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ABSTRACT

We develop new techniques for proving lower bounds on the least
singular value of random matrices with limited randomness. The
matrices we consider have entries that are given by polynomials of a
few underlying base random variables. This setting captures a core
technical challenge for obtaining smoothed analysis guarantees
in many algorithmic settings. Least singular value bounds often
involve showing strong anti-concentration inequalities that are
intricate and much less understood compared to concentration (or
large deviation) bounds.

First, we introduce a general technique for proving anti-concentration

that uses well-conditionedness properties of the Jacobian of a poly-
nomial map, and show how to combine this with a hierarchical
e-net argument to prove least singular value bounds. Our second
tool is a new statement about least singular values to reason about
higher-order lifts of smoothed matrices and the action of linear
operators on them.

Apart from getting simpler proofs of existing smoothed analysis
results, we use these tools to now handle more general families
of random matrices. This allows us to produce smoothed analysis
guarantees in several previously open settings. These new settings
include smoothed analysis guarantees for power sum decompo-
sitions and certifying robust entanglement of subspaces, where
prior work could only establish least singular value bounds for fully
random instances or only show non-robust genericity guarantees.
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1 INTRODUCTION

Over the past two decades, there has been significant progress in
using algebraic methods for high-dimensional statistical estimation
(e.g., [2]). Techniques like tensor decomposition have been used
for parameter estimation in mixture models [3, 10, 14], shallow
neural networks [5, 25], stochastic block models [2], and more [26].
Recently, more sophisticated decomposition methods based on ten-
sor networks [21], circuit complexity [12] and algebraic geome-
try [12, 19] have given to rise to new algorithms for many problems
in high-dimensional geometry and parameter estimation. These
algorithms start by building appropriate algebraic structures that
“encode” the hidden parameters of interest. Then, they use the alge-
braic techniques described above for recovering the solution.

Unfortunately, in most of these applications, the recovery prob-
lem turns out to be NP hard in general. So the algorithms have
provable recovery guarantees only under certain algebraic condi-
tions. Typically, these conditions can be formulated in terms of
appropriately defined matrices being well-conditioned, i.e., having
a non-negligible least singular value. Furthermore, the least singu-
lar value determines the sample complexity and running time, and
so it is important to obtain inverse polynomial bounds.

Now it is natural to ask: do the algebraic conditions typically
hold? Due to NP hardness, we know there exist parameters for
which the conditions do not hold. But how common or rare are
such parameter settings/instances? A strong way to address this
question is via the framework of smoothed analysis, developed in
the seminal work of Spielman and Teng [23, 27, 28]. A condition
is said to hold in a smoothed analysis setting if for any instance,
a small random perturbation of magnitude, say p = 1/n?, where n
is the input size, results in an instance that satisfies the condition
with high probability. Smoothed analysis guarantees show that
any potential bad instance is isolated or degenerate: most other
instances in a small ball around it have good guarantees. On the
one hand, smoothed analysis gives a much stronger guarantee than
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average case analysis, where one shows that the condition holds
w.h.p. for a random choice of parameters from some distribution. On
the other hand, it provides quantitative, robust analogs of genericity
results in algebraic settings, which are needed in most algorithmic
applications.

Considering the flavor of the algebraic non-degeneracy condi-
tions, the problem of smoothed analysis boils down to the following:
given a matrix M whose entries are functions (typically polynomi-
als) of some base variables, does randomly perturbing the variables
result in M having a non-negligible least singular value with high
probability?

This question is non-trivial even in very specialized settings, as it
is a statement about anti-concentration — a topic that is less under-
stood in probability theory than concentration or large deviation
bounds. For example when the underlying variables form a matrix
U e R™™_ the structured matrix M =U QU = (ui ® ui)ie[m]’l
represents the Khatri-Rao product, and has been the subject of much
past work [4, 9, 11] that developed intricate arguments specialized
for this setting. Least singular value bounds of M = U ® U for ran-
domly perturbed U have lead to smoothed analysis guarantees for
several problems including tensor decomposition [9], recovering
assemblies of neurons [4], parameter estimation of latent variable
models like mixtures of Gaussians [13], hidden Markov models [11],
independent component analysis [15] and even learning shallow
neural networks [5]. Another approach is to use concentration
bounds to prove lower bounds on the least singular value [7, 22, 29?
] for analyzing random instances; these techniques based on con-
centration bounds cannot handle smoothed instances. We lack a
broader toolkit that allows us to analyze more general classes of ran-
dom matrices that arise in many other smoothed analysis settings
of interest.

Consider, for example the symmetric lift of the matrix U repre-
sented by

U®? = (®uj+uj®u;): 1<i < j<m),
where the columns (up to reshaping) give a basis for the space of

all the symmetric matrices that are supported on the subspace U.
Here @ denotes the symmetrized Kronecker product.

Question 1.1. For a linear operator ® acting on the space of sym-
metric n X n matrices (e.g., a projection matrix), can we obtain an
inverse polynomial lower bound with high probability on the least
singular value of the matrix

M = &%) = (cp(aiaazzjmj@ai) 1<i<j< m)
when m < cn for a sufficiently small ¢ € (0,1)?

The new techniques developed in this paper, to our knowledge,
give the first inverse polynomial lower bound on the least singular
value of M, and its higher order generalizations; see Theorem 1.4.
As it turns out, this already captures the Khatri-Rao product UoU
setting as a special case by setting m = 1 and ® appropriately. One
interpretation of the statement is that U ®U acts like “truly random”
subspace in the lifted space Sym(R"? ® R™) with the same dimension.
With high probability, a random subspace of Sym(R" ® R")? with

'Here, ® represents the standard tensor product or Kronecker product.
2Sym(R™ ® R™) is the space of all symmetric n X n matrices.
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dimension o(n?) will not contain any vector near the kernel of .
The affirmative answer to the above question shows that the lifted
space that corresponds to column space of (U)®2 behaves similarly
and is far from the kernel of ®! In other words, it is rotationally well-
spread; it is not too aligned with any specific subspace. Note that U
only has about nm truly independent coordinates or “bits”, whereas
a random subspace of the same dimension has ¢ - n?m? independent
coordinates. Hence the lift T4®2 of a smoothed subspace U acts
“pseudorandom” - it acts like a random subspace in the lifted space
with respect to all linear operators of reasonable rank.

Matrices of this flavor arise in open questions about the smoothed
analysis of various algebraic algorithms for problems like robust
certification of quantum entanglement in subspaces, certifying dis-
tance from varieties [19], and decomposition into sums of pow-
ers of polynomials [7, 12]. Specifically, rank-1 matrices (of unit
norm) correspond to separable or non-entangled states in bipartite
quantum systems. For a certain specific choice of ®, the positive
resolution of Question 1.1 certifies that a smoothed subspace of
n1 X nz matrices of dimension cniny (for some ¢ > 0) is far from
any rank-1 matrix of unit norm. Moreover, in the recent algebraic
algorithms of [7, 12], they consider generic or random subspaces
Uy, Uy, ..., Uy C R™ and they need to argue that the correspond-
ing dth order lifts (Llfg'd, ’L[2®d, .. .,‘Llfad are far from each other.

