
Journal of Mathematical Imaging and Vision (2024) 66:1033–1059
https://doi.org/10.1007/s10851-024-01211-z

Classification of Deformable Smooth Shapes Through Geodesic Flows
of Diffeomorphisms

Hossein Dabirian1 · Radmir Sultamuratov2 · James Herring4 · Carlos El Tallawi3 ·William Zoghbi3 ·
Andreas Mang2 · Robert Azencott2

Received: 21 August 2023 / Accepted: 2 August 2024 / Published online: 14 October 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Let D be a dataset of smooth 3D surfaces, partitioned into disjoint classes CL j , j = 1, . . . , k. We show how optimized
diffeomorphic registration applied to large numbers of pairs (S, S′), S, S′ ∈ D can provide descriptive feature vectors to
implement automatic classification on D and generate classifiers invariant by rigid motions in R

3. To enhance the accuracy
of shape classification, we enrich the smallest classes CL j by diffeomorphic interpolation of smooth surfaces between pairs
S, S′ ∈ CL j .We also implement small randomperturbations of surfaces S ∈ CL j by randomflows of smooth diffeomorphisms
Ft : R3 → R

3. Finally, we test our classification methods on a cardiology database of discretized mitral valve surfaces.

Keywords Diffeomorphic shapematching ·Classification of deformable smooth shapes ·Random forests ·Data augmentation

1 Introduction

Wepresent research on the classification of deformablemitral
valve (MV) shapes based on features derived from diffeo-
morphic shape matching. In the past two decades, various
research groups have developed mathematical algorithms
for solving the problem of diffeomorphic registration of
deformable 3D shapes (volumes or surfaces; examples are
[1–19]). Our approach builds upon the rich mathematical
framework referred to as large deformation diffeomorphic
metric mapping (LDDMM) [4, 20–24]. These techniques
have been applied to many biomedical datasets, mostly for
a quantitative comparison of “soft” human organs across
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patients cohorts, or across time for specific, individual
patients [25–31]. This field of study is commonly referred to
as computational anatomy [16, 32–39]. Lucid monographs
and reviews about recent developments in (diffeomorphic)
registration and shape matching are [1–4]. Key areas of
application are neuroimaging [40–48] or cardiac imaging
[33, 49–58]. In the present work, we develop computational
techniques for the automatic classification of smooth 3D
anatomical surfaces extracted from cardiac imaging. The
main goal of this paper is to explore how to efficiently
combine diffeomorphic registration of smooth surfaces with
supervised machine learning (ML) for automatic classifica-
tion of smooth 3D surfaces. In particular, we classify surfaces
obtained from time series of 3D echocardiography of MVs
based on features derived from diffeomorphic shape match-
ing. In addition, we present methods for data augmentation
based on random diffeomorphic perturbation and diffeo-
morphic interpolation of surfaces. We demonstrate that the
proposed methodology allows for a discrimination between
regurgitation and normal (i.e., healthy) MVs by ML.

1.1 Outline of theMethod

Let S denote the set of all compact smooth 3D surfaces
properly embedded in R

3, and having piecewise smooth
boundaries, where the term “smooth” is short-hand for “of
class C∞.” LetD be a dataset of discretized smooth 3D sur-
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faces. When D is already partitioned into a finite number
of disjoint classes, automatic class prediction by supervised
ML is a natural goal. However, classical ML classifiers such
as random forests (RF) [59, 60], multi-layer perceptrons
(MLPs) [61], convolution neural networks (CNNs) [62], or
support vector machines (SVMs) [63] require the characteri-
zation of every surface S ∈ D by a computable feature vector
vec(S) ∈ R

N , for some fixed N ∈ N. We provide an inno-
vative approach to construct feature vectors vec(S) boosting
the accuracy of automatic classification for smooth surfaces.

We generate several families of intrinsic feature vectors
vec(S) invariant by rigid motions of R3. To this end, we
first construct a family � of dissimilarities δ(S, S′) com-
putable for all pairs (S, S′) ∈ S × S of smooth 3D surfaces.
These dissimilarities are easily computed after numerical
diffeomorphic registration from S to S′. Here, we seek a dif-
feomorphic spatial transformation φ ∈ diff(R3), diff(R3) ⊂
{ f : R3 → R

3} that maps S to S′, i.e., verifies φ(S) = S′.
In practice, we cannot expect this equality to hold due to,

e.g., errors in the data, numerical errors, and the ill-posedness
of the problem. For a numerical treatment, this requirement is
relaxed toφ(S) ≈ S′; in the variational problem formulation,
we minimize a measure of the proximity of φ(S) and S′.

We define the map φ as the endpoint of a time-indexed
flows (Ft )t≥0, Ft : R3 → R

3, of smoothR3-diffeomorphism.
More precisely, let vt (x) := v(t, x), v ∈ L2([0, 1],V),
denote a smooth vector field, where V denotes some Hilbert
space that is compactly embedded in the Cartesian product
space of one time continuously differentiable functions from
R
3 toR3, who—alongwith their derivatives—vanish at infin-

ity. We model Ft as the solution of the ordinary differential
equation (ODE)

∂t Ft = vt (Ft ) for almost all t ∈ [0, 1], (1)

with initial condition F0 = idR3 , where idR3(x) = x
is the identity transformation. The endpoints F1 form a
group G ⊆ diff(R3) that, along with a geodesic distance
ρG : G × G → R, defines a complete metric space (G, ρG).
In this Riemannian framework, we can measure distances
between shapes S, S′ by computing the length of the geodesic
that maps S to S′. The computation of this geodesic length
involves the numerical evaluation of the kinetic energy given
by

kin(vt ) :=
∫ 1

0
‖vt‖2V dt, (2)

where ‖ · ‖2V denotes a fixed Hilbert-norm for smooth vector
fields on R3. The evaluation of (2) requires the solution of a
nonlinear optimal control problem.We refer to [4, 24, 64, 65]
for a more rigorous discussion and provide additional details
below.

For this paper, the family � includes the kinetic energy
and all quantiles QUANTα(S, S′) of the isotropic strain val-
ues for the elastic deformation Ft . To overcome issues that are
paramount to applying ML approaches to medical imaging
datasets, we introduce two data augmentation techniques. (i)
For most ML classifiers, unbalanced class sizes do degrade
classification accuracy. To enrich any given class CL of
smooth surfaces, we propose here a diffeomorphic interpola-
tion algorithm: For any pair of surfaces S, S′ ∈ CL optimized
diffeomorphic registration of S and S′ generates a contin-
uous time-indexed flow (Ft )t≥0 of diffeomorphisms with
F0(S) = S and F1(S) = S′.When the kinetic energy is small
enough, the smooth surfaces St = Ft (S) can be added to class
CL as virtual new cases. (ii) For ML classifiers, robustness is
often enhanced when one enriches the training set by small
random perturbations of existing training cases. To apply this
approach to datasets of smooth surfaces, we generate contin-
uous time flows Ft of random smooth R

3 diffeomorphisms,
by time integration of smooth Gaussian random vector fields
Vt (x) indexed by time t ≥ 0 and x ∈ R

3. For small t > 0, the
smooth surfaces Ft (S) are the small random deformations of
S. Our numerical implementation involves a stochastic series
expansion of smooth Gaussian vector fields on R

3, which
required the analysis of convergence speed.

1.2 RelatedWork

Thepresentwork is a continuation of our priorworkon recon-
structing and studying MV dynamics through the lens of
geodesic flows of diffeomorphisms [18, 65–74]. The associ-
ated database of smooth 3D surfaces was cured and provided
by our collaborators from the Houston Methodist DeBakey
Heart and Vascular Center. In the present work, we use this
dataset as a benchmark for the automatic classification of
smooth 3D surfaces.

Pattern recognition, the classification of images, and, in
particular, the classification of shapes, have a rich history
in computer vision, with an extensive body of literature.
Generic descriptors for shape recognition include Fourier
descriptors [75], geodesic moments [76], curvature informa-
tion [77], multiscale fractal dimensions [78, 79], or local
contour signatures [80]. In the present work, we focus on the
classification of smooth 3D surfaces representing anatomi-
cal shapes. In 3D medical imaging sequences, segmentation
algorithms are often used to extract these smooth surfaces
S1, . . . , Sr ∈ S; they represent the outer surface of soft
organs—such as human brains or hearts—as well as the
boundaries of their internal chambers, cavities, or ventricles.
Classification of these types of anatomical shapes poses sig-
nificant challenges; they are typically smooth, with subtle
differences in their appearance across individuals. These sub-
tle differences necessitate the design of dedicated approaches
for their classification. Based on our assessment, we antici-
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pate that many automatic classifiers for 3D images of generic
shapes, such as PointNet [81, 82], VoxNet [83, 84], Diff-
CONV [85],DiffusionNet [86], and similarmachine learning
(ML) classifiers trained on rigid body datasets like ShapeNet
[87, 88] may, in general, not be well-suited for classification
tasks involving deformable smooth shapes. These classifiers
are primarily trained to quickly recognize rigid objects with
bags of features, where many features typically contribute
to identification by human vision, such as sharp edges, cor-
ners, colors, and textures. However, when dealing with 3D
images of deformable soft organs, efficient shape features
are then fundamentally different since they must remain reli-
able under possibly large elastic deformations of shapes. For
comparison, we report results for PointNet for the considered
benchmark dataset at the end of this manuscript.

There are two main approaches to studying shape vari-
ability in computational anatomy: (i) statistical shapemodels
[89–93], and (ii) diffeomorphic shape matching [4, 20, 36–
39, 65, 66, 94–98]

The former framework has been developed to aid image
segmentation [99–103] or assess the health status of indi-
vidual patients [104, 105]. The approach considered here
falls into the latter category, where comparing two shapes
involves the solution of a nonlinear, variational optimiza-
tion problem. Adjoint-based numerical methods to solve this
problem are, e.g., described in [8, 18, 20, 65, 66, 73, 74].
Methods that use automatic differentiation can be found
in [106–108]. Instead of solving the optimization problem
based on variational algorithms, some recent works try to
estimate the diffeomorphicmatching of two shapes usingML
techniques [109–115]. Related work that quantitatively com-
pares biomedical soft 3D shapes across patients and/or time
based on diffeomorphic registration includes [25, 41–48,
110, 116, 117]. In the present work, we are computing fam-
ilies of dissimilarities � between all pairs of shapes (S, S′).
An alternative approach is to construct a standard reference
dataset–a so-called atlas–based on a healthy population, and
subsequently compare new datasets to this reference [26, 31,
35].

1.3 Contributions

This paper builds upon our prior work on diffeomorphic
shape matching and algorithmic reconstruction of unknown
dynamics for MV leaflets [18, 65, 66, 66–74, 118]. Here, we
are interested in developing a fully automatic computational
framework for the classification of deformable shapes using
tools derived from diffeomorphic registration of smooth 3D
shapes [4, 20, 36–39, 65, 66]. Ourmain contributions are the
following:

• We use diffeomorphic registration between pairs S, S′
of smooth surfaces to compute several generic families

of dissimilarities dis(S, S′) invariant by the group G3
generated by rigid motions and homotheties in R3.

• For automatic classification of generic datasets of smooth
3D surfaces, we construct sets of G3-invariant feature
vectors derived from the G3-invariant dissimilarities
dis(S, S′).

• To re-balance class sizes in generic databases of smooth
3D surfaces, we design two novel data enrichment
approaches derived from diffeomorphic registrations.
One approach is based on diffeomorphic shape interpola-
tion. It extends the SMOTE enrichment technique [119]
based on linear interpolation of feature vectors, which is
restricted to Euclidean distances. The second approach
uses random diffeomorphic shape perturbations by auto-
mated simulations of smooth Gaussian random vector
fields in R3.

• For automatic classification in our benchmark dataset of
MV surfaces, we develop a localization scheme for dis-
similarity computations and tailor it to our discretized
MV surfaces to improve the discriminating powers of
our feature vectors.

