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Software developers often repeat the same code changes within a project or across different projects. These
repetitive changes are known as “code change patterns” (CPATs). Automating CPATS is crucial to expedite the
software development process. While current Transformation by Example (TBE) techniques can automate
CPATs, they are limited by the quality and quantity of the provided input examples. Thus, they miss transform-
ing code variations that do not have the exact syntax, data-, or control-flow of the provided input examples,
despite being semantically similar. Large Language Models (LLMs), pre-trained on extensive source code
datasets, offer a potential solution. Harnessing the capability of LLMs to generate semantically equivalent, yet
previously unseen variants of the original CPAT could significantly increase the effectiveness of TBE systems.

In this paper, we first discover best practices for harnessing LLMs to generate code variants that meet
three criteria: correctness (semantic equivalence to the original CPAT), usefulness (reflecting what developers
typically write), and applicability (aligning with the primary intent of the original CPAT). We then implement
these practices in our tool PYCRAFT, which synergistically combines static code analysis, dynamic analysis, and
LLM capabilities. By employing chain-of-thought reasoning, PYCRAFT generates variations of input examples
and comprehensive test cases that identify correct variations with an F-measure of 96.6%. Our algorithm
uses feedback iteration to expand the original input examples by an average factor of 58x. Using these richly
generated examples, we inferred transformation rules and then automated these changes, resulting in an
increase of up to 39x, with an average increase of 14x in target codes compared to a previous state-of-the-art
tool that relies solely on static analysis. We submitted patches generated by PYCRAFT to a range of projects,
notably esteemed ones like microsoft/DeepSpeed and IBM/inFairness. Their developers accepted and merged
83% the 86 CPAT instances submitted through 44 pull requests. This confirms the usefulness of these changes.
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1 INTRODUCTION

Software developers frequently change code to improve performance, manage resources efficiently,
integrate new libraries, etc. Throughout this process, they frequently repeat identical or similar
code modifications [7, 17, 30, 40, 41]. These repetitions stem from the adoption of shared coding
idioms [3, 12, 44, 66], adherence to common best practices [16, 34], and the need to tackle similar
programming challenges [33, 54]. Such repeated changes occur at a fine-grained level, frequently
appearing within specific methods, and consistently retaining the same semantics.

For example, Listing 1 shows such a repeated change in project Nif TK/NiftyNet, an open-source
convolutional neural network platform. The developers replaced a for loop that summed elements
of a list with the more efficient numpy.sum function, which is a best practice and improves perfor-
mance. The performance gain is attributed to several factors, including NumPy’s C implementation,
vectorization, memory efficiency, optimized algorithms, and parallel processing support. This
change involves specific programming idioms and is localized to a particular method within the
project. This change recurs at multiple locations across various commits, prompting previous
researchers [14, 16, 41] to identify these recurrent changes as code change patterns (CPATS).

Developers often perform these changes manually [16, 41]: they first must identify potential
target code sites and then apply the required syntax transformations. This manual process is
time-consuming, tedious, and error-prone due to two main reasons: (i) identifying all potential
target sites to apply CPATs is challenging, as they may be deeply embedded within the code,
exhibiting syntactic variations along with variations in data- and control-flow, and (ii) ensuring
consistency and correctness in applying identical changes across multiple locations in the codebase
is challenging, as developers must reason about syntactic variations. To address these challenges
and enhance developer productivity, researchers have employed “Transformation by Example”
(TBE) [5, 13, 20, 22, 26-29, 31, 33, 35, 35, 37, 39, 56, 57, 64] techniques to automate code changes.
These techniques infer transformation rules from before-and-after versions of code changes and
use these inferred rules to automatically transform new target code sites that exhibit syntactical
similarities and have a program structure similar to the original code change. These approaches are
effective in API migrations, e.g., replacing obsolete API calls with modern ones from the Android
SDK [20, 21, 25, 26, 35, 64], type migrations in Java [33], and API migrations in Linux systems [54].

Despite their successes, existing TBE techniques face challenges when handling more complex
coding idioms, where there can be numerous potential target sites that are semantically equivalent,
yet differ in terms of syntax and data- and control-flow. These techniques are limited to transforming
target codes that perfectly resemble the input example code change and struggle with variations
beyond those specific examples. We call these previously unseen variants. Unseen variants can
be of two types: (i) syntax variants, and/or (ii) data- or control-flow variants. Listing 2 shows an
example of syntax variant where the code computes the sum of elements in the list losses by using
a different syntax involving len and range. It is also a data-flow variant through list indexing and
accumulation in the variable 1oss. Notably, this target code would not be identified or transformed
by existing techniques that inferred transformation rules based on Listing 1 as input. Our initial
analysis uncovered 50 other ways to compute the sum of elements, all of which are unseen variants
of Listing 1. They could all benefit from and be sped up by transforming them to np.sum. Sadly,
existing techniques fail to identify and transform these unseen variants.

Listing 1. Commit c8b28432 in GitHub project Listing 2. GitHub repository CDE-GAN/models

Nif TK/NiftyNet: Replace for loop with numpy.sum employs a for loop for calculating the sum of an
il = 0 array similar to the tranformed code in Listing 1
2 —for elem in elements: 1 loss = 0
3 = result = elem + result 2 for i in range(len(losses)):

i +result = numpy.sum(elements) 3 loss += losses[i]
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Recent advancements, PyEvolve [14] and Spinfer[54], are effective in handling certain unseen
data- or control-flow variants. However, none of the existing tools are equipped to handle syntax
variants. While Spinfer [54] addresses control variations through the use of the ".." operator to
represent arbitrary statements between specific statements in input examples, it relies on multiple
input examples to learn the potential locations for inserting ".." in the rule. This reliance on
examples can be problematic if not all potential locations for arbitrary statements are covered,
limiting its effectiveness in handling many unseen variants. On the other hand, PyEvolve [14] excels
in automating unseen variants by employing a graph-based approach to support variations not
exemplified in the input examples, specifically those concerning data- and control-flow. However,
this approach is limited to automating simple data and control variations, such as reassigning
values to other variables, and it cannot handle more complex variations, as seen in Listing 2, where
list elements are accessed using indexing (loss += losses [i] in Listing 2).

To advance the frontier for “Transformation by Example” systems, we designed, implemented, and
evaluated a novel approach and a tool, PyCraft. It successfully automates unseen variants, even those
with completely different syntax. PyCraft harnesses the creativity of Large Language Models (LLMs)
to generate many syntactical variations for a given code idiom. LLMs are robust machine learning
models that are trained on vast datasets, which encompass source codes as well as documents related
to software development. Models like GPT-3.5 [9] and GPT-4 [42] generate coherent and contextually
relevant code snippets in response to given prompts. Researchers demonstrated LLMs’ versatility
across various software engineering tasks, including code completion [11], refactoring [46], code
summarization [18, 23], and bugs reproduction [55].

In PyCraft, we employ few-shot learning to generate unseen variants for the before-part of a
given input CPAT. Our initial analysis found that 65.5% of the LLM-generated variants are either
erroneous or not semantically equivalent to the original CPAT and cannot be used. Therefore, we
discovered three criteria that the generated variants must meet: (i) semantically similar to the
original input (i.e., correct), (ii) practicality in terms of what developers typically write (i.e., useful),
and (iii) aligned with the structural intent of the original CPAT (i.e., applicable). To achieve this,
we carefully fine-tune the hyper-parameters of the LLM, and conduct comprehensive automatic
checks, including static code validation, to ensure correctness and verify that the variants adhere
to the original CPAT’s structural intent. We also perform dynamic analysis through automatically
generated test cases to ensure conformity with the desired behavior. To optimize LLM performance,
we fine-tune the hyper-parameters by discovering best practices for generating variants and test
cases, finding that higher temperature values are effective for dynamic analysis-focused test case
generation, while intermediate temperatures help reduce non-useful variants. This thorough process
guarantees the reliability and effectiveness of PyCraft. Finally, PyCraft infers transformation rules
that are used to apply CPAT to new target codes including unseen variants, significantly enhancing
state-of-the-art TBE techniques and further advancing their automation capabilities.

