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Abstract— Bio-inspired robotic systems are capable of adap-
tive learning, scalable control, and efficient information pro-
cessing. Enabling real-time decision-making for such systems is
critical to respond to dynamic changes in the environment.
We focus on dynamic target tracking in open areas using
a robotic six-degree-of-freedom manipulator with a bird-eye
view camera for visual feedback, and by deploying the Neu-
rodynamical Computational Framework (NeuCF). NeuCF is a
recently developed bio-inspired model for target tracking based
on Dynamic Neural Fields and Stochastic Optimal Control
theory. It has been trained for reaching actions on a planar
surface toward localized visual beacons, and it can re-target
or generate stop signals on the fly based on changes in the
environment (e.g., a new target has emerged, or an existing
one has been removed). We evaluated our system over various
target-reaching scenarios. In all experiments, NeuCF had high
end-effector positional accuracy, generated smooth trajectories,
and provided reduced path lengths compared with a baseline
cubic polynomial trajectory generator. In all, the developed
system offers a robust and dynamic-aware robotic manipulation
approach that affords real-time decision-making.

I. INTRODUCTION

Object manipulation is fundamental towards the inte-
gration of robots into the human-designed world. Several
distinctive robotic manipulation works have been developed
over the years employing humanoids (e.g., [1]), quadrupeds
(e.g., [2], and soft robotics (e.g., [3]). To perform manipula-
tion tasks effectively, robots must be able to understand their
surrounding environment, localize available objects, and plan
and execute accurate and adaptive reaching actions.

A growing number of studies seek to employ bio-
inspiration for robotic manipulation [4]–[7]. Such methods
aim to map the neural mechanisms underlying decision-
making and motor control in humans and animals to support
robot cognition [8]. In turn, human-like robot motion may
also help provide a deeper understanding of the nature of
human motor behavior [9], [10]. Thus, exploring bio-inspired
methodologies and learning behaviors is important to develop
and attain cognitive abilities in complex robotic applications.

Bio-inspired methodologies employed in robotics can be
broadly split into three main categories; Spiking Neural Net-
works (SNNs), Liquid State Machines (LSMs), and Dynamic
Neural Fields (DNFs). SNNs are activated by discrete events
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called spikes or action potentials [11]. SNNs have been
successfully deployed in 3D path planning [12] and direct
robotic manipulator motion learning [13], and have served
as internal models in reinforcement-learning-based target
reaching training [14]. However, they remain limited in their
applicability for real-time and dynamic decision-making,
which can be crucial in many modern robotic applications.
To this end, LSMs can lend themselves as a basis for more
dynamic-aware bio-inspired methods. LSMs are based on
reservoir computing [15], they contain a large number of
recurrently connected neurons used to perform computations
and recognize input patterns [16], and have been used in
manipulation tasks [17], [18] in robotics.

Recently, DNFs have emerged as a prominent theory for
real-time decision-making [19], and have been used to model
aspects of perception [8], [20] and action [21]–[24] in both
biological and non-biological systems. Several studies have
applied the DNF theory in robotic reaching and grasping.
Specifically, Ferreira et al. [25] presented a time-aware
DNF-based control architecture for human-robot interaction,
Strauss et al. [26] developed a DNF-based architecture
for integrating visual input, decision-making, and motor
planning in a robotic reaching task, and Knips et al. [27]
proposed a neural dynamic architecture that utilizes DNFs
for perception, movement generation, and action selection,
enabling online updating of motor plans based on sensory
feedback. While these approaches have made significant
contributions to the field, they do not explicitly address
the integration of optimal control principles for generating
efficient reaching trajectories in the presence of multiple
competing targets and uncertain states. Additionally, they
do not provide a unified framework that can simulate a
variety of motor tasks in dynamic environments, such as
deciding between alternative options, stopping unwanted
or inappropriate ongoing actions, and switching actions in
response to environmental changes.