Our results give a novel and modular way to analyze such matri-
ces. Our contributions are two fold:

e We give new tools for proving least singular value lower
bounds via e-nets. This involves identifying a key property
that is sufficient for carrying forth net based arguments, and
giving a new tool for proving such a property.

e We consider matrices that have the structure of a linear
operator applied to higher-order lifts corresponding to the
Kronecker product, and give new techniques to reason about
the least singular value. This resolves open questions raised
in [7, 12, 19].

1.1 Our Results

1.1.1  Hierarchical Nets. Our first set of results focus on e-net based
arguments for proving bounds for least singular values. Suppose
we have a random matrix M, the idea is to consider a fixed “test”
vector a, prove that || Me|| is large enough with high probability,
and then take a union bound over “all possible vectors ”. As the set
of candidate « is infinite, the idea is to take a fine enough net over
possible vectors a. The challenge when dealing with structured
matrices (of the kind discussed above) is that for a single test vector
a, we do not obtain a sufficiently strong probability guarantee. This
is because the individual columns of M may not have “sufficient
randomness”, and since we do not know how « spreads its mass
across columns, the bound will be weak. Our main observation is
that in the matrices we consider for our application, as long as « is
well spread, we can obtain a much stronger bound. We refer to this
as a “‘combination amplifies anticoncentration” (CAA) property of
M.

CAA Property (Informal Definition). We say that M has the CAA
property if for every k > 1, for any test vector « that has k entries
of magnitude > §, we have that || Ma|| > Q(J), with probability
1 —exp(-w(k)).
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Formally, to capture the w(k) term, we have a parameter f. See
Definition 4.1 for details. Our first result is that for any matrix with
this property, we have a bound on oy,jn (M).

Informal Theorem 1.2. Suppose M is a random matrix with m
columns and that M satisfies the CAA property with parameter § > 0.
Then with high probability (indeed, exponentially small probability
of failure), we have oin (M) > poly(1/m). (See Theorem 4.2 for the
formal statement.)

The proof uses a novel e-net construction. Nets that use struc-
tural properties of the test vector « have been used in prior works
in the context of proving least singular value bounds, notably in
the celebrated work of Rudelson and Vershynin [24]. In proving
our result, the natural approach of constructing a hierarchy of nets
based on increasing k (and using some threshold §) does not work.
Informally, this is because the error from ignoring terms that are
slightly smaller than § can add up significantly, causing the argu-
ment to fail. We introduce a new hierarchical construction that
overcomes this problem.

The next question we consider is how to prove that the CAA
property holds in a particular context. This can be shown via a direct
argument when M is simple, e.g., a random matrix with indepen-
dent entries. However, for matrices with more structured entries, it
can need a careful analysis. To handle this, we develop a new tool
for proving anticoncentration that we believe is of independent
interest.

1.1.2  Anti-concentration of a Vector of Polynomials. Consider P(x) :
(p1(x), p2(x), ..., pn(x)), where each p; is a polynomial of n “base”
random variables. Suppose we wish to show anti-concentration
bounds for P(X), where X is a perturbation of some x (i.e., we wish
to bound the probability that P(X) is within a small ball of a point y
is small, for all y). One hope is to use a coordinate-wise bound (e.g.,
using known results like [30]) and take the product over 1,2, ..., N.
It is easy to see that this is too good to be true: consider an example
where p; are all equal; here having N coordinates is the same as
having just one. So we need a good metric for “how different” the
polynomials p; are for a typical x. We capture this notion using
the Jacobian of the polynomial map P. Recall that in this case, the
Jacobian J(x) is a matrix with one column per p;, containing the
vector of partial derivatives, Vp;(x).

Jacobian rank property (Informal Definition). We say that P(x)
has the Jacobian rank property if for every x, at a slightly perturbed
point X, J(x) has at least k singular values that are large enough
(where k is a parameter).

We refer to Definition B.1 for the formal statement. Our result
here is that this property implies anticoncentration:

Informal Theorem 1.3. Suppose P(x) defined as above satisfies
the Jacobian rank property with parameter k. Then for a perturbation
of any point x, we have that Vy, P[||P(%) — y|| < €] < exp(—-Q(k)).
(Here, ¢ is a quantity that depends on the dimensions, k, the perturba-
tion, and the singular value guarantee; see Theorem 4.7 for the formal
statement.)

Intuitively, the Jacobian having several large singular values
must result in anticoncentration (because P(x) locally behaves lin-
early). However, the challenging aspect is that the Jacobian need
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not always have many large singular values. Our assumption (Ja-
cobian rank property) is itself made for a perturbed vector, i.e., we
assume that J(X) has many high singular values with high proba-
bility. Further, the magnitude of these singular values will depend
on the perturbation: if a “bad” x was perturbed by p, J(x) will have
most of the large singular values being ~ p. Dealing with this issue
turns out to be the main challenge in proving the theorem (see
Theorem 4.7 for a formal statement).

As an application of the Jacobian rank method, we re-prove
the main result of [9] and [4]. They consider random matrices M
where the ith column is 4; ® 0;, and 4;, 0; are perturbed vectors
in R"™. We show that this M satisfies the CAA property, and thus
our first result (above) implies a condition number lower bound.
In order to prove the CAA property, we consider a combination of
the columns }; ;(i; ® 0;) and prove that if « has k entries > &,
then the Jacobian has nk/2 large singular values. Using our second
result, we obtain a strong anticoncentration bound, thus completing
the proof. This technique also lets us tackle Question 1.1 described
above, but in what follows, we describe a different technique that
also generalizes to higher orders.

1.1.3  Structured Matrices from Kronecker Products. Next, we con-
sider a general class of structured matrices that are obtained by
taking the symmetrized Kronecker product of some p-perturbation
U of an underlying matrix U and applying a linear operator ®. Here,
U is a p-perturbation of U means U = U + N (0, p%). In other words,
the matrix of interest is M = <I>ﬁ®d, where d is a constant. For such
a matrix, we can ask the question: are there conditions on ® under
which we can prove that opin (M) is large, with high probability
over the perturbation? We provide an affirmative answer to this
question in terms of the rank of ®.

This question captures a variety of settings studied previously.
For example, [11] studies matrices M whose columns are tensor
products of some underlying vectors (i.e., the columns have the
form u; ® uj, ® --- ® u;,). This turns out to be a special case of
our setting above. Likewise, in the work of [7], one of the matrices
they consider is an M formed by concatenating the Kronecker
products of a collection of underlying matrices, and the analysis of
their algorithm relies on opjn (M) being non-negligible. This also
falls into our setting by choosing ® appropriately (as we show in
Corollary 5.3). Finally, as we discuss in our applications, the setting
M = dU® also directly appears in the work of [19].