• By implementing multiple RF classifiers based on our
G3-invariant feature vectors, we perform a comparative
importance analysis between nine groups of features to
discover the most important of our dissimilarities, which
turn out to be high quantiles of strain distributions.

• We successfully apply all our preceding approaches to
perform automatic RF-classification of 800 MV surfaces
into two classes (“regurgitation” vs “normal” cases), with
high OOB accuracy.

1.4 Outline

In Sect. 2, we outline our methodology. We describe our
benchmark dataset of smooth surfaces in Sect. 2.1. Our
approach to diffeomorphic shape matching is described in
Sect. 2.2;we formulate diffeomorphic registration as a classi-
cal variational problem and outline our algorithmic approach
for diffeomorphic registration. Going beyond the minimal
kinetic energy, we introduce families of G3-invariant sur-
face dissimilarities, which we derive from diffeomorphic
registration. In Sect. 2.3, we develop intrinsic families of
G3-invariant feature vectors for the automatic classification
of 3D surfaces. In Sect. 2.4, we outline two algorithms to
enrich the classes of discretized 3D surfaces based on dif-
feomorphic shape interpolation and random diffeomorphic
shape perturbations. In Sect. 3, we discuss our experimental
setup and present results for our benchmark dataset of MV
surfaces, which includes the overall classification approach
(see Sect. 3.1), classification through RFs (see Sect. 3.2),
as well as computing times (see Sect. 3.3). We conclude in
Sect. 4.
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Fig. 1 Left:Anatomical regions forMVdataset.Wehighlight the poste-
rior leaflet (teal color), the anterior leaflet (red color), and the coaptation
line (gold). On the right, we show the discretized shape S represented
by a grid [x1, . . . , xn(S)] of n(S) ∈ N points in R3

2 Methods andMaterial

In the following sections, we discuss our benchmark data set
of deformable shapes, our approach for computing various
features in shape space, and our proposed methods for the
classification of deformable soft shapes.

2.1 3D Echocardiographies of HumanMVs

Our study is based on echocardiographic images acquired
in vivo from 150 cardiology patients with potential MV
complications. For these patients, transesophageal echocar-
diography provides dynamic 3D views of their MVs at rates
of roughly 25 frames per heart cycle. A TOMTEC-Philips
software is used to extract a 3D snapshot of the two MV
leaflet surfaces per 3D frame. For frame time t , the extracted
3D snapshot displays the anterior (AL) and posterior leaflets
(PL), denoted by AL(t) and PL(t), of the MV as smooth sur-
faces discretized by a dense grid of 800 points per leaflet. This
database of 3500 discretized 3D snapshots of MV leaflets
was prepared and annotated by Dr. El-Tallawi.

During each heart cycle, the leafletsAL(t) andPL(t) close
the MV at mid-systole (t = tmidsys) and open the MV at end-
systole (t = tendsys). These two leaflets define a deformable
connected 3D surfaceMV(t) bounded by a flexible ring (the
“annulus”). At t = tmidsys, the leaflets AL(t) and PL(t) are in
full contact along the coaptation line to tightly close the MV.
The leaflets open theMV progressively until the end-systole,
then remain fully open during diastole, and start closing again
at the beginning of systole.When theMV is open, the coapta-
tion line is split into two curved boundary segments ∂AL(t),
∂PL(t), sharing the same endpoints. We show representative
patient data in Fig. 1. We note that some of the points in our
mesh come with anatomical annotations (such as the coap-
tation line). However, there is no one-to-one correspondence
between the mesh points. We need to establish pointwise
correspondences through diffeomorphic shape matching.

In previous studies [18, 65, 66, 70–72], automatic diffeo-
morphic registration of the MV leaflets between t = tmidsys

and t = tendsys was developed and systematically imple-
mented for this database of 3D image sequences, to compute

the intensities and spatial distribution of the tissue strain
induced by MV deformation at each heartbeat. This project
aimed to provide cardiologists with patient-specific displays
of MV leaflet strain intensities as a potential aid to eval-
uate and compare MV clinical cases [70–72]. Our current
version of the solver performs these diffeomorphic registra-
tions in less than 2min per patient on a standard laptop, for
pairs of surfaces discretized by 1600 points each [66]. In the
present paper, we develop diffeomorphic deformation tech-
niques for the automatic classification of soft smooth shapes.
The database of 3D MV snapshots serves as a benchmark to
implement and test our approach.

2.2 Diffeomorphic Registration of 3D Surfaces

Below, we describe our approach for diffeomorphic shape
matching. We refer to our past work for additional details
[18, 65, 66, 118].

2.2.1 Diffeomorphic Deformations inR3

Recall the basic mathematical formalization of LDDMM [4,
20, 34, 36]. Fix a scale parameter s > 0 and let Ks : R3 ×
R
3 → R be the positive definite radial kernel

Ks(x, y) = exp(−‖x − y‖22/s2) (3)

for all x, y ∈ R
3. We call any smooth map x �→ wx from

R
3 to R

3 such that wx and all its derivatives tend to 0 as
‖x‖ → ∞ a smooth vector field w on R

3. For any such w,
define the norm ‖w‖ by

‖w‖2 =
∫
R3

∫
R3

Ks(x, y)〈wx , wy〉R3 dx dy. (4)

Endowed with this norm, the vector space V of smooth
vector fields becomes a Hilbert space. Call velocity flow any
set v = (vt ) of time-indexed smooth vector fields vt ∈ V
such that t �→ vt is a Lipschitz continuous map from [0, 1]
into V . Denote V the Hilbert space of all velocity flows v =
(vt ) having finite kinetic energy kin(v) defined by

kin(v) =
∫ 1

0
‖vt‖2 dt .

Call smooth deformation of R3 any time-indexed flow
(Ft ), t ∈ [0, 1], of smooth diffeomorphisms Ft from R

3

to R
3, such that F0 is the identity map idR3 : R

3 → R
3.

As shown in [21, 64], for any velocity flow v = (vt ) in V ,
there is a unique smooth deformation (Ft ) of R3 solving the
ODE (1). Then, kin(v) will also be called the kinetic energy
of the smooth deformation (Ft ).
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2.2.2 Diffeomorphic Registration of Surfaces

To compare two surfaces S and � in S, one seeks a smooth
deformation (Ft ) having minimal kinetic energy among all
deformations verifying F1(S) = �. This requires finding
a velocity flow v = (vt ) in V and an associated smooth
deformation flow (Ft ) solving the variational problem

minimizev∈V, (Ft )∈F kin(v) (5a)

under the nonlinear constraints

∂t Ft = vt (Ft ) for almost all t ∈ [0, 1], (5b)

F0 = idR3, (5c)

F1(S) = �. (5d)

To numerically solve the variational problem in (5), one
has to relax the rigidmatching constraint F1(S) = �, replac-
ing it with F1(S) ≈ � [18, 20, 21, 23, 65]. This is typically
accomplished by introducing a shape matching dissimilarity
between F1(S) and �, as described in the following section.

2.2.3 Kernel-Based Dissimilarity between Smooth Surfaces

The set S of compact smooth 3D surfaces with boundaries
can be endowed with many natural shape matching dissim-
ilarities [23, 65, 120–122]. For a fast numerical solution
of the variational problem (5), efficient differentiable shape
dissimilarities are provided, as we now outline, via the self-
reproducing Hilbert space (RKHS) associated with the radial
Gaussian kernel Q : R3 × R

3 → R, Q(x, y) := Kτ (x, y),
defined in (3)with anyfixed scale parameter τ > 0.The space
of bounded Radon measures μ on R

3 is a Hilbert space H
for the norm ‖μ‖ defined by

‖μ‖2 =
∫
R3

∫
R3

Q(x, y) dμ(x) dμ(y). (6)

The Lebesgue measure ofR3 induces on each surface S ∈
S a Riemannian surface element dμS(z), which determines
a bounded Radon measure μS ∈ H with support equal to S.
We rescaleμS by imposingμS(S) = 1. Define theHilbertian
shape matching dissimilarity HILB(S, �) between any two
surfaces S, � ∈ S by

HILB(S, �) = ‖μS − μ�‖2.

When S, � are discretized by two finite grids of points
xn ∈ S, 1 ≤ n ≤ N , and ym ∈ �, 1 ≤ m ≤ M , one
approximates μS and μ� by sums of Dirac masses

νS = 1

N

N∑
n=1

δxn and ν� = 1

M

M∑
m=1

δym ,

respectively. This approximates HILB(S, �) by ‖νS −ν�‖2,
which is a simple linear combination of all terms Q(xn, xn′),
Q(ym, ym′), Q(xn, ym) for 1 ≤ n, n′ ≤ N , 1 ≤ m,m′ ≤ M
[65].

We select this distance for several reasons: (i) most
importantly, it is a natural distancemeasure for shapes param-
eterized by point clouds with a rich mathematical structure
(as illustrated above) and (ii) it exhibits nice smoothness
properties that make it suitable for gradient-based optimiza-
tion algorithms. However, we also note that our framework
may benefit from considering other measures as data attach-
ment terms, such as currents [120] or varifolds [30, 121,
122]. Testing these types of data attachment models for the
considered classification problem remains subject to future
work.

2.2.4 Variational Problem Formulation

To soften the rigid matching constraint F1(S) = � in (5),
fix a positive weight λ. Then, seek a velocity flow v = (vt ),
vt ∈ V , and an associated diffeomorphic flow (Ft ), Ft ∈ V ,
which solves the relaxed variational problem

minimizev∈V, (Ft )∈F kin(v) + λHILB(F1(S),�) (7a)

subject to
dFt
dt

= vt (Ft ) (7b)

for almost all t ∈ [0, 1] with initial condition F0 = idR3 .
For fixed λ, after space-time discretization of S, �, and

[0, 1], the search for a vector field flow v = (vt ) minimiz-
ing the cost functional is then implementable numerically by
various gradient descent techniques [18, 20, 23, 65, 66, 73,
74]. Our numerical implementation of diffeomorphic regis-
tration for 3D surfaces is outlined further in Sect. 2.2.6, and
provides a good approximation of theminimal kinetic energy
KIN(S, �) (which represents a short-hand notation for the
evaluation of (2) for v = (vt ) associated with the minimizing
flow F = (Ft ) for (7) that maps S to �).

Remark 1 We note that the theoretically valid symmetry
relation KIN(S, �) = KIN(�, S) is only approximately
true for numerical estimates. The average (KIN(S, �) +
KIN(�, S))/2 would improve numeric accuracy at the cost
of doubling computing times.

2.2.5 Strain Analysis

After computing an optimal diffeomorphic registration F =
(Ft ) matching two surfaces S, � ∈ S, the terminal R3-
diffeomorphism f = F1 is a smooth invertible map from
S onto a smooth surface S′ = f (S), with very small Haus-
dorff distance HAUS(S′, �), where

HAUS(S, �) = maxx∈S miny∈� ‖x − y‖. (8)
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The minimal kinetic energy KIN(S, �) involves averages
of squared velocities over thewhole of S, and hence only pro-
vides a global dissimilarity between S and�. Strain analysis
of f , which we now outline as in [18], generates the spa-
tial distribution of local distortions between S and �: Fix
any point x ∈ S and let y = f (x) ∈ f (S). Denote Tx , Ty ,
the tangent spaces to S, S′ = f (S), at x and y, respectively,
endowedwith local surfacemetrics. Since f : S → f (S) is a
smooth bijection, the differential f ′(x) determines an invert-
ible 2 × 2 linear map Jx : Tx → Ty . For any tangent vector
u ∈ Tx with ‖u‖ = 1, the directional strain at x induced by
deformation f in direction u is the length dilation (or con-
traction) factor dirSTR(x, u) = |Jxu|. Let J ∗

x : Ty → Tx be
the transpose of Jx , and denote mx ≤ Mx the eigenvalues
of the positive definite 2 × 2 matrix J ∗

x Jx . The minimal and
maximal directional strains around x are equal to

√
mx and√

Mx , respectively. In general, one has mx < Mx , and the
directional strain at x depends on u. As in [18], to avoid this
anisotropy, we focus on the isotropic strain

isoSTRx = √
mxMx = √| det(Jx )|.