To address these limitations, we present the Neurodynami-
cal Computational Framework (NeuCF), which merges DNF
and SOC theory to generate adaptive reaching trajectories
in a neurally plausible manner, integrating action selection,
stopping, and switching mechanisms. NeuCF was designed
and developed based on recent studies that modeled motor
and the underpinning neural mechanisms in a variety of
motor decisions performed by human subjects in dynamic
and uncertain environments [28]–[30]. The architecture and
parameters of NeuCF have been tuned based on reaching
movements performed by human subjects in dynamic envi-
ronments, ensuring biologically plausible behavior. Herein



Fig. 1: NeuCF Model Architecture. The system receives images to compute beacon locations. The reach planning field
encodes the planned direction of motion, integrating information from disparate sources. The relative desirability value for
each action policy captures its attractiveness compared to alternatives and acts as a weight to compute the final action policy.

we focus on dynamic target tracking in open areas using a
robotic six-degree-of-freedom manipulator with a bird-eye
view camera for visual feedback. We present a robotic arm
and camera-based system setup to evaluate the effectiveness
of NeuCF in enabling robots to perform reaching tasks in
dynamic environments with multiple competing targets.

II. MATERIALS AND METHODS

A. Neurodynamical Computational Framework (NeuCF)

In earlier work we have proposed a framework for action
regulation tasks involving motor inhibition, such as selecting,
stopping, and switching actions [29]–[31]. The framework
integrates DNF with SOC, employing a network of DNFs
to represent the neural circuitry responsible for various
aspects of action regulation (including perception, expected
outcome, effort cost, context signal, action planning, and
execution) while allowing for the representation and selection
of multiple potential targets. Optimal reaching strategies are
created using SOC, based on the current environment state,
and expected rewards and costs associated with each action.

Figure 1 illustrates the overall model architecture of
our system. The neurodynamical framework receives image
inputs from the camera to compute the beacon locations.
Within the neurodynamical framework, the “Reach Planning”
field serves two purposes: 1) initiation of the stochastic
optimal controllers that generate actions oriented in specific
directions, and 2) integration of diverse information sources
related to actions, goals, and situational requirements into
a single value representing action desirability or “attrac-
tiveness.” The reach planning field receives excitatory input
(denoted by green arrows) from the “spatial sensory input”
field, which captures the targets’ angular representation in an
egocentric reference frame, and the “expected outcome” field
which conveys rewards associated with motion in specific
directions. It also receives inhibitory feedback (highlighted
by red arrows) from the “reach cost” field, which quantifies

the effort needed to move in designated directions, and
the “pause” field which operates as a rapid suppressor of
planned or ongoing actions during necessary action inhi-
bition. The normalized activity within the reach planning
field represents each neuron’s relative desirability against
other available options at any particular time and state, with
elevated neuronal activity signifying increased desirability to
move in its favored direction. Each neuron within the reach
planning field connects with a control scheme responsible
for generating reaching actions. When a neuron’s activity
exceeds a predetermined “action initiation threshold,” the as-
sociated controller is activated, generating an optimal policy
πi - i.e., a sequence of motor actions - directed toward that
neuron’s preferred direction. The optimal policy πj is given
by minimizing

Jj(xt, πj) = (xTj
− Spj)

TQTj
(xTj

− Spj)

+

Tj−1∑︂
t=1

πj(xt)
TRπj(xt) , (1)

where πj(xt) is the policy from t = 1 to t = TJ to reach
towards the preferred direction φj ; Tj is the time required to
arrive at position pj = [rcos(φj), rsin(φj)]. r is the distance
between the current arm location and the location of the
target encoded by the neuron j. xTj

is the state vector at
the end of the reaching movement, and matrix S selects the
actual position of the arm and the target position at the end
of the reaching movement from the state vector. Matrices
QTj

and R define the precision- and the control- dependent
cost, respectively (for more details see [29]). The model
implements a winner-take-all strategy, where the neuron with
the highest activity level wins the competition and determines
the reach direction. Once a neuronal group’s activity exceeds
the action initiation threshold, a decision is made, and the
corresponding reaching movement is executed [29]–[31].



B. Experimental Setup

To evaluate our framework we employed the Kinova Gen3
lite robotic manipulator, fixed-mounted on a tabletop, to
perform direct and dynamically-altering reaching scenarios.
The robotic arm is set up in a planar configuration, by
having the end-effector moving in the horizontal plane and
on the same level as its base. The Kinova Gen3 lite is a
six-degree-of-freedom robotic manipulator, with a reaching
range of 76 cm, and a maximum speed of 25 cm/sec.
The selected operating space on the table is 52 × 47 cm2

in size and it was used for all our experiments. We used
the manufacturer’s software (Kinova Kortex) to send motor
commands to the onboard controller and actuators. Each
actuator has its standalone internal control loop (running at
1 kHz), which also provides its status and sensor feedback
(including position and torque) to regulate arm control.

