DIReCTFAAS: A Clean-Slate Network Architecture for Efficient
Serverless Chain Communications

Qingyang Zeng
Zhejiang University
Hangzhou, China
qyzeng@zju.edu.cn

Xue Leng’
Hangzhou Institute of Technology, Xidian University
Hangzhou, China
lengxue@xidian.edu.cn

ABSTRACT

Serverless computing, also known as Function-as-a-Service (FaaS),
triggers web applications in the form of function chains. It uses
a central orchestrator to route all requests from end-users and
internal functions. Such architecture simplifies application deploy-
ment for developers. However, the convenient centralized network
architecture compromises the efficiency of function chain communi-
cations. Specifically, (i) a centralized API gateway assists in routing
requests between functions. This indirect routing scheme raises
invocation latency. (ii) The control flow for invoking functions and
the data flow for passing function data packets are both forwarded
by the API gateway. This results in the API gateway consuming a
significant amount of resources. (iii) All data packets of internal
function communications go through the same API gateway. This
expands the additional attack surface in multi-tenant scenarios.

In this paper, we propose DIRECTFAAS, a clean-slate network
architecture to improve the function chain communication perfor-
mance. By separating coupled control flow and data flow, DIRECT-
FaAS releases the API gateway from heavy traffic forwarding, reduc-
ing its resource consumption. For this goal, DIRECTFAAS exploits
the network control capabilities of Software-Defined Networking
(SDN) to establish direct data forwarding channels to accelerate
function chain invocations. In addition, the data flow constrained
by fine-grained network policies consolidates multi-tenant traffic
security. We implement the DIRECTFAAS prototype on the popular
OpenFaaS$ platform. Evaluations under real-world serverless appli-
cations show that DIRECTFAAS achieves a reduction in application
execution time by up to 30.9% and CPU consumption by up to 30.1%
compared to the current architecture.

“Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 24, May 13-17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05

https://doi.org/10.1145/3589334.3645333

Kaiyu Hou
Alibaba Cloud
Hangzhou, China
kyhou@alibabacloud.com

Yan Chen
Northwestern University
Evanston, USA
ychen@northwestern.edu

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Net-
works — Network architectures.

KEYWORDS

Serverless computing, Serverless function chain, Serverless net-
working, SDN

ACM Reference Format:

Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen. 2024. DIRECTFAAS:
A Clean-Slate Network Architecture for Efficient Serverless Chain Com-
munications. In Proceedings of the ACM Web Conference 2024 (WWW °24),
May 13-17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3589334.3645333

1 INTRODUCTION

Serverless computing has gained popularity for deploying web
applications [9, 11, 12]. Running web applications without the need
to configure the runtime environment is attractive for cloud tenants,
especially when their management and provisioning of computing
resources are complex. For instance, one in four CloudFront users
has embraced serverless computing for frontend development [16].

In serverless computing, web applications run as function chains.
Serverless computing platforms, such as AWS Lambda [5], Azure
Functions [37], and Google’s Cloud Functions [21] facilitate the
decomposition of web services [50], Internet of Things [14, 28],
machine learning [13, 52], and data analytics [26, 38] applications
into Function-as-a-Service (FaaS) and combine functions to form
the serverless function chain.

However, function chain communications in the current server-
less architecture are not efficient. Serverless function chains are
triggered by the API gateway through external events or HTTP re-
quests. Figure 1 shows an example that end-users invoke a function
chain with 3 functions. The centralized API gateway assists in for-
warding requests between functions, performing 5 internal requests.
Compared to direct function-to-function invocations which only
need 3 internal invocations, the current architecture introduces 2
additional network round trips. Meanwhile, as cloud applications
become more complex, long function chains are quite common.
In Azure Durable Functions, 50% of function chains have a length
exceeding 3, and even 5% exceeding 8 [35]. The resulting additional
network round trips add more execution time for cloud applications,

https://doi.org/10.1145/3589334.3645333
https://doi.org/10.1145/3589334.3645333

WWW °24, May 13-17, 2024, Singapore, Singapore

[55

Fy Function A
Fy
2.
AF“_,
API

Fe

A\

Fa

r:?g <] e Function B
Fa |
End-Users O
\K‘
\QK

Function C |

[request
Figure 1: The process of invoking a function chain with a
length of 3. When end-users invoke the function chain, the API
gateway needs to perform 5 request forwarding operations, rather
than 3 direct function-to-function invocations. This results in 2
additional network round trips.

M response

potentially compromising service level objectives (SLOs). The net-
work delays within each region of the serverless platform amplify
this function chain invocation latency. As Figure 2 shows, within
each region, at least 50% of the delays exceed 2ms, and the latency
between regions will be even greater. The function chain invoca-
tion latency overheads range from a few to tens of milliseconds
[33], making FaaS a poor choice for latency-sensitive interactive
applications. Therefore, reducing the latency in the function chain
is critical to the performance of serverless computing.

Prior researchers have attempted to reduce the invocation la-
tency in a few different ways. Xanadu [19] and Sequoia [51] proac-
tively warm functions that will execute to reduce function start
time. SPRIGHT [42] uses event-based shared memory communica-
tion within a serverless function chain to achieve high-speed packet
forwarding. QFaaS [22] emerges QUIC protocol to serverless plat-
forms to reduce extra round-trip in TCP. Furthermore, SAND [1]
and Nightcore [25] schedule all functions of an application to the
same node or the same sandbox to reduce interaction distance,
accomplishing low latency.

Nevertheless, all of the current studies still follow the existing
network architecture like Figure 3(a) in which the centralized API
gateway provides indirect function communications. The central-
ized network architecture has networking problems from three
aspects. First, extra network round-trips are required in function
chains, increasing invocation latency (P1). Second, all network flows
in function chains are forwarded by a centralized component, prone
to a performance bottleneck (P2). Third, multi-tenants share the
same centralized component for traffic forwarding, expanding the
attack surface of information leakage. (P3).