The measure isoSTRx has a simple geometric interpreta-
tion. For fixed x ∈ S, and any open patch Ux ⊂ S around x ,
define the ratio of surface areas

rat(Ux ) = area( f (Ux ))/ area(Ux ).

Then, rat(Ux ) tends to isoSTR2
x when the diameter of Ux

tends to 0. This provides the following fast numerical approx-
imation of isotropic strain: After discretization of S by a
finite grid gridS with small mesh size, and triangulation of
gridS , one simply setsUx to be the union of all triangles with
vertex x . Since isoSTRx is a dimensionless average length
dilation (or contraction) factor around x , we convert it into
an isotropic strain intensity

isix = |isoSTRx − 1|.

Clearly, isix quantifies the intensity of local deformations
around x by the diffeomorphic map f = F1 from f : S →
f (S) ≈ �.
As above, denote μS the probability distribution induced

on S by theR3-Lebesgue measure.When x ∈ S is selected at
random—with probability distribution μS—the distribution
of the randomvalues isix is a probability isi(S, �) onR+. For
each percentile 0 < α < 1, the quantile qα of isi(S, �) can
be viewed as a dissimilarity QUANTα(S, �) between S and
�. These dissimilarities are well approximated via quantiles
of the finite samples isix , x ∈ gridS when gridS has a small
mesh size. One can symmetrize QUANTα by averaging its
values for (S, �) and (�, S).

2.2.6 Diffeomorphic Registration Software

Prior versions of the diffeomorphic registration algorithms
described in this section have been developed and tested
in [18, 65]. These versions were implemented in MAT-
LAB and applied to study 3D echocardiography data of MV
patients [67–72]. As in our earlier papers, we implement a
discretize-then-optimize approach for solving the optimiza-
tion problem (7). The target shape � and the template shape
S are represented by two grids of points y1 = {yi1}ni=1 and
y0 = {yi0}mi=1 inR

3, respectively. Wemodel the velocity vec-
tor fields vt as vectors belonging to an RKHS defined by a
Gaussian kernel. Consequently, we write

vt (z) =
m∑
i=1

Kσ (xi (t), z)ai (t) (9)

for all z ∈ R
3. Here, Kσ : R3 × R

3 → R corresponds to
the kernel in (3). The coefficients {ai }mi=1, ai ∈ R

3, are then
the new controls of the discrete optimization problem. We
discretize the time interval [0, 1] by a nodal grid, resulting in
q equispaced intervals. We collect the associated coefficients
a j
i := ai (t j ), j = 0, . . . , q, in a vector (lexicographical
ordering) a of size c = 3m(q + 1). The ODE (i.e., the flow
equation) in (7) is discretized using a first-order explicit Euler
method. As for the control a, we collect the associated states
(deformed shape) in a concatenated vector x of size s =
3m(q + 1). With this, we can represent the forward Euler
step as a linear system

[
Gx Ga

] [
x
a

]
= g

with state-control vector (x, a) ∈ R
6m(q+1). The moderate

value q = 4 achieved a good compromise between numerical
accuracy and computing time for all numerical diffeomor-
phic surface registrations considered here. Moreover, in our
benchmark application, m = n = 800.

With slight abuse of notation, we arrive at the discrete
version of (7) given by

minimizea∈Rc, x∈Rs kin(a) + λHILB(xq , y1) (10a)

subject to
[
Gx Ga

] [
x
a

]
= g. (10b)

We refer to [18, 66] for the precise form of the operators
that appear in (10). To solve (10), we apply an operator split-
ting strategy typically referred to as the alternating direction
method of multipliers [123–125] or Douglas–Rachford split-
ting [126]. In its modern form, this algorithmwas introduced
in [127, 128]. The proximal form of the consensus form of
operator splitting for the discrete control problem in (10) at
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iteration k is given by [66]

[
xk+1

ak+1

]
= proxγ (indC+kin)

(
x̃ k+ uk, ãk+ wk

)
(11a)

[
x̃ k+1

ãk+1

]
= proxγHILB

(
xk+1− uk, ak+1− wk

)
(11b)

[
uk+1

wk+1

]
=

[
uk

wk

]
+

[
x̃ k+1

ãk+1

]
−

[
xk+1

ak+1

]
. (11c)

Here, γ > 0 is an algorithm parameter and indC rep-
resents an indicator function for the set C ⊆ R

6m(q+1) of
state-control pairs (x, a) that satisfy the discretized dynam-
ical system in (10), i.e.,

C :=
{[

x
a

]
| [
Gx Ga

] [
x
a

]
= g

}
.

We solve the first-order optimality conditions of sub-
problem (11a) for the state-control vector (x, a) using
a matrix-free, preconditioned conjugate gradient method.
Given the solution of (11a), we solve (11b) for the state-
control vector (x̃, ã) using a matrix-free Newton–Krylov
method [129]. The last step in (11c) represents an update
of the dual variables (u, w) associated with the consensus
constraint (x, a) = (x̃, ã). A more detailed discussion of
this solver is beyond the scope of the present paper and is
provided in [66]. For the sake of the present work, we con-
sider it a black-box method that provides us with an efficient
and fast diffeomorphic registration of 3D surfaces.We termi-
nate this algorithmwhen the discretized, censored Hausdorff
distance between the deformed shape xq and the reference
shape y1 is of the order of the surface discretization mesh
size (see [18, 65, 66] for details).

2.2.7 Choice of Meta-Parameters � and �

We explore the performance of our solver as a function of the
scale parameters τ and σ in [66]. We found that our method-
ology ismore sensitive to the scale parameter τ that enters the
distance measure than the scale parameter σ for the parame-
terization of the diffeomorphism.Here,we propose heuristics
for selecting these scale parameters based on the considered
dataset. In typical applications comparing 3D images of soft
organs across patients, surfaces S and � are discretized by
grids of roughly equal sizesm. Preliminary homothetic trans-
formations of S, �, to yield area(S) = area(�) as done in
our benchmarkMV data set usually forces the mesh sizes hS ,
h� , of our two new grids to be of the same order. Let then
h = (hS + h�)/2. We naturally want the kernel Kτ (x, z)
defining the distance HILB(S, �) to remain sensitive to local
matchingdiscrepancies of the order ofh, and to remainhighly
local. This is achieved by choosing τ ≈ chwith 2.5 < c < 5.
Formula (9) for velocities vt (z) involves a priori m terms

Kσ (xi (t), z). We want to ensure (uniformly in z ∈ S) mod-
erate bounds of the form c′/σ for the norm of the differential
∂zvt (z). To that end, we force (9) to only involve a small num-
ber of close neighbors xi (t) for each z ∈ S. This is achieved
by choosing σ = c′h with 2.5 < c′ < 5. Given a data set
of surfaces to automatically classify, the practical choices of
c, c′ can be validated empirically by testing them on a small
random sample of pairs S, �.

Remark 2 We note that a multiscale strategy (i.e., a continua-
tion in the scale parameters) might improve the performance
of our methodology, especially in cases where the initial
misalignment between the datasets is significant or if the
mesh points used for the parameterization of the surfaces are
distributed more irregularly. The design of a policy for inte-
grating scale continuation with parameter continuation for
the distance measure (see, e.g., [13, 65]) remains subject to
future work.

2.3 Shape Dissimilarities and Automatic Shape
Classification

We discuss our proposed framework for the classification of
deformable shapes next.

2.3.1 The Need for Intrinsic Feature Vectors

Consider any dataset D ⊂ S of smooth 3D surfaces par-
titioned into a finite set of classes CL j . We implement
automatic classification in D by supervised ML. All well-
known classifiers such as MLPs [61], RFs [59, 60] or SVMs
[63] require the description of each surface S ∈ D by
“natural” feature vectors vec(S) belonging to a Euclidean
space of fixed dimension (or to some fixed RKHS). How-
ever, in practice each surface S ∈ D is available only
through discretization by a finite grid gridS of points xn ∈ S,
1 ≤ n ≤ N , and the cardinality cardS = N of gridS
often varies with S. Naive direct indexation of S by the vec-
tor X(S) = [x1, x2, . . . , xn, . . . , xN ], is mathematically not
sound since the dimension 3cardS of X(S) may vary with
S; any permutation of the points xn would radically mod-
ify X(S) while still defining the same discretized surface
S. Intrinsic feature vectors vec(S) that describe the smooth
shapes S discretized by finite grids gridS should at least
remain stable under permutations of these grids, and exhibit
some natural consistency when the mesh size of gridS tends
to 0. Another natural requirement in many biomedical appli-
cations is the invariance of vec(S)when S is replaced by ρ.S,
where ρ is any rigid motion in R

3.
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2.3.2 Families of Dissimilarities Invariant to Rigid Motions

To generate intrinsic feature vectors vec(S), we start by
introducing multiple types of dissimilarities dis(S, �) =
dis(�, S) ≥ 0 between pairs of surfaces (S, �). These dis-
similarities are not necessarily distances.While someof them
are natural squared distances, in all our uses of dissimi-
larities one does not need the triangular inequalities to be
verified. For the automatic classification of smooth surfaces,
our generic dissimilarities are typically of the form

dis(S, �) = u[d(S, �)], (12)

where u : R
+ → R

+ is any continuous increasing func-
tion verifying u(0) = 0, and d(S, �) ≥ 0 is any bona fide
distance between smooth surfaces S, �.

We have already defined four dissimilarities dis(S, �)

between pairs of surfaces S, � ∈ S, namely:

1. the Hausdorff distance HAUS(S, �),
2. the squared Hilbert distance HILB(S, �),
3. the kinetic energy KIN(S, �), and
4. the strain quantiles QUANTα(S, �).

Let SE(3) be the group of rigid motions in R
3, generated

by translations and rotations. Each one of these basic four
dissimilarities dis(S, �) is invariant by rigid motion, i.e.,
verifies

dis(S, �) = dis(ρ.S, ρ.�) (13)

for all ρ ∈ SE(3). This is an interesting property in the con-
text of automatic classification for soft organ shapes observed
acrossmultiple patient groups since one expects the true class
of a soft shape S to be invariant by all rigid motions of S.
Within our benchmark dataset of discretized MV surfaces,
we also wanted to mitigate the impact of patient height and
weight by applying to each surface S an adequate homoth-
etic transformation. This led us to construct strongly invariant
dissimilarities as follows.

2.3.3 Strongly Invariant Dissimilarities

For any surface S ∈ S, denote cS its center of mass and tenS
its 3 × 3 tensor of inertia, which are given by

cS =
∫
x∈S

x dμS(x)

and

tenS =
∫
x∈S

∫
y∈S

q(x, y) dμS(x) dμS(y),

where q(x, y) = (x − cS)(y − cS)∗, x , cS are column vec-
tors, and ∗ denotes transposition. When S is discretized by a
finite grid gridS , the intrinsic measure μS induced on S by
R
3-Lebesgue measure is simply the average of Dirac masses

carried by the points of gridS . The matrix tenS has posi-
tive eigenvalues λ1 ≤ λ2 ≤ λ3 and unit length eigenvectors
η1, η2, η3.

Fix an orthonormal basis e1, e2, e3 inR3. For each S ∈ D
define the R

3-rotation rotS and the rigid motion ρS by
rotSη j = e j for j = 1, 2, 3, and ρS y = rotS(y − cS) for
y ∈ R

3. To each surface S in our dataset D, we will first
associate the surface S′ = ρS .S. Note that cS′ = 0, and that
the inertia tensor tenS′ has {e1, e2, e3} as ordered eigenvec-
tors. Then, we transform S′ into S′′ = hS .S′, where hS is
the homothety centered at 0 and such that area(S′′) = 1. The
linear transformation gS = hS ◦ ρS belongs to the group
G3 generated by the rotations, translations, and homoth-
eties from R

3 to R
3, and we will systematically replace S

by S′′ = gS .S. Let κ be either a translation, a rotation, or
a homothety from R

3 to R
3. As is directly verified in each

one of these three cases, the surface (κ.S)′′ = gκ.S .(κ.S) is
identical to S′′. Hence, the property (κ.S)′′ = S′′ will also
hold for all linear transformations κ ∈ G3.

