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Abstract
along with distributed machine learning such as federated learning (FL), has gained much attention and popularity in

To overcome the limitations of long latency and privacy concerns from cloud computing, edge computing

academia and industry. Most existing work on FL over the edge mainly focuses on optimizing the training of one shared
global model in edge systems. However, with the increasing applications of FL in edge systems, there could be multiple FL
models from different applications concurrently being trained in the shared edge cloud. Such concurrent training of these
FL models can lead to edge resource competition (for both computing and network resources), and further affect the FL
training performance of each other. Therefore, in this paper, considering a multi-model FL scenario, we formulate a joint
participant selection and learning optimization problem in a shared edge cloud. This joint optimization aims to determine
FL participants and the learning schedule for each FL model such that the total training cost of all FL. models in the edge
cloud is minimized. We propose a multi-stage optimization framework by decoupling the original problem into two or
three subproblems that can be solved respectively and iteratively. Extensive evaluation has been conducted with real-
world FL datasets and models. The results have shown that our proposed algorithms can reduce the total cost efficiently
compared with prior algorithms.

Keywords edge computing, federated learning (FL), participant selection, learning optimization

1 Introduction edge computing coupled with distributed machine

learning is a natural alternative. Nevertheless, train-

Nowadays, a massive amount of data is generated
by mobile users, Internet of Things (IoT) devices and
artificial intelligence applications, providing potential
training datasets for diverse machine learning (ML)
tasks. Traditionally, one needs to upload the whole
dataset to the remote cloud center for centralized ma-
chine learning model training. However, it is non-triv-
ial to upload a large amount of data to the remote
data center due to the limited network bandwidth
and data privacy concerns. Since training data is gen-
erated at the network edge, such as from smart sens-
ing devices and smartphones connected to the edge,

ing ML models in the edge cloud still faces many
challenges. First, due to limited data and computing
resources, a single edge device/server may not be able
to perform a high-quality ML training task alone. Sec-
ond, the computing capacity and network resources of
edge devices/servers are limited and heterogeneous.
When performing ML training tasks, different edge
units may lead to various convergence speeds and per-
formances. Third, edge resources generally are shared
by many mobile users. Distributed ML training with-
in the edge cloud has to be constrained by the shared
resources and the resource competition among vari-
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ous users, servers, and applications.

To tackle the aforementioned challenges, a new
distributed machine learning paradigm has been pro-
posed, called federated learning (FL)I3 that con-
ducts distributed learning at multiple clients without
sharing raw local data among themselves. Coupled
with edge computing, FL over edge cloud has been re-
cently studied in various settingsl* 4. In such scenar-
ios, several edge servers have been selected as partici-
pants (either parameter servers or FL workers), and
collaboratively train a shared global ML model with-
out sharing their local datasets and decoupling the
ability to do model training from the need to store
data in a centralized server. More precisely, as shown
in Fig.1, in each global iteration, edge servers, worked
as workers, first download the latest global model
from the parameter server (PS), and then perform a
fixed number of rounds of local training based on
their local data. After that, edge servers will upload
their local models to the parameter server which is re-
sponsible for aggregating parameters from different
workers and sending the aggregated global model
back to each FL worker. Previously, the efforts of FL
over the edge have been focused on the convergence
and adaptive control® 6] the resource allocation and
model aggregation/® 10: 11 and the communication and
energy efficiencyl! 16, 17],

In this work, we focus on a joint participant selec-
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tion and learning optimization problem in multi-mod-
el FL over a shared edge cloud®. For each FL model,
we aim to find one PS and multiple FL. workers and
decide the local convergence rate for FL workers.
Note that both worker selection and learning rate
control have been studied in FL recently. For exam-
ple, Nishio et al.[l studied a client selection problem
in decentralized edge learning where a set of mobile
clients are chosen to act as workers for FL and their
aim is to maximize the selected clients under time
constraints. Jin et al.¥ also studied the joint control
of local learning rate and edge provisioning in FL to
minimize the long-term cumulative cost. However, all
of these studies focus on the optimization of training
one global FL model instead of multiple FL. models,
thus they do not consider the parameter server selec-
tion for different FL models and ignore the competi-
tion of resources among different FL. models. In the
real scenario, there might be multiple FL models
training simultaneously in the edge cloud (Fig.1
shows an example where two FL models are trained
with three and four participants, respectively). Espe-
cially in the edge computing environment, edge
servers can store different types of data and serve dif-
ferent FL models or tasks for diverse applications.
With heterogeneous resources and capacities at edge
devices, when multiple FL models are trained at the
same time, which FL model is preferentially served at