An Astra Pro Plus RGB camera (30 fps live camera
feed with 1080p resolution via a USB 2.0 connection) was
used for scene understanding and visual-based control. The
camera was fixed above the robotic arm to provide a birds-
eye view of the configuration space and detect the desired
objects. The arm and camera were connected to a desktop
computer, where all information was pulled together for the
controller to compute the next robot action. We used plastic
balls (7.5 cm diameter) to denote different targets and asso-
ciated actions. Orange and green balls act as visual beacons
for target-reaching and stopping actions, respectively. These
were the sole objects placed within the configuration space.

Figure 2 depicts the setup. We developed an application
based on the Robot Operating System (ROS) and custom
programs in C++ (for robot control) and MATLAB (for
NeuCF implementation). The initial end-effector position
was set the same across all experiments, and without loss of
generality, it was selected as the origin of the world frame.
Desired end-effector positions as well as any intermediate
positions computed by the controller were also given in the
world frame, and trajectory generation ensued to determine
the appropriate low-level robot commands (i.e. at the joint
level). The latter were computed by directly invoking the
robot arm manufacturer’s inverse kinematics solver.

C. Scene Understanding

First, an affine transformation was used to compute beacon
positions in space based on image plane measurements, i.e.[︃

x′

y′

]︃
= M ·

⎡⎣xy
1

⎤⎦ ⇐⇒
[︃
x′

y′

]︃
=

[︃
a00 a01 b00
a10 a11 b10

]︃
·

⎡⎣xy
1

⎤⎦ , (2)

where M is the transformation matrix of a point (x, y) if the
camera frame Π to point (x′, y′) of the orthographic frame
O. Matrix M can be computed at initialization by using any
of the three table corner coordinates in the Π frame. In case
the table position changes, the matrix M must be recomputed
(i.e. perform extrinsic calibration).

To acquire the beacons’ real position in space, we ex-
tracted and removed the table background, to exclude false

Fig. 2: The robotic arm setup and sensing configuration. A
camera provides bird-eye view feedback to the controller.
The ball objects on the table are the main target beacons.

positives during localization. An HSV color model trans-
formation was applied on the image plane O to find the
corresponding beacon colors’ given their hue value. Binary
masking was then applied to obtain the orange and green
areas on the image plane. Areas that were less than 15%
of the image plane size were excluded from detection. The
coordinates of the beacons were then mapped to the real
coordinates (xreal, yreal)∈ W as xreal = (x′/x′

max) ·width
and yreal = (y′/y′max) · height, where variables width
and height correspond to the workspace planar boundaries
expressed in frame W (Fig. 2) and (x′

max, y
′
max are their

equivalent representation in frame O. This way, pixel coor-
dinates (x′, y′) ∈ O of a detected beacon are mapped into
W coordinates, (xreal, yreal) expressed in cm. The origin
was set at the bottom-right corner of the table.

D. Beacon State Description

To describe the status of a beacon we define the 4-
tuple bt := {visibility, (x′, y′), (xreal, yreal), tvis}. Variable
visibility ∈ {“stationary,′′ “moving, ”“disappeared”}
indicates the appearance status of the corresponding beacon,
while tvis holds the last timestamp that the beacon was
detected. All beacon status information is updated in real-
time with each received RGB frame. In the case that a beacon
disappears we have set a 3 sec delay after tvis to change
its status from “stationary” or “moving” to “disappeared.” A
beacon is considered as “moving” if its position in the x- and
y-axis has changed for more than 5% with respect to x′

max

and y′max, respectively. All this information is transmitted
through a custom ROS Topic to the decision and contextual
information modules of the NeuCF controller, to provide the
current status of the appeared beacons during the reaching
scenario. The state of each beacon is important during our
experiments since the NeuCF system can adjust the reaching
action in real time depending on observed beacon placement.

E. Polynomial Trajectory Generator

A cubic polynomial trajectory generator was used to
determine the time scaling function, s(t), of the path given
a desired goal on W frame and a terminal time T . This
is computed as s(t) = a0 + a1t + a2t

2 + a3t
3, with

t ∈ [0, T ]. Instants s(t = 0) and s(t = T ) denote the



initial and goal position of the end-effector. The end-effector
also needs to start and end at rest, hence ṡ(T ) = 0 and
ṡ(0) = 0. These boundary conditions help set and solve
a linear program to compute the coefficients ai, i ∈ [0, 3],
yielding a0 = 0, a1 = 0, a2 = 3

T 2 , and a3 = − 2
T 3 . Since

we operate in an open area trajectory generation along the
x- and y- axes can be decoupled, and the above process is
thus applied twice. Thus, we can obtain the direct path from
the cubic polynomial trajectory generator, by providing the
total operation time (adjusted to the NeuCF controller) and
the desired goal position.