We conducted a comprehensive evaluation of PyCraft to assess its effectiveness in generating
variants and the usefulness of the resulting code changes. We utilized CPATs mined from open-
source repositories as input for PyCraft and observed that it could generate raw variations of up to
584 per CPAT, with an average 459 per CPAT. To obtain high-quality applicable variants, we use
a combination of static and dynamic analysis to validate the raw variants. PyCraft consistently
generated applicable variants at an average 58 per CPAT while effectively eliminating inapplicable
variants, on average 748 per CPAT. This not only demonstrates its proficiency in identifying
irrelevant variants but also its ability to successfully infer previously unattainable rules using
state-of-the-art techniques. Furthermore, to quantitatively compare PyCraft and the previous
state-of-the-art, we conducted a comparison analysis using PyCraft and PyEvolve, the leading tool
for automating unseen variations. PyCraft exceeded the baseline by enabling an average of 14x
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Listing 4. The repository Yolov uses a for loop

Listing 3. Tranformation rule for the code change in List- to compute the sum of an array

ing 1 1 temp_list = [0] + int_list
1[[vog% :]<]> (v2)) = :[[vol=numpy.sum(:[[v2]]) 2 for i in range(l, len(temp_list)):
or vl in v H

([[vol]l = :[[v0ol] + :[[v1]] 3 temp_list[i] += temp_list[i - 1]

4 count = temp_list[-1]

additional code transformation instances per CPAT; these would have been missed by prior tools.
Furthermore, to assess the usefulness of the generated variations, we submitted pull requests to
highly-rated projects including microsoft/DeepSpeed and IBM/inFairness, totaling 86 CPAT instances.
At the time of this writing, developers have accepted 72 (83%) of the CPAT instances, submitted
through 44 pull requests. This confirms the practical value of the transformations performed by
PyCraft for the real-world developers.

This paper makes the following key contributions:

(1) We pioneer a new approach that utilizes LLMs in TBE to generate unseen variants, thereby
automating code changes that were once unattainable with existing TBE techniques.

(2) We provide best practices for using LLMs to generate code variations and their test cases.

(3) We designed, implemented, and evaluated these ideas in a new tool, PyCraft. We perform com-
prehensive experiments, including a performance evaluation of PyCraft and a detailed qualitative
analysis, to demonstrate the capabilities of LLMs in generating variations and the effectiveness of
our technique for selecting the applicable ones for automation. Moreover, we conduct a user study
to further validate the usefulness of our approach.

(4) Our tool and evaluation dataset is open-source and available for others to reuse [48].

2 MOTIVATING EXAMPLES

To demonstrate the challenges faced by current techniques that use “Transformation by Example”
on CPATs, we employ real-world code changes. First we show a scenario when existing techniques
exhibit a high recall rate, effectively automating such changes. Then, we present two complex
scenarios when existing techniques fail to automate code changes, whereas PyCraft is successful.

Listing 1 shows an example of a CPAT mined from the project Nif TK/NiftyNet. The developer
transforms the for loop that computes the sum to np.sun(), a highly optimized API from the library
NumPy. The transformation is represented by the rewrite rule shown in Listing 3. The rule, following
ComBy syntax [59], has a left hand side (LHS - indicating the “before” change) and a right side
(indicating the “after” change) separated by an arrow. Both sides of the rule contain Python
statements with template variables (e.g., :[[ve11) that bind to AST nodes in the actual source code
(e.g., :[Cvell binds to result). The right side represents the code fragments that replace the left side.
These rules can be applied to transform any target code that shares the same AST structure as the
code presented in Listing 1, irrespective of any variations in variable names. Notably, existing TBE
techniques infer this rule and automate the transformation of structurally similar target codes.

However, many real-world CPATs involve semantically equivalent different variations [14, 16].
These variations can be identified in two different ways. The first type, Variant Type 1 (VTI),
consists of code fragments that possess different syntax but exhibit similar semantics, resembling
Type 4 clones [52]. The second type, Variant Type 2 (VT2), comprises code fragments that are
syntactically equivalent but differ in terms of data- and control-flow.

Listing 2 is an example of VT1. It iterates over a list to compute the sum of elements in the
array int_list similar to Listing 1. However, unlike Listing 1, it utilizes the len() function to de-
termine the length of the list int_1ist. This length value is then used with the range() function to
generate a sequence of numbers. The loop iterates over this sequence, accessing each indexed
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Listing 5. An unseen variation generated by
LLM for the LHS in Listing 1 Listing 6. Transformation rule that need to be inferred to
transform code in Listing 2

([[vo]] =0
for i in sorted(elements): for :[[v1]] in range(len(:[[v2]])): = :[[v0]]=numpy.sum(:[[v2]])
([0vo]] += :[[v2]][:[[v1]]]

result = @

result += i

element of int_list for performing the sum operation. This code fragment comes from project
CDE-GAN/models and is semantically similar to the Listing 1. However, it differs syntactically,
making it a Type-4 clone of the Listing 1. Notably, this target code should be similarly transformed
into the np.sum() function, as demonstrated in the CPAT given in Listing 1. The rule shown in
Listing 6 is essential for transforming the code presented in Listing 2. Since Listing 2 was not seen
as a change exemplar, existing TBE techniques are unable to infer the rule in Listing 6, resulting in
their failure to transform this new target site. In contrast, PyCraft succeeds in this task.

Listing 4 represents a VT2 variant that computes the sum of elements in the int_list array, similar
to Listing 1. It differs from Listing 1 by assigning the initial list to the temporary list temp_1ist and
computing the cumulative sum of the array elements, rather than using an accumulator variable.
The last element in the list is the sum of all the elements. This variation in data-flow classifies
it as a data-flow variant, thereby denoting it as a VT2 variant. Among the existing TBE tools,
PyEvolve [14] can partially automate these VT2 variants. It captures control-flow variations that
include unrelated nodes among the pattern’s statements, as well as data-flow variations such
as reassigning a variable to another variable that is not exemplified in the CPAT. However, it
falls short in automating the transformation of unseen variations that contain complex data-flow
relations, such as those observed in Listing 4: (i) reassigning the cumulative sum to the array
elements, and (ii) differentiating between the use of the “addition assignment” operator (temp_list[i]
+= temp_list[i-1]) and the “addition and assignment” operators (result = elem + result). Therefore,
existing techniques can not fully automate complex VT2 variations; whereas PyCraft succeeds.

The key idea behind PyCraft is to generate VT1 and VT2 unseen code variations using an LLM.
However, not all of the generated variants can be directly used for rule inference. Some may
contain syntax errors, import issues, incorrect types, or lack semantic equivalence. Our empirical
evaluations show that these erroneous variants can account for as much as 76% of the total generated
variants. Even if 24% of them are correct, not all of these correct variants are suitable for the final
rule inference, as certain semantically equivalent correct variants may not be useful. For example,
the variant in Listing 5 performs an unnecessary sorting operation that an actual developer would
not typically perform, making it a not-useful variant. Our empirical evaluations indicate that these
not-useful variants can constitute up to 80% of the total correct variants and significantly impact
the tool’s performance. Therefore, it is essential to reduce them while increasing the useful variants.

Even when certain variants are indeed useful, some may still deviate from the original structural
intent. For example, the variant sum(elements), generated by LLM to calculate the sum of elements in
an array, is semantically equivalent to Listing 1 and useful. However, it does not iterate a collection
as in Listing 1, deviating from the intended structural intent, making it not applicable. We observed
that these non-applicable variants can account for up to 70% of the useful variants. Thus, PyCraft
selects correct, useful, and applicable variants (e.g., Listing 2) for the final rule inference.