Fig.1. Example of multi-model FL over the edge: two FL models are trained with three and four participants (1 PS + 2 or 3 FL

workers), respectively, in a shared edge clouds),

®As shown in Fig.1, we consider an edge cloud architecture where a set of edge servers are connected to each other without the
remote cloud center to form an edge network to serve the users. This kind of edge cloud model has been widely used in [18-22].
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which edge server directly affects the total communi-
cation cost and computational cost of the FL training.
The selection of participants (both the PS and FL
workers) for each model will also affect the learning
convergence speed. Therefore, in this paper, we for-
mulate a new joint optimization problem of partici-
pant selection and learning rate scheduling of multi-
model FL, where multiple FL. models are trained con-
currently in an edge cloud.

Due to the limitation of shared computing and
networking resources at edge servers in the edge
cloud, we aim to carefully select the FL participants
for each FL model and pick the appropriate local
learning rate for these selected FL workers, so as to
minimize the total cost of FL training of all models
while meeting the convergence requirement from each
model. The main contributions of this work are sum-
marized as follows.

1) We formulate a new joint participant selection
and learning rate scheduling problem of multi-model
federated learning in an edge cloud as a mixed-inte-
ger programming problem, with a goal to minimize
the total FL cost while satisfying various constraints.
Note that by allowing different FL models to pick
their own PS, it can better handle the competition
among models and provide load balancing in the edge
cloud compared with the traditional FL solution with
a centralized PS for all models.

2) We decouple the original optimization problem
into two or three sub-problems and then propose
three algorithms to effectively find participants and
the learning rate for each FL model, by iteratively
solving the sub-problems. We further consider the im-
pact of the processing order of FL models in a re-
source-limited and heterogeneous edge scenario.

3) We conduct extensive simulations with real FL
tasks to evaluate our proposed algorithms, and our re-
sults confirm the proposed algorithms can effectively
reduce the total FL cost compared with the existing
workl9 23, 24].

The rest of the paper is organized as follows. Sec-
tion 2 presents the overview of related work. Section
3 introduces the system model and the preliminaries
of federated edge learning. Section 4 describes the
problem formulation of new joint optimization, and
Section 5 provides our proposed multi-stage optimiza-
tion algorithms. Evaluation of our proposed algo-
rithms is provided in Section 6. Section 7 finally con-
cludes this paper. A preliminary version of this paper
appears as [15], and this version includes newly intro-
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duced greedy-based variation using a different model
processing order, time complexity analysis, additional
sets of experiment results, more comprehensive relat-
ed work, and better overall presentation.

2 Related Work

In this section, we briefly review recent studies on
federated learning over edge systemsld. Federated
learningl® 14 has been emerging as a new distributed
ML paradigm over different edge systems. Current FL
frameworks can be categorized into three types based
on the learning topology used for model aggregation:
centralized FL (CFL), hierarchical FL (HFL), and de-
centralized FL (DFL). CFL is the classical FLU
where the parameter server (PS) and several workers
form a star architecture as shown in Fig.1[%. Wang et
all¥l analyzed the convergence of CFL in a con-
strained edge computing system and proposed a con-
trol algorithm that determines the best trade-off be-
tween local update and global parameter aggregation
to minimize the loss function. This work focused on
the convergence and adaptive control of FL and did
not consider participant selection.

Nishio and Yonetanill studied a client selection
problem in CFL in mobile edge computing. Their
method uses an edge server in the cellular network as
the PS and selects a set of mobile clients as workers.
Their client selection aims to maximize the selected
workers while meeting the time constraints. Jin et
al.¥ considered a joint control of FL and the edge
provisioning problem in distributed cloud-edge net-
works where the cloud server is the PS and active
edge servers are workers. Their method controls the
status of edge servers for training to minimize the
long-term cumulative cost of FL and also satisfies the
convergence of the trained model. Li et al.12] also con-
sidered client scheduling in FL to overcome client un-
certainties or stragglers via learning-based task repli-
cation. While these studies are similar to ours, they
focus on the optimization of one global FL model in-
stead of multiple FL. models. More importantly, these
studies do not consider PS selection for multiple FL
models.

