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supports the idea that these features are capturing changes in
the motion of neighboring nanoparticles resulting from
structural differences in the ECM.

One limitation in this study is our identification of classes
for each data set that are not able to be differentiated with
high accuracy with the chosen ML models. Past research
has shown that a deep learning approach can be used for
nanoparticle trajectory classification tasks by applying a
convolutional neural network to the raw trajectory data
(44,82). For each of these data sets, future work can inves-
tigate whether or not a deep learning approach on raw trajec-
tory data, as opposed to the statistical features used in this
study, can improve the accuracy of predictions on classes
with which these current methods struggle. Synthetic data
can also be generated using a generative adversarial network
deep learning approach, which has been shown to improve
convolutional neural network accuracy in medical classifi-
cation tasks (83). The mechanism relating locally average
features to specific structural and microenvironmental
changes also remains unclear. Future work could combine
MPT with live-slice staining and imaging to determine
how cellular- and protein-level changes influence nanopar-
ticle diffusion, both at the individual trajectory level and
over locally averaged domains. ML integration into MPT
data analysis could also be applied in a nonbrain context,
such as making predictions on nanoparticles moving in
other biological environments such as the mucosal mem-
brane (84), or for tracking the diffusion of viruses and viral
vectors (85). While our analysis indicates that XGBoost can
be used to predict between healthy and disease states, we are
unable to directly relate differences in the most important
features between healthy slices and OGD slices directly to
the known changes due to OGD exposure. Future work
will incorporate an increased amount of data relating to
the disease condition to find correlations between features
extracted from MPT experiments and macroscopic changes
to the ECS.

CONCLUSION

We outline a methodology to apply data science and ML
tools to MPT data to probe underlying biological changes
using four distinct experimental data sets. While MPT has
long been a technique used to understand complex biolog-
ical environments, our methodology increases the insights
extracted from a given MPT data set. Specifically, we vali-
date the use of supervised learning and feature importance
techniques by detecting microenvironmental changes in
the brain ECS that align with previous characterizations of
age and regional differences in tissue. We then demonstrate
that XGBoost and SHAP can be applied to MPT data
collected in models of disease to detect specific changes
to the ECS microstructure based on treatment condition,
treatment exposure time, and regional responses to injury.
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The data used for this research can be found in the diff_predictor GitHub
repository: https://github.com/Nance-Lab/diff_predictor. The source code
used for this research can be found in the diff_predictor GitHub repository:
https://github.com/Nance-Lab/diff_predictor.
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