The following is an informal statement of our result. Sym ;(R")

will refer to a symmetrization of (R")‘g”l.3 Also, as before, opmin
corresponds to right singular vectors.
Informal Theorem 1.4. Suppose @ is a matrix of rank 5("+3_1)
for some constant 8 > 0, and let U be any n X m matrix. Let U be a
p-perturbation of U. Then as long as m < cn for some constant c, we
have > 1 — exp(—Q(n)),

~ 1
O-min((I)U@{)d) > poly (,D, ;) .
(See Theorem 5.1 for a formal statement.)

3The latter can be viewed as having a coordinate for all “ordered” monomials of degree
d in n variables (e.g., x;x; and x;x; correspond to different coordinates), while the
former collects the terms with the same product. See Section 3 for a formal description.
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Note that the above Theorem 1.4 with d = 2 answers Ques-
tion 1.1 affirmatively. It also proves a similar statement about how
the column space of a dth order lift U®? behaves like a random
subspace of the lifted space of the same dimension with respect to
linear operators in the lifted space of reasonable rank, even though
we have only dnm random “bits” as opposed to Qd((mn)d). As
we describe in Section 2, the proof relies on first moving to non-
symmetric products via a new decoupling argument. In the case
of non-symmetric products, we end up having to analyze the least
singular value of a matrix of the form Cb(ﬁ(l) U g...0 ﬁ(d)).
This can be interpreted as a “modal contraction” (or dimension re-
duction of the mode) defined by {U?)} applied to the tensor ®. We
then show how to analyze such smoothed modal contractions, which
ends up being one of our technical contributions (see Section 2.3
and Theorem 5.2).

1.1.4  Applications.

Certifying distance from variety and quantum entanglement. Our
first application is to the problem of certifying that a variety is “far”
from a generic linear subspace. As a simple motivation, suppose
we have a linear subspace X of dimension én in R” (assume § <
1/2). Then for a randomly p-perturbed subspace U of dimension
< n/2, we can show that the two spaces have no overlap in a
strong sense: every unit vector u € X is at a distance Q(p) from
U. Tt is natural to ask if a similar statement holds when X is an
algebraic variety (as opposed to a subspace). This problem also
has applications to quantum information (see [19] and references
therein). Furthermore, we can ask if there is an efficient algorithm
that can certify that every unit vector in X is far from Uu.

We answer both these questions in the affirmative.

Informal Theorem 1.5. Suppose X C R" is an irreducible variety

cut out by 5("+z71

ac > 0 such that for any p-perturbed subspace u of dimension at
most cn, with probability 1 — exp(—Q(n)), every unit vector in X

) homogeneous degree d polynomials. There exists

has distance > poly (p, %) to U. Further, this can be certified by an
efficient algorithm. (See Theorem D.1 for the formal statement.)

The recent work of [19] gave an algorithm that we also use, but
our new least singular value bounds imply the quantitative distance
lower bound stated above. Applying this theorem with the variety
of rank-1 matrices gives the following direct corollary.

Corollary 1.6. There is a polynomial time algorithm that given a
random p-perturbed subspace u of ny X nz matrices of dimension
m < cniny (for some universal constant ¢ > 0) certifies w.h.p. that U
is at least poly(p, 1/n) far from every rank-1 matrix of unit norm.

The above theorem also has a direct implication to robustly
certifying entanglement of different kinds, which we describe in
Section D.

Decomposing sums of powers of polynomials. Our second applica-
tion is to the problem of “decomposing power sums” of polynomials,
a question that has applications to learning mixtures of distribu-
tions. In the simplest setting, [12] and [7] consider the following
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problem: given a polynomial p(x) that can be expressed as

P = > a(x)® +e(x)

te[m]

where a; are quadratic polynomials and e(x) is a small enough error
term, the goal is to recover {a; (%) }s¢[pm] . The work of [7] gave an
algorithm for this problem, but their analysis relies on certain non-
degeneracy conditions, which can be formulated as a lower bound
on the least singular value of appropriate matrices. They prove that
these conditions hold if the instances (i.e., the polynomials a;) are
random, using the machinery of graph matrices [1]. However, the
question of obtaining a smoothed analysis guarantee is left open. As
discussed earlier, a smoothed analysis guarantee is much stronger
than a guarantee for random instances, as it shows that even in the
neighborhood of hard instances, most instances are easy.

Their analysis requires least singular value bounds for various
matrices that arise from higher order lifts and polynomials of some
underlying random variables. For example, they require least singu-
lar value bounds on matrices of the form ®(U®3), for a specific sym-
metrization operator ® that acts on the lifted space. Another type of
matrix that they analyze are block Kronecker products, of the form
V= [(71@ 2. U,%Z] that arise from different partial derivatives.’
These kinds of matrices are ideal candidates for our techniques.

Informal Theorem 1.7. For the matrices M arising in the analysis
of [7], a p-perturbation of the parameters of a; results in oyin (M) >
poly(p, 1/n), with probability 1 — exp(—poly(m,n)). (This corre-
sponds the formal statements of propositions E.1, E.2, and E.3.)

These least singular bounds allow us to conclude that the al-
gorithm of [7] indeed has a smoothed analysis guarantee. In Sec-
tion E, we outline the algorithm of [7], identify the different non-
degeneracy conditions required and show that each of these condi-
tions holds for smoothed/perturbed polynomials a;. Interestingly,
we can avoid the technically heavy machinery of graph matrices,
while obtaining stronger (smoothed) results. We hope our new tech-
niques can also help obtain smoothed analysis guarantees for other
algebraic methods like the framework of [12].

2 PROOF OVERVIEW AND TECHNIQUES
2.1 Improved Net Analyses

e-Nets and limitations. The classic approach to proving least
singular value bounds is an e-net argument. The argument proceeds
by trying to prove that || Me|| is large for all & in the unit sphere. It
does so by constructing a fine “net” over points in the sphere with
the properties that (a) the net has a small number of points, and
hence a union bound can establish the desired bound for points
in the net, and (b) for every other point « in the sphere, there is a
point &’ in the net that is close enough, and hence the bound for
o’ “translates” to a bound for «. However, in settings where the
columns X; of M have “limited randomness”, this approach cannot
be applied in many parameter regimes of interest. The simplest
example is one where each )F(Vi is of the form #; ® i;, where #; € R"
and we have around m = n?/4 such vectors. In this case, (a) above

4This corresponds to the setting K = 2, D = 1 in their framework. We focus only on
this setting, as it turns out to be representative of their techniques.
5The actual matrix is slightly different, and is described in detail in Section E.
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causes a problem: the size of a net for unit vectors in a sphere in
R™ is exp(m) = exp(n?/4). This is much too big for applying a
union bound, since each column only has “n bits” of randomness,
so the failure probability we can obtain for a general a is exp(—n).
For this specific example, the works [4, 9] overcome this limitation
by considering more ad-hoc methods for showing least singular
value bounds, not based on ¢-nets.