III. EXPERIMENTS, RESULTS, AND DISCUSSION

To evaluate the developed system we conducted five dif-
ferent experiments of reaching scenarios by using one or two
target beacons and the stopping beacon. We considered three
settings: 1) static selection of reaching a stationary existing
beacon, 2) the switch beacon scenario when the goal target
is re-positioned while approaching the target beacon, and 3)
the sudden stop scenario while reaching for a target beacon.
In all cases, we also evaluated the polynomial trajectory
generator baseline and compared its output with our system’s
generated path smoothness and reaching accuracy.

For each experiment, we employed three different beacon
setups and repeated each experiment three times. Each setup
was tested and repeated the same amount of times for both
the NeuCF and polynomial trajectory generation methods.
For fairness, the polynomial trajectory generator was set
to execute the trajectory at the same operating time as
the NeuCF controller. We evaluate our proposed system
using path smoothness, reaching goal positional accuracy,
generated path length, and higher derivatives of x- and y-
axis motion to assess the consistency of acceleration and
jerk during motion. We also present the neuronal activation
surface plots of the reaching planning field from each case,
to demonstrate the activity changes that occurred.

A. Static Beacon Selection

We first evaluated the generation and execution of direct
paths toward a selected target (out of possibly two) that
remains static throughout the experiment. Table I contains
the obtained results. It can be readily verified that the
NeuCF-based controller performs on par with the baseline
polynomial trajectory generator. Goal-reaching accuracy was
high, whereby obtained trajectories have less than 0.87 cm of
absolute positioning error in both x- and y-axis, on average.
The one-standard deviation of the positioning error of the
end effector was less than 0.14 cm in the examined cases.
An example is depicted in Fig. 3, showing the NeuCF-based
controller can generate a more direct path toward the target.

To evaluate trajectory smoothness, we performed linear
regression on the generated x-y trajectory and calculated
the coefficient of determination r2 (whereby a value closer
to 1 corresponds to more straight and direct trajectories).
NeuCF generates trajectories with r2 > 0.99 (Table I).
Attained path lengths are almost equal in length to the ones
generated by the direct polynomial trajectory system (over

TABLE I: Experimental Results for static Cases

Scenario static 1 static 2

Controller NeuCF Polynomial NeuCF Polynomial

X Error (cm) 0.32±0.02 0.20±0.01 0.20±0.12 0.12±0.04
Y Error (cm) 0.39±0.28 0.74±0.12 0.87±0.14 0.77±0.01

Path Length (cm) 31.02 30.92 28.22 28.83
Straightness r2 0.9994 1 0.9985 0.9999

(a) (b)

(c) (d)
Fig. 3: Resulting trajectories given a selected stationary
beacon, close to (27,35) (cm), for the static 1 scenario.
Panels (a) and (b) show the evolution of the x- and y-
axis end-effector positions for the Polynomial and NeuCF
controllers, respectively. Panels (c) and (d) show the top-
down view of the generated trajectories.

TABLE II: Experimental Results for stop Cases

Scenario stop

Controller NeuCF Polynomial

Path Length (cm) 16.15 15.33
Straightness r2 0.9983 0.9999

Acceleration (cm/sec2) 0.051±0.25 0.052±0.07
Jerk (cm/sec3) 0.173±2.55 0.009±0.18

96% match). Figure 4a and 4b show the neuronal activations
from initiation of movement toward the selected target. The
average total runtime of the experiments was 27.5 sec.

B. Reaching Interruption

We then moved on with testing the ability to interrupt the
execution of an ongoing reaching action when a stopping
beacon appears in the workspace. This can be applied in
either static scenarios where the beacons are stationary
or during the switch scenarios (discussed next) when the
robot is trying to reach a new target beacon because of
a change in the environment. Obtained results are shown
in Table II. The system can afford successful interruption
of the reaching action when the stopping beacon appears.
Trajectories remain smooth until the end-effector comes to a
full stop. The stopping signal does not cause any instability in
the last part of the arm’s trajectory (Fig. 5). The reported path



(a) (b) (c) (d) (e)
Fig. 4: Activity changes of the 181 neurons of the reach planning field during experiments. Each panel includes the time
points when the target appears (target onset), movement initiation (movement onset), and when the stop/switch cue appears
(stop cue/switch cue). Note that in case (d), only one beacon is available initially, and then we switch it with a new one,
while in (e) both beacons appear initially and one beacon is then removed.