Recently, Nguyen et al.ll4 studied resource shar-
ing among multiple FL services/models in edge com-
puting where the user equipment is used as an FL
worker, and proposed a solution to optimally manage
the resource allocation and learning parameter con-
trol while ensuring energy consumption requirements.
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However, their FL framework is different from ours.
First, they used the user equipment as FL workers,
while we use edge servers as FL workers. Second, they
did not consider the PS selection, since they used a
single edge server as the PS. Third, their model al-
lows training multiple FL. models at the same user
equipment (while we do not allow the edge server to
act as workers for multiple models in the same time
unit), and thus their method has to manage the CPU
and bandwidth allocation on the user equipment.
Both [5] and [8] consider a client-edge-cloud hier-
archical federated learning (HFL) where cloud and
edge servers work as two-tier parameter servers to ag-
gregate the partial models from mobile clients (i.e.,
FL workers). Liu et al.bl proved the convergence of
such an HFL, while Luo et al.l8 also studied a joint
resource allocation and edge association problem for
device users under such an HFL framework to achieve
global cost minimization. Wang et al.'ll considered
the cluster structure formation in HFL where edge
servers are clustered for model aggregation. Recently,
Wei et al.12 also studied the participant selection for
HFL in edge clouds to minimize the learning cost. Liu
et al.B studied the group formation and sampling in
a group-based HFL. However, our FL framework does
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not use HFL.

Meng et al.l0 focused on model training of DFL
using decentralized P2P methods in edge computing.
While their method also selects FL workers from an
edge network, the model aggregation is performed at
edge devices based on a dynamically formatted P2P
topology (without PS). Therefore, it is different from
our studied problem, which mainly focuses on CFL.

There are also other studies(!6: 17, 20] where energy
efficiency and/or wireless communication have/has
been taken into consideration in FL in edge systems.

3 Federated Learning over Edge Cloud

In this section, we introduce our model of edge
cloud, and then describe the procedures and associat-
ed costs of federated learning over the edge cloud.

3.1 Edge Cloud Model

We model the edge cloud as a graph G(V, E), con-
sisting of N edge servers and L direct links among
them, as shown in Fig.2. Here V = {v,,..., vy} and
E={ey,...,e.} are the set of edge servers and the set
of links, respectively. For each edge server v, € V, it
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Fig.2. Training process of an FL model within the edge network at different time periods. (a) At each time period, this FL model
needs to select one PS and four workers, and they perform the FL via multiple iterations of local and global updates. (b) Due to the
dynamic edge cloud environment, the model can change its participants (both PS and workers) at the next time period ¢+ 1 to mini-

mize the total training cost of all models.
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has a storage capacity ¢! and a CPU frequency f! at
time ¢. For each edge link e; € F, it has a network
bandwidth b at time ?. We omit ¢ from the above
notations when it is clear from the context.

Each edge server holds a certain distinct dataset
collected from mobile devices/users and can be used
for local model training. We consider O types of
datasets in the edge cloud, and use z;, € {0,1} to in-
dicate whether server wv; stores the k-th type of
datasets and S, to represent the raw sample data of
the k-th type stored at server v;. Note that one edge
server can hold multiple types of datasets.

3.2 Federated Learning over Edge

We consider parallel federated learning where
multiple machine learning models are trained in paral-
lel within the edge cloud. Compared with the classi-
cal FL scenario where the remote cloud works as the
parameter server (PS), we select a group of edge
servers with enough capacity as the participants (one
PS and multiple workers) of FL for each model. We
assume that W FL models (M = {m,,...,my}) need
to be trained at the same time. For the training task
of each FL model m;, it requests 1) r,+ 1 edge
servers as participants, one server as its PS and k;
servers as its workers, whose CPU frequency should
be larger than its required minimal CPU frequency
\;; 2) the selected workers must have the requested
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types of a dataset for m;, where w,, € {0,1} indi-
cates whether m; needs the k-th type of datasets; and
3) the achieved global convergence rate needs to be
larger than ;. Here, we assume that each model uses
a fixed number of workers, and one worker can only
perform the FL training of one model at a time.