Main idea from Section 4.1. As described above, the limited ran-
domness in each column X; limits the probability with which we
can show that P[|| Ma||] is large. However, we observe that in many
settings, as long as we consider an « that is spread out, we can show
that P[||Mel]|] is large with a significantly better probability. Infor-
mally, in this case, the randomness across many different columns
gets “accumulated”, thus amplifying the resulting bound. We re-
fer to this phenomenon as combination amplifies anticoncentration
(CAA) (described informally in Section 1.1; see Definition 4.1). Our
first theorem states that the CAA property automatically implies a
lower bound on oyin (M) with high probability.

To outline the proof of the theorem, let us consider some unit
vector @ € R™. If @ has say m/2 “large enough” entries, then the
CAA property implies that || M«|| is non-negligible with probability
1 — exp(—m) (roughly), and so we can take a union bound over a
(standard) e-net, and we would be done. However, suppose a had
only k entries that are large enough (defined as > ¢ for some
threshold), and k < m. In this case, the CAA property implies that
IMe|| = ¢ with probability roughly 1 — exp(—k). While this is
large enough to allow a union bound over just the large entries of
a (placing a zero in the other entries), the problem is that there can
be many entries in « that are just slightly smaller than §. In this
case, having ||[Mass|| > ¢d (where a s is the vector a restricted
to the entries > § in magnitude, and zeros everywhere else) does
not let us conclude that || Me|| > 0, unless c is very large. Since we
cannot ensure that c is large, we need a different argument.

The idea will be to use the fact that our definition of the CAA
comes with a slack parameter f. In particular, for « as above with
k values of magnitude > §, it allows us to take a union bound over
k-mP parameters. Thus, if we knew that there are at most k - mP
entries that are “slightly smaller” (by a factor roughly 0) than §,
we can include them in the e-net. Defining 0 appropriately, we can
ensure that the problem described above (where the slightly smaller
entries cancel out the Ma s) does not occur. The problem now is
when « has > k - mP entries of magnitude between 66 and §. While
this is indeed a problem for this value of §, it turns out that we
can try to work with 66 instead. Now the problem can recur, but it
cannot recur more than (1/f) times (because each time, k grows
by an mP factor). This allows to define a hierarchical net, which
helps us identify the threshold § for which the ratio of the number
of entries > 08 and > & is smaller than m?.

By carefully bounding the sizes of all the nets and setting 6
appropriately, Theorem 4.2 follows.

2.2 Jacobian Based Anticoncentration

As described in Section 1.1, proving smoothed analysis bounds
often requires dealing with a vector of polynomials

P(x) = (p1(x),...,pN (X))
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in some underlying variables x. The goal is to show that for every x,
evaluating P at a p-perturbed point X gives a vector that is not too
small in magnitude. (A slight generalization is to show that P(x) is
not too close to any fixed y.)

We first observe that such a statement is not hard to prove if we
know that the Jacobian J(x) of P(x) has many large singular values
at every x, and if the perturbation p is small enough. This is because
around the given point x, we can consider the linear approximation
of P(X) given by the Jacobian. Now as long as the perturbation
has a high enough projection onto the span of the corresponding
singular vectors of J(x), P(%) can be shown to have desired anti-
concentration properties (by using the standard anticoncentration
result for Gaussians). Finally, if J(x) has k large singular values, a
random p-perturbation will have a large enough projection to the
span of the singular vectors with probability 1 — exp(—k).

Now, in the applications we are interested in, the polynomials P
tend to have the Jacobian property above for “typical” points x, but
not all x. Our main result here is to show that this property suffices.
Specifically, suppose we know that for every x, the Jacobian at a p
perturbed point has k singular values of magnitude > cp with high
probability. Then, in order to show anticoncentration, we view the
p perturbation of x as occurring in two independent steps: first
perturb by pV1 — z2 for some parameter z, and then perturb by
pz. The key observation is that for Gaussian perturbations, this is
identical to a p perturbation!

This gives an approach for proving anticoncentration. We use the
fact that the first perturbation yields a point with sufficiently many
large Jacobian singular values with high probability, and combine
this with our earlier result (discussed above) to show that if z is
small enough, the linear approximation can indeed be used for the
second perturbation, and this yields the desired anticoncentration
bound.

Applications. The simplest application for our framework is the
setting where M has columns being #; ®7;, for some p-perturbations
of underlying vectors u;, v;. (This setting was studied in [4, 9] and
already had applications to parameter recovery in statistical mod-
els.) Here, we can show that M has the CAA property. To show this,
we consider some combination }; @;(il; ® 9;) with k “large” coeffi-
cients in a, and show that in this case, the Jacobian property holds.
Specifically, we show that the Jacobian has Q(kn) large singular
values. This establishes the CAA property, which in turn implies
a lower bound on oyin (M). This gives an alternative proof of the
results of the works above.

2.3 Structured Matrices from Kronecker
Products and Higher-Order Lifts

Our second set of techniques allow us to handle structured matrices
that arise from the action of a linear operator on Kronecker products,
as described in Question 1.1. For simplicity let us focus on the
setting when d = 2, and let @ : Sym(R"” ® R”) — R¥ be an
(orthogonal) projection matrix of rank R > 0.01n? acting on the
space of symmetric matrices Sym(R™ ® R™) (in general ® can also
be any linear operator of large rank). Let m = o(n) and U € R™*™
be a small random p-perturbation of arbitrary matrix U € R™"*™,
The columns of the matrix U®? are linearly independent with high
probability, and span the symmetric lift of the column space of U.
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An arbitrary subspace of Sym(R"” @ R") of the same dimension may
intersect non-trivially, or lie close to the kernel of ®. Theorem 1.4
shows that the column space of U®? for a smoothed U is in fact far
from the kernel of ® with high probability. Note that U only has
about nm truly independent coordinates or “bits”, whereas a random
subspace (matrix) of the same dimension has ¢ - nm? independent
coordinates.

Challenge with existing approaches. This setting captures many
kinds of random matrices that have been studied earlier including [4,
9, 11]. For example, [11] studies the setting when a fixed polynomial
map f : R” — R¥ applied to a randomly perturbed vector ii; to
produce the ith column f(#;). It turns out to be a special case
of our setting above when m = 1. These works use the leave-
one-out approach to lower bound the least singular value, where
they establish that every column has a non-negligible component
orthogonal to the span of the rest of the columns (see Lemma 3.1).
However this approach crucially relies on the columns bringing in
independent randomness.® This does not hold in our setting, since
every column share randomness with Q(m) other columns.

In the recent algebraic algorithms of [7, 12] for decomposing sum
of powers of polynomials, the analysis of the algorithm involves
analyzing the least singular value of different random matrices.
One such matrix M is formed by concatenating the Kronecker
products of a collection of underlying matrices. This allows us to
reason about that the non-overlap or distance between the lifts
of a collection of subspaces. The work of [7] analyzed the fully
random setting and proves least singular value bounds with intricate
arguments involving graph matrices, matrix concentration, and
other ideas. Specifically, like in [29], they show that E[ M] has good
least singular value, and then prove deviation bounds on the largest
singular value of M —E[M] to get a bound of oyin (E[M]) - |IM -
E[M]]]. But this approach does not extend to the smoothed setting,
since the underlying arbitrary matrix U makes it challenging to get
good bounds for |M —E[M]]|.