3 TECHNIQUE

In this section, we present how our tool, PyCraft, automates unseen variations of CPATs. Figure 1
shows the overall architecture of PyCraft. First, to extract CPATs, we use R-CPATminer [16], which
has been shown to be highly effective for extracting CPATs from the version history of open-
source repositories. Each CPAT includes multiple code transformations extracted from real-world
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Fig. 1. Schematic diagram of PyCraft

repositories. Then, PyCraft takes CPATs as input and invokes an LLM (Step (1) in Figure 1) to generate
unseen variations for original coding idioms involved in the CPAT. To ensure correctness, PyCraft
validates the generated code variations by checking the syntax errors and semantic equivalence
against the original CPAT (Step (5) — detailed in Section 3.1.3). Moreover, through the additional
fine-tuning parameters of PyCraft (Step (6)) we generate more useful variations and reduce those
that are not useful (detailed in Section 3.1.4). This step is crucial in identifying realistic variants that
are likely to be present in actual code-bases. The final step involves static code analysis to identify
applicable variations (Step (7)) that align with the original CPAT’s intent (detailed in Section 3.1.5).
Next, PyCraft synthesizes a set of transformation rules using both human adaptations mined by
R-CPATminer and the generated variants. Finally, PyCraft applies the synthesized transformation
rules, generating edits for other target codes. PyCraft leverages the core components of PyEvolve
to infer and apply rules, while PyEvolve achieves transformations with precision at 97% and a recall
of 94%, ultimately aiding PyCraft in reliably executing transformations. These edit suggestions are
then presented to developers, who can decide whether to apply them. We will present the technical
details of each step in the following.

Definition 3.1. (Unseen variant) Let C be a CPAT consisting of code change instances: C =
{cLHS — cRHES ¢ LHS — cRHS |}, An unseen variant is defined as vLf#% — oRHS where each
LHS eC exh1b1ts either syntactic differences (A yntax(vLHs LHS) # {}) or alterations in data or
control flow (Adata/mmml(vLHS LHSY % {}), or both, with respect to ZJLHS The unseen variant (ULHS )

preserves the semantic s1m11ar1ty with the original CPAT.

Definition 3.2. (Correct variant - V) Let V be a set of unseen variants generated by an LLM for the
CPAT C. A correct variation, denoted as V,, is a subset of ‘V that consists of variations semantically
equivalent to the original input c-* S Formally, we can express this as: V, = {v € V | S(v, C) holds},
where S(v, C) denotes the semantic equivalence between a variation v and the original CPAT C.

Definition 3.3. (Useful variant - V})) is a subset of V, denoted as V,, that represents variations
that actual programmers would realistically write in their codes. Formally, we can express this as:
Vy ={v € V.| P(v)}, where P(v) represents the condition that a variation v is considered realistic
and likely to be written by programmers. The term “not-useful” is used to describe the correct
variants that do not belong to the set of useful variants (V, \ V).

Definition 3.4. (Applicable variant - V,) is a subset of V},, denoted as V,, that represents variations
with the same structural intent as the original CPAT. Formally, this can be expressed as: ‘V, = {v €
Vu | A(v)}, where A(v) represents the condition that a variation v is considered to share the same
structural change as the original CPAT.

3.1 Generating Unseen Variations

The first step of our approach is to generate a comprehensive set of unseen variations for LHS of
each CPAT that belongs to the two types, Variation Type 1: VT1 and Variation Type 2: VT2. Here,
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we consider the LHS (i.e., before code) of the CPAT as the focus for generating these variations
since the CPAT specifies that the LHS must be transformed into the RHS (i.e., the after code).

3.1.1 Prepare LLM:. LLMs initially trained on extensive datasets may require additional prepara-
tion for specific tasks, utilizing in-context learning [62]. It provides the LLM with a prompt that
prepares it for a particular prediction task. As LLMs advance, in-context learning has evolved into
zero-shot learning, enabling predictions solely based on desired output. However, its application to
unexplored tasks remains challenging [9, 19, 49]. To overcome this challenge, we employ few-shot
learning, augmenting the context with a small number of examples representing desired inputs
and outputs. In our work, given that LLMs lack explicit training in understanding, analyzing, and
rewriting variants, we utilize few-shot learning [24] as the in-context paradigm to facilitate LLMs
in rewriting variants of CPATs. We follow best practices as discussed by Gao et al. [24] and include
two examples for VT1 and VT2. In addition to examples, the prompt provides LLM with formatting
instructions for consistent integration with the tool.

3.1.2 Optimize tuning parameters and generate variations: The output of an LLM depends
on the internal variable "Temperature" (T), that serves as a regulator for the model’s output
randomness. Higher values, such as 0.9 or 1.2, produce more diverse and unpredictable outputs,
whereas values closer to 0 produce focused and less diverse results. Adjusting T allows us to
balance between creativity and determinism of the output. Furthermore, the output can exhibit
variability when the LLM is presented with the same prompt multiple times. This because: (i) LLMs
generate responses using a combination of learned patterns and random sampling, introducing
slight variations in answers each time due to the inherent randomness in the generation process; and
(ii) LLMs can explore diverse solutions and improve their responses iteratively through feedback
[9, 49], enhancing their outputs in subsequent iterations. We primarily focus on two types of
iterations in this work: (i) prompting the LLM with the exactly same prompt that consists of
the same variant (v;), known as prompt iteration (I,), and (ii) changing the prompt to augment
it with another semantically similar applicable variation generated in a previous step (v; where
j! = i), referred to as feedback iteration. (Ir). While more iterations yield more variations, it also
increases processing time and may produce many non-useful variants. Therefore, selecting the
ideal combination of temperature and iteration values is of paramount importance. Our goal is to
fine-tune the parameters T, I, and Iy to maximize the potential for generating diverse and useful
variations using the LLMs. Section 4.3 explains our empirical approach to choosing these values.

Not all generated variants are valid for automation. The variations must be correct (Definition 3.2),
useful (Definition 3.3), and applicable (Definition 3.4). In the following sections, we explain how
we validate the generated CPATs to ensure they satisfy these requirements.

3.1.3 Selecting correct variations: LLM produces many unseen variations for CPATs during
the initial step described in Section 3.1. Among these variations, it is crucial to identify the correct
ones (Definition 3.2) that are syntactically correct and semantically equivalent to the original CPAT,
thereby avoiding any erroneous code edit suggestions to the developers.

To ensure the correctness of variations produced by LLMs, we employ a four-step validation
process: (i) Syntax validation, (ii) Type validation, (iii) Import validation, and (iv) Semantic validation.
Syntax validation checks whether the generated variant forms a valid program, devoid of syntax
errors such as indentation errors, parentheses errors. Type validation ensures that variables in
both the CPAT and the variant maintain the same type. For example, the corresponding variable
in the generated variant for the variable elements from Listing 1 must be of type List[int]. The
import validation step ensures the presence and proper usage of required libraries, modules, or
dependencies, verifying that APIs and classes in generated variations originate from the same
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sources as those used in the original CPAT. As the variations are partial code fragments, static code
analysis alone cannot infer type information or required imports. To address this issue, we utilize
LLMs for type and import inference via chain-of-thought reasoning [62], which leverages rationales
as intermediate steps for LLMs to infer required types and imports. This approach facilitates efficient
inference of types and imports to evaluate variant conformity with the original CPATs.

The final step, semantic validation, assesses semantic equivalence between generated variations
and the original CPAT. To achieve this, we depend on test cases. However, the original CPATs lack
pre-existing test cases, necessitating the generation of new ones. Automating test case generation
is essential for a streamlined pipeline. We achieve this by prompting LLMs to generate test cases for
the original CPAT. These test cases validate the semantic equivalence of the generated variations.

To select valid test cases, we follow three steps: (i) We check that the generated test cases are
free of syntax errors, (ii) We run the test against the original CPAT and disregard the tests that
fail. This can happen because the generated tests might have invalid assertions, and (iii) we check
that each test initializes every input variable to the CPAT. This last step removes tests that do not
instantiate all its variables. Such tests may pass the test-case however, using such a test would weed
out some correct unseen variants further down the pipeline. In Section 4.2, we quantitatively study
the significance of each of these steps, while in Section 4.4, we analyse the quality of the test cases,
ensuring their effectiveness in assessing the semantic equivalence of the generated variations.

3.1.4 Selecting useful variations: Useful variations (Definition 3.3) capture common coding
patterns, idioms, or practices that are typically observed in real-world code. Minimizing the gener-
ation of non-useful variants is crucial to limit the inclusion of rules that might not be applicable to
the target code. This is because, when applying the rules to codebases, the code rewriter iterates
through all the rules to find matching target codes. If there are too many rules that are unlikely
to find opportunities for application, it can reduce performance. However, it is not necessary to
completely remove non-useful variations, as they are correct transformations that are semantically
equivalent to the original CPAT. Furthermore, it is impossible to completely remove them. Therefore,
it is acceptable to keep them as variations even if they may not find suitable opportunities for
application. Our goal is to minimize the number of non-useful examples generated by LLMs while
increasing the useful ones. To achieve this, we carefully select parameter values for T and I as
explained in Section 4.3, by empirically studying its output for varying parameters.