We consider a series of consecutive time periods
t=1,...,T, and each time period has an equal dura-
tion 7. As shown in Fig.2, at each time ¢, we select
the FL participants for each model and then train W
models in parallel through FL, which consists of a
number of global iterations (let ¢ be the number of
global iterations of m; at t). For each model m;, each
global iteration includes four parts: 1) the selected pa-
rameter server initializes the global model of m;; 2)
the selected workers download the global model from
the parameter server; 3) each worker runs the local
updates using its holding raw dataset for ¢! local iter-
ations to achieve the desired local convergence rate
0% 4) workers upload the updated model and related
gradient to the parameter server for the aggregation
to upload the global model. The training process of
federated learning at different time periods is shown
in Fig.2. Table 1 summarizes all notations we used in
this paper.

Next, we define our local training and global ag-
gregation process as well as the loss function during
the federated edge learning at each time period.

Loss Function. Let all types of sample data used

Table 1. Summary of Notations
Symbol Notation
N L o, W Number of edge servers, edge links, datasets, and FL models respectively
Vi, € The i-th edge server, and the j-th edge link respectively
ct, ft, b Storage capacity of v;, CPU frequency of v; , and the link bandwidth of link e; at t respectively
Siks Zik The k-th type data at v;, and its indicator respectively
t,7,T Index, duration, and number of time periods respectively

mj, Kjy, Hjy X5

The j-th FL model, its required number of workers, model size, and CPU requirement respectively

Si Global convergence requirement of m;

Wj,k> Mj Indicator of the k-th type data, and the downloading cost of m; respectively

mf,]w yﬁj PS and FL worker selection of e; for m; respectively

e Local convergence rates of m; at the ¢-th time period

192 s go;- Number of global iterations, and local update of m; at the ¢-th time period respectively
a, B,6 Index of global iteration, local update, and step size of local update respectively

A Parameters of loss function

D} 1, ¥(D)

pj(vi,vk), Pit)k

Sample data for m; at sever v; at t, and CPU cycles to process sample data of D;:

respectively

5%

Communication cost of m; from v; to vi, and the shortest path from v; to vi at the t-th time period

respectively
t )
Ups (M) Selected PS of m; at the t-th time period
Ccomm,t Ciuit,t Clocul,t
J [ ) Communication cost, initialization cost, local update cost, and global aggregation cost of m; respectively

global,t
G

w! Total FL cost of m;
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by the j-th model and stored in edge server v; be de-
fined by Di, = le vorro1 Sise- For each sample data
d =<qq,ra>€ D!, where g, is the input data and r, is
the output data/label, we define the average loss of

data for the j-th FL model on server v; in time peri-
od t as A ,(p):

At Z H(Z(qa;p),7a)s

dED‘ ;

where #(-) is the loss function to measure the perfor-
mance of the training model Z(-), and p is the model
parameter.

Then the average loss of data for the j-th FL
model on all related edge servers in the t-th time peri-
od is defined as follows:

Z'gx :

where D! is the union of all involved training sam-

ples of model j at time ¢.

Local Training on FL Workers. For each global
iteration of the j-th FL model a € [1,9!], the related
edge server v; (FL worker) will perform the following
local update process:

t,ao __ ta—1 t,a
Pie =P T Wi

where p’¢ is the local model parameter on edge serv-
er v; in the current iteration and pi*~' is the aggre-
gated model downloaded from the parameter server in

£,0 t—1,95 to

the last iteration. And p}® =p . Wiy is the local
update from a gradient-based method, and it can be

calculated as follows.

Zwl‘uﬁiz{wtuﬁ 1 6v£ta( t(x,@ 1)}7

where w“‘ﬁ is the model parameter for the j-th FL

model in the §-th local update and § is the step size
of the local update. Lastly, £%7(-) is the predefined
local update function. Based on [27], L£i7(-) is de-
fined as below.

£9(w) = AL (P 4 w) — (VAL ()
afwaMM+éwm

ZV /Zy”,

where ¢ and & are two constant variables. J/(-) is
the sum of gradients among all related edge servers
and this process will be performed in the global aggre-
gation step.

Assume that A%,(-) is A-Lipschitz continuous and
7-strongly convex[16: 28] then the local convergence of
the local model is represented as

Loo@i?) = L5 < L (@) — £, (1)

where £} is the local optimum of the training model.

Furthermore, we can set w]“f = 0 since the initial val-
ue can start from 0 for the training model.

Global Aggregation on Parameter Server. After
the local updates for all related FL workers, they
have to upload the related local model parameter '
and the related gradients V.A!,(p;*) to the parameter

server for aggregation.