For the smoothed case, when d = 2, it turns out that we can
use ideas similar to those described in Sections 2.1 and 2.2 to show
Theorem 1.4. However, the approach runs into technical issues for
larger d. Thus, we develop an alternate technique to analyze higher-
order lifts that proves Theorem 1.4 for all constant d. In order to
prove Theorem 1.4 we first move to a decoupled setting where we
are analyzing the action of a linear operator on decoupled products
of the form

U BV),

where V has a random component that is independent of U. This
new decoupling step leverages symmetry and the Taylor expan-
sion and carefully groups together terms in a way that decouples
the randomness. The main technical statement we prove is the
following non-symmetric version of Theorem 1.4 which analyzes a
linear operator acting on a Kronecker product of different smoothed
matrices.

Informal Theorem 2.1 (Non-symmetric version for d = 2 and

. d . . .
modal contractions). Suppose ® € RRX"" is a matrix with at least

The work of [11] also handles some specific settings with a small overlap across
columns, but these specialized ideas do not extend more generally to our setting.
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@ € RF¥™™ comprised of n? vectors of dim R

Figure 1: The figure shows the setting of Theorem 2.1 with
d = 2. Left: The linear operator ® : R™" — RR interpreted
as a tensor consisting of a n X n array of R-dimensional vec-
tors. There are smoothed or random contractions applied
using matrices U,V € R"™™_ Right: The operator ®(U ® V) :
R™ ™M _ RR interpreted as an m? array of R-dimensional
vectors. Theorem 2.1 shows that under the conditions of the
theorem, with high probability the robust rank is m?.

Q(n?) singular values larger than 1, and let U,V be random p-
perturbations of arbitrary matrices U,V. Then if m < cn for an
appropriate small constant ¢ > 0, we have with probability > 1 —
exp(—Q(n)) that

~ 1
Omin (<I)(U ® V)) > poly (p, ;) .
(See Theorem 5.2 for the formal statement for general d.)

Smoothed modal contractions. While ® is specified as a linear
operator or a matrix of dimension R X n? in Theorem 2.1, one can
alternately view ® as a order-3 tensor of dimensions R X n X n
as shown in Figure 1. Theorem 2.1 then gives a lower bound for
the multilinear rank’ (or its robust analog) under smoothed modal
contractions (dimension reduction) along the modes of dimension
n each. The proof of this theorem is by induction on the order d. We
perform each modal contraction one at a time. As shown in Figure 2,
we first do modal contraction by V to obtain a R X n X m tensor W
and then by U to form the final R X m X m tensor. We need to argue
about the (robust) ranks of the matrix slices (we also call them
blocks) and tensors obtained in intermediate steps. For any matrix
M (potentially a matrix slice of the tensor ®) of large (robust) rank
k > 1.1m, a smoothed contraction MU has full rank m (i.e., non-
negligible least singular value) with probability 1 — exp(—Q(k)).
To argue that the final tensor (when flattened) has full rank m?, we
need to argue that for the tensor in the intermediate step W, each of
the m slices (along the contracted mode) has rank at least Q(n). The
original rank of ® was large, so we know that a constant fraction
of the slices @1, ..., P, must have rank Q(n). But this alone may
not be enough since many of the slices can be identical, in which
case the m slices are not sufficiently different from each other.

We can use the large rank of ® to argue that a constant fraction
of the matrix slices should have large “marginal rank” i.e., they have
large rank even if we project out the column spaces of the slices

"The multilinear rank(s) of a tensor is the rank of the matrix after flattening all but
one mode of the tensor.
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that were chosen before it. While this strategy may work in the
non-robust setting, this incurs an exponential blowup in the least
singular value. Instead we use the following randomized strategy of
finding a collection of blocks or slices S; C [n], each of which has
a large “relative rank”, even after we project out the column spaces
of all the other blocks in S; (we show these statements in a robust
sense, formalized using appropriate least singular values).

Finding many blocks with large relative rank. We note that while
the idea is quite intuitive, the proof of the corresponding claim
(Lemma 5.4) is non-trivial because we require that in any selected
block, there must be many vectors with a large component orthog-
onal to the entire span of the other selected blocks. As a simple
example, consider setting ny = 2t and
- e,

..,eZt}.
In this case, even if ¢ is tiny, we cannot choose both the blocks,
because the span of the vectors in @, contains all the vectors in ®;.

The proof will proceed by first identifying a set of roughly
R = Q(n?) vectors (spread across the blocks) that form a well
conditioned matrix, followed by randomly restricting to a subset of
the blocks. We start with the following claim, which gives us the
first step.

®1 = {e1,e2,..., 6,141, €€142, . .

and @z = {ee1, eea, . .., ey, €rt1, €142, .

Claim 2.2 (Same as Lemma C.2). Suppose A is an m X n matrix
such that o (A) > 0. Then there exists a submatrix Ag with |S| = k
columns, such that oy (Ag) > 6/Vnk.

The lemma is a robust version of the simple statement that if
o (A) > 0, then there exist k linearly independent columns. The
proof of the claim is elegant and uses the choice of a so-called
Auerbach basis or a well-conditioned basis for the column span.

The outline of the main argument is as follows:

(1) First find a submatrix M of R = 6n? columns of ® such that
or(M) is large

(2) Randomly sample a subset T C [n] of the blocks.

(3) Discard any block j € T that has fewer than dn/6 vectors
with a non-negligible component orthogonal to the span of
Ure(T\{j})®r; argue that there are Q(dn) blocks remaining.

We remark that the above idea of a random restriction to obtain
many blocks with large relative rank (in a robust sense) seems of
independent interest and also comes in handy in the application to
power sum decompositions (Claim E.5).

Finishing the inductive argument. As shown in Figure 2, after
modal contraction along V € R™™, we get W € RRX™X™ ith
slices Wy, ..., Wj,.