(a) (b)
Fig. 5: Generated trajectories by (a) the polynomial and (b)
NeuCF controllers during a stop experiment. When the green
stop beacon appears, both controllers receive an interruption
signal and can stop the reaching action successfully.

TABLE III: Experiment Results for switch Cases

Scenario switch 1 switch 2

Controller NeuCF Polynomial NeuCF Polynomial

2nd Der. Variance 5.10e-9 1.59e-8 4.85e-9 3.66e-8
Fractal Dimension -0.668 -0.744 -0.767 -0.784
Accel. (cm/sec2) 0.01±0.20 0.02±0.09 0.01±0.22 0.02±0.18
Jerk (cm/sec3) 0.11±1.62 0.01±0.20 0.15±1.92 0.01±0.39

acceleration and jerk attained relatively low values, although
not as smooth compared with the polynomial controller.
Acceleration variation was less than 27% compared with
the polynomial controller, with the maximum one-standard
deviation at 0.07 cm/sec2. Variation in jerk in both x- and
y-axis was less than 0.30 cm/sec3, with the one-standard
deviation at 2.6 cm/sec3. Figure 4c shows the interrupted
neuronal activations after the stopping cue has been received.

C. Switching Beacon Choice

In the switch cases we test the dynamic adaptability of
our system when the beacons are re-positioned or removed
in the middle of executing a reaching action. We consider
two cases. In the first case (switch 1) one beacon exists in
the field which the NeuCF controller selects and generates a
path toward it in real-time. During execution, the beacon
is removed and a new target beacon is placed at a new
position for the robot to reach. In the second case (switch 2)
two beacons appear initially and the arm starts reaching
toward one. Then, we remove the selected target to force
the controller to switch its target. During all the experiments
in each case, the beacons were removed and replaced at the
same time instant and were placed in the same position. We

(a) (b)

(c) (d)
Fig. 6: Experiments during a switch 2 case. Two target
beacons are placed and the target at top-right is selected (in
red color). During the reaching action, we remove the target
beacon and thus prompt the controllers to re-schedule and
approach the other target at top-left (in blue color).

conducted three different beacon placement setups for both
switch 1 and switch 2 cases. We set a time limit at 36 secs.

Since the generated trajectories are more complex due to
the on-demand target switch, we employ second derivative
and fractal dimension analysis to evaluate the path smooth-
ness. For the former, we numerically compute the second
derivative of a trajectory and then measure its variance. In
the latter, we analyze the generated plots into a fractal pattern
of 50 different box scales and calculate the fractal dimension
which reflects the path’s spatial complexity.

Results are presented in Table III. There is high linearity in
the second derivative analysis providing smooth curves when
transitioning to a new target. Scores are overall better com-
pared to the polynomial-based trajectory (smaller positioning
variance at 4.98 · 10−9 compared with the 2.62 · 10−8 of the
cubic polynomial). Fractal analysis also shows the smaller
complexity of the NeuCF-generated trajectories by scoring
up to 11% smaller fractal score. Figures 6a and 6b depict one
of the switch 2 cases showing both methods output when
switching a target while Fig. 6c and 6d show the independent
trials during the switch 2 case and how each controller



steered the system to switch targets. Obtained acceleration in
both switch cases was similar between the two controllers.
while NeuCF demonstrated higher values and variance on
path jerk because of the direct re-targeting. Figures 4d and 4e
show the neuronal activations for switching NeuCF behavior
to reach the available target.

IV. CONCLUSIONS

We demonstrated the potential of the NeuCF controller
to perform accurate and dynamic environment-aware target
reaching for robotic manipulation. Visual feedback from an
off-body camera offers target and robot end-effector position
information in real-time which is in turn used by the NeuCF
controller to generate smooth reaching trajectories toward a
selected target. Several tested cases, including static target
reaching, action stopping, and switching to a different target
based on changes in the environment at runtime, highlight
that the NeuCF controller can afford dynamic real-time re-
prioritization for robot reaching. Results showed its robust-
ness in positioning accuracy and smooth trajectory gener-
ation, and yielded similar results to a baseline polynomial
trajectory generator. Future work will focus on 3D reaching.
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