Remark 3 The alignment based onmoments described above
does not work for all types of shapes. For the shapes consid-
ered in our work, we have developed a consistent strategy to
order the eigenvectors {e1, e2, e3} based on anatomical fea-
tures available to us. The true anatomic orientation of the
eigenvectors is done by projecting on e1 the centers of grav-
ity of the anterior and posterior leaflets of S and projecting on
e2 the left and right commissures of S (endpoints of the coap-
tation line). We then impose e3 = e1 × e2. Let {u1, u2, u3}
be a standard orthonormal basis ofR3. There is then a unique
rotation rotS such that rotSe j = u j for j = 1, 2, 3. In our
MV benchmark data set, this approach was non-ambiguous
because the eigenvalues of all inertia tensors tenS are distinct,
and the anatomic orientation of the first two eigenvectors of
tenS is straightforward. For generic smooth surfaces S, the
eigenvalues of tenS might be quite similar. Then, the reori-
entation strategy outlined above no longer directly applies.
Consequently, other strategies such as the iterative closest
point algorithm need to be considered for pre-alignment.

Any dissimilarity dis(S, �) defined for all pairs S, � in S
and verifying the rigid motion invariance (13) will naturally
define a standardized dissimilarity dis+ by

dis+(S, �) = dis(gS .S, g�.�) = dis(S′′, �′′). (14)

Thanks to (13), the dissimilarity dis+(S, �) does not
depend on the choice of orthonormal basis e1, e2, e3. More-
over, for any pair of transformations κ1, κ2 ∈ G3, we
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have—as seen above—(κ1.S)′′ = S′′ and (κ2.�)′′ = �′′,
so that (14) implies

dis+(S, �) = dis+(κ1.S, κ2.�)

for all κ1, κ2 ∈ G3.
To each one of the dissimilarities dis listed above as items

1 through 4, we apply the preceding construction to generate
a corresponding strongly invariant dissimilarity dis+. Inwhat
follows, we will adopt the following simplified notations:

haus(S, �) = HAUS+(S, �), (15a)

hilb(S, �) = HILB+(S, �), (15b)

kin(S, �) = KIN+(S, �), (15c)

quantα(S, �) = QUANT+
α (S, �). (15d)

2.3.4 Construction of Intrinsic Feature Vectors for Shape
Classification

LetD be a benchmark set of smooth surfaces partitioned into
several disjoint classes CL j of surfaces. To define intrinsic
feature vectors describing these surfaces, we select (and fix)
in D a finite reference set REF = {�1, . . . , �r } of r ∈ N

surfaces. In our applications below,REF will simply be either
the set of all training cases or a large subset of the set of
“normal” cases.

Select any one of the strongly invariant dissimilarities
dis(S, �) listed as items 1 through 4 above. Then, character-
ize any surface S ∈ D by the r -dimensional feature vector
vec(S) having coordinates

vec(S)k = dis(S, �k), k = 1, . . . , r .

These feature vectors verify the G3 invariance vec(S) =
vec(κ.S) for all linear transformations κ ∈ G3. We extend
this approach by selecting p ∈ N distinct dissimilarities
dis1, . . . , disp among all the dissimilarities listed above as
items 1 through 4. Each associated disi defines—as above—
feature vectors veci (S) ∈ R

r , which can naturally be
concatenated into the pr -dimensional feature vector

VEC(S) =
[
vec1(S), . . . , vecp(S)

]
∈ R

pr .

This feature vector verifies the desirable properties out-
lined above for intrinsic feature vectors. To test and validate
our approach, we have applied it to the automatic classifica-
tion of MVs by RF classifiers (see Sect. 3).

2.4 Data Enrichment

Since our benchmark dataset included unbalanced classes,
we implemented new diffeomorphic techniques for rebal-
ancing small classes. This is outlined next.

Remark 4 When we enrich one class of cases, we control
the individual surface perturbations to make sure that the
perturbed surface remains sufficiently far from the surfaces
belonging to the other class.

2.4.1 Enrichment by Diffeomorphic Interpolations

In automatic classification via ML by well-known classifiers
such as MLPs [61], CNNs, RFs [59, 60], or SVMs [63], the
strong imbalance between class sizes tends to degrade clas-
sification accuracy, specifically among the smallest classes.
Since our benchmark dataset of MV surfaces was derived
from unbalanced classes of patients, we have implemented
several diffeomorphic deformation algorithms for the rebal-
ancing of small classes. In most applications of automatic
classifiers, all cases are described by feature vectors belong-
ing to a fixed Euclidean space; enriching any small class CL
of cases is often implemented via the SMOTE algorithm (see,
e.g., [119]), which linearly interpolates between neighbor-
ing feature vectors of CL-cases. For datasets of discretized
smooth 3D shapes, the SMOTE algorithm is not directly
applicable because for intrinsic feature vectors (such as those
constructed above) convex combinations of feature vectors
produce vectors that are not necessarily associated with any
smooth surface. So, to enrich any given finite class CL ⊂ S
of smooth 3D surfaces, we proceed by nonlinear diffeomor-
phic interpolation between pairs of surfaces S, � ∈ CL such
that the associated Hausdorff distance is sufficiently small.

With the notations of Sect. 2.3.3, replace S and� by S′′ =
gS .S and �′′ = g�.�, where gS and g� are in the group
G3. Compute an optimized diffeomorphic deformation flow
F = (Ft ) such that F1(S′′) ≈ �′′. In practical applications
below, time is discretized andwe select an intermediary value
t ∈ [0, 1] between 1/2 and 3/4 before adding the new smooth
surface St = Ft (S′′) to the class CL. See Fig. 2.

2.4.2 Enrichment by Random Diffeomorphic Deformations

Fix any given finite class CL of smooth 3D shapes. To enrich
CL, we have also implemented small random diffeomorphic
perturbations of the surfaces in CL. Our algorithms rely on
simulating smooth randomGaussian vector fields indexed by
time t and all points x ∈ R

3, before integrating them in time.
Simulation of Smooth Gaussian Random Vector Fields

Fix any integer d > 0, which in this paper will only
take values d ∈ {1, 2, 3}. A random R

d -valued vector
field W , x �→ W (x), indexed by all x ∈ R

3 is for-
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Fig. 2 Orange surface S3/4 is created by diffeomorphic interpolation
between the blue surface S0 = S and the yellow surface S1 = �

mally a set of random vectors W (x) ∈ R
d defined on

the same probability space (�, P) such that W (x, ω) is a
jointly measurable function of (x, ω) ∈ R

3 × �. Such a
random vector field W is called Gaussian when for any
finite set of points {x(1), . . . , x(m)} in R

3m , the random
vector (W (x(1)), . . . ,W (x(m))—which belongs to R

dm—
has a Gaussian distribution. Since any multi-dimensional
Gaussian is characterized by its mean and its covariance
matrix, the probability distribution of a Gaussian random
vector field is fully determined by two deterministic func-
tions, namely x �→ u(x), u(x) = E[W (x)] ∈ R

d and
(x, y) �→ ker(x, y) = Cov(W (x),W (y)), where each d ×d
matrix ker(x, y) is positive semi-definite.

For easier simulations of Gaussian random vector fields
W : R3 → R

3, we focus only on the case where E[W (x)] =
0 for all x and the 3 × 3 covariance kernel ker(x, y) is a
diagonal matrix:

ker(x, y) = diag[κ1(x, y), κ2(x, y), κ3(x, y)] (16)

for all x, y ∈ R
3. For each j = 1, 2, 3, we fix a scale param-

eter s j > 0 and we define the radial kernel κ j (x, y) for all
x, y ∈ R

3 by

κ j (x, y) = Kσ (x/s j , y/s j ), (17)

with Kσ : R3 × R
3 → R as in (3) and σ = 1. In “Appendix

A.1,” we outline our algorithm to numerically simulate a
one-dimensional Gaussian random field x �→ U (x) ∈ R

with mean 0 and covariance kernel k(x, y) = exp(−‖x −
y‖2), indexed by all x ∈ R

3. Moreover, x �→ U (x) is an
almost surely smooth function of x . Our simulation algorithm
involves the numerical summation over all triplets of non-

Fig. 3 An example of simulated two-dimensional smooth Gaussian
random field W (x) = [W 1(x),W 2(x)]. For better visualization, all
vectors W (x) are normalized to have the same length

negative integers (m, n, p) of the almost surely converging
explicit series

U (x) =
∑
m,n,p

Zm,n,pum,n,p(x), (18)

where each um,n,p(x) is an explicit deterministic smooth
function of x ∈ R

3, and the Zm,n,p are independent Gaus-
sian random variables having the same mean 0 and standard
deviation 1. This numerical summation can be replicated 3
times (with new Zm,n,p each time), to simulate 3 independent
versions U 1(x), U 2(x), U 3(x) of the smooth Gaussian ran-
dom field U (x). We then rescale U j (x) by setting W j (x) =
U j (x/s j ) for all x ∈ R

3 and each j = 1, 2, 3. Then,
for x ∈ R

3, we define the 3D smooth Gaussian random
fieldW (x) = [W 1(x),W 2(x),W 3(x)].Moreover,W (x) has
mean 0 and diagonal covariance kernel ker(x, y) given by
equations (16) and (17). In Fig. 3, we display an example
of smooth 2D Gaussian random field [W 1(x),W 2(x)] sim-
ulated by numerical summation of the series (18).

Small Random Diffeomorphic Perturbations of Smooth
Surfaces LetW (x) ∈ R

3 be the just described smooth Gaus-
sian random vector field indexed by x ∈ R

3. Let L be any
fixed 3 × 3 matrix. Then, for x ∈ R

3, the affine function
x �→ Lx defines a deterministic vector field, and

Vt (x) = t Lx + √
tW (x) for all t ≥ 0, x ∈ R

3

defines a time-indexed flow Vt (x) of smooth Gaussian
random vector fields with deterministic mean vector field
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E[Vt (x)] = t Lx and diagonal covariance kernel ker(x, y)
given by (16) and (17). For t small, the small perturbating
random velocity fields Vt can be viewed as an infinite dimen-
sional analog of a multivariate Brownian motion wt ∈ R

k

with an added drift t Bx ∈ R
k linear in time and space. Since

βt and
√
tβ1 have the same Gaussian distribution, we nat-

urally model the “Brownian” part of our small perturbating
velocity fields by

√
tW (x).

We have outlined above how to simulate x �→ W (x),
which then directly provides the values of Vt (x) for all (t, x).
We then numerically generate a stochastic flow Ft of random
R
3-diffeomorphisms by pathwise discrete integration in t of

the stochastic ODEdFt (x)/dt = Vt (Ft (x)), with F0 = idR3 .
Time is discretized by fixing a moderate number of instants
t j = jδ, j = 0, 1, 2, . . ., with a small time step size δ >

0. Since the random vector fields Vt (x) are almost surely
smooth in (t, x), discretized integration in time and space is
mathematically stable when the mesh size in space and time
tends to 0. To randomly perturb a discretized surface S ∈ CL,
numerical ODE integration is done separately for each initial
grid point x ∈ S. This will generate the points y j = Ft j (x).
One can then enrich the set CL by adding the (discretized)
smooth surface Ft (S) to CL as a virtual case, after checking
that Ft (S) is still close enough to S. Indeed, for bona fide
enrichment of a given class of surfaces, one needs to stop
the random diffeomorphic deformations Ft (S) at moderate
values of time t , as displayed for instance in Fig. 4.

In our application to the enrichment of small classes of dis-
cretized MV surfaces, we control random perturbations via
simple geometric criteria such as triangulation homogeneity
and the trimmed Hausdorff distance.