Now we would like to argue that when we perform a smoothed
contraction with U , the contracted slices have large rank, while
simultaneously preserving the relative rank across the slices. Let
Ws, € RRXS1Xm represent the subtensor corresponding to the slices
obtained from the “good” blocks S; C [n] (which have large relative
rank), and let W, \s, € RRX([n\S)XM represent the remaining
slices. Also let W) € RRX" denote the matrix slices along the
alternate mode for each j € [m]. We can show that the randomly
contracted matrices Ws(lj ) have large relative rank with respect

to each other. The random modal contraction U can also now be
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v i R 3 n .
e & e |
» ,(\,//,”', — I

m o B |

‘[/]/’(/\
€ RRX"

Winns, Ws
W € RRX™™M comprised of

WS‘ € RR*S1xm, Ws, € R

1

®; € RR*™
b e ‘RRX"XH

Figure 2: Left: The setting of d = 2 with linear operator
@ : R™" — RR having slices @1,...,®, € RF*", The modal
contractions U,V € R ™ have not yet been applied. Right:
After modal contraction along V € R™ ™, we get W € RR*nxm
with slices Wi,..., W,. W, € RRXS1Xm represents the slices
obtained from the “good” blocks S; C [n], and W[,\s, €
RR*([n]\S1)xm represents the remaining slices. The random
modal contraction U is also split into [751 € RSXM, 17[ nl\s; €
RInN\Sixm

split into ﬁsl € RS1Xm, [7[,,]\51 € RIMI\S1Xm The final matrix slice

obtained for each j € [m?~!] can be written as

W)

) —wWir
MY _WS1 Us, (n]\S;

Uinn\sy

where the randomness in the two summands is independent. Argu-
ing that the high relative rank across the slices is preserved involves
some work, and this is achieved in Lemma 5.5. The lemma proves
that with high probability, every test unit vector & € R™™ has
non-negligible value of ||Mal|. A standard argument would con-
sider a net over all potential unit vectors @ € R™ ™. However this
approach fails here, since we cannot get high enough concentration
(of the form e~ Q(m") ) that is required for this argument. Instead,
we argue that if there were such a test vector « € R™ ™, there exists
ablock j* € [m] where we get a highly unlikely event. This allows
us to conclude the inductive proof that establishes Theorem 2.1.

3 PRELIMINARIES

We now introduce our basic definitions and notation. For a matrix
U € R™™ let ||U|| and ||U||r denote the operator and Frobenius
norms of U, respectively. Central to the paper are p-smoothed
matrices. In particular, given a matrix U € R™™ weletU = U + E
where E € N (0, p?). We commonly call U a p-smoothing of U or
a p-perturbation of U. Similar notation is used for vector inputs
x = (x1,...,%p) toapolynomial p : R® — R™ . Le., ¥ = x+n where
n € N(0, p?). Thus, for example, p(X) is the evaluation of p on a
p-smoothed x.

Products. We also frequently use the Kronecker product, denoted
®, and the Khatri-Rao product, denoted ©. Given matrices, A €
R™™ and B € R¥*!, the Kronecker product A ® B is the block
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matrix
anB aim, B

A®B= € Rkxmt

an,1B an,m, B

We let A% € R**™m? denote the Kroncker product of a total of d
copies of A. In the case that m = ¢, the Khatri-Rao product A © B is
defined by

T T
AOB=|a; ®b; am ® by | € RMkXmM
l l

Here aj and b; denote the jth column of A and B, respectively, and
aj ® bj is the Kronecker product (or simply the tensor product) of
these columns.

For vector spaces U, V, the tensor product space UV = {u®u :
u € UoveV} When U =V, we also call U®? = Y @ U alift
of the space U (of degree/order 2). This can also be generalized
to d-wise products and lifts. When U = R", the space (R")®?
corresponds to the space of all d-th order tensors of dimensions
n X n--- X n. This is isomorphic to the space Rnd; each tensor can

d
be flattened to form a vector in n¢ dimensions i.e., (R")®? = R™.

Symmetrized products. We are often concerned with symmetrized
versions of matrix products. To handle these, we introduce a (par-
tially) symmetrized Kronecker product ® which is defined for tu-
ples of matrices (U<1), e U(d)) where UU) € R%*™M_ We define
v eU® e... @U@ ¢ RILX(™™) o be the matrix with
columns indexed by tuples (iy, i2,...,ig) with1 <i; <ip <--- <
ig < m where the column corresponding to (iy, ia, ..., ig) is

1 Z (1) 2 (d)
—_— u. u . u
ISal &2

®u; Q- - Qu; .
(2) Lr(d)
Here S; denotes the symmetric group on [d] and ul.(j () ) denotes the
gavj
ir(j)th column of U, For example, for matrices U,V € R"™"™,

the column of U @ V corresponding to a tuple (i, j) with i < j is
1
E(ui ®vj+u;® Z)j).

In the case that i = j, this reduces to u; ®v;. For a matrix U € R?*™,
we let U®9 ¢ R"dx(wgil) denote the ® product of a total of d
copies of U. The product ® can be viewed as a partially symmetrized
version of the Kronecker product since all columns of U® are

d
symmetric with respect to the natural symmetrization of R”
(Rn)®d .
d d
Along these lines, we introduce the operator Sym,; : R* — R
d
which symmetrizes elements of R”  with respect to the identifica-
d

tion R"* = (R")®9. With this notation, we have that

Symd(U®d) =y®d,

Moreover, the columns of the matrix U®? are precisely the unique
columns of the matrix Sym d(U®d).

Finally, for a vector space U, we have that U = Symy (‘L{®d)
is the space of symmetric dth tensors over the spacd U. We also
call this the symmetric dth order left of the space U.
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Leave-one-out distance. The leave-one-out distance of a matrix U
is a useful tool for analyzing least singular values. Given U € R"™*™,
define the leave-one-out distance £(U) by

¢(U) = mindist (u;, Span{u; : j # i}).
1

The least singular value of U is related to the leave-one-out distance
of U through the following lemma [24].

Lemma 3.1 (Leave one out distance). Let U € R™ ™, Then
¢(U)

\m

See also Lemma A.2 for a block-version of leave-one-out singular
value bounds.

In our work we also encounter the Jacobian of a polynomial map.
Given a vector valued function P(x) = (p1(x), p2(x),...,pNn(x))
over underlying variables x = (x1, X3, ..., xp), the Jacobian is de-
fined as the (n X N) matrix of partial derivatives where the (i, j)th

< omin(U) < £(U).

entry is %. Thus, the linear approximation of P(x) around a point
x is simply P(x + 1) = P(x) + J(x)Tn.

4 HIERARCHICAL NETS AND
ANTICONCENTRATION FROM JACOBIAN
CONDITIONING

A complete version of this section, including all deferred proofs, can
be found in Appendix B. In this section, we will primarily deal with
a matrix M of dimensions N X m where m < N. The columns will
be denoted by X;, and we wish to show a lower bound on o, (M).

In this section, we describe the finer e-net argument outlined in
Section 2. We begin with a formal definition of the CAA property.

Definition 4.1 (CAA property). We say that a random matrix M
with m columns has the CAA property with parameter § > 0, if for
all k > 1, for all test vectors « € R™ with at least k coordinates of
magnitude J, there exist A > 0 and ¢ > % (dependent only on M)
such that

Vh e (0,1), P[|IMea|l < dh/A] < exp (—c min(m, kmﬁ) log(l/h)) .

Remark. We note that the condition ¢ > 8/f may seem strong;
however, as we will see in applications, it is satisfied as long as m
is small enough compared to N, the number of rows of the matrix.

4.1 Hierarchical Nets

The following shows that the CAA property implies a least singular
value guarantee.