3.1.5 Selecting applicable variations: Applicable variations, a subset of useful variations, align
with the structural intent of the original CPAT. Filtering out inapplicable once is crucial to prevent
unexpected transformations and ensure that only applicable variations, which preserve desired
semantics and adhere to intended transformations, are applied to the code bases.

To identify applicable variants, we assess structural intent using three rules:

(i) Control Nodes, as defined by Nguyen et al. [41], are a generalization of AST nodes used to
construct fine-grained program-dependence graphs that can be used to group similar code fragments.
Control nodes are a group of control statements, such as if, for, while statements. We first check
whether all the control nodes (Control N odes(CiI;TS )) in the LHS of the original CPAT are present

in the AST of the generated variant (V4s7). Formally, Vn € ControlNodes(CﬁI;Ts) :n € Vysr.

(if) Vasr does not contain new declarations, such as method declarations (except variable declara-

tions) that do not exist in the AST of CPAT (CngS ).

(iii) The sign of difference between the AST nodes in the variant and the RHS of the CPAT (Vs —

Cﬁ?ﬁ ) should match the sign of difference of the number of AST nodes between the LHS and the

RHS of the CPAT (C5H2 — CRES). Formally, (Vasr — CRE®) x (CLH2 — CRES) > 0.
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In the first rule, comparing control nodes between the original CPAT’s LHS and the generated
variant is crucial for determining whether the variant captures the essential control-flow structure
intended by the original CPAT. The second rule ensures that the variant does not contain unexpected
statement declarations, such as new methods or even classes. In the final rule, by comparing
differences in AST node counts, it identifies whether the variant maintains the desired structural
transformation, with consistency in signs indicating that the variant introduces or removes the
expected AST nodes as CPAT. These rules play a crucial role in selecting applicable variants as they
filter out variants that useful but do not adhere to the desired structural intention of the CPAT.

3.2 Synthesising transformation rules

TBE techniques infer transformation rules that facilitate code change automation, as exemplified in
the code change used to infer the rule. A complete transformation rule comprises two components:
the Rule and the Guard [5, 14, 25]. The Rule defines specific changes to code fragments, while
the Guard determines which code the rule should be applied to based on various validations.
For example, in Listing 3, the guard for :[[v21] is type : List[int]l, which verifies whether the
corresponding program element in the target code is a list of integers. There is one or many such
validations in a Guard that should be considered when deciding where to apply a rule.

We utilize PyEvolve [14] as our rule synthesizer, which leverages InferRule [33] to infer rules.
To create a complete code change, we combine each LLM-generated variant with the RHS of the
original CPAT and send it to the rule synthesizer. The rule synthesizer infers a rule for the input
code change. For example, PyCraft inferred the rule given in Listing 6 by taking the input code
change in Listing 1, enabling the transformation of the unseen variant shown in Listing 2.

PyEvolve relies on the output of R-CPATMiner [16] to infer guards for the CPATs extracted from
the version history of repositories. To infer guards for the program elements in LLM-generated
variations, PyCraft follows a two-step process: (i) If an element e is in both the original CPAT (Coyig)
and a variant (V;), then the guard validations for e are inferred from output of R-CPATMiner, (ii) if
an element e is in a variant (V;) but not in the original CPAT (Cyig), then the guard validations for e
generated from LLMs. Integrating the rule and guard, PyCraft infers a comprehensive transformation
rule, ensuring systematic and effective code changes.

4 EVALUATION

We empirically evaluate PyCraft by answering the following research questions:

RQ1. How effective are LLMs at generating variations? We depend on LLMs to produce
unseen variants, but the ability of LLMs to generate these variants is unknown. Therefore, we
perform a quantitative analysis of the variants generated by the LLMs with 20 CPATs and utilize
the three most recent and largest known LLM models to date.

RQ2. How effective are LLMs at generating test-cases? While we rely on LLMs to generate
test cases for dynamic analysis of the variants, their ability for this task is unknown. Therefore, we
quantitatively assess the test cases generated by these LLMs across 20 CPATs

RQ3. What are the optimal parameters for generating unseen variants? The randomness
and exploratory ability of LLM vary with temperature (T) and iteration values (I). Studying how
LLMs change their output along with T, I values is crucial for enabling PyCraft to harness the full
potential of LLMs. To achieve this, we study how quality and quantity of variant generation varies
with the Temperature and Iterations values.

RQ4. What are the optimal parameters for generating test cases? Tool employs a three-step
validation process (Section 3.1.3), to select valid test cases. To fully harness the potential of LLMs,
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it is crucial to study how the effectiveness (i.e., quality and quantity) of the test cases varies with
the parameters Temperature and Iterations.

RQ5. How effective is PyCraft at finding new opportunities and performing transforma-
tions over the baseline? We want to evaluate the improvements over the previous state-of-the-art
tools that are solely based on program analysis. To achieve this, we performed a comparison with
PyEvolve, the leading tool for automating unseen variations. Our assessment focused on quantifying
the additional opportunities detected and transformed by PyCraft in comparison to the baseline.
RQ6. How useful are the generated program transformations? We want to determine whether
developers find code improvements generated by PyCraft to be useful. To achieve this, we submit
pull requests to open-source projects with the patches generated by PyCraft.

4.1 RAQ1: Effectiveness of variant generation

Numerous LLMs have been developed, each with its own set of capabilities and applications. Among
them, several of the largest known LLMs include: (i) PALM [1], (ii) GPT-3.5 [9], and (iii) GPT-4 [42].
are prominent examples of the largest LLMs developed by Google and OpenAl, boasting trillions
of parameters. The efficacy of PyCraft hinges on the choice of the LLM employed. Hence, to
assess the effectiveness of generating variants using a selected LLM corpus, we have chosen the
aforementioned LLM models. These models are distinguished by their extensive training on a vast
number of tokens, comprising billions, and the significant number of parameters they encompass.
Furthermore, their internal APIs offer convenient accessibility, an essential factor for seamless
integration with PyCraft. We conduct both quantitative and qualitative analyses to evaluate the
variants generated by them.

4.1.1 Dataset. Dilhara et al. [16] studied a diverse set of top 2,500 CPATs in Python ML sys-
tems, leading to the discovery of four group of frequently occurring CPATs kinds: (i) dissolve for
loops to domain-specific abstractions (e.g., Listing 1), (ii) update API usage (e.g., np.dot(np.dot(A,B),C) ->
np.linalg.multi_dot(A,B,C)), (iii) transform to context managers (open("file.txt") ->with open ("file.txt")),
and (iv) use advanced language features (e.g., Python list comprehension). The authors’ survey
involving 650 developers further confirmed the developers’ strong interest in automating these
identified CPATs across all four categories. Thus, we select a representative sample of 20 CPATs
covering all four kinds to comprehensively answer this research question.

4.1.2 Experimental setup. We initiated each LLM with the prompt for each of the 20 CPATs. This
generated many raw variants for each CPAT. Then, we executed PyCraft’s validation components
to thoroughly examine the four-step validation process described in Section 3.1.3, which includes:
(i) Syntax validation, (ii) Type validation, (iii) Import validation, and (iv) Semantic validation.
For each CPAT, we provide a breakdown of variants, showing the count of instances failing
each validation. Variants that successfully pass all validations are categorized as correct and are
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suitable candidates for further processing. This analysis helps understand LLMs’ variant generation
capabilities and underscores the importance of static analysis and validation before selecting
variants for further processing.

4.1.3 Results. Our initial observations indicated that PALM, GPT-3 and GPT-4 consistently pro-
duced a wide array of variants for all CPATs. Figure 2 shows the quantity of variants generated by
each LLM for every CPAT. Each bar within the chart represents distinct variants, categorized as
those with syntax errors, type errors, import errors, semantic mismatches, and, finally, correct vari-
ants suitable for subsequent processing. We noticed that all LLMs consistently generated numerous
raw variations for all the evaluated CPATs. PALM excelled compared to other LLMs in producing
a greater quantity of raw variants, with a notable achievement of 584 variants—surpassing the
highest count generated by any LLM for a single CPAT. On average, it generated 518 variants per
CPAT, outperforming GPT-4, which produced 398 variants, and GPT-3.5, which yielded 461 variants.
This highlights the remarkable creativity and capabilities of LLMs in generating many variations.