3 Setup, Experiments and Results

Next, we report the results of applying our shape classifica-
tion methodology to our benchmark MV dataset.

3.1 Automatic Classification of MVs: Regurgitation
vs. Normal

We have developed a methodology for the automatic clas-
sification of smooth 3D surfaces based on diffeomorphic
registration of surfaces.We have implemented this automatic
classification methodology for a subset of our MV surfaces,
namely the union of two disjoint classes of MVs—normal
cases vs. regurgitation cases.

3.1.1 Benchmark Classification Task

Our original dataset involves 3D views of humanMVs and is
acquired by echocardiography for 150 patients, with roughly
25 3D views per patient spanning one heart cycle. Each MV

3D view is discretized by a grid of 1600 points in R
3, with

800 points per MV leaflet. MV regurgitation occurs when
at mid-systole the two MV leaflets AL and PL do not close
properly around the coaptation line (instead of tightly clos-
ing as in normal patients). At mid-systole, this incomplete
MV closure leaves a narrow gap between AL and PL, induc-
ing a blood flow leak in the wrong direction during systole,
which weakens the normal blood flow through arteries. MV
regurgitation is not rare after age 60, and severe regurgitation
requires surgical MV repair.

Our benchmark application is ML classification of regur-
gitation versus normal cases based on the diffeomorphic
matching techniques introduced above. In 3D echocardio-
graphy, MV regurgitation is best visible at mid-systole, so
we kept only the MV views acquired at times closest to mid-
systole, namely four views per regurgitation case and two
views per normal case. This defines an initial benchmark
dataset D of 3D discretized MV surfaces, partitioned into
120 regurgitation cases and 200 normal cases.

We note that—strictly speaking—the datasets that display
regurgitation have a different topology than those of healthy
patients (due to the open gap at mid-systole). It is hard to
guarantee anatomical integrity of the computed map (Ft )t≥0

from a subject that has regurgitation to one that does not
without including additional prior knowledge. That is, while
our map is guaranteed to be a diffeomorphism (i.e., a smooth
bijection that has a smooth inverse) from one point cloud to
the other, we cannot guarantee that points located on one
leaflet are mapped to points located on another leaflet if they
are in close vicinity to one another (see Fig. 1 for an illustra-
tion). That is, points located on the AL could be mapped to
points on the PL of another patient. One way of addressing
this issue is to assign higher weights for points located on
the boundary of the MV. The boundaries of the individual
leaflets are well-identified even when the MV is closed. We
have the anatomical annotations to do so, and our software
supports this. Another approach (that our software supports)
is to register the leaflets individually. Thisway, topology does
not change. Lastly, we note that developing approaches that
can handle topology changes is an active area of research;
we refer to the works in [130–138] for examples.

3.1.2 Enrichment of Benchmark Data Set

Recall that the strongly invariant dissimilarity haus(S, �) is
defined in 15a. As outlined in Sect. 2.4.1, we enrich the initial
class of 120 regurgitation cases by diffeomorphic interpo-
lation between pairs S, � of regurgitation 3D views having
small dissimilarity haus(S, �). Our shape interpolation tech-
nique is thus applied to 80 pairs S, � of regurgitation MV
surfaces, and generates 80 new virtual regurgitation cases.
After this first enrichment of our benchmark dataset, the two
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Fig. 4 Enrichment of shape classes through random diffeomorphic
deformations Ft (S). We display the initial surface S(t0) along with
deformed surfaces S(t1) and S(t2) at times 0 ≤ t0 < t1 < t2 in an
overlay view on the left. The surfaces S(t1) and S(t2) are generated by

applying a time-indexed flow of random diffeomorphic deformations
to the initial surface S(t0). Enlarged views of the individual surfaces
S(t0), S(t1), and S(t2) are shown to the right. The applied deformations
remain moderate as long as t2 − t0 (and by that t1 − t0) is small

classes “regurgitation” and “normal” now have the same size
of 200.

As outlined in Sect. 2.4.2, we have then implemented
one small random diffeomorphic deformation for each one
of these 400 smooth surfaces, to generate 200 new virtual
“regurgitation” cases and 200 new virtual “normal” cases.
After this second enrichment, our new benchmark dataset—
still denoted D for simplicity—involves now a total of 800
smooth surfaces, namely 400 regurgitation cases and 400
normal cases.

3.1.3 3D Image Cropping of MV Surfaces

For expert cardiologists inspecting sequences of live echocar-
diography data in 3D, diagnosis ofMV regurgitation includes
visually checking if around mid-systole small gaps emerge
along the coaptation line. We hence deliberately focus our
MV surfaces analysis on an MV area close to the coaptation
line, and we restrict our diffeomorphic shape registration
techniques to cropped 3D snapshots of MV surfaces. Our
image cropping keeps only the central half of each orig-
inal discretized MV surface snapshot S, namely the 800
grid points of S which are roughly closest to its coaptation
line. Cropping MV surfaces is primarily done to reduce the
computational time. Indeed, our numerical implementation
of diffeomorphic registration [65, 66] has a computational
complexity dominated by the evaluation of the n × n kernel
matrices Kσ , Kτ , so that keeping only 800 points reduces the
computational time by a factor of four. We display a cropped
MV surface in Fig. 5. After enrichment and image cropping,
our final benchmark dataset, which we still denote D, con-
tains a total of 800 cropped smooth MV surfaces, namely
400 regurgitation cases and 400 normal cases.

3.1.4 Statistical Analysis of Kinetic Energy and Strain
Quantiles

Let G3 be as above the group of linear transformations ofR3

generated by rotations, translations, and homotheties. For our
enriched benchmark datasetD of 800 cropped MV surfaces,

Fig. 5 Cropped MV surface snapshot for a severe MV regurgitation
case: Only the 800 points closest to the coaptation line have been kept.
We show in blue and red the points located on each leaflet. The subset of
points kept that are located closest to the coaptation line are highlighted
based on a Delaunay triangulation (in green). The opening of the MV
due to regurgitation is highlighted in gray

we have studied the histograms of dissimilarity values taken
by the following five strongly invariant dissimilarities:

1. the kinetic energy kin(S, �).
2. the four strain intensity quantiles

quantα(S, �), α ∈ {0.05, 0.50, 0.95, 0.99}.

The construction of these dissimilarities was outlined in
Sects. 2.3.2 and 2.3.3. In particular, for all κ1, κ2 ∈ G3, these
dissimilarities remain unchanged when S, � are replaced by
κ1.S, κ2.�. For fixed S, �, the actual computation of these
five dissimilarities requires the numerical diffeomorphic reg-
istration of the two cropped MV surfaces S′′ = ρS .S and
�′′ = ρ�.� geometrically derived from S, � by specific
ρS, ρ� ∈ G3, as indicated in Sect. 2.3.3.
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Fig. 6 Blue, red, and green bars correspond to the three sets Nor/Nor, Reg/Reg, Nor/Reg, respectively, of 104 pairs (S, �) in D. The histograms
of our five strongly invariant dissimilarities {kin, quant0.05, quant0.50, quant0.95, quant0.99} are shown from left to right. The y-axis represents the
number of pairs

To study empirically the distributions of these five dis-
similarities, we have picked in D a random subset of 100
normal cases and 100 regurgitation cases and implemented
diffeomorphic registrations for three sets of 104 pairs (S, �),
namely the three sets Nor/Reg, Reg/Reg, and Nor/Nor, cor-
responding to {Normal vs. Regurgitation}, {Regurgitation
vs. Regurgitation}, and {Normal vs. Normal}, respectively.
Within each one of these three sets, we have separately com-
puted the histograms of our five dissimilarities

{kin, quant0.05, quant0.50, quant0.95, quant0.99}.

See Fig. 6, where we display five figures in each of the three
histograms. Here, the blue, red, and green bins correspond to
histograms computed within the sets Nor/Nor, Reg/Reg, and
Nor/Reg, respectively.

For the pairs of Nor/Nor cases, the blue histograms show
that our five dissimilarities are mostly concentrated around
small values, indicating a rather tight grouping of normal
cases in “dissimilarity space.” For the pairs of Reg/Reg cases,
the red histograms exhibit roughly larger values of our five
dissimilarities, revealing a looser grouping of regurgitation
cases in “dissimilarity space.” But for the pairs of Nor/Reg
cases, the green histograms show that all five dissimilarities
exhibit fairly high values, and hence indicate a potentially
good separability in “dissimilarity space.” Moreover, the
green histogramsof quantiles dissimilarities quantα observed
for pairs of Nor/Reg cases exhibit a marked increase in val-
ues when the percentile α increases from 0.05 to 0.99. This
points to a higher discriminating power of quantα for higher
percentiles α.

3.1.5 Selection of Dissimilarities to Improve Discrimination

When S is a regurgitation case and � is a normal case, as
shown in Fig. 7, the presence of gaps along the coaptation
line of � forces the strain intensities isix( j) when the points
x( j) become closer to the coaptation line of S. This remark
led us to focus on eight quantile dissimilarities defined by

Fig. 7 An example of strain vector isi(S, �) of dimension 800, where
the cropped surfaces S and� are a regurgitation case and a normal case,
respectively. The last 100 strain intensities correspond to the 100 points
of S closest to the coaptation line and tend to have higher values

medstraink(S, �) = q0.50

highstraink(S, �) = q0.95,

whereq0.50 denotes the 50%quantile andq0.95 the 95%quan-
tile of isi1:k(S, �) for k = 80, 160, 240, 800, respectively.

Our choice of 50% and 95% quantiles was motivated
by the histogram analysis outlined in Sect. 3.1.4. For bet-
ter interpretability, we have also replaced the kinetic energy
dissimilarity kin(S, �) by its square root sqrtkin(S, �) =√
kin(S, �), which is a bona fide distance between smooth

surfaces.
To decide which distances from (15) yield the most

descriptive features, we have first compared RF classifica-
tion accuracy when features are generated by three different
groups of distances to the reference set of 100 surfaces: (i)
Hausdorff & Hilbert distances yielding 200 features per case
(ii) kinetic energy & strain quantiles yielding 900 features
per case (iii) all eleven distances yielding 1100 features per
case. We provide more details about this performance anal-
ysis for a reduced set of features in Sect. 3.2. We report the
associated OOB accuracy (see also Sect. 3.2.2) in Table 1.
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Table 1 OOBaccuracy for different choices of groups of dissimilarities
to the reference set of 100 surfaces

Set of distances OOB accuracy (%)

All distances 97.5

Kinetic energy and strain quantiles 97.5

Hausdorff and Hilbert distance 96.1

We can observe that the maximum OOB accuracy = 97.5%
is already reached when using only kinetic energy and strain
quantiles to generate features, and does not increase if we
add the Hausdorff and Hilbert distances. We also note that
jointly, Hausdorff and Hilbert distances already enable a
high (but not maximal) classification accuracy, an interest-
ing point since these two distances have low computing
costs.

Classically, the importance of the group of 100 features
derived froma single distance is defined as theOOBaccuracy
degradation generated when all values of these 100 fea-
tures are randomly permuted. When comparing importances
within a finite set of eleven distances, the eleven importances
are normalized to add up to 100%. We have computed the
relative importance of our eleven distances for RF classi-
fication; for Hilbert and Hausdorff distances, this yielded
equal relative importance, which was inferior to the relative
importance of each one of the five strain quantiles. We report
additional results for a reduced set of features in Sect. 3.2.4.

Overall, from now on we consider only the nine strongly
invariant dissimilarities

D1 = highstrain80, D2 = highstrain160,
D3 = highstrain240, D4 = highstrain800,
D5 = medstrain80, D6 = medstrain160,
D7 = medstrain240, D8 = medstrain800,
D9 = sqrtkin.

(19)

3.1.6 Intrinsic Feature Vectors for Automatic Classification
of MV Surfaces

To implement automatic classification of “regurgitation” ver-
sus “normal” MV surfaces within the enriched dataset D of
800 cropped MV surfaces, we first construct intrinsic fea-
ture vectors based on strongly invariant dissimilarities. To
this end, we apply the generic approach outlined in section
Sect. 2.3.4. Concretely, this involves two key steps: 1. Select
and fix a reference set REF = {�1, . . . , �r } of r MV sur-
faces. 2. Fix the set of nine strongly invariant dissimilarities
DIS = [D1, D2, . . . , D9] listed in (19).