THEOREM 4.2. Suppose M is a random matrix with m columns
and that M satisfies the CAA property with some parameter > 0.
Suppose additionally that we have the spectral norm bound || M|| < L
with probability 1—1. Then with probability at least 1—exp(—m#?) -7,
we have

omM) 2 ———,
m(M) Y
where A comes from the CAA property.

As discussed in Section 2, the natural approach to proving such a
result would be to take nets based on the sparsity of the test vector
a. In other words, if there are k nonzero values of magnitude § > 0,
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the CAA property yields a least singular value lower bound of §/A
(choosing h to be a small constant), and we can take a union bound
over a net of size exp(k). The issue with this argument is that «
might have many other non-zero values that are slightly smaller
than §, and these might lead to a zero singular value (unless it so
happened that A < 1/m, which we do not have a control of). Of
course, in this case, we should have worked with a slightly smaller
value of §, but this issue may recur, so we need a more careful
argument.

The rest of this subsection will focus on proving Theorem 4.2. For
defining the nets, we will use threshold values 71 = 1/m, 7 = 6/m,
and so on (more generally, 7; = 6771 /m). 0 is a parameter that will
be chosen appropriately; for now we simply use 6 € (0,1/m).

We construct a sequence of nets Ni, Na, ..., Ns—1 as follows.
The net N; is a set of vectors parametrized by pairs (rq,72) € N2,
where: () 1 < r; < m!=5, (b) ry < mPry. For each pair (rq,7r2), we
include all the vectors whose entries are integer multiples of %
with have exactly (r1 + r2) non-zero entries, of which r; entries are
in (71, 1] and ry entries are in [, 71]. Thus, the number of vectors
in N for a single pair (r1, r2) is bounded by:

) ) (5) < ()

The next net N has vectors parametrized by (r1,r2,r3) € N3,
where (a) r; < m!'=F, (b) r3 < mPry, and additionally, (c) rz > mPry.
For each such tuple, we include vectors that have exactly (r1+ry+r3)
non-zero entries (in the corresponding 7 ranges as above), and have
values that are all integer multiples of 62 /m.

More generally, the vectors of N; will be parametrized by
(ri,ro,...,1js1) € N/*1 where (a) rj < ml_ﬁ,(b) rjs1 < mﬁrj,and
additionally, (c) for 1 < i < j, we have rjy1 > mPr;. In other words,
rj+1 is the first value that does not grow by a factor mP_ For every
such tuple, N includes all vectors that have exactly (r{+---+7jt+1)
non-zero entries, each of which is an integer multiple of % and
exactly r; of them in the range (7, 7;—1] foralli < j + 1.

We have nets of this form for j =1,2,...,s — 1, where s = [%],

We now have the following claim.

Claim 4.3. Fixany1 < j <s. We have

_ o7 LB
P |3a € Nj, [Me]| < W] < exp (—Ecm )

Finally, we have a bigger net for all “dense” vectors «, that have
at least m!~# coordinates of magnitude > %_1 This net consists of
vectors € R™ for which (a) every coordinate is an integer multiple
of 0% /m (between 0 and 1), and (b) at least m!'~B coordinates are

> %_1 Call this net Ny. An easy upper bound for the size is
mym
Mol = ()
Using this, we have the following:

Claim 4.4.

1
P|3a e Ny : [Mea| < /12 } < exp (—gm) .

m
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One of the advantages of our ¢-net argument is that if we only
care about “well spread” vectors, we can obtain a much stronger
concentration bound (Eq (10)).

Observation 4.5. Suppose M is a random matrix that satisfies the
CAA property with parameter . Let us call a test vector a (of length
< 1) “dense” if it has at least m'~P coordinates of magnitude > .
Then

P |3 dense a : |[Mal| < ] < exp (—%cm) .

Note that in the above claim, m could be quite large compared
to n. The observation follows immediately from (10), but we will
use it later in Section 4.3.

(Lma)2 71

4.2 Anticoncentration of a Vector of
Homogeneous Polynomials

We consider the following setting: let p1, p2, ..., pn be a collection

of homogeneous polynomials over n variables (x1, x, . .., x,), and
define
p1(x)
p2(x)
P(x)=] . (1)
N (%)

Our goal will be to show anticoncentration results for P. Specif-
ically, we want to prove that P[||P(X) — y|| < €] is small for all y,
where X is a perturbation of some (arbitrary) vector x € R". We
give a sufficient condition for proving such a result, in terms of the
Jacobian of P. (See Section 3 for background.)

Definition 4.6 (Jacobian rank property). We say that P has the
Jacobian rank property with parameters (k, ¢, y) if for all p > 0 and
for all x, the matrix J(X) has at least k singular values of magnitude
> c¢p, with probability at least 1 — y. Here, X = x + 1, where n ~
N (0, p?) is a perturbation of the vector x.

Comment. Indeed, all of our results will hold if we only have the
required condition for small enough perturbations p. To keep the
results simple, we work with the stronger definition.

For many interesting settings of P, the Jacobian rank property
turns out to be quite simple to prove. Our main result now is that
the property above implies an anticoncentration bound for P.

THEOREM 4.7. Suppose P(x) defined as above satisfies the Jacobian
rank property with parameters (k, c, y), and suppose further that the
Jacobian P’ is M-Lipschitz in our domain of interest. Let x be any
point and let X be a p-perturbation. Then for any h > 0, we have

cp®h

vy e RN, P|||P(%) -
y € IP() = yll < oo

< y+exp(—31 klog(1/h)).

A key ingredient in the proof is the following “linearization”
based lemma.

Lemma 4.8. Suppose x is a point at which the Jacobian J(x) of a
polynomial P has at least k singular values of magnitude > 7. Also
suppose that the norm of the Hessian of P is bounded by M in the
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domain of interest. Then, for “small” perturbations, 0 < p <
we have that for any e > 0,
)k/Z

We remark that the lemma does not imply Theorem 4.7 directly
because it only applies to the case where the perturbation p is much
smaller than the singular value threshold 7.

S
4Mnk’

2Mpnk
T

2¢ k
Yy, P[IIP(%) —yll <e] < (—) +(
P

4.3 Jacobian Rank Property for Khatri-Rao
Products

As the first application, let us use the machinery from the previous
sections to prove the following.

THEOREM 4.9. Suppose U,V € R™™ and suppose their entries are
independently perturbed (by Gaussians N (0, p?)) to obtain U and V.
Then whenever m < nZ/C for some absolute constant C, we have

~ - 1
omin(U © V) > poly | p, ~ ]

with probability 1 — exp(—Q(n)).

Note that the result is stronger in terms of the success probabil-
ity than the main result of [9] and matches the result of [4]. The
following lemma is the main ingredient of the proof, as it proves
the CAA property for U © V. Theorem 4.9 then follows immediately
from Theorem 4.2.

Lemma 4.10. Suppose & € R™ be a unit vector at least k of whose
coordinates have magnitude > 5. Let U,V be arbitrary (as above),
and let U and V be p perturbations. Define P(U,V) = }; a;il; ® ;.
Then for M = (m + n)? and all h > 0, we have

p?