However, it is worth noting that the relative performance of LLMs varies significantly in terms
of generating correct variations. Notably, PALM consistently exhibited a propensity for generating
a higher total number of variants across all CPATs compared to GPT-3.5 and GPT-4. However, on
average, only 5% of these variants remained free from errors and proved to be correct. Conversely,
GPT-4, while producing fewer raw variants than PALM and GPT-3, consistently generating a greater
number of distinct correct variants than all LLMs. Quantitatively, on average, GPT-4 generated
102% and 555% more correct variants than GPT-3.5 and PALM, respectively. Despite GPT-4’s ability
to generate the highest number of correct variants, it still produced incorrect variants at a average
rate of 65.5%. This underscores the imperative need for filtering techniques, aka “trust but verify”.

LLMs excel in generating unseen variants but also produce errors. GPT-4 generates the most
correct variants, but its 65.5% error rate emphasizes the need for error identification techniques.

4.2 RQ2: Effectiveness on test case generation

PyCrafft utilizes test cases generated by LLM to verify the semantic equivalence between the original
input CPAT and the generated variations. Therefore, we evaluate both the LLM’s proficiency in
generating test cases and the quality of these generated test cases. To achieve this, we conduct a
two-fold analysis: initially, a quantitative assessment of LLM’s test case generation capabilities,
followed by an investigation into the quality of these test cases using mutation testing techniques.
Mutation testing involves deliberately introducing subtle modifications (mutations) to the CPAT
and subsequently retesting the generated tests to determine their ability to detect these mutations.
This technique is instrumental in identifying tests that may not effectively uncover faults.

4.2.1 Dataset and Experimental setup. We chose the LLMs detailed in Section 4.1 and prompted
them to generate test cases for all 20 CPATs considered in Section 4.1. Before selecting the test
cases that will help us choose the correct variants, we followed a three-step validation process,
elaborated in Section 3.1.3. This process ensured that the test cases meet the following criteria:
(i) they are devoid of syntax errors, (ii) they initialize all its variables, and (iii) original CPAT
pass the test case. Our quantitative analysis is primarily focused towards evaluating test cases
based on these steps, identifying those that do not conform to the criteria as erroneous test cases.
Furthermore, we conducted mutation testing on the test cases that successfully met all steps. This
aids in comprehending the efficacy of the test cases intended for the selection of correct variants. To
generate mutants, we used the widely used mutmut [32], known for generating Python mutations.
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Table 1. Variant generation for each CPATs, and the number of transformations.

Dilhara et al.

# | LHS of CPAT RHS of CPAT | v | Ve| Vul| Va| Ti | T»
count = 0
1| for i in int_list: count = np.sum(int_list) 1185 | 201| 83 | 50 | 17 | 196 (11%)
count =i + count
2 | for 1;,“(\]/ i“vaddfd‘“"“ms”: d.update (add_dict) 1201 | 478 | 119 | 110 | 51| 201 (4%)
common = []
for i in I1: common = list(set(11).
3 if i in 12 and i not in common: intersection (12)) 782 | 287 107 | 66 | 10 | 141(149)
common . append (i)
for idx, item in cnumerate(values):
4 iidx 1= 0 string = +", ".join(values) 285 | 101] 20 | 10 | 2 12 (6x)
string += " g ERES 5
string += item
d = {}
for i in array: ¢ -
if i oin d: .
5 i ) for i in array: 1265 | 416 | 150 | 75 | o | 125(14%)
elz‘e[f]'dppe“d‘f“)) d.setdefault (i, []).append(f(i))
dfi] = [f(i)]
counts = {
for i in iterable:
6 if i not in counts: counts = Counter(iterable) 927 | 425 | 202 | 85 11 | 106 (10x)
counts[i] = 0
counts[i] += 1
cum_arr - []
7 | for i in range(len(array)): cum_arr = np.cumsum(array) 1223 | 200 | 95 80 | 3 68 (23x)
cum_arr . append (sum (array [:i+1]))
dot_prod = 0
8 | for i in range(len(arrl)): dot_prod = np.dot(arrl, arr2) 177 | 28 | 26 | 24 | 16 | 208(13x)
dot prod += arr1[i] « arr2[i]
result - []
9 | for i in range(len(arrayl)): result = np.add(arrayl, array2) 64 | 11 | 1|9 |5 | 3600
result.append (array1[i] + array2[i])
t=[]
for i in range(len(elem)): t = [elem[i] for i in range(len(elem))
10 if cond(elem[i]): if cond(elem[i])] 955 | 4531 226 | 7L |23 | 907 (39%)
t.append(elem[i])

V: Number of unseen variations generated by LLM, Via: Number of applicable variations,

T} : Number of application performed by PyEvolve,

Ve: Number of correct variations,
Ty: Number of applications performed by PyCraft.

Vau: Number of useful variations,

4.2.2 Results. Our observations revealed that PALM, GPT-3, and GPT-4 consistently produced
output with test cases for all the input CPATs. As shown in Figure 3, we observed that LLMs are
capable of generating many unit tests for a given code idiom. In certain cases, it produced up to
503 test cases with GPT-3, resulting in 271 valid test cases among them. GPT-3 outperformed all
the LLMs in terms of generating a higher number of test cases. However, it produced test cases
with errors, described in Section 4.2.1, at an average rate of 37%. In contrast, GPT-4 generated a
relatively lower number of test cases compared to GPT-3 but still more than PALM, and its error
rate was significantly lower, standing at 19%. Therefore, GPT-4 produced the highest number of
error-free test cases. We observed that GPT-4, on average, created 210 error-free test cases per
CPAT, ranging from 93 to 372, demonstrating the LLM’s capability to generate extensive test suites.
This also underscores the importance of employing techniques to select error-free test cases.

We then executed the tools to generate mutants of the CPATs and employed the generated test
cases to detect both the mutants and the original code. Our observations revealed that the generated
test cases achieved a 100% success rate when detecting the mutants generated by the mutation
testing tool, mutmut [32]. In Section 4.4, we further analyze the effectiveness of these generated
tests by comparing their performance to an oracle of human-generated test cases.

LLMs excel in test case generation but also introduce errors. While GPT-4 outperforms others,
its 19% erroneous test cases emphasize the importance of validation techniques.

4.3 RQ3: Best performing parameters for generating variants

The LLM’s output varies with temperature (T), prompt iteration (I,,), and feedback iteration (Ir), as
they impact randomness and iterative exploration, leading to variations in the generated responses
(see Section 3.1.2 for parameter details). Therefore, we adopt an empirical approach to determine
optimal values for generating variants. We first generated an oracle of unseen variants consist with
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9325 unseen variants for 10 CPATs given Table 1. Then, we used both automated and manual steps
to group the variants into Correct variants (Definition 3.2), Useful variants (Definition 3.3), and
Applicable variants (Definition 3.4). Then, we study the generation of these variants in relation to
the parameters to determine the best-performing settings for PyCraft.

4.3.1 Creating an oracle: As shown in Figure 4, we invoke LLM to generate unseen variants for
the 10 CPATs shown in Table 1. Our objective is to generate a comprehensive set of all possible
unseen variants for each CPAT. We generate 10 such sets, and each set is denoted as V™, where
m corresponds to the CPAT number (m € {1,2,...,10}). To create V'™, we prompted LLM with
CPAT m for each temperature value in the set {0,0.3,0.5,0.7,0.9, 1.2}. For each temperature value,
we performed prompt iterations (I,) up to 15 times, by repeatedly prompting the LLM with the
same CPAT. After completing all 15 prompt iterations, we employed feedback iteration, inputting
each generated variant back into the LLM. We repeated these steps until no new variants were
generated. Through this process, a total of 8064 distinct variants were generated for all CPATs.

As the next step, we statically validated the generated variants, as described in Section 3.1.3.
Further, two authors of the paper manually wrote unit test cases for the CPATs to evaluate their
functionality and consider boundary cases. Then, we executed the test cases on the generated
unseen variants to classify them as either correct (V") or incorrect (V;™). This classification process
resulted in total 5284 incorrect variants (3 }v_; V™) and 2780 correct variants (3 v_; V™).