Each cropped MV surface S in D will be described
by the group vec(S) of 9 × r intrinsic features defined
by vec(S)i, j = Di (S, � j ), where i = 1, . . . , 9, and
j = 1, . . . , r . Our histogram analysis comparing several

strongly invariant dissimilarities indicates that the dissimilar-
ities Di (S, �) tend to be higher when the two MV surfaces
(S, �) are in different classes as compared to when (S, �)

are in the same class. This qualitative result indicates that
for each S in D, the dissimilarities between S and all the
normal MV surfaces should play a key part in classify-
ing S correctly by positively contributing to discrimination
between “regurgitation” and “normal.” This led us to select
a reference set REF of r = 100 normal MV surfaces ran-
domly extracted from our set of all 400 cropped normal
MV surfaces. The group of intrinsic feature vectors vec(S)

then involves 900 features to describe each surface S. We
have explored other choices for the reference set REF, as
indicated further on. We now present our choice of ML
classifiers.

3.2 RF Classification

Among ML classifiers, RFs have been applied widely with
quite convincing performance. Generated by simultaneous
training of large sets of decision trees, RFs were introduced
by [139] and popularized by [60], for instance, as well as by
the fast emergence of efficient RF software. In RF training,
each decision tree is trained on a randomly selected train-
ing set, and each entropy-optimizing split of a tree node is
based on a set of features randomly selected for each node.
After training, the RF classifier combines the class predic-
tions generated by each tree, usually by majority voting. For
our dataset of 800 croppedMV surfaces, with each surface S
described by a group vec(S) of 900 features as just outlined,
we have automatically trained distinct RF classifiers using
the open sourcerfpimp software package [140, 141],which
offers flexible tools dedicated to evaluating the importance
of any given subgroup of features by randomly scrambling
their values.

3.2.1 Meta-Parameters of RF Classifiers

Several well-known meta-parameters have to be specified
for RF training. After empirical exploration of potential
choices, we have selected and fixed the following RF meta-
parameters:

• Number of Trees The number of trees is set to 300. For
each tree training, the random training set has size 2

3800.
Class weights are used to compensate for the imbalance
of the random training set.

• Node Splitting The node splitting is based on 30 = √
900

randomly selected features per node. Node impurity is
quantified by its Gini index, which is given by α(1 −
α), where α denotes the frequency of regurgitation cases
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Fig. 8 For our benchmark dataset of 800 MV surfaces, we study the
automatic classification of “regurgitation” MV surfaces versus “nor-
mal” MV surfaces. We have derived 900 G3-invariant feature vectors
computed via diffeomorphic registration between pairs of surfaces. We
have separately trained 1000 distinct RF classifiers. The histogram of
their OOB accuracy is displayed here, with high OOB accuracy ranging
from 96.1% to 97.6%

per node. Node splitting is accepted only if the splitting
decreases node impurity by at least 0.002.

3.2.2 RF Performance Evaluation by OOB Accuracy

With the preceding specifications, for each fixed case S in
D, there is a random set B(S) of trees whose training set
does not include S. Here, the average size of B(S) is roughly
37.4% of 300, i.e., 112 trees. After training, each tree TRi ∈
B(S) computes its own prediction predi (S) for the true class
trueC(S) of S; the out-of-bag (OOB) prediction for trueC(S)

is then the class Ĉ(S), which occurs most often among all
the predi (S). The OOB accuracy of the RF classifier is the
frequency of correct answers Ĉ(S) = trueC(S) over all cases
S ∈ S. OOB accuracy is known to be a fairly robust estimator
for the generalization capacity of the trainedRFclassifier (see
[142]).

3.2.3 OOB Accuracy Results for Benchmark Dataset

For our dataset of 800 cropped MV surfaces, equally
split between regurgitation and normal cases, each case is
described by the 900 intrinsic features described above.
Training a single RF classifier having 300 trees and comput-
ing its OOB accuracy is quite fast. Since RF training is highly
stochastic,we have repeated this operation 1000 times,which
provided 1000 distinct RF classifiers. TheOOBaccuracies of
these 1000 RF classifiers range between 96.1% and 97.6%.
We display the histogram of OOB accuracies for these 1000
RF classifiers in Fig. 8.

The observed generality of RF classifiers with quite high
OOB accuracy indicates that our intrinsic features based on

Table 2 Influence of data enrichment (by diffeomorphic perturbations
and/or interpolations) on classification accuracy

Training sets OOB

200 original 96.5

200 original + 272 pert. cases 98.7

200 original + 328 interp. cases 97.3

200 original + 328 interp. + 272 pert. cases 97.6

We report the OOB accuracy obtained for four different training sets
generated by enriching 200 original cases with 272 small random
diffeomorphic perturbations (pert. cases) and/or 328 diffeomorphic
interpolations (interp. cases). The table quantifies the beneficial effect
of these types of diffeomorphic enrichment

strongly invariant dissimilarities between surfaces are quite
efficient. The best of our 1000 RF classifiers, which we now
denote RF∗, has a global OOB accuracy of 97.6%. The 2×2
confusion matrix CONF of RF∗ is given by

CONF =
[
97.25% 2.75%
2.25% 97.75%

]
,

where CONF1,1 = 97.25% and CONF2,2 = 97.75% cor-
responds to the OOB accuracy of correctly classified cases,
among regurgitation and normal cases, respectively. As is
well known, one can further improve classification accuracy
by for instance “bagging” the five best RF classifiers via a
standard majority vote. But we have preferred to study more
precisely the geometric dissimilarities that have the strongest
impact on RF∗.

To evaluate the influence of data enrichment (by diffeo-
morphic perturbations and/or interpolations) on the classi-
fication accuracy, we trained RF classifiers using only 200
original surfaces. After training on this reduced data set, the
best RF classifier achieved only a 96.5% OOB score, which
is lower than the 97.6%OOB reached by the bestRF∗ trained
on 800 cases. See Table 2 for details of various intermediate
levels of training set enrichment.

The results reported in Table 2 indicate that enrichment of
a training set of smooth surfaces by diffeomorphic random
perturbations or interpolations leads to improved classifica-
tion accuracy.

So far, we have relied on the OOB score as a well-known
robust estimate of any RF classifier’s accuracy. To quantify
the OOB robustness for our specific classification task, we
have arbitrarily selected validation sets containing 15% of all
cases, and trained our RF classifiers on the remaining 85% of
all cases. The accuracy scores separately computed by OOB
and via validation sets had identical medians 96.7% as well
as very close means (96.5% and 96.4%). This confirms the
robustness of OOB scores in our benchmark application.
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Table 3 OOB accuracy obtained when the reference set of patients has
sizes smaller than 100

nr Minimum Median Maximum

20 96.1 96.8 97.4

50 96.5 96.9 97.4

We report (from left to right) the number of reference patients, and the
min, median, andmaxOOB score. Note that the OOB accuracy remains
high even when the size of the reference set decreases

We performed additional experiments with a smaller ref-
erence set of patients. The best OOB scores as a function of
the size of the reference set of patients are reported in Table 3.

In practical scenarios, where a reduction in computational
cost is desirable during RF training, a smaller reference set
can offer a sizable reduction of computational costs, at the
price of a moderate degradation in classification accuracy.
In our benchmark study, reducing the size of the random
reference set from 100 to 20 cases reduces the computational
cost by a factor of five but only degrades the best achievable
OOB classification accuracy from 97.0% to 96.5%. This was
verified by implementing 1500 RF classifiers, involving 50
random reference sets of size 20 and 30 RF classifiers per
reference set.In practical scenarios where computational cost
reduction is desired during RF training, a smaller reference
set can offer a sizable reduction of computational costs, at the
price of a moderate degradation in classification accuracy.

Clearly, RF classifiers are not the only option. We have
tested several other classifiers using the discriminating
distance-based features as inputs. We have found that ridge
classifiers and MLPs can reach an accuracy that is competi-
tive with the RF classifier.

3.2.4 Importance Evaluation for Key Groups of Features

Recall that we had selected (see (19)) a set of nine strongly
invariant dissimilarities D1, . . . , D9 computable by dif-
feomorphic matching between pairs of surfaces (S, S′),
namely,1

highstrain80, highstrain160, highstrain240,
highstrain800, medstrain80, medstrain160,
medstrain240, medstrain800, sqrtkin.

For each i = 1 . . . 9, the dissimilarity Di determines a
group �i of 100 features veci, j (S) = Di (S, � j ), where
j = 1 . . . 100. A well-known technique to evaluate con-
cretely the importance IMPi of the group of features �i is

1 The first four Di are the 95%-quantiles of strain intensities observed
on four increasingly larger neighborhoods of the coaptation line on our
MV surfaces; the next four Di are the corresponding 50%-quantiles of
strain intensities; the last D9 is the square root of the kinetic energy
required for optimal diffeomorphic matching of (S, S′).

Table 4 Importances IMPi of our nine subgroups of features �i

Dissimilarity Importance (%)

highstrain80 28.0

highstrain160 13.5

sqrtkin 11.0

highstrain240 9.0

highstrain800 8.5

medstrain160 8.5

medstrain80 7.5

medstrain800 7.0

to compute the loss in OOB accuracy for each feature in �i ,
one scrambles the 800 values Di (S, � j ) over all S ∈ D. To
implement this random scrambling, one selects 100 random
permutations PER1, . . . ,PER100 of our dataset of 800 cases,
and then one replaces each Di (S, � j ) by Di (PER j (S),� j ).
This random scrambling, done for the fixed subgroup of fea-
tures �i naturally yields a decrease in OOB accuracy for the
already trained classifier RF∗. For a more precise estimate of
this accuracy decrease, the scrambling operation is repeated
100 times for each subgroup �i and one computes the aver-
age OOB accuracy decrease IMPi , which then quantifies
the importance of the features subgroup �i . The importance
IMPi of our nine subgroups of features �i are reported in
decreasing order in Table 4, which, hence, also ranks our nine
dissimilarities Di by decreasing importance for our discrim-
ination task. These results identify the three most important
dissimilarities D1, D2, D9, with importances 28%, 13.5%,
and 11%, respectively. The top two are the 95%-quantiles of
strain intensities D1 = highstrain80 and D2 = highstrain160
focused n the 80 and 160 points closest to the coaptation line,
respectively. The third top dissimilarity is the kinetic energy
D9 = sqrtkin.

The preceding importance analysis led us to also imple-
ment another RF classification based only on the three most
important subgroups of intrinsic features, namely the three
groups of 100 features each defined by the dissimilarities
D1 = highstrain80, D2 = highstrain160 and the kinetic
energy D9 = sqrtkin. We trained 100 new RF classifiers
based only on these three groups of 100 intrinsic features,
and the best new RF∗∗ classifier based on this reduced set
of 300 intrinsic features reached a global OOB accuracy of
96.7%,which is very close to the 97.6%OOBaccuracy of the
best classifier RF∗ based on 9 dissimilarities and the associ-
ated 900 intrinsic features. Thus, to discriminate efficiently
between regurgitation and normal MVs, the strongest infor-
mation derived from dissimilarities based on diffeomorphic
registration is provided by the 95%-quantiles of the strain
values observed very close to the coaptation line, and is effi-
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ciently completed by the kinetic energy of diffeomorphic
registration between pairs of MV surfaces.

3.3 Computing Times

Most of the computing time involved in the preceding bench-
mark application was consumed by the implementation of
diffeomorphic registration for about 800(100) = 80,000
pairs of cropped MV surfaces, which took about 80h of
computing time on 80 nodes of the Opuntia cluster of the
Computing Center at the University of Houston, as detailed
below. After all diffeomorphic registrations were completed,
automatic training of any RF classifiers was quite fast, with
a runtime inferior to 30s for each such training. This short
RF training time was to be expected since we had only 800
cases and 300 trees.