= pyT 1+Z{y” }?}/Zy”

Then, the global average loss of data for the j-th
model is

D
G10) = 3 A )

Similarly, the global convergence of the global
model is defined as

Gl(p") - G < G[GH () — G4, (2)

where G:* is the global optimum of the training mod-
el.

Finally, from (1) and (2), in order to achieve the
desired local convergence rate o and global conver-
gence rate ¢;, we need to calculate the number of lo-
cal updates ¢! and the number of global iterations .
From the above observation, we can find that the
global convergence rate ¢; for each FL model can be
predefined and we have to conduct the local update
and global iteration to achieve required global conver-
gence rate. Then we have the following relationship
between the convergence rate and the local update as
well as global iterationsl® 27

2\2 1 1 1 1
5 2 (L) s (1) L
726 SYRS /) 1—0j

> 2 log (L) 2glog, [~

where ¢ is the constant variable defined in function
Li3(-), A is the A-Lipschitz parameter, and 7 is the
7-strongly convex parameter. Both the values of A

and 7 are determined by the loss function. 9, and ¢,

are two constants where J, =2)\?/(7%§) and

Po =2/((2 = A0)d7)-



760

4 Problem: Joint Participant Selection and
Learning Optimization

In this section, we first formulate the studied joint
optimization problem, and then introduce the cost
models used there.

4.1 Problem Formulation

Under the previously introduced multi-model fed-
erated learning scenario, we consider how to choose
participants for each of the models and how to sched-
ule their local/global updates. Particularly, at each
time period ¢, we need to make the following partici-
pant selection and learning scheduling decisions for
each model m;. We denote z! or y! as the decision
whether to select edge server v; as a parameter server
or an FL worker for the j-th FL model m; at time ¢,
respectively. Again, we assume that only one PS and
k; workers are selected for each model, ie.,
Z?; ‘Tf] =1 and Zf\; Uf] = kj. We use ‘Q; S [0, 1) to
represent the maximal local convergence rate of m; at
time ¢. We will use ¢! and ¢; to control the number of
global iterations and local updates for m; at time ¢.
Recall that ¢; is given by m; as a requirement, thus
only ¢! is used for optimization. Overall, z! , ¢!, and
o, are the decision variables of our optimization in
each time period ¢.

We now formulate our participant selection prob-
lem in multi-model FL where we need to select the
parameter server and workers for each model and
achieve the desired local convergence rate. The objec-
tive of our problem is to minimize the total cost of all
FL models at time ¢ under specific constraints.

W
min Z w; (3)
=1

st xp ey < ¢, Vi, g, (4)
‘rg,ij < f;a Vimjv (5)
y;j//’j g 027 Viajv (6)
YiXs < fi, Vi g, (7)
wj,ky;jzi.k = ]-7 Viaja ka (8)
Zx:,j = 17 Zy:,j = Ry, vj7 (9>
o+l <1, v, (10)

J
v, €{0,1}, 47, € {0, 1}, 05 € 0,1). (11)

Here, @’ is the total FL cost of the j-th FL model in
the t-th time period, which will be defined in Subsec-
tion 4.2. Constraints (4) to (7) make sure that the
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storage and CPU satisfy the FL model requirements.
Constraint (8) ensures that the edge server stores the
dataset that matches the FL model. Constraint (9)
guarantees the number of the parameter server and
FL workers of each model is 1 and k;, respectively.
Constraint (10) ensures that each edge server only
trains one FL model and can only play one role at a
time. The decision variables and their ranges are giv-
en in (11). With nonlinear learning cost, this formu-
lated optimization is a mixed-integer nonlinear pro-
gram (MINLP) problem challenging to solve directly.

4.2 Cost Models

Our cost models consider four types of cost: edge
communication cost, local update cost, global aggre-
gation cost, and PS initialization cost, as defined in
the followings, respectively.

Edge Communication Cost. The edge communica-
tion cost mainly consists of the FL model download-
ing and uploading costs. We denote by ; the upload-
ed and downloaded model size for the j-th FL model
m;. When uploading the FL model to the parameter
server or downloading the FL model from the param-
eter server, we use the shortest path in the edge cloud
to calculate the communication cost. Let p;(v;,v;) be
the communication cost of model m; from edge serv-
er v; to v, at time ¢, and it can be calculated by

LL.
Pj(U¢7Uk): Z FZ7
1

el€P!

where P!, is the shortest path connecting v; to v, at
time ¢.
For m;, the total edge communication cost is

N N
oemmt =2 x4, Z fom X yi X pi(vi, vg).
k=1 =1
Here, v; and v; are a worker and the PS of m;, re-
spectively.