P|||P(U, V)|l < 6h - SNk

} < exp (—%kn log(l/h)) .

Remark. To see why this satisfies the CAA property (hypothesis
of Theorem 4.2), note that as long as m < n?/C for a sufficiently
large (absolute) constant C, the term k—g > 16 min(m, km'/?), thus
it satisfies the condition with = 1/2.

The Jacobian property used to show Lemma 4.10 can be extended

to higher order Khatri-Rao products. We give details in Section B.3.

5 HIGHER ORDER LIFTS AND STRUCTURED
MATRICES FROM KRONECKER PRODUCTS

A complete version of this section, including all deferred proofs
can be found in Appendix C. We provide the following theorem.

TuroREM 5.1. Supposed € N, and let® : Sym?(R") — RP bean
n+d—1
d

and let Symy : (R™)®4 — Sym?(R™) be the orthogonal projection on
to the symmetric subspace of(R”)®d. LetU = (u; : i € [m]) € R™*™
be an arbitrary matrix, and let U be a random p-perturbation of U.
Then there exists a constant ¢y > 0 such that for m < cyn, with
probability at least 1 — exp ( — Qg 5(n)), we have the least singular

orthogonal projection of rank R = §( ) for some constant & > 0,
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YO @ V) € RRxmxm
has m? vectors of dim R

'
Y € RR*™M comprised of n? vectors of dim R

Figure 3: Left: The linear operator ¥ : R"*" — RR interpreted
as a tensor consisting of a n X n array of R-dimensional vec-
tors. There are smoothed or random contractions applied
using matrices U,V € R™™, Right: The operator ¥(U ® V) :
R™ ™M _ RR interpreted as an m? array of R-dimensional
vectors. Theorem 5.2 shows that under the conditions of the
theorem, with high probability the robust rank of this op-
erator is m? i.e, the least singular value of R X m? matrix is
inverse polynomial.

value
pd
20(d)’

O(mvd-1) (fbff@d) > where
d
ed .= (Symd(fti1 ®ij, - - ®ijy):1<i <ip <---<ig < n)

@)

In the above statement, one can also consider an arbitrary linear
operator @ and suffer an extra factor of og(®) in the least singular
value bound (by considering the projector onto the span of the top
R singular vectors). In the rest of the section, we assume that ® is
an orthogonal projector of rank R without loss of generality.

Theorem 5.1 follows from the following theorem (Theorem 5.2)
which gives a non-symmetric analog of the same statement. The
proof of Theorem 5.1 follows from a reduction to Theorem 5.2 that
is given by Lemma C.4. In what follows, ¥ € RRX1 denotes the
natural matrix representation of ® such that Py®d = (I>(x®d) for
all x € R™.

THEOREM 5.2. Suppose f € N, R = 5('”3_1) for some constant

5> 0andlet¥ : (R™)® — RP be a linear operator with op(¥) > 1.

Suppose random matrices UV, ... U@ e R™™ qre generated as
follows:

Vjeld, 09 =D 420 where 20 ~; ; 4 N (0, p2)™>m

and is independent ofU(j), (3)

while U) € R™™ is arbitrary and can also depend on

l}(j*'l), . ..,U(d). Then there exists constants cg, CZI > 0 and an
absolute constant co > 1 such that form < cyn, with probability at
least 1 — exp (— Qg,5(n)), we have

< o4

nCod '

Umd(\y(U(l) ®...®(j(d))) > (4)

While ¥ is specified as a matrix of dimension R X n? in Theo-
rem 5.2, one can alternately view ¥ as a (d + 1)-order tensor of
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dimensions R X n X n X - - - X n as shown in Figure 4. Theorem 5.2
then gives a lower bound for the multilinear rank (in fact, for its
robust analog) under smoothed modal contractions along the d
modes of dimension n each.

Applying Theorem 5.1 along with the block leave-one-out ap-
proach (see Lemma A.2) we arrive at the following corollary.

Corollary 5.3. Supposed,t € N and let1 > 51 > 52 > 0 be given.
Also let @ : Sym?(R™) — RP be an orthogonal projection of rank
R > 6 ("+§_1). Let {Uj};:1 C R™™ be an arbitrary collection of
n X m matrices, and for each j, let Uj be a random p-perturbation
of Uj. Then there exists a constant cg > 0 such that ift(m+g_1) <
52("+3_1) and m < cy(81 — O2)n, then with probability at least
1—exp (- Qgs,.5,(n)), we have the least singular value

<

o

T@d L
U 0@

gy (10 >

o9t 0pY)) ©)

5.1 Proof of Theorem 5.2

We will prove Theorem 5.2 for general d by induction on d. The
following crucial lemma considers a linear operator ¥ acting on
the space R™ ® R, and shows that if ¥ has large rank Q(nnz),
then it has many “blocks” of large relative rank as described in
Section 2.3.

Lemma 5.4. Let ¥ € RRX(mm) pe g projection matrix of rank
R = dnyny for some constant § > 0, and let ¥ = [¥1 ¥y ... ¥y, ]
where the blocks ¥; € RR*"2 Vi € [n;]. Then there exists constants
c1,¢2,¢3 > 0 and a subset S1 C [n1] with |S1| = c16n1 such that

1
> T INea?
~ (nk)®s

Vi € Sy, Oc,8n, (Hg_]\{i}wi) (6)

where T1g is the projection orthogonal to span( Ujes colspan(¥;)).

We note that while the statement of Lemma 5.4 is quite intuitive,
the proof is non-trivial because we require that in any selected block,
there must be many vectors with a large component orthogonal to
the entire span of the other selected blocks. We prove this lemma in
Section C.2 by restricting to randomly chosen columns as described
in the overview (Section 2.3).

The following lemma will be important in the inductive proof
of the theorem. It reasons about the robust rank (also called multi-
linear rank) after the modal contraction by a smoothed matrix along
a specific mode. The lemma is proved in slightly more generality;
we will use it for the theorem with ¢ = 1.

Lemma 5.5 (Robust rank under random contractions). Suppose
¢ € (0, 1] is a constant. For every constant y, C > 0, there is a constant
¢ € (0,1) such that the following holds for all s = 20(K)  Consider
matrices Ay, Ag, . .., As € RE¥K C1, ..., Cs € RRX™ gndVj e [s]
let HJ_'j denote the projector orthogonal to the span of the column
spaces of {Aj : j' # j,j’ € [s]}. Suppose the following conditions
are satisfied:

™

and 01(Aj),01(Cj) < k€. For a random p-perturbed matrix Ue
RFX™M \ithm < cek, we have with probability at least 1—exp(—Q(¢k))

Vj e [sl], O'gk(HJ_'jAj) > k7Y
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that
_r
2ky+1 \/E :

Finally, we reduce the the setting of symmetric products to that
of non-symmetric products. We provide details in Section C.3.

if Vj € [s], M; =C;j +AjU, thenosm(Ml [ MS) >
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