Recall that our cropped MV surfaces were all discretized
by 800-point triangulated grids. On a laptop with 1.4 GHz
Quad-Core Intel Core i5, 16 GB memory, and 2133 MHz
LPDDR3, the diffeomorphic registration of one pair of MV
surfaces using our solver requires an average computing time
of 20s. The large number of such diffeomorphic registra-
tions needed herewere naturally distributed by deploying our
solver on a cluster. For our benchmark dataset of 800 cropped
MV surfaces, our solver had to be executed for 80,000 pairs
of MV surfaces, requiring about 2493min for parallel com-
puting on 80 nodes used at full availability. Since at any given
time, we only had simultaneous use of about 40 nodes, com-
pleting these 80,000 diffeomorphic registrations took about
80h of computing time.

4 Conclusions and FutureWork

Given any dataset D of smooth 3D surfaces partitioned into
a finite set of disjoint classes, implementing automatic class
prediction by supervised ML classifiers such as RFs [59,
60], MLPs [61], or SVMs [63] usually requires the charac-
terization of every surface S ∈ D by a computable feature
vector vec(S) ∈ R

p, for some fixed p. In this paper, we use
the diffeomorphic registration of smooth surfaces to develop
several algorithms dedicated to an efficient implementation
ofML for the automatic classification of smooth 3D surfaces.
In earlier research, we have developed a software solver to
compute a diffeomorphic registration f : S → S′ for any
given pair (S, S′) of smooth 3D surfaces, with f embedded
in a smooth diffeomorphic flow with minimal kinetic energy
kin(S, S′) [18, 65, 66]. We also compute the isotropic strain
of f at each x ∈ S, and several quantiles quantα(S, S′) of all
these strain values. From each quantα(S, S′), as well as from
kin(S, S′), we derive a G3-invariant dissimilarity dis(S, S′)
between surfaces S and S′. Here, G3 is the group of map-
pings from R

3 to R
3, generated by translations, rotations,

and homotheties. We have then outlined how this family of
dissimilarities dis(S, S′) can generate natural feature vectors
vec(S) ∈ R

N defined for all surfaces S ∈ D, and invariant
by the group G3. This is an efficient first step to apply ML
for supervised automatic classification in D.

Moreover, since unbalanced class sizes tend to degrade
classification accuracy by standard ML approaches, we
develop two class enrichment algorithms derived from opti-
mized diffeomorphic registration.Given two surfaces S, S′ ∈
D belonging to the same given class CL we need to enrich,
numerical diffeomorphic registration of S and S′ automati-
cally computes a set of surfaces St ∈ D depending smoothly
on t ∈ (0, 1), which are all diffeomorphic to S, and verify
S0 = S, S1 = S′. Then, if S, S′ are sufficiently close to each
other, any interpolating surface St can be added to class CL
as a virtual new case. Our diffeomorphic interpolation is a
nonlinear extension of the well-known SMOTE enrichment
technique [119], which is restricted to linear interpola-
tion between Euclidean vectors.This interpolation technique
enables a powerful extension of the well-known SMOTE
enrichment technique [119]which is restricted to linear inter-
polation between Euclidean vectors. For class enrichment
in D, we have also developed and implemented small ran-
dom perturbations of smooth 3D surfaces by applying flows
of random smooth diffeomorphisms of R

3, generated by
time integration of smooth Gaussian random vector fields
indexed byR3. Numerical implementation required a sophis-
ticated convergence analysis for stochastic series expansions
of smooth Gaussian vector fields. In our benchmarkMV data
set study, class enrichment by small random diffeomorphic
perturbationswas beneficial, while enrichment by diffeomor-
phic interpolation did not offer a clear improvement of the
OOB accuracy. We anticipate that diffeomorphic interpola-
tion would be more beneficial for larger data sets of smooth
surfaces since interpolation could then be restricted to much
closer pairs of surfaces.

The pre-treatment pipeline developed for our benchmark
MV dataset uses several problem-specific steps that may not
be generally applicable to arbitrary smooth surfaces S. For
example,we use anatomical labels available forMVsurfaces,
such as the tagged coaptation line. This information can be
used to improve the accuracy of the diffeomorphic matching
and enables cropping to focus on a zone of interest, which
speeds up computations. Such labels may not exist for other
datasets.However,we expect that our general strategy applies
to other datasets of smooth surfaces. In particular, the mul-
tiple distances derived from diffeomorphic registration such
as strain quantiles, the characterization of each surface by its
distances to a random finite set of prototype surfaces, and
RF automatic classification based on these distances. Our
class-enriching strategies based on diffeomorphic registra-
tion are also valid for quite generic sets of smooth surfaces.
The discriminating power of our distance-based features will
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be application-dependent, and other datasets may require the
design of different distances between surfaces.

We have successfully applied all the preceding tools and
methodologies to the automatic classification of 800 MV
surfaces into two classes: “regurgitation” versus “normal.”
The G3-invariant feature vectors we computed had dimen-
sion 900 and were derived from nine distinct dissimilarities
(kinetic energy and eight strain quantiles). The well-known
RF classifiers (here used with 300 trees) reached a high
classification accuracy of 97.6%. A comparative importance
analysis between nine groups of features (out of eleven can-
didate groups discussed in the present work) showed that the
three most important dissimilarities were the 95%-quantiles
of isotropic strain observed near the coaptation line of each
MV surface and the kinetic energy. In fact, after the reduc-
tion of our feature vectors to the 300 features associated with
the three most important dissimilarities, the RF classification
accuracy was still quite high at 96.7%.

In our current work, we started to explore the use of
optimal transport for computing distances between shape
representations for classification. Our initial experiments
based on off-the-shelf implementations for optimal transport
did not yield satisfactory results.

On our benchmark data set, we have also tested the per-
formance of neural networks classifiers, by training PointNet
[82], which uses R3 coordinates of point clouds as features.
To avoid over-fitting, we still had to enrich our data set of
smooth MV surfaces by diffeomorphic perturbations and
interpolations. The best PointNet architecture reached a high
accuracy of 97.5%, and training time on our rather small
dataset was fast, but not faster than for our RF classifiers.
What was lost in the neural net approach was the evaluation
of features relative importance, since each single point in a
large point cloud has nearly zero importance.

In ongoing research, we also plan to apply the proposed
techniques to automatic classification ofmuch larger datasets
of 3D smooth surfaces, into dozens of classes. This will
require the development of ML techniques specifically ded-
icated to reducing the computing times required by large
numbers of diffeomorphic registrations.

In our past work, we have focused on the design of effec-
tive numerical algorithms for the solution of the variational
problem formulation [18, 65, 66]. Our methods have been
developed in MATLAB. The computational kernels are con-
sequently not necessarily optimized. In our future work, we
intend to improve computational throughput by considering
hardware-accelerated computational kernels. An example is
the KeOPs library that implements efficient kernel matrix
multiplication on GPUs [143].

Appendix A

A.1 Smooth One-Dimensional Gaussian Random
Fields onR3

For t ∈ R, the density function 1√
π
exp(−t2) defines a

measure γ of mass 2. Let � = L2(R, γ ). The Gaussian
kernel g(t, t ′) = exp(−(t − t ′)2) defines a linear operator
G : � → � given by, for φ ∈ �,

Gφ(t) =
∫
R

g(t, t ′)φ(t ′) dγ (t ′)

for all t ∈ R. Then, G is a Hilbert–Schmidt operator with
known eigenvalues λn and eigenfunctions φn , which form
an orthonormal basis of �. One has the converging series
expansions

Gφ(t) =
∑
n≥0

λn〈φn, φ〉�φn(t) (A1)

for all φ ∈ � and

g(t, t ′) =
∑
n≥0

λnφn(t)φn(t
′) (A2)

for all t, t ′ ∈ R.
The φn are expressed below in terms of the Hermite poly-

nomials Hn(t), which are recursively given by H0(t) = 1
and

Hn+1(t) = 2t Hn(t) − 2nHn−1(t) (A3)

with n = 0, 1, . . ., for all t ∈ R. Each Hn(t) has degree n and
leading term (2t)n . The λn and φn are given by the known
formulas (see [144])

λn = an+1/2, (A4a)

φn(t) = b√
2nn! exp(−ct2)Hn(ht), (A4b)

where a = 1/(1 +
√
5
2 ) < 1/2, b = 51/8, c = (

√
5 − 1)/2,

and h = 51/4. Rewrite the radial kernel k(x, y) = exp(−|x−
y|2), x, y ∈ R

3, as follows:

k(x, y) = g(x1, y1)g(x2, y2)g(x3, y3), (A5)

where x, y have coordinates xi , yi , i = 1, 2, 3. Endow R
3

with the product measure θ = γ 3. Define the Hilbert–
Schmidt operator HS from M = L2(R

3, θ) into itself by

HSψ(x) =
∫
R3

k(x, y)ψ(y) dθ(y)

123



Journal of Mathematical Imaging and Vision (2024) 66:1033–1059 1051

for all functionsψ ∈ M . The eigenvalues and eigenfunctions
of HS are given by

τm,n,p = λmλnλp (A6)

ψm,n,p(x) = φm(x1)φn(x2)φp(x3) (A7)

for all integers m, n, p and all x = (x1, x2, x3) ∈ R
3. The

ψm,n,p provide an orthonormal basis for M , and one has the
converging series expansions

HSψ =
∑
m,n,p

τm,n,p〈ψm,n,p, ψ〉Mψm,n,p (A8)

for all ψ ∈ M and

k(x, y) =
∑
m,n,p

τm,n,pψm,n,p(x)ψm,n,p(y) (A9)

for all x, y ∈ R
3.

We now concretely construct an explicit stochastic series
converging to a smooth R valued random Gaussian vector
fieldU : R3 → Rwithmean0 and covariance kernel k(x, y).
The construction is summarized in Theorem 1. The speed
of convergence for this series is studied in Theorem 2. The
proofs of these two theorems are given in “Appendix A.3.”

Theorem 1 Let Zm,n,p be any sequence of standard inde-
pendent Gaussian random variables, indexed by the integer
triplets m, n, p, and defined on the same probability space
(�, P). Then P-almost surely, the following stochastic series
converges pointwise for all x ∈ R

3 to a finite limit denoted

Ux =
∑
m,n,p

Zm,n,p
√

τm,n,p ψm,n,p(x). (A10)

The one-dimensional random vector field Ux ∈ R defined
by this series is Gaussian with mean 0 and covariance kernel
E[UxUy] = k(x, y) for all x, y ∈ R

3. The function x �→ Ux

is in M = L2(R
3, θ), and is P-almost surely smooth in

x ∈ R
3. Moreover, the series (A10) also converges to U in

the L2(R
3, θ)-norm.

Proof See “Appendix A.3.” ��
Theorem 2 The partial sums U (N )x of the series Ux are
denoted

U (N )x =
∑

(m,n,p)∈B(N )

Zm,n,p
√

τm,n,pψm,n,p(x), (A11)

where B(N ) = {m, n, p | max(m, n, p) ≤ N }. With proba-
bility q(N ) > 1 − 1

5N10 , one has the uniform bound

|Ux −U (N )x | ≤ c exp(|x |2/2)N 7/10/2N , (A12)

for all x ∈ R
3 and all N > 6. Here, c is a universal constant

that does not depend on N nor on x.

Proof See “Appendix A.3.” ��

A.2 Numerical Implementation of Random
Diffeomorphic Deformations

Select independent standard Gaussian random variables
Z j
m,n,p indexed by j = 1, 2, 3 and by all the triplets

(m, n, p). Then as in (A10), define on R3 three independent
R-valued smooth Gaussian random fields U j , j = 1, 2, 3,
by the almost surely convergent series

U j
x =

∑
m,n,p

Z j
m,n,p

√
τm,n,pψm,n,p(x) (A13)

for all x ∈ R
3. Fix any positive scale parameters s1, s2, s3

and the three scaled Gaussian kernels

k j (x, y) = k(x/s j , y/s j )

for j = 1, 2, 3, and for all x, y ∈ R
3. Define the random

vector field Wx = [W 1
x ,W 2

x ,W 3
x ] by

W j
x = U j

x/s j
for j = 1, 2, 3, (A14)

and all x ∈ R
3. Due to Theorem 1, we have (i) The ran-

dom vector field x �→ Wx , Wx ∈ R
3, is Gaussian with

zero mean and independent coordinates. (ii) The covariance
kernel of W is the 3 × 3 diagonal matrix Cov(Wx ,Wy) =
diag(k1(x, y), k2(x, y), k3(x, y)) for all x, y ∈ R

3. (iii)
Almost surely, the function x �→ Wx is infinitely differen-
tiable in x ∈ R

3.
For numerical computations ofWx when x ∈ R

3 is given,
the main point is to determine how many terms to keep in
the basic stochastic series (A10) defining Ux . As seen in
Theorem 1, for N ≥ 10, with probability q(N ) practically
equal to 1, the partial sumsU (N )x approximateUx at a speed
faster than c exp |x |2/2N 7/10/2N , where c is a numerical
constant. Our explicit theoretical upper bound for c is too
large for pragmatic estimates of the remainder |Ux−U (N )x |.
But our numerical experiments and more concrete estimates
of Hermite polynomials (see [145]) indicate that for |x | ≤
4, one can obtain a good approximation of the series Ux

by keeping only the terms Tm,n,p(x) such than m, n, p ≤
25. The restriction |x | ≤ 4 is not a real constraint since
after an adequate R3-homothety, any bounded surface S can
becomea surface� included in a small ball of radius 4 around
its center of mass, and after implementing a numeric small
random deformation of � → �(t), one can rescale �(t) to
give it a total area that is equal to 1.
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A.3 Proofs of Theorems 1 and 2

Proof Clearly, x → U (N )x is a random smooth function
of x ∈ R

3, and belongs to L2(R
3, θ). Since the Zm,n,p are

decorrelated, one has for all x, y ∈ R
3 that E[U (N )xU (N )y]

is given by

∑
m,n,p∈B(N )

τm,n,pψm,n,p(x)ψm,n,p(y).

In viewof the converging series expansion (A9) of k(x, y),
this implies

k(x, y) = lim
N→∞E[U (N )xU (N )y]. (A15)

Define the random function x → Tm,n,p(x) for all x ∈ R
3

by

Tm,n,p(x) = Zm,n,p
√

τm,n,pψm,n,p(x). (A16)

The function Tm,n,p belongs to the space L2(R
3, θ), where

its norm Am,n,p is given by Am,n,p = |Zm,n,p|√τm,n,p.
Thanks to equations (A6), (A4) one has

∑
m,n,p

E(A2
m,n,p) =

∑
m,n,p

τm,n,p

<
∑
m,n,p

1/2m+n+p < ∞.

This implies since the random variables Am,n,p are inde-
pendent, that P-almost surely, the following stochastic series
converges to a (random) limit

∑
m,n,p

Am,n,p =
∑
m,n,p

‖Tm,n,p‖L2(R3,θ).

But whenever the series of L2(R
3, θ)-norms ‖Tm,n,p‖

converges, then the stochastic series
∑

m,n,p Tm,n,p must

also converge in L2(R
3, θ)-norm to some random function

U ∈ L2(R
3, θ). Hence, P-almost surely, we have

U = lim
N→∞U (N ) (A17)

for convergence in L2(R
3, θ)-norm. For short, we abbreviate

P-almost surely as P-a.s. In what follows, we will also show
that P-a.s. one also has the pointwise convergence

lim
N→∞U (N )x = Ux for all x ∈ R

3. (A18)

For faster exposition, we derive right away the main con-
sequence of this P-a.s. pointwise convergence. InR3, fix any

finite set of points x( j), j = 1, . . . ,m. Define the random
vectors X(N ) and Y in Rm by their coordinates

X(N ) j = U (N )x( j) and Y j = Ux( j). (A19)

Denote fN (z) = E(exp(i〈z, X(N )〉)) and f (z) =
E(exp(i〈z,Y 〉)) the characteristic functions of X(N ) and
Y for all z ∈ R

m . The X(N ) are Gaussian with mean 0,
covariance matrix Q(N ), and tend P-a.s. to Y . Dominated
convergence implies f (z) = limN→∞ fN (z) for all z. The
formula log fN (z) = z∗Q(N )z, then forces log f (z) =
z∗Qz with Q = limN→∞ Q(N ). Hence, Y is Gaussian with
mean 0 and covariance matrix Q. This proves that the vector
field x → Ux is Gaussian with mean zero and covariance
kernel

E(UxUy) = lim
N→∞ E[U (N )xU (N )y] = k(x, y),

where the last equality is due to (A15). Since the covariance
kernel k(x, y) is infinitely differentiable in x and y, known
results on random Gaussian fields (see [146]) show that one
can find a version of the random field x �→ Ux , which will
P-a.s. be smooth in x ∈ R

3.
We still need to prove the P-a.s. pointwise convergence

stated in (A18).We first derive bounds for the eigenfunctions
φn given in (A4). The paper [147] provides sharp universal
bounds for the Hermite polynomials Hn(t). These bounds
show that for all n ≥ 6 and all t ∈ R

|Hn(t)| < 9n−1/12cn exp(t
2/2), (A20)

where

cn <

{√
2n1/4 n!

(n/2)! if n is even,√
5(n − 1)3/4 (n−1)!

((n−1)/2)! if n is odd.
(A21)

Recall the Stirling formula, which states that for all n > 1

1 <
n!

stir(n)
<

3

2
(A22)

with stir(n) = (2πn)
1/2(n/e)n . This formula implies

{
n!

(n/2)! < 3
2 (2n/e)n/2 for n even,

(n−1)!
((n−1)/2)! < 3

2 (
2(n−1)

e )
(n−1)/2 for n odd.

(A23)

Combining the bounds (A21) and (A23), we get for all
t ∈ R and all n ≥ 6

|Hn(t)| <

{
30 n1/6(2n/e)n/2 exp(t2/2) if n is even,

30 ξ(n) exp(t2/2) if n is odd,
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with ξ(n) = (n − 1)2/3( 2(n−1)
e )

(n−1)/2 and hence a fortiori

|Hn(t)| < 30n2/3(2n/e)n/2 exp(t2/2) (A24)

for all n ≥ 6, all t ∈ R. (A4) yields two numerical constants
c and h such that, for all n ≥ 1, all t ∈ R,

|φn(t)| = b√
2nn! exp(−ct2)|Hn(ht)|

.

Moreover, one has h2/2−c = 1/2,which implies directly,
in view of (A24),

|Hn(ht)| < 30n2/3(2n/e)n/2
exp(t2/2)

exp(−ct2)
(A25)

for all n ≥ 6, t ∈ R.
From (A22) and the value of b, we get

b√
2nn! < n−1/4(2n/e)−n/2

for all n > 1. So, we can finally bound the eigenfunctions φn

by

|φn(t)| < 30 exp(t2/2)n1/2 (A26)

for all n ≥ 6, t ∈ R. From (A7) and (A26), we derive
the following bound, valid for all m, n, p ≥ 6, all x =
[x1, x2, x3] ∈ R

3,

|ψm,n,p(x)| = |φm(x1)φn(x2)φp(x3)|
< 303 exp |x |2/2(mnp)1/2.

(A27)

From (A4), we get λn < (1/2)n and hence

√
τm,n,p < (1/2)m+n+p. (A28)

We now compute simultaneous probabilistic bounds for
the |Zm,n,p|. Define the following sequence of independent
random events. ��
Definition 1 The event E(m, n, p) is realized iff {|Zm,n,p| ≤
5
√
log(mnp)}.

Lemma 3 Define the probabilities q(N ) by

q(N ) = P(all events E(m, n, p) with

mnp > N are realized

simultaneously).

(A29)

Then, for each N ≥ 4, one has

q(N ) > 1 − 1

5N 10 . (A30)

Proof Any standardGaussian random variable Z , verifies for
all t > 1

P(|Z | > t) < 2
∫
s>t

s√
2π

exp(−s2/2) ds

= √
2/π exp(−t2/2)

and hence for any integer r ≥ 2

P(|Z | > 5
√
log(r)) <

2

3r 25/2
. (A31)

Since the E(m, n, p) are independent, definition (A29)
implies

q(N ) =
∏

m,n,p|mnp>N

P(E(m, n, p)).

Due to (A31), this yields for N ≥ 4

q(N ) >
∏

m,n,p |mnp>N

[
1 − 1

(mnp)25/2

]
.

For 0 < u < 10−3, one has 1− u > exp(−2u) so that for
N ≥ 4

q(N ) > exp(−2s(N ))

with

s(N ) =
∑

m,n,p|mnp>N

1

(mnp)25/2
.

For N ≥ 4, one has

card{m, n, p | mnp = N }

<

N∑
m=1

card{n, p | np = N/m}

<

N∑
m=1

N/m < N + N log(N ),

(A32)

which implies for N ≥ 6

s(N ) ≤
∑
k>N

(k + k log(k))/k25/2

≤
∑
k>N

1/k11 ≤ 1/10N 10.
(A33)

Hence, for N ≥ 6, we obtain

q(N ) > exp(−2/10N 10) > 1 − 1

5N 10 .

��
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We now study the series remainders

|Ux −U (N )x |

for N > 6. By definition of U (N ), we have

|Ux −U (N )x | <
∑

(m,n,p)∈G(N )

|Tm,n,p(x)|,

where

G(N ) = {m, n, p | max(m, n, p) > N }.

Denote β(x) = 303 exp(|x |2/2). With probability q(N ) >

1 − 1/5N10, we will have |Zm,n,p| ≤ 5
√
log(mnp) for all

(m, n, p) such that mnp > N . In view of the two bounds,
(A27) and (A28), we conclude that with probability q(N )

we will have, for all x ∈ R
3 and all m, n, p verifying

(min(m, n, p) > 6) ∧ (mnp > N ),

|Tm,n,p(x)| < 5β(x) log(mnp)
√
mnp2m+n+p

<
10

2m+n+p
β(x)(mnp)7/10,

(A34)

where the second inequality follows from log(mnp) <

2(mnp)1/5. Since mnp > N , whenever (m, n, p) ∈ G(N ),
we conclude that with probability q(N ) we will have for all
x ∈ R

3,

|Ux −U (N )x | < 10β(x)r(N )

with

r(N ) =
∑

(m,n,p)∈G(N )

1

2m+n+p
(mnp)7/10.

For (m, n, p) ∈ G(N ) one has max(m, n, p) > N and,
hence,

r(N ) < 3
∑

(m≤p,n≤p)∧(p>N )

1

2m+n+p
(mnp)7/10.

Since

∑
m≤p,n≤p

1

2m+n
(mn)

7/10 <

[∑
m

1

2m
m7/10

]2

< 4,

we obtain

r(N ) < 12
∑
p>N

1

2p
p7/10 <

24

2N
N 7/10.

Hence, with probability q(N ) > 1 − 1
5N10 , we will have

for all x ∈ R
N ,

|Ux −U (N )x | < 10r(N )β(x)

<
240

2N
N 0.7β(x)

= 240(304 exp(|x |2/2)),

which proves the announced bound (A12). Equation (A33)
forces the series

∑
m,n,p

P(E(m, n, p))

to be finite. Hence, by Borel–Cantelli’s lemma, there is a
random integer RAND which is P-a.s. finite, and such that
all the events E(m, n, p) with mnp > RAND are simultane-
ously realized. The arguments just used above show that the
bound (A34) on |Tm,n,p(x)| will hold for mnp > RAND.
Whenever RAND is finite, this forces the pointwise con-
vergence of the series Ux for all x ∈ R

3. We have thus
proved that P-a.s the series Ux will converge pointwise for
all x ∈ R

3. ��
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