Local Update Cost. Let (-) be the function to de-
fine CPU cycles to process the sample data D!, used
by the j-th FL model and stored in edge server wv;.
Therefore all the local update cost for the j-th FL
model in the ¢-th time period is defined as

Y(D5,)
e

N
local,t __ ,qt t t
Ot =05 X g X E :yu X
i=1

Global Aggregation Cost. Similarly, we use (-)
function to define CPU cycles to process the aggrega-
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tion step for the uploaded FL model.
N
flobal, ¢ P(y)
Cy = 19;. X E xfj X Tt]
i=1 v

Initialization of Parameter Server. The parameter
server needs to download the FL model assigned to it
at time ¢ unless it has been the parameter server of
the same FL model in the last time period. Let
v! (m;) be the PS selected for model m; at time ¢.
Then the initialization or switching cost of the param-
eter can be calculated as,

n;, ift=1or vé;l(mj) = NIL,

C;nit,t — 07 lf ’U;S(m]') = Ups (mj)a

min{n;, p;(v,. " (m;), v, (m;))}, otherwise.

If the FL model is the first time to be trained or has
not been updated at the last time period, the selected
parameter server has to download model m; with cost
n,. If the parameter server stays the same from the
last time period, there is no cost. Otherwise, the new
parameter server needs to either download the model
or transfer the model from the previous server.

Now, the total cost of the j-th FL model in time ¢
is given by

w; — C;omm,t + C}ucal,t + C;{lf)bﬂl«,i + C;ylit,t.

5  Our Proposed Methods

In this section, we propose several multi-stage al-
gorithms to attack the challenging optimization prob-
lem.

5.1 Three-Stage Method

Recall that the formulated problem in Subsection
4.1 is a mixed-integer nonlinear program (MINLP),
which is challenging to solve directly. Now, we de-
compose our original problem into three sub-prob-
lems and attack it via multiple iterations of solving
the decomposed sub-problems, as shown in Fig.3.

5.1.1 Three-Stage Decomposition

The main idea is based on a three-stage decompo-
sition. In each stage, we focus on solving only one of
the decision variables of z! ., y! , and o when the
other two are fixed. We iteratively repeat these three
stages until a certain specific condition is satisfied.

Stage 1: Parameter Server Selection. Given a
worker selection and a local convergence rate, we aim

I Problem Decomposition I
& I ““““““““““ \ )
% I [ Decompose to Three ! Solve: zt, . ; and ¢! in |
2 I Sub-Problems (P1, P2, P3) P1, P2 and P3, Respectively I
A I e e e e e e e e e / J
E F<
g I (ST Tt eT T \ X ) I
2 I Decompose to Two ! Solve: (zt;, y¢;) and ¢f in |
o I ! Sub-Problems (P4, P3) ) P4 and P3, Respectively ) |
— ] i
(a)
| Algorithm Design L
| 0 YR |
= . Three-Stage Optimization ,' k. |
§ L Algorithm (THSO) /h Stage 1: Given y/, of, Solve z!; : I
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Fig.3. Problem decomposition and design of our proposed multi-stage algorithms. (a) The original problem is decomposed into ei-
ther two or three subproblems. (b) Three different algorithms (two three-stage ones and a two-stage one) are then proposed to solve

these sub-problems iteratively!?,
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to find a parameter server for each model to mini-
mize the total cost, i.e.,

w
P1: min E @)
=1

s.t. (4),(5),(9),(11).

Stage 2: FL Worker Selection. We take the latest
parameter server selection and fixed local conver-
gence rate to select FL workers of each model to min-
imize the total cost, i.e.,

w
P2: min Zwﬁ
j=1
s.t. (6)—(11).

Stage 3: Local Convergence Rate Decision. With
the latest PS and FL worker selections, we can deter-
mine the optimal local convergence rate in order to
minimize the total cost, i.e.,

w
P3: min E w;
=1

st (11).

5.1.2  Three-Stage Algorithms

After we decompose the original problem into
three sub-problems, we can solve each sub-problem by
using either the linear programming technique or
greedy heuristics. The basic idea shared by these
methods is as follows. First, we randomly generate FL
worker selection decision y!? and the local conver-
gence rate 93‘0, and then solve the optimization prob-
lem P1 to get parameter server selection decision z.
Second, given the local convergence rate o)’ and the
latest parameter server selection decision z;7,
solve P2 to get FL worker selection decision y!;. Last,

t,1 t,1
i.j ij)
achieve the desired local convergence rate p)'. This

we

based on the latest z!; and y;;, we solve P3 to
process will be repeated until it satisfies a specific
condition (either no further improvement of the objec-
tive value of the optimization or reaching the maxi-
mal iteration number).

Algorithm 1 in Fig.4(a) shows the three-stage op-
timization method using the linear programming tech-
nique. Here, we leverage an optimization solver
(PuLP)®) to solve each sub-problem for its conve-
nience.

Algorithm 2 shows

in Fig.4(b) a three-stage

J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

greedy algorithm where greedy heuristic methods are
used to solve the three sub-problems. 1) For stage 1,
given a fixed worker selection and local convergence
rate, we select a parameter server for each model with
minimal cost. 2) For stage 2, we calculate the total
cost of each potential edge server for each FL model
and then sort the edge server list in ascending order
of the cost. We greedily select the top «; edge servers
as FL workers for each model. 3) In the last stage, we
greedily decrease the local convergence rate in a spe-
cific threshold to get the minimal total cost until it
reaches the global convergence rate. We repeat the
above steps until the ending condition is met.

Note that during the first two stages of Algo-
rithm 2, we need to select the PS or workers for all
models in a certain order. Obviously, the processing
order of each model may affect the final performance.
By default, we simply process them in a first come
first serve mode, i.e., we first find the solution for the
model that arrives earlier. Due to the heterogeneity of
edge servers in the real edge cloud, some edge servers
may have more sufficient resources (storage and com-
puting capacity) while the others do not. In such a re-
source-limited scenario, serving the more complex FL
model first may reduce the total completion cost of
FL of all models. Therefore, we also introduce a varia-
tion greedy method in which the FL models are sort-
ed based on their model sizes and we process models
based on a larger model first in both the first and sec-
ond stages of Algorithm 2. In this variation, the more
complex FL model will first have more chance to se-
lect more high-performance workers leading to a low-
er total cost. In our experiments (Section 6), we have
evaluated the impact of these two different process-
ing orders. In addition, other ordering methods can
also be applied to our proposed algorithm (Algorithm
2), such as choosing the model that requests more re-
sources first.

5.2 Two-Stage Method

We can also combine the first two stages since
both are with integer variables. Then the optimiza-
tion can be solved via a two-stage decomposition.
Here, we separate the integer variables (z;]y;]) and
the continuous variable o into two sub-problems, as
shown in Fig.3.

Stage 1: Parameter Server and Worker Selection.
Given the last local convergence rate, we want to find
an optimal decision for selecting the parameter server
and workers, i.e.,
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Algorithm 1. Three-Stage Optimization Algorithm
1: Initialize max_itr, max_occur, bound_val
2: Generate a random initial FL worker selection decision
yf;) and local convergence rate g;’o
3: v =1 and count_num = 0;

4: repeat

5. Stage 1: Calculate 1 % by solving P1 with fixed yt =l
and Qt =1

6: Stage 2: Calculate g J “ by solving P2 with fixed x
and Qt =1

7: Stage 3 Calculate ¢;" by solving P3 with fixed xg;;.
and y . Let oby_val be the achieved objective value

(total learning cost of all FL. models)
if obj_val > bound_val then
bound_ val = obj val munt num =1

; L
10: Tji

*731’ Jkl *Jls 1’ L] _QJ
11:  else if obj_val = bound_val then
12: count_num = count_num + 1
13:  end if
14: t=1+1

15: until count_num = max_occur or . = maz_itr
2 L t t
16: return x; ;, y; ; and @

(a)

Algorithm 2. Three-Stage Greedy Algorithm

1: Initialize max_itr, max_occur, bound_val

2: Generate a random initial FL worker selection decision
Jf 9 and local convergence rate g

3: ¢+ =1 and count_num = 0;

4: repeat

5. Stage 1: Pick the PS 2% for each FL model with

%
minimal total cost with fixed yt =1 and g§ e

6:  Stage 2: Calculate the total cost of each potential edge
server for each FL model, and sort the list in ascending
order and greedily select the first & i edge servers to get
y;s with the latest 27"} and fixed o}

7. Stage 3: Calculate QJ