In this paper, we propose DIRECTFAAS, a clean-slate network
architecture that removes the API gateway from internal function
invocations to achieve efficient serverless function chain commu-
nications. Specifically, for extra network round-trips (P1), DIRECT-
FaAS build direct data forwarding channels between functions to
reduce the network round trips in function chain communications.
For the centralized component bottleneck (P2), DIRECTFAAS lever-
ages the SDN’s capability to precisely manage network flows. It
releases the API gateway from the burden of forwarding inter-
nal data flows. For the multi-tenant internal function traffic going

Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen

90%[12.26] 4.96 | 6.63 | 5.66 | 4.95 | 5.19 | 5.44 | 557 | 59 | 5.71 | 5.41 | 492 | 5.23 [5.42 [517 [478 | 6.07 | 7.95 | 8.54 | 5.15 [5.01 |
50% 575 | 2.93 | 431 | 381 | 2.23 | 2.93 | 2.53 | 3.59 | 3.12 | 3.83 | 3.56 | 226 | 2.56 | 3.29 | 3.01 | 26 | 3.44 | 49 | 457 | 3.07 | 272

st Gt 2l ot i ehd ool oot 2,03 uthLostd gt doast-2 jestd g2
ﬂuthgsfézn““ nﬂg\',}\"‘éu's"“e'u-‘”egll"“Sﬂ-weﬁe—5"“'50-3“%‘5-2“%5'9“ s Wwest

thd Ly ot 2l a3 int
af-50"p-e05% ine0TinedsTinedtout i e
pre no! oP‘“o 00 eu

ot - ¢
n0f- rap 005%5p-5°

Figure 2: AWS Lambda intra-region round trip latency (ms)
in the 10th, 50th, and 90th percentiles in one year. Source data
is collected from [15] between June 2021 to June 2022.

through the same component, DIRECTFAAS deploys the network
policy [32] that only allows data flows to go through functions with
invocation relationships. Fine-grained network policies maintain
the isolation of data flows.

The contributions of this paper are as follows:

e We investigate the network architecture of serverless com-
puting and state its networking problems. (§2)

e We present DIRECTFAAS, a clean-slate network architecture.
It improves the efficiency of function chain invocations and
addresses the challenges of removing the API gateway from
internal function invocations. (§3)

e We implement a prototype of DIRECTFAAS on the popular
open-source serverless platform OpenFaaS. (§4)

e We conduct our evaluations of real-world serverless web ap-
plications. Compared with OpenFaaS, DIRECTFAAS reduces
the execution time of serverless web applications by up to
30.9%. It also reduces the system’s CPU usage by 30.1% and
memory usage by 13.8%. (§5)

2 BACKGROUND AND PROBLEM
STATEMENTS

This section introduces the existing network architecture in server-
less computing (§2.1) and states networking problems in it (§2.2),
which motivate the design of DIRECTFAAS.

2.1 Network Architecture in Serverless

In serverless computing, developers only need to upload their code
and provide trigger interfaces to form functions. End-users invoke
functions in an event-driven way (e.g., HT TP request, timer). Server-
less platforms utilize an API gateway to handle function invocations,
providing end-users with a simple, flexible, pay-as-you-go way to
establish the connection to functions [6]. The API gateway is the
piece that ties together serverless functions [46]. It handles all as-
pects of creating and operating functions for the application. Since
functions are designed to be as lightweight as possible to minimize
cold start time, they do not have the service mesh to proxy their
traffic, all the traffic is routed through the API gateway.

Function chain invocation workflow. Figure 3(a) shows an ex-
ample that end-users invoke an application with two functions.
End-users trigger their application through the API gateway (®).
The API gateway forwards the request to function A (®), accepts in-
vocation requests from function A to function B (®), and forwards
the requests to function B (®). Different serverless platforms may
have different approaches to enforcing function chains, but they all
have one common feature: the HTTP requests between functions need
to be forwarded by a central orchestrator such as the API gateway.

The role of the API gateway. Since the API gateway handles
all aspects of invoking a function, it is not only the data packet
forwarding center but also the function control center. The API

DirectFaaS

©/@Watch Invocation Metrics

HPA
Scaler

@!nvoke Fy | Fa ¥
@

API gateway

WWW ’24, May 13-17, 2024, Singapore, Singapore

@
End-Users

P—
@Return F, | Fp |End-Users

Denied

OInvoke

©Oscale| |@ Scale @ Invoke, Return Invoke \@® Return
Fg)| |Fa Fa Fa Fa | Fs Fg Fg
Worker Node Worker Node
—" @invokeFy) Fy mmm ’
! Function | ' Function | |
' A @Return Fg : B H
Akl S S R ,
,,,,,,,,,,,,,,,,,,,,,,, yroeeeet

El Data packet ® Control Invocation

(a) Existing function chain invocation network architecture

Authorization

API o~y
gateway —

functions

(b) The roles of the API gateway in invocation

Figure 3: The process of invoking the function chain. (a) Network architecture. End-users invoke the function chain through the API
gateway. The API gateway not only forwards requests from end-users but also from Function A. (b) API gateway invocation processes.
When end-users invoke a function, the API gateway needs to perform 3 roles. Authorization for end-users, scaling functions, and routing

requests to functions.

gateway performs various roles during the function invocation pro-
cess [6]. It takes responsibility for extensive functionality, including
authorization (control flow), scaling functions (control flow), and
forwarding application traffic (data flow). As Figure 3(b) shows,
the API gateway will authenticate the user’s identity, and reject
invalid requests(®). Second, when the request is authenticated, the
function will be scaled based on the request volume. If a function
remains idle for a certain period of time, it will be scaled down to
zero. The scaling decision is determined by the invocation count
of the function in the API gateway (®). Third, the API gateway
forwards requests to the corresponding functions (®). If there are
multiple internal invocations, the API gateway scales timely to
authorize end-users, resilience functions, and forward traffic.

2.2 Networking Problems

The API gateway greatly facilitates function invocations for end-
users. However, the effectiveness of serverless networking is com-
promised for such convenience. Network invocations between func-
tion chains are not efficient in current serverless platforms.

P1: Multiple extra connections increase invocation latency.
A function chain needs to call the API gateway multiple times to
forward requests. As Figure 3(a) shows, when end-users invoke a
two-function application, 14 steps are involved. There are 4 con-
nections (@, ®, ®, @) in this function chain. However, it would
be more efficient if Function A invokes Function B directly, and
connections (®, @) can be avoided.

P2: The centralized architecture is prone to traffic bottlenecks.
The API gateway performs various roles during the function invo-
cation, including authorization, resiliency, and traffic forwarding.
Although the API gateway can scale timely when facing burst traf-
fic, the heavy tasks consume numerous resources in the platform,
making the API gateway become the traffic bottleneck.

P3: Lack of data flow isolation compromises security. The
data flows from multi-tenants coexist within the API gateway. Even
though serverless platforms like AWS employ role-based access
control policies to maintain tenant’s data isolation [7], the internal
attack surface is still expanded in the current serverless architecture.

For instance, the Virtual Private Cloud (VPC) provides an isolated
networking environment in public clouds. Customized VPCs are
actually disabled in AWS Lambda by default [4]. All Lambda func-
tions from the different tenants actually share the same public VPC.
Multi-tenant functions can access the same API gateway.

3 SYSTEM ARCHITECTURE DESIGN

In this section, §3.1 introduces challenges in designing ideal net-
work architecture. We propose DIRECTFAAS and discuss how it
addresses these challenges in §3.2. §3.3 and §3.4 provide detailed
designs of DIRECTFAAS control flow and data flow, respectively.

3.1 Challenges

We believe that direct communication between functions is the
key to addressing these networking problems (§2.2). To enable
direct communications, we need to remove the API gateway from
internal function invocations and decouple the data flow from the
control flow. However, due to the various roles that the API gateway
performs during the function invocation (Figure 3(b)), releasing
the API gateway from data forwarding is not easy. DIRECTFAAS’s
design should tackle three key challenges:

C1: Handing the authorization of the internal function in-
vocation. Serverless platforms [5, 21, 37] authorize both external
and internal function invocations through the API gateway. For
external invocations, the API gateway checks whether users’ bear-
ing tokens or request parameters are authorized [10]. For internal
invocations, it will also determine whether a function is qualified to
access another function. However, if internal invocations no longer
go through the API gateway, it is challenging to validate function
chain authorizations.

C2: Routing functions without knowing the IP address. In
current serverless platforms, the API gateway is responsible for
routing requests between functions. When a function invokes an-
other function, technically, it invokes the API gateway with the
function name as a parameter. Functions scales a different number
of instances based on the traffic volume. The API gateway is respon-
sible for finding the IP address of the invoked function instance and

WWW °24, May 13-17, 2024, Singapore, Singapore

DirectFaaS Controller Control Plane

Flow Table) (Flow Table| |©/@(_

apiserver
Translator GeneratorJ L J
(1)

@OF, \GFE

@ Fa h
Worker Node O Fa Fg | Worker Node

Function ;
LB
O F

! Function O F

Y A
Virtual Switch ’

Data Plane

/4
Virtual Switch ‘

Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen

or, |oF, HPA API @ Fa .@.
{_ Scaler ateway Fa | Fg | End-Users

@ HPA Scaler queries metrics from API gateway, apiserver, and
Virtual Switch from each node.

@ HPA Scaler scales Function A from 0 to 1.

©)/@DirectFaas Controller observes new instances scaled in
apiserver.

@)/ @DirectFaaS Controller generates flow tables and deploys
them to Virtual Switch on each worker node.

@ API gateway queries the IP address of function A in apiserver.
@ HPA Scaler scales Function B from 0 to 1.

Control
Flow

@ End-users invoke functions through the API gateway.
@ API gateway invokes Function A.

Data @ Function A invokes Function B.

Flow @ Function B returns results to Function A.

@ Function A returns results to APl gateway.

@ API gateway returns results to end-users.

— Control flow = Data flow ®Contro| Invocation El Data packet

Figure 4: DIRECTFAAS serverless network architecture. The green arrows represent the control flows. The blue arrows represent the
data flows. We separate control flows and data flows, making direct communications between Function A and Function B possible.

forwarding the request. However, if internal function invocations
no longer go through the API gateway, function instance addressing
becomes a challenge.

C3: Scaling functions when functions are scaled to zero. Using
“scale to zero” to achieve "pay-as-you-go" is one of the advantages of
serverless computing. When a function is not invoked for a period
of time, the number of function instances will be scaled down to
0 by platforms. If a zero-scaled function is invoked, Horizontal
Pod Autoscaling (HPA) Scaler will scale up this function based on
invocation metrics in the API gateway [8]. However, if a function
directly invokes a zero-scaled function, invocation metrics in the
API gateway will not be updated. As a result, the function will not
be scaled in the current architecture, which becomes a challenge.

3.2 System Architecture Overview

From the insights above, we design DIRECTFAAS, a serverless net-
work architecture that not only improves the function chain invo-
cation efficiency but also solves the challenges discussed in §3.1.

DirecTFAAS architecture separates the control plane and the
data plane in serverless chain communications. Components of the
control plane are responsible for generating control flows. Follow-
ing these control flows, internal functions communicate directly in
the data plane. As shown in Figure 4, DIRECTFAAS controller in the
control plane manipulates control flows, while Virtual Switches for-
ward data flow in the data plane. The detailed design of DIRECTFAAS
controller and Virtual Switch are highlighted below.

DIrRecTFAAS Controller. We introduce DIRECTFAAS controller
to the serverless network architecture. It has SDN [36] capabilities
that can deploy network policies and allocate static IPs. These
capabilities address C1 and C2 in §3.1. Although the DIRECTFAAS
controller is also a centralized component, different from traditional
API gateway, it only generates and watches control flows.
Solution to C1: authorizing internal functions through
the network policy. In our architecture, the API gateway still
handles authorization and authentication for the invocations from
end-users. However, for internal function invocations that do not go
through the API gateway, we use SDN capability to achieve network

policies to restrict internal invocations. The DIRECTFAAS Controller
consists of a Flow Table Generator and a Flow Table Translator. The
Flow Table Generator generates the network policy based on the
application workflow’s Directed Acyclic Graph (DAG). The Flow
Table Translator deploys them to the data plane. The network policy
restricts arbitrary invocations between internal functions, allowing
access to functions only if there is an invocation relationship in the
DAG. As Figure 5 Flow tables show, if functions have no invocation
relationship with Function B, its requests will be denied (Line 1).
Function A has an invocation relationship with Function B, so
requests from Function A are allowed to reach Function B (Line 2).
Even without authentication between internal functions through
the API gateway, fine-grained network policies still maintain the
security of internal function invocations.

Solution to C2: using the static virtual IP (vIP) to route
internal function communications. When the API gateway no
longer assists with internal addressing and routing, we design the
static virtual IP (vIP) for direct routing. Each function comprising
the application will be allocated a vIP address that does not change
until the function is removed from the platform. Functions can
directly invoke each other using the vIP address. When a new
function instance is created, the Flow Table Generator will add a
flow table rule that maps the vIP to the dynamic endpoint IP (eIP)
of this instance. As Figure 5 Flow tables show, when Function A
directly invokes the vIP of Function B, as the packet goes through
the Virtual Switch, its destination IP will be changed to the eIP of
Function B’s instance (Line 3). Therefore, requests from Function A
will be forwarded directly to Function B without the need for API
gateway addressing and routing.

Virtual Switch. Virtual Switches are widely used in current cloud
platforms [2]. In DIRECTFAAS design, Virtual Switches are responsi-
ble for networking connectivities of function instances. The number
of invocations of each function recorded by the Virtual Switch is
crucial for addressing the function scaling challenge (C3) in §3.1.
Solution to C3: monitoring internal function invocations
to scale function instances. When the API gateway no longer
updates the number of internal function invocations, we design the
HPA Scaler to get metrics of function invocations from the Virtual

DirectFaaS

WWW ’24, May 13-17, 2024, Singapore, Singapore

Flow table

Source IP Destination IP

Actions

Line 1 Except for elPs of Function A

10.64.0.101 (vIP of Function B)

Deny

Line 2| 10.16.0.200 (elP of Function A) | 10.64.0.101 (vIP of Function B)

Allow

Line 3| 10.16.0.200 (elP of Function A) | 10.64.0.101 (vIP of Function B)

Change Destination IP to 10.16.0.1 (elP of Function B)

Source IP Address

Function A
1 Destination IP Address
10.64.0.101 (vIP of Function B)

Function B

Data Packet

Invoke 10.16.0.200 (elP of Function A) — 10.16.0.200 (elP of Function A) | Invoke

— —
Virtual Switch

Worker node

Source IP Address

Destination IP Address
10.16.0.1 (elP of Function B)

Function B

Data Packet

Figure 5: Data flow between two functions. When Function A invokes Function B, the action is performed on the packet on the Virtual
Switch. According to the flow table, changes the virtual IP (vIP) of the packet to the endpoint IP (eIP), and forwards it to Function B.

f2:Details

B > f1: Product-
Gateway page

@
End-User f3: Reviews

§ Data Store
A

f4:Ratings

Services

: Ingress Functions D: Pure Functions : Datal F i g: D:

Figure 6: The architecture of Bookinfo.

Invoked Functions

Application Functions

f1 2 f3 f4

Product-page (f1) X 300/300 300/300 X

Details (f2) X X X X
Reviews (f3) X X X 300/300

Ratings (f4) X X X X

Table 1: The functions in Bookinfo invoke each other. Func-
tions can only be invoked by other functions that have an invocation
relationship.

Switch. Since all the function traffic goes through the Virtual Switch,
the Virtual Switch can accurately update the number of invocation
times of each function. When Function A invokes Function B which
is zero-scaled, the Virtual Switch will update the number of the
invocation times of Function B. Thus, the HPA Scaler can scale
Function B from 0 to 1, which solves the function scaling challenge.

3.3 Control Flow Design

Green arrows in Figure 4 represent the control flows that are sent by
control components. They are responsible for monitoring metrics,
scaling functions, and generating flow table rules. The control flows
c®, c@, c®, and c® continuously monitor function metrics. The
HPA Scaler gets function invocation counts from the API gateway,
Virtual Switches, and gets the function resource utilization from
the apiserver (c®). Based on these metrics, the HPA Scaler scales
the functions. When a new function instance is created, the DIRECT-
FaAS Controller obtains the endpoint IP address of the function
instance from the apiserver [30] for generating flow table rules
(c®, c®@). The API gateway obtains the eIP of the ingress function
for forwarding end-user requests (c®). However, it will no longer
address internal invocations, which means that when an end-user
invokes a function chain, the API gateway only needs to query the
IP address once. The control flows c@ and ¢® scale functions when
the HPA Scaler observes the function invocation count transmit-
ted from 0 to 1. The control flows c® and ¢® generate flow table

rules and deploy them to Virtual Switches when the DIRECTFAAS
Controller gets the new eIP from the apiserver. These control flows
have the following properties:

Programmability. Programmability is a fundamental feature for
the DIReCTFAAS Controller. The control flows generated by the Di-
RECTFAAS Controller can be programmed by the serverless providers.

Transparency. All the modifications in DIRECTFAAS are transpar-
ent to end-users and existing serverless applications. End-users still
interact with the API gateway to invoke function chains. Existing
serverless applications can directly deploy on DIRECTFAAS without
any modification.

3.4 Data Flow Design

The data flow is divided into two parts: the data flow interacts with
the API gateway and the data flow between the internal function
invocations. In Figure 4, the data flows d® and d® are responsible
for the interaction between end-users and the API gateway. End-
users invoke functions with parameters (d®) and the API gateway
returns results to end-users (d®). The data flows d® and d® are
responsible for transmitting data between the API gateway and
the ingress function, including invoked parameters to the function
chain (d®) and the returned computation result from the function
chain (d®). The data flows d® and d® are transmitted directly
between internal function chains. As Figure 5 describes, the Virtual
Switch forwards the data packets to the destination function, achiev-
ing a direct connection between internal functions. The direct data
flows between functions have the following properties:

Scalability. In traditional serverless architecture, data flows are
routed by the API gateway. While the API gateway can scale, it still
becomes a bottleneck for traffic. DIRECTFAAS enables functions to
communicate peer-to-peer, eliminating the bottleneck. Data flows
exhibit greater scalability.

Isolation. The internal data flow no longer goes through the API
gateway where multiple tenant traffic is aggregated. The network
policy strictly restricts the direction of the internal function data
flow to maintain their isolation and security.

4 IMPLEMENTATION

We implemented our architecture on OpenFaa$S [40]. OpenFaasS is
one of the most popular open-source serverless platforms that gets
23.6k stars in GitHub [41]. It is a container-based serverless platform
[48] and orchestrated by the Kubernetes [31] infrastructure. We
provide detailed implementations of DIRECTFAAS five components.

WWW °24, May 13-17, 2024, Singapore, Singapore

Chain 1

Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen

— : Invoke Functions

f13: Get 1: Browser 3: Request 4: Message f5: Record f6: Assign | |, | ™ : Access Services
Produc gl 3 2!
Price 'W Products Photo Phntog{a]}her Phott:grapher : Ingress Functions
v
g ey K : Database Functions
i 14: Authorize 12: Purch: f7: Register] [
[—p—— f — > I urchase 4 &= Photographer . .
; Credit Card Product g Photographer = e =' Registry g : Pure Functions
Credit Card = Storage ‘ : Impure Functions
Registry + -
f15: Publish ‘_o_‘ R f8: Acquire | | f9: Receive £10: Photo f11: Photo & : Database Services
Result o Photo Photo Success Report . .
End-User Other Clients r B4 : Email
Chain 3 Chain 2

Figure 7: The architecture of Hello Retail! Here is annotated to demonstrate three function chains. The orange frame surrounds a
function chain and black arrows denote the invocation relationship in the serverless function chain.

wu
o
o

456

g 420
g 400 363 380 369
8 333
ﬁ 300
[226 5 229
2 200 00 180
9]
Q
€ 100
p=}
=

0 Purchase Get-price Authorize Publish

Function Instances
Figure 8: Internal functions are scaled when heavy traffic
bursts in Hello Retail! function chain 3.

API gateway. We use OpenFaaS’s API gateway as our API gateway
prototype. We maintain the API gateway’s role in handling end-
user requests. Since internal functions in DIRECTFAAS no longer
go through the API gateway, we exclude the API gateway from
internal functions forwarding. We deploy network policies for au-
thentication between functions and generate flow table rules for
routing internal functions.

Apiserver. Since we deployed OpenFaaS over Kubernetes, the Ku-
bernetes API server works as the apiserver. It provides HTTP REST
API interfaces to add, delete, and update functions. The API gate-
way and the HPA Scaler interact with the Kubernetes API server to
manipulate the function resource. DIRECTFAAS Controller interacts
with the apiserver periodically to watch function instances.

HPA Scaler. We use KEDA [27], a Kubernetes-based event-driven
autoscaler to scale functions based on the number of function in-
vocations. When the function invokes other functions directly, the
Virtual Switch will update the number of invoked functions. Then
KEDA uses an event-driven way to scale functions.

DIrRecTFAAS Controller. The DIRECTFAAS Controller is imple-
mented based on the kube-OVN controller. Kube-OVN [29] is a
cloud-native computing foundation sandbox-level project that in-
tegrates the SND-based network virtualization with Kubernetes.
We bring the SDN capabilities into serverless platforms. Our mod-
ifications are aimed toward allocating the vIP for each function,
generating flow tables when there are new functions scaled.

Virtual Switch. We configure and operate the network bridge
using Open vSwitch (OVS) [39]. It exists on each worker node as a
part of the network stack, consisting of the network bridges. When
a function is scaled, a port corresponding to the function’s veth
interface will be created on the OVS. The flow table rules deployed
on the Virtual Switch route packets to the correct destination.

5 EVALUATION

In this section, we evaluate the functionality and performance
of DIRECTFAAS. We deploy DIRECTFAAS on a 3-node Kubernetes
cluster (v1.23.6). Each node is equipped with 8x 2.20-GHz Intel Xeon
CPUs (E5-2650) and 32GB memory running Ubuntu 20.04 TLS. Our
experiments use Docker version 20.10.17 as the container runtime
and OpenFaaS with gateway version 0.23.0.

Application workloads. We use three serverless applications to
evaluate the performance of DIRECTFAAS against OpenFaa$, includ-
ing (i) a web application that displays book information Bookinfo,
(ii) a commercial serverless application Hello, Retail!, and (iii) a syn-
thetic serverless application with variant function chain lengths.

Bookinfo [24] consists of four functions that are written in differ-
ent languages. The architecture is shown in Figure 6. The Product-
page is the ingress function (publicly accessible) that is invoked by
end-users through the API gateway. Other functions are internal
functions (can only be accessed by ingress functions).

Hello, Retail! [49] has been extensively used in recent serverless
studies [17, 18, 22, 45]. As shown in Figure 7, Hello Retail! consists
of 15 functions, 6 of which are ingress functions and 9 internal func-
tions. There are 3 function chains in Hello Retail!. These functions
also interact with other stateful back-end services and external
services, e.g., databases.

To evaluate the performance of DIRECTFAAS under different
function chain lengths, we developed a serverless application with
variant chain lengths. In our evaluation, we also use different inter-
nal delays between each node to simulate network conditions in
different data centers.

5.1 Functionality Evaluation

DIreCTFAAS solves the challenges of releasing the API gateway
from internal function invocations. Based on evaluations of real
applications, we present the functionality of DIRECTFAAS.

5.1.1 Authorization. We deployed the network policy based on the
invocation relationship of Bookinfo to restrict the internal function
invocations. In each function, we invoke the vIP address of other
functions at 10 requests per second (rps) for 30 seconds. The total
requests are 300. As Table 1 shows, requests only successfully be for-
warded to functions that have invocation relationships. Otherwise,
requests will be blocked.

5.1.2 Routing. Since we use a specific vIP for each function, func-
tions need to respond when we invoke them with their vIP. We use
an HTTP load generator (hey [43]) to simulate a burst of heavy
traffic. We sent 10 concurrent requests to chain 3 of Hello Retail!

DirectFaaS

@® OpenFaaS .
200 200
'g @ DirectFaaS 'g ; L . :
=175 £175 T
o . . (9] T L
£10 £150 T
= : . =
S125| == S125 — T .
fh == = ENY |
2100 = . 3100 ——
X — x @® OpenFaaS -
w75 - w75 :
@ DirectfFaaS
50Chain 1 Chain 2 Chain 3 50~ Chain 1 Chain 2 Chain 3

Ingress function Ingress function

(a) Chain Invocation Time (0ms delay) (b) Chain Invocation Time (0.5ms delay)

Execution time (ms)

—
o
=}

WWW ’24, May 13-17, 2024, Singapore, Singapore

® OpenFaaS @® OpenFaaS
80 @® DirectFaaS 'g 80 @® DirectFaas ! l %
60 C o £ 60 1T
ATy o= L=
L. Ta T ¢ L. = T
40 — . - 5 40 o FL T
. %L T B (9} =L T
%; - & L T=
20 ik T 0 Lz
1 2 1

3 4 5 2 3 4 5
Function chain length Function chain length

(c) Variant Chain Length (0ms delay) (d) Variant Chain Length (0.5ms delay)

Figure 9: Function chain execution time.

Reguest per sec.
6= P

Reguest per sec.
150 50 st P

150

10 50

200 250 10 200 250

—— OpenFaas-Nodel
DirectFaaS-Nodel
—— OpenFaas-Node2
DirectFaaS-Node2

240 360
Time [S]

240
Time [S]

360 120 480 600

(a) Node CPU Consumption (b) Node Memory Consumption

Figure 10: Node Resource Consumption. On both the control
node and worker node, DIRECTFAAS consumes fewer resources
than OpenFaaS.

for 120 seconds. The total requests to each function are 789. As
Figure 8 shows, when we invoke the function chain using vIP, each
internal function successfully responds to all requests.

5.1.3 Resiliency. As shown in Figure 8, when facing 789 requests,
each function is scaled. Functions are scaled to different quanti-
ties of instances based on the number of invocations and resource
consumption to handle requests. Requests are forwarded roughly
evenly to each function. The reason the first function instance
handles the most requests is that it lives the longest.

5.2 Runtime Performance

5.2.1 Execution Time Reduction. We use the time reduction of end-
user response latency to demonstrate the advantages of DIRECT-
FaAS. Specifically, we measure the time interval between an end-
user sending a request and receiving the response from the server-
less application. The latency reduction is also related to intra-cloud
delays between nodes. Therefore, we measure scenarios of Oms
and 0.5ms internal delays. We compare DIRECTFAAS with baseline
OpenFaaS. There are several research efforts [1, 19, 22, 25, 42, 51]
dedicated to reducing serverless function invocation latency, but
our work fundamentally different from them. The serverless net-
work architecture has changed in DIRECTFAAS. We believe our work
is complementary to them.

Figure 9 shows the response time of each function chain and the
response time of variant function chain lengths over 100 repetitions.
Figure 9(a) and 9(b) show the response time of each function chain in
Hello Retail!. We measure the Oms delay and the 0.5ms delay scenario.
Averaging across 3 function chains in Hello Retail!, DIRECTFAAS
reduces 24.4% and 30.9% invocation time with Oms delay and 0.5ms
delay, respectively. Figure 9(c) and 9(d) compare the invocation time

of function chains of different lengths. The length of a function
chain represents the number of functions in the chain. DIRECTFAAS
can save up to about 24ms in one end-user request when the chain
length is 6 with a 0.5ms delay.

5.2.2 Resource Consumption Reduction. We measure the resource
consumption of DIRECTFAAS under varying loads. To do so, we
make use of Hello Retail”’s chain 3 and use an HTTP load generator
(hey [43]) to issue increasingly high external request loads ranging
from 10 to 250 rps. Results for each load are reported over 120
seconds. The instances of functions will scale when the rps increases.
The control components API gateway, and DIRECTFAAS Controller
are deployed on the control node (Node1). Chain 3 of Hello Retail!
is deployed on the worker node (Node2).

Figure 10(a) shows the per-node CPU. The control node CPU
consumption grows at a gradual constant rate in OpenFaaS but
grows slowly in DIRECTFAAS. It is because, with the external rps
increases, the OpenFaaS API gateway not only needs to forward
the external requests but also the internal requests. However, the
DirecTFAAS API gateway only needs to forward external requests.
DIrecTFAAS consumes fewer CPU resources than OpenFaaS on
the control node. DIRECTFAAS achieved a 30.1% reduction in CPU
consumption on the control node. The worker node CPU consump-
tion grows sharply at the beginning because of function instances
auto-scaling. DIRECTFAAS consumes fewer CPU resources on the
worker node because it scales fewer functions when receiving the
same requests. DIRECTFAAS achieved a 15.4% reduction in CPU
consumption on the worker node.

Memory consumption is reported in Figure 10(b). In the control
node, OpenFaaS and DIRECTFAAS have similar memory consump-
tion. Like the CPU consumption, the memory consumption on the
worker node increases dramatically due to the increase in function
instances. OpenFaaS consumes more memory than DIRECTFAAS
because it scales more function instances. DIRECTFAAS reduces
memory consumption by 13.8%.

To better show the response time of the function instance, we
use the HTTP load generator to send 50 to 250 requests in 120
seconds. The function instance does not scale. As Figure 11 shows,
DIReCTFAAS has less response time than OpenFaaS, meaning it can
serve more rps. So under the same external rps, DIRECTFAAS only
need fewer function instances to meet the requests.

5.2.3 Overhead. Compared with OpenFaa$S, we introduce the D1-
RECTFAAS Controller to generate flow table rules when there are

WWW °24, May 13-17, 2024, Singapore, Singapore

Request per sec: 50 Request per sec: 100

Request per sec: 150

Qingyang Zeng, Kaiyu Hou, Xue Leng, and Yan Chen

Request per sec: 200 Request per sec: 250

1.0 1.0 == 1.0
0.8 0.8 0.8
0.6 0.6 0.6

w w w

) o o

o o o
0.4 0.4 0.4
0.2 —— OpenFaaS 0.2 —— OpenFaaS 0.2

Y DirectFaaS DirectFaaS

0.0 0.0 0.0

1.0 1.0
0.8 0.8
0.6 0.6
w w
o o
o s}
0.4 0.4
—— OpenFaaS 0.2 /— OpenFaaS 0.2 —— OpenFaaS
DirectFaaS DirectFaaS DirectFaaS
0.0 s 0.0

2 3 4 5

1 : 2 3 3 5
Response Time [s]

1 1
Response Time [s] Resp

2

onse Time [s]

2 3 4 5

3 p: 5 1 ;
Response Time [s]

1 2 3 : 5
Response Time [s]

Figure 11: The product-purchase function chain response time at different requests per second. DIRECTFAAS has a smaller response

time than OpenFaa$S which can serve more requests per second.

Request per sec.
10 50 100 150 200 250
osl OpenFaaS-API-gateway

--e-- DirectFaaS-APl-gateway
0.5{ --=-- DirectFaaS-Controller
DirectFaaS-Total

CPU [core]

480 600

240 360
Time [S]
Figure 12: Component CPU Consumption. OpenFaaS API gate-
way consumes more CPU resources than all of DIRECTFAAS control

components.

functions scaled. The DIREcTFAAS Controller will consume re-
sources in the system. In Figure 12, we compare the control compo-
nent of DIRECTFAAS with OpenFaaS. The OpenFaaS API gateway
consumes more CPU than the total control components of DIRECT-
FaAS, including the DIRECTFAAS API gateway, and the DIRECTFAAS
Controller. Although DIReCTFAAS Controller consumes additional
CPU, the sum of their consumption is still less than the OpenFaaS
gateway’s CPU consumption.

There is a delay involved in generating the flow tables when
functions are scaled. However, since flow tables are generated only
during function scaling, they are concurrent with the function cold
start time. The time to install a flow entry is in the millisecond range
[44] and the time for the DIRECTFAAS Controller to generate a flow
table is approximately 10 milliseconds, which is much smaller than
the several seconds required for cold start times [34]. The flow table
is deployed and ready by the time the function cold start completes,
so it does not introduce any additional latency.

6 RELATED WORK

Serverless Function Chain Latency. Several research efforts fo-
cus on reducing latency for the serverless function chain. SPRIGHT
[42] utilized shared memory communication to reduce the packet
processing time to lower latency. However, it only applies to func-
tions on the same node. It can work with DIRECTFAAS to further
reduce latency across worker nodes. QFaaS [22] emerges QUIC
protocol to serverless platforms to accelerate function invocations
while ensuring security. However, it still needs to establish a con-
nection with the API gateway, with DIRECTFAAS, this connection
can be reduced, further reducing latency. Boxer [54] uses a TCP
hole-punching service in every function instance to allow functions
to communicate with each other. However, unlike DIRECTFAAS that

makes no modification to function instances, Boxer adds the over-
head to lightweight containers which increases the start-up time.
Xanadu [19] and Freshen [23] aim to reduce the latency of func-
tion chains by eliminating cascading cold starts, while DIRECTFAAS
focus on reducing the latency between function communication.
SAND [1], Nightcore [25], and Sequoia [51] focus on the func-
tion schedule sequence and schedule placement to reduce latency.
However, they still follow the existing network architecture. D1-
RECTFAAS reduces function chain latency from a different angle of
existing efforts and is complementary to them.

SDN in Cloud Environments. Software Defined Networks (SDNs)
have been foundational in enabling virtualized networks for cus-
tomer workloads in multi-tenant clouds. Antichi et al. [3] propose
a full-stack SDN framework to alleviate the network management
issues in the data center. Wang et al. [53] provide an SDN controller
to each Infrastructure-as-a-Service (IaaS) cloud tenant to manage
the network. But unlike DIRECTFAAS, this SDN controller is not
associated with FaaS. With large cloud access traffic, Shao et al.
[47] build a Disaggregated Software-defined Router (DSR) to keep
up with the fast growth of traffic volume. Google proposes Orion
[20], a distributed SDN platform to support system scalability. In-
spired by these works, the design of DIRECTFAAS introduces SDN
to serverless platforms, making it practical for removing the API
gateway from internal function invocations.

7 CONCLUSION

DirecTFAAS improves serverless function chain communication
effectiveness. It reduces application execution time and resource
consumption by removing the API gateway from the internal func-
tion invocations. With the creative use of SDN-based network man-
agement capability, DirerctFaaS achieves direct communication for
serverless function chains. Compared to the current architecture
using the centralized orchestrator to forward internal function invo-
cations, DIRECTFAAS reduces 30.9% execution time when serving a
complex web application. Additionally, when functions scale under
high bursty requests, DIRECTFAAS reduces CPU consumption by
30.1% and memory consumption by 13.8% compared to OpenFaaS.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable feedback. This
work was partially supported by the National Science Foundation
(NSF) under grant CNS 2229454. Any opinions, recommendations,
or findings are those of the authors and do not reflect the views of
Alibaba Cloud.

DirectFaaS

REFERENCES

(1]

A

[12]

(13

[14

[15]

[16

[17]

[18

[19

[20]

[21]
[22]

[23

[24

[25]

[26]

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923-935.

Alibaba Cloud. 2022. Apsara Stack Enterprise. Retrieved October 11, 2023 from
https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackE
nterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B
%E7%94%A8%E6%88%B7%E6%8C %87 %E5%8D%97/Alibaba%20Cloud %20 Apsar
a%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%
20Guide%2020220719.pdf

Gianni Antichi and Gabor Rétvari. 2020. Full-stack SDN: The next big challenge?.
In Proceedings of the Symposium on SDN Research. 48-54.

AWS. 2019. Announcing improved VPC networking for AWS Lambda functions.
Retrieved SEP 24, 2023 from https://aws.amazon.com/cn/blogs/compute/announ
cing-improved-vpc-networking-for-aws-lambda-functions/

AWS. 2022. AWS Lambda Introduction. Retrieved June 9, 2022 from https:
//aws.amazon.com/?nc2=h_lg

AWS. 2023. Amazon API Gateway FAQs. Retrieved May 26, 2023 from https:
//www.amazonaws.cn/en/api- gateway/faqs/

AWS. 2023. Build a multi-tenant serverless architecture in Amazon OpenSearch
Service. Retrieved May 29, 2023 from https://docs.aws.amazon.com/prescriptive-
guidance/latest/patterns/build-a-multi-tenant-serverless-architecture-in-
amazon-opensearch-service.html

AWS. 2023. On-demand scaling example. Retrieved October 11, 2023 from https:
//docs.aws.amazon.com/lambda/latest/operatorguide/on-demand-scaling.html
AWS. 2023. Serverless microservices. Retrieved May 25, 2023 from https://do
cs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-
microservices.html

AWS. 2023. Use API Gateway Lambda authorizers. https://docs.aws.amazon.co
m/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
AWS. 2023. What are Microservices? ~Retrieved April 25, 2023 from https:
//aws.amazon.com/microservices/?ncl=h_ls

Azure. 2019. Building serverless microservices in Azure - sample architecture.
Retrieved March 25, 2023 from https://azure.microsoft.com/zh-cn/blog/building-
serverless-microservices-in-azure-sample-architecture/

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2019. Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings
of the ACM Symposium on Cloud Computing. 13-24.

Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,
Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André da Costa.
2022. Serverless computing for Internet of Things: A systematic literature review.
Future Generation Computer Systems 128 (2022), 299-316.

cloudping.co. 2023. AWS Latency Monitoring Data. Retrieved May 29, 2023 from
https://www.cloudping.co/grid/p_50/timeframe/1Y

DATADOG. 2021. The state of serverless. https://www.datadoghq.com/state-of -
serverless-2021/

Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates. 2020. Valve: Securing function workflows on serverless com-
puting platforms. In Proceedings of The Web Conference 2020. 939-950.

Pubali Datta, Isaac Polinsky, Muhammad Adil Inam, Adam Bates, and William
Enck. 2022. ALASTOR: Reconstructing the Provenance of Serverless Intrusions.
In 31st USENIX Security Symposium (USENIX Security 22). 2443-2460.

Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-
ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. 356-370.

Andrew D Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar Mohsin,
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, et al.
2021. Orion: Google’s Software-Defined Networking Control Plane. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
83-98.

Google. 2023. Google Cloud Functions. https://cloud.google.com/functions
Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran. 2022. QFaaS: accelerating
and securing serverless cloud networks with QUIC. In Proceedings of the 13th
Symposium on Cloud Computing. 240-256.

Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner. 2020.
Proactive Serverless Function Resource Management. In Proceedings of the 2020
Sixth International Workshop on Serverless Computing (New York, NY, USA).
Association for Computing Machinery, 61-66.

Istio. 2023. Bookinfo Application. Retrieved October 11, 2023 from https://istio.io
/latest/docs/examples/bookinfo/

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 152-166.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the

&
=

@
i

[37

[38

[39

[40

[41

[42

[43

[44

[45

[46

[48

[49

[50

[51

[53

(54]

WWW ’24, May 13-17, 2024, Singapore, Singapore

2017 symposium on cloud computing. 445-451.

KEDA. 2023. KEDA introduction. Retrieved May 29, 2023 from https://keda.sh/
Vojdan Kjorveziroski, Cristina Bernad Canto, Pedro Juan Roig, Katja Gilly, Anas-
tas Mishev, Vladimir Trajkovikj, and Sonja Filiposka. 2021. IoT serverless com-
puting at the edge: Open issues and research direction. Transactions on Networks
and Communications (2021).

Kube-OVN. 2022. Kube-OVN introduction. Retrieved July 7, 2022 from https:
//kubeovn.github.io/docs/v1.10.x/en/

Kubernetes. 2023. kube-apiserver. Retrieved October 11, 2023 from https:
//kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
Kubernetes. 2023. Kubernetes Inc. Retrieved October 11, 2023 from https:
//kubernetes.io/

Kubernetes. 2023. Network Policies. Retrieved August 24, 2023 from https:
//kubernetes.io/docs/concepts/services-networking/network-policies/

Collin Lee and John Ousterhout. 2019. Granular computing. In Proceedings of the
Workshop on Hot Topics in Operating Systems. 149-154.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, et al. 2022. Help Rather Than Recycle: Allevi-
ating Cold Startup in Serverless Computing Through Inter-Function Container
Sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 69-84.
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, Somali
Chaterji, and Saurabh Bagchi. 2022. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 303-320.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM computer communica-
tion review 38, 2 (2008), 69-74.

Microsoft. 2022. Introduction to Azure Functions. Retrieved May 27, 2022 from
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
Ingo Miiller, Renato Marroquin, and Gustavo Alonso. 2020. Lambada: Interactive
data analytics on cold data using serverless cloud infrastructure. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 115-130.
NVIDIA. 2022. Open vSwitch. Retrieved May 23, 2023 from https://www.openvs
witch.org/

Openfaas. 2017. Openfaas Overview. Retrieved May 30, 2022 from https://ericst
oekl.github.io/faas/

OpenFaaS. 2023. OpenFaasS - Serverless Functions Made Simple. Retrieved October
11, 2023 from https://github.com/openfaas/faas

Shixiong Qi, Leslie Monis, Ziteng Zeng, lan-chin Wang, and KK Ramakrish-
nan. 2022. SPRIGHT: extracting the server from serverless computing! high-
performance eBPF-based event-driven, shared-memory processing. In Proceedings
of the ACM SIGCOMM 2022 Conference. 780-794.

rakyll. 2020. hey introduction. Retrieved May 25, 2023 from https://github.com/r
akyll/hey

Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W
Moore. 2012. OFLOPS: An open framework for OpenFlow switch evaluation. In
Passive and Active Measurement: 13th International Conference, PAM 2012, Vienna,
Austria, March 12-14th, 2012. Proceedings 13. Springer, 85-95.

Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow integration
alleviates identity and access management in serverless computing. In Annual
Computer Security Applications Conference. 496-509.

Severless. 2023. Amazon API Gateway. Retrieved May 26, 2023 from https:
/[www.serverless.com/guides/amazon-api- gateway/

Hua Shao, Xiaoliang Wang, Yuanwei Lu, Yanbo Yu, Shengli Zheng, and Youjian
Zhao. 2021. Accessing Cloud with Disaggregated Software-Defined Router. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). 1-14.

Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking
functions to warm the serverless cold start. In Proceedings of the 21st International
Middleware Conference. 1-13.

SimonEismann. 2021. Hello Retail! Application. Retrieved October 11, 2023 from
https://github.com/SimonEismann/hello-retail

Harmeet Singh and Mayur Tanna. 2018. Serverless Web Applications with React
and Firebase: Develop real-time applications for web and mobile platforms. Packt
Publishing.

Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling quality-of-service in serverless computing. In Proceedings
of the 11th ACM Symposium on Cloud Computing. 311-327.

Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with
a serverless architecture. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 1288-1296.

Haopei Wang, Abhinav Srivastava, Lei Xu, Sungmin Hong, and Guofei Gu. 2017.
Bring your own controller: Enabling tenant-defined SDN apps in Iaa$ clouds. In
IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1-9.
Mike Wawrzoniak, Ingo Miiller, Rodrigo Fraga Barcelos Paulus Bruno, and Gus-
tavo Alonso. 2021. Boxer: Data analytics on network-enabled serverless platforms.
In 11th Annual Conference on Innovative Data Systems Research (CIDR 2021).

https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackEnterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97/Alibaba%20Cloud%20Apsara%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%20Guide%2020220719.pdf
https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackEnterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97/Alibaba%20Cloud%20Apsara%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%20Guide%2020220719.pdf
https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackEnterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97/Alibaba%20Cloud%20Apsara%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%20Guide%2020220719.pdf
https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackEnterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97/Alibaba%20Cloud%20Apsara%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%20Guide%2020220719.pdf
https://apsarastackdocument.oss-cn-hangzhou.aliyuncs.com/01_ApsaraStackEnterprise/v3.16.2_intl_en/%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97%2B%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97/Alibaba%20Cloud%20Apsara%20Stack%20Enterprise%20V3.16.2%20Virtual%20Private%20Cloud%20User%20Guide%2020220719.pdf
https://aws.amazon.com/cn/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/cn/blogs/compute/announcing-improved-vpc-networking-for-aws-lambda-functions/
https://aws.amazon.com/?nc2=h_lg
https://aws.amazon.com/?nc2=h_lg
https://www.amazonaws.cn/en/api-gateway/faqs/
https://www.amazonaws.cn/en/api-gateway/faqs/
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/build-a-multi-tenant-serverless-architecture-in-amazon-opensearch-service.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/build-a-multi-tenant-serverless-architecture-in-amazon-opensearch-service.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/build-a-multi-tenant-serverless-architecture-in-amazon-opensearch-service.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/on-demand-scaling.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/on-demand-scaling.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/serverless-microservices.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://aws.amazon.com/microservices/?nc1=h_ls
https://aws.amazon.com/microservices/?nc1=h_ls
https://azure.microsoft.com/zh-cn/blog/building-serverless-microservices-in-azure-sample-architecture/
https://azure.microsoft.com/zh-cn/blog/building-serverless-microservices-in-azure-sample-architecture/
https://www.cloudping.co/grid/p_50/timeframe/1Y
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://cloud.google.com/functions
https://istio.io/latest/docs/examples/bookinfo/
https://istio.io/latest/docs/examples/bookinfo/
https://keda.sh/
https://kubeovn.github.io/docs/v1.10.x/en/
https://kubeovn.github.io/docs/v1.10.x/en/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://www.openvswitch.org/
https://www.openvswitch.org/
https://ericstoekl.github.io/faas/
https://ericstoekl.github.io/faas/
https://github.com/openfaas/faas
https://github.com/rakyll/hey
https://github.com/rakyll/hey
https://www.serverless.com/guides/amazon-api-gateway/
https://www.serverless.com/guides/amazon-api-gateway/
https://github.com/SimonEismann/hello-retail

	Abstract
	1 Introduction
	2 Background and Problem Statements
	2.1 Network Architecture in Serverless
	2.2 Networking Problems

	3 System Architecture Design
	3.1 Challenges
	3.2 System Architecture Overview
	3.3 Control Flow Design
	3.4 Data Flow Design

	4 Implementation
	5 Evaluation
	5.1 Functionality Evaluation
	5.2 Runtime Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