To categorize the correct variants (V") into "Usable" (Definition 3.3), referred to as (V,)"), we
utilized the Inter-Rater Reliability (IRR) methodology [36]. Following best practices and qualitative
research guidelines, the authors employed a negotiated agreement technique [10, 63] to achieve
consensus. Two authors of the paper conducted manual analyses on each change pattern to identify
the high-level programming tasks associated with them. They reached a consensus to classify
a variant as “usable” if it represented something a developer would realistically write, and they
labeled variants as “not-useful” if developers would not typically include them in their code. Then,
we conducted the static analysis given in Section 3.1.5 to further identify the “applicable” variations
(V™) from the “useful” variants. With this process, we identified a total of 1039 useful variants
(X0 vim) and 580 applicable variants (3}, V™). This data set serves as a resource for fine-tuning
variables during the generation of test cases and variants as explained in the following sections.

4.3.2 Prompt iteration (I,). We study the number of prompt iterations required for each tem-
perature value until it no longer produces a significant number of new variants, which guides our
decision-making regarding the suitable number of prompt iterations for subsequent steps.
Dataset and Experimental setup: We input the CPATs from Table 1 into the LLM alongside a
prompt for variant generation, iterating with the same prompts labeled as i from the 1st to the
100th iteration, where x represents the iteration number. Then, we study the cumulative count of
distinct variants produced during each iteration.
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Results: Figure 5 shows the process of variant generation for the initial 10 iterations at temperature
0. In the first iteration, the LLM generated an average of 70% (with a minimum of 45% and a
maximum of 82%) of total variants. By the second iteration, this increased to 83% (with a minimum
of 68% and a maximum of 96%) of variants. During the third iteration, the LLM generated 95% (with
a minimum of 85% and a maximum of 100%) of variants. Beyond that point, we observed that the
LLM hardly generates any new variants for a given CPAT.

To statistically analyze the data, we started with forming distributions as D! = {dy | dy represents
the proportion of total variants generated at the t™temprature, by the completion of the i prompt
iteration for the x™ CPAT, Vx € {1,2,...,n}}. We then used the Wilcoxon Signed-Rank Test to
analyze the paired samples (D;, D! ), Vt. This analysis focused on iterations i within the set
{1,2,3,4,5} c N, which were marked by significant variant generation. The null hypothesis,
positing no significant difference between the variant observations in pairs (D!, D!, ,) for all i
and t, was rejected for i < 3 and t # 0. To quantify the differences between these distributions,
we utilized the Hodges-Lehman estimator, revealing differences as follows: for i € {1,2,3,4},
Dlﬁrl - Df = {25%, 16%, 0%, 0%} respectively where ¢t = 0.5, indicating a potential for increased
variant generation with each iteration up to the third iteration. However, this incremental benefit
was noted to diminish after the third iteration. This observation is consistent for all ¢ except t = 0.
At t = 0, the randomness is reduced to zero, resulting in the LLM conservatively generating a
limited number of variants, all of which are produced at i = 0 without extending beyond that point.
Consequently, to optimize the trade-off between the merits of additional variant generation and
the implications of extended processing duration, we opted to cap the iteration count at three.

Continuing prompt iterations indefinitely is an option to generate numerous variants. However,
beyond the third iteration, LLM produces new variants sparingly.

4.3.3 Feedback point iteration (Ir): In order to generate as many variants as possible, we
perform feedback iteration by inputting an applicable variant generated in the previous step to the
LLM. While this approach can potentially generate many variants, it can also lead to producing
numerous not-useful variants (refer Section 3.1.4) when the LLM is prompted with another not-
useful variant. This situation can impact the performance of PyCraft in two ways: (i) multiple
iterations generating not-useful variants, and (ii) inferring rules for not-useful variants that will
not be applied to the code. We study the generation of useful variants along with the number of
feedback iterations.

Dataset and Experimental setup: We use the oracle mentioned in Section 4.3.1 to study this
in two ways. (i) We study, for each temperature, the cumulative ratio of non-useful variants to
total non-useful variants in the oracle, generated at each feedback iteration. This analysis helps
us understand the trends in generating non-useful variants along with feedback iteration. (ii) In
addition to minimizing non-useful variants, it is also important to increase the number of useful
cases. Hence, we study the generation of useful cases along with iterations and temperature.

Results: The plot in Figure 6 shows the distribution of the ratio of the cumulative number of
non-useful variants generated by each iteration relative to the total non-useful variants in the
oracle. This analysis is conducted for each CPAT listed in Table 1, represented by lines in each
plot, and across various temperature values. While Figure 6 presents the plot for only temperature
0, the others showcase similar trends as depicted in the provided plots and are available on our
companion website [48]. We noticed a consistent trend across all temperatures and each CPAT,
where the generation of non-useful variants begins after approximately 3 to 6 feedback iterations,
followed by a rapid increase.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 29. Publication date: July 2024.



The Fusion of LLMs and Transformation by Example 29:15

To statistically analyze the data, we define distributions as: F/ = {f; | f; represents the proportion
of total non-useful variants generated at the t™ temperature by the completion of the i feedback
iteration for the xMCPAT, Vx € {1,2,...,n}}. We then applied the Wilcoxon Signed-Rank Test
to analyze the paired samples (F}, F}, ), Vt. This analysis focused on iterations i within the set
{2,3,4,5} C N, identified as the iterations where significant generation of non-useful variants
begins. The test consistently rejected the null hypothesis, suggesting a significant difference between
the variant observations in pairs (F!, F{, ) for all i and t. To quantify these differences, we employed
the Hodges-Lehman estimator, which revealed that for i € {2,3,4,5} and t = 0.5, the differences are:
F!,, — F! = {1%,2.5%,3.6%,5.1%} respectively, indicating an increasing trend in non-useful variant
generation starting significantly after the third iteration. Furthermore, to understand whether the
production of non-useful variants behaves the same across all temperature values, we applied again
the Wilcoxon Signed-Rank Test to analyze the paired samples for all (Flt h Flt ?), where t; # t;. At
each feedback iteration i, no significant differences were observed in the distributions, indicating
that temperature values behave consistently in producing non-useful variants.

While we observe that reducing non-useful variants is more achievable with fewer feedback
iterations, a trade-off arises because we also aim to increase the generation of useful variants. To
address this, we analyzed the cumulative ratio of useful variants generated up to each iteration
compared to the total variants generated, across different temperature values. Consistently across
all CPATs, we observed that temperatures within the middle range, i.e, 0.5 and 0.7, consistently yield
useful variants with fewer feedback iterations compared to other temperatures. For example, with
four feedback iterations, temperatures 0.5 and 0.7 yield useful variants spanning 61% to 83% for each
CPAT;; this percentage rises to 69% to 88% with five iterations, and the trend persists with further
iterations. To statistically analyze the data, we defined distributions as: U} = {uy | u, represents
the proportion of total useful variants generated at the ™ temperature, from the temperature
list temp = {0,0.3,0.5,0.7,0.9, 1.2} relative to the total useful variants in the oracle up to the i
feedback iteration for the x™" CPAT, for all x € {1,2,...,n}}. Then, we applied the Wilcoxon
Signed-Rank Test to analyze the paired samples (U}, U/,), where t1 # 2 for all i, to check for
statistically significant differences. This was followed by the Hodges-Lehman estimator to compute
the differences in useful variant generation between each temperature value, after which they were
ranked according to the estimator. The tests found that temperatures 0.5 and 0.7 produced a higher
number of useful variants compared to all other temperature values.

Our goal is to generate more useful variants while minimizing non-useful ones. We determined
that performing five feedback iterations and focusing on variations generated at middle temper-
atures of 0.5 and 0.7 is an optimal approach. Using these settings, we further apply PyCraft in
Section 4.7 and Section 4.8 to compare its effectiveness against the baseline. Subsequently, we
present the generated variants to actual developers for usefulness evaluation.

Medium temperatures (0.5 - 0.7) yield fewer non-useful variants and more useful variants, all
while requiring fewer feedback iterations.

4.4 RQ4: Best performing parameters for generating test cases

PyCraft generates test cases to identify semantically equivalent variants for the original CPAT.
We employ LLM with varying temperatures (T) and repeated prompt iterations (I,) to generate
multiple test cases for a single CPAT, fostering diversity through the influence of randomness and
iterative exploration. We use the oracle generated in Section 4.3.1 to study the effectiveness of test
cases produced by PyCraft. We then determine the optimal combination of values for T and I,to
generate effective test cases.
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F-measure
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Fig. 6. Generation of not-useful vari- Fig. 7. Cross-validation results for evaluating optimal i and ¢
ants along with feedback iterations values to generate test cases

4.5 Dataset and Experimental setup:

To study the optimal parameters for test case generation, we study the quality of the generated test
cases for a range of Temperature (T) values, from the set {0,0.2,0.4,0.6,0.8,1.0, 1.2}, and prompt
iterations (I, = {1,2,...,15}). We generate a set of test cases using LLM for each CPAT, considering
each (t, i) combination where t € T and i € I,. These generated test cases are then subjected to the
three-step validation process utilized by PyCraft. This process enables us to identify and select the
valid test cases, denoted as T(T,i)’ across diverse T and I, values. We then study the effectiveness of
testcases, by executing each set of test cases, T(’Zi), on the oracle V™ (described in Section 4.3.1) and
classified them into correct variants VT and incorrect variants Vlm, and then compare them to the
classified variants V™ and V™ in the oracle. To evaluate the effectiveness of generated test cases
in classifying variants as correct or incorrect, we calculated precision and recall. Precision is the
percentage of correct variants (l_/;n N V™) among the variants classified as correct (Vzn), while recall
is the percentage of correctly identified variants among all actual correct variants in the oracle

(V™). Then, we compute F-measure using precision and recall values which is the harmonic mean
2-(precision-recall)

precision+recall
To identify the most effective combinations of i and t, we adopt the following approach: For

each fixed value of i, we calculate the F-measure for all ¢ values. Then, for each i, we identify the ¢
value that yields the maximum F-measure, denoted as max;e7 F(t, i), along with the corresponding
t value, denoted as t,y. To further refine this process, we introduce a convergence criterion. If the
difference between the maximum F-measure of the current iteration, F(fyay, i), and the maximum
F-measure from the previous iteration, F(fyax, i — 1), exceeds a threshold 8, we increment i by 1
and repeat the procedure. This iterative refinement goes until the F-measure no longer improves by
more than §. We have chosen § to be 5% to ensure swift convergence based on the observed data.

After selecting a specific (¢, i) combination for V? that effectively generates test cases to classify
the variants, we perform 10-fold cross-validation to assess whether this chosen combination learned
from one CPAT can be generalized to other CPATs. Let V™ be a set of variations generated for a
CPAT, where m € 1,2,3,...,10. After obtaining the optimal combination (¢, i) for V™", we then
apply this learned combination to all the other V™, where m’ € 1,2,3,...,10 and m’ # m. This
allows us to assess how well this combination generalizes to different patterns.

of precision and recall, calculated as

4.6 Results:

Figure 7 shows the cross-validation results. The x-axis represents the (¢, i) configurations that
achieved F-measure values for each CPAT index (refer to Table 1 for index to CPAT mapping),
while the y-axis represents CPAT index. The outcomes of k-fold cross-validation involve applying
the learned (t, i) values to generate test cases with PyCraft for other patterns and then calculating
their precision and recall values, which are displayed in the respective cells.
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The analysis consistently shows that ¢ = 1.2 yields higher F-measure, indicating that LLM with a
higher degree of randomness is better suited for test case generation. Additionally, the number
of iterations varies between 3 and 10 for each CPAT, with higher iterations generally resulting
in similar or better precision and recall. However, to strike a balance between effectiveness and
efficiency, we choose the value for i = 5, which provides superior precision and recall for CPATs.
The combination of (, i) strikes a balance between precision, recall, and efficiency, making it the
ideal setting for test case generation by PyCraft with F-measure 96.6%.

To statistically analyze this, we use the computed F-measure values, Ftiemp[t],
when detecting correct variants under all the temperature and iteration settings. We formed the

distribution, Ftiemp [t] = {fin | fn represents the F1 measure of detecting correct variants for pattern m*"

CPAT wherem € {1,2,...,10} at the jth prompt iteration (i € {1,2,...,10}) and at the tth temperature
setting from the temperature list temp = {0,0.3,0.5,0.7,0.9, 1.2} }. We formed 60 distributions for
each i, t setting, then selected two distributions at a time and performed the Wilcoxon Signed-Rank
Test to analyze the paired samples of F1 scores for each pattern in the two distributions. The
test rejected the null hypothesis, indicating a significant difference between the F1 scores across
distributions. Subsequently, we applied the Hodges-Lehman estimator to each combination of
distributions to quantify the difference in F1 score for each i and ¢ setting. Distributions were then
ranked based on the quantifier, revealing that the F1 scores computed for test cases generated at a
1.2 temperature consistently ranked high, with higher iteration values always at the top. However,
the difference in estimator values converges after i = 5.

for each pattern

Higher temperature (1.2) and more prompt iterations contribute to healthier test cases, resulting
in improved F-measure 96.6% classifying correct and incorrect variants.

4.7 RQ5: Effectiveness of PyCraft

We conducted a comparative analysis to assess the effectiveness and novelty of PyCraft in au-
tomating a wider range of code variations, particularly those that were previously challenging
to achieve. For this evaluation, we compared PyCraft with PyEvolve, which is recognized as a
leading tool for handling previously unseen variations, with a precision of 97% and a recall of 94%
when automating transformations. We applied PyCraft to execute CPATs on new target sites and
measured its capability to automate unseen variations belonging to both VT1 and VT2. Simultane-
ously, we used PyEvolve with the same input changes to determine its performance in automating
unseen variations. This comparison allowed us to assess the impact and uniqueness of our novel
contribution in automating a broader spectrum of code variations.

4.7.1 Dataset and Experimental setup. To employ the CPATS, we utilize a selection of 200
top-tier projects that have been previously confirmed by researchers [16] to showcase diversity
in aspects such as developers, line counts, Python files, and star ratings. These projects include
renowned Python libraries such as NLTK, Keras, and microsoft/DeepSpeed. We configured PyCraft’s
parameters as discussed in Section 4.3 and 4.4 and applied the CPATs listed in Table 1 to these
projects. Our analysis focuses on quantifying the target codes that PyCraft automated but PyEvolve
could not, allowing us to comprehensively evaluate PyCraft’s unique and advanced capabilities in
automating a wider spectrum of code variations compared to PyEvolve.

4.7.2 Results. Table 1 shows the applicable variations generated by PyCraft for each CPAT. It
shows that PyCraft generates applicable variants, with an average ratio of 58 ranging from a
minimum of 9 to a maximum of 110 per CPAT. This empowers PyCraft to conduct an average
of 58 more searches for applying the CPAT compared to PyEvolve. Building on this advantage,
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Table 1 shows the number of transformations carried out by PyCraft for each CPAT, along with
those performed by PyEvolve. Particularly, PyCraft outperforms PyEvolve by a minimum of 4x
times across all CPATs, achieving a maximum ratio of 39x times transformations compared to the
baseline, resulting in an average increase of 14x in transformation opportunities. This demonstrates
that PyCraft consistently outperforms PyEvolve by a substantial margin across all evaluated CPATSs.
This superior performance is attributed to PyCraft’s ability to generate and search for code variants
more effectively, resulting in significantly higher opportunities for code improvement compared to
the baseline.

PyCraft is capable of generating applicable variations with an average ratio of 58 per CPAT,
resulting in an average of 14x more transformations compared to the baseline.

4.8 RQ6: Usefulness of PyCraft

We observed that PyCraft demonstrates a remarkable ability to automate a broader range of code
variations than the baseline PyEvolve. However, it is important to examine the usefulness of the code
transformations that PyCraft automates but PyEvolve does not, especially for real-world developers.
To accomplish this, we submitted the patches generated solely by PyCraft to open-source projects
and analyze the response of the developers.

4.8.1 Dataset and Experimental setup. We selected 40 high-quality projects, including promi-
nent ones like Keras, microsoft/DeepSpeed, and NLTK to apply the CPATs listed in Table 1. The
inclusion of these professionally-maintained projects underscores PyCraft’s ability to identify
target codes, which only PyCraft can automate, potentially even those that expert programmers
might overlook in their coding practices. We executed both PyCraft and PyEvolve, identifying
transformations exclusively performed by PyCraft and then submitting them as pull requests to
projects.

4.8.2 Results. PyCraft effectively transformed 86 instances of CPATS, leading to significant im-
provements in the performance and quality of the affected Python code. These patches updated
124 source code files and impacted 590 SLOC. Following the changes performed in each project, we
executed all the available test cases to ensure that the changes did not introduce regressions. Then,
we notified the maintainers of the open-source projects through pull requests to incorporate our
proposed changes. Our pull requests received acknowledgment and approval even from maintainers
of prestigious and extensively optimized codebases, such as those from Microsoft and IBM. In total,
we submitted 44 pull requests, each containing 86 instances of CPATs. At the time of this writing, 72
(with an acceptance ratio of 83%) instances were accepted, while 4 pull requests were declined. The
remaining pull requests are still under review. These positive responses demonstrate the practical
usefulness of the program transformations made solely by PyCraft.

We discovered three major reasons for pull request rejections: (i) NumPy, a popular library for
numerical computing in Python, primarily runs on CPU and does not have native GPU support.
Because of that, a pull request submitted to dmlc/dgl, which aimed to transform code into NumPy
APIs that are optimized for GPUs, was rejected, (ii) A patch submitted to HKUNLP/UnifiedSKG
was declined because they were hesitant to modify their methods in order to avoid disrupting
their forks, and (iii) The project netsharecmu/NetShare opted not to accept changes related to a
deprecated function that is scheduled for removal in the next release.

PyCraft demonstrated its capability by successfully optimizing code within selected projects
that were already highly optimized and well-maintained. This achievement not only showcases
PyCraft’s considerable value but also emphasizes its ability to discover and leverage substantial
opportunities for improvement in less frequently maintained projects. The widespread presence
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of these projects implies that PyCraft has a significant potential to make a meaningful impact on
the broader development community. It offers far-reaching advantages by improving code quality,
performance, and maintainability in a diverse range of Python applications.

[Developers accepted 83% of the 86 instances, highlighting the usefulness of PyCraft’s changes. ]

5 THREATS TO VALIDITY

(1) Internal Validity: Does our tool produce valid results? We ensure internal validity by relying
on established tools like R-CPATMiner, effective for mining CPATs, and PyEvolve, which achieves
97% precision and 94% recall in code changes.
(2) External Validity: Do our results generalize? PyCraft’s effectiveness hinges on the chosen LLM
model, which we address by evaluating variation generation among top LLMs and selecting the
most suitable one. As LLMs upgrade, improved results can be anticipated. The design of PyCraft
enables seamless adaptation to LLMs. Moreover, the effectiveness of variation generation can vary
depending on the selected CPATS, potentially limiting the generalizability of the analysis results
to other CPATs. While this limitation could be mitigated by including more CPATs, the manual
analysis conducted in evaluations hinders us from adding additional variations. To address this
challenge, we selected CPATs that cover all four CPAT kinds discovered by Dilhara et al. [16].
The techniques in PyCraft, designed for Python, are broadly applicable and conceptually ro-
bust across different programming languages. Their success in generating code variants largely
hinges on the language’s syntactic diversity and its library ecosystem’s breadth, which provides
similar functions via various APIs. Hence, while PyCraft’s methods are universally applicable, their
performance depends on the language’s syntax and library API richness.
(3) Verifiability: The data, source code, and executable of PyCraft are publicly available [48].

6 RELATED WORK

We group the related work in two areas: (i) Inferring and applying changes using examples changes,
and (ii) LLMs for analysing and transforming source codes.

LLMs for analysing and transforming source code: MELT [50] is the closest related work
that employs LLM to generate transformation examples from library pull requests, facilitating
the adaptation of clients to new APIs. While their approach also utilizes LLM, like ours, their
primary objective is to address the rule generalization issue [25], aiming for rules that are less
specific. In contrast, our focus lies in generating VT1 and VT2 unseen variants. Although both
approaches tackle two main, distinct challenges in TBE, we hypothesize that combining these
two works could further enhance the number of transformations. CopEBERT [23], Cod€eT5 [61],
DEEPCODER [6], CODEX [43], EM-ASssIST [46] and SYNCHROMESH [45] are examples of LLM-based
models that have shown promise in tasks such as code completion, code summarization, code
refactoring and code generation. Additionally, LLMs have been used for code repair and bug
detection, with tools like DeepBugs [47], and MMAPR [65] automatically identifying and fixing
common programming errors. Although these techniques have shown efficiency in various facets
of source code transformations, our research concentrates on leveraging LLMs to broaden the
applicability of TBE systems and transform new target code sites that are variants of the examples
found in training. This significantly improves the code transformation potential of TBE systems.

Inferring and applying changes using examples changes: Researchers have made significant
improvements in the field of TBE [4, 14, 20, 33, 35, 37, 38, 51, 64]. These techniques employ various
approaches to increase the number of reliable code transformations per rule. LASE [38], REFAZER
[51], SpprFr [4], TCINFER [33], APPEvVOLVE [20], and APIFix [25] utilize multiple examples to
generate transformation rules, identifying commonalities and differences among input examples to
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abstract adaptations. The effectiveness of these rules increases with the number of input examples
used to infer them. In this regard, APIF1x [25] leverages existing codes to synthetically generate
example code changes. These changes are then used as inputs to synthesis tools, enhancing the
generalization of the rules. On the other hand, PYEVOLVE [14] and SPINFER [54] are the tools most
closely related to PyCraft. SPINFER [54] has the ability to handle control flow variants by utilizing
the ".." operator to represent random code within the input code. On the other hand, PYEvoLVE
[14] can accommodate data and control flow unseen variants. However, it is unable to handle the
more complex VT1 or VI2 variants, which can be successfully transformed by PyCraft.

Automating Python code changes: Researchers have studied Python idioms and their usage in
Python systems. Phan-udom et al. [44] analyzed 58 non-idiomatic and 55 idiomatic changes, while
Alexandru et al. [2] provided a list of Python idioms from a developer survey. Sakulniwat et al. [53]
studied the evolution of Python’s with statements over time, while Wang et al. [60] examined
Python code smells. Recently, Zhang et al. [66] employed AST rewriting to automatically refactor
nine Python idioms. Despite these contributions, the literature tends to offer guidelines and insights
rather than complete, automated solutions for such transformations, often limited by the constraints
of predefined, static rules. By using PyCraft, we implement a technique to infer transformation rules
and automate the process of identifying and implementing syntactically different yet semantically
equivalent code transformations. PyCraft is poised to significantly benefit both Python and ML
developers, who form a substantial portion of the Python community [8, 15, 58].

7 CONCLUSIONS AND FUTURE WORK

To accelerate the software development process, it is essential to automate code changes (CPATS).
Given the wide variety of CPATs, we can not encode the analysis and transformation for each CPAT,
and instead we turn to using TBE systems. So far, progress on using TBE systems to automatically
apply CPATs has been stifled by the requirement that new target codes exhibit syntax, data-, and
control-flow similar to the original CPAT. Our novel approach and tool, PyCraft, pioneers the
synergistic integration of LLMs with TBE systems, and leverages the LLMs’ strengths to provide
breakthroughs for previous limitations.

Prior to our recent advancements, TBE systems would mine CPATs from aging code bases, only
to fall prey to software evolution that would render these CPATs obsolete and less applicable over
time. During our extensive evaluation, we observed that PyCraft successfully transformed even
target codes that employ the latest language constructs, coding idioms, and library versions. To do
this, it generates code variants that employ constructs and features not seen during CPAT mining.
Achieving this level of compatibility was unfeasible with earlier tools. By staying perpetually
young and up to date, PyCraft transcends software evolution and can revolutionize code change
automation.

We anticipate significant usage of LLMs for software engineering (SE) tasks in the coming years.
Using PyCraft, we demonstrated this potential in code change automation, achieving an increase in
code transformations of 14x over the baseline. Moreover, our research confirmed LLMs’ creativity
and their propensity to hallucinate. This highlights the need for targeted research and development
of validation techniques to make our SE tools immune to LLM hallucinations. We hope that the
techniques we developed in this research inspire others to build upon and move the field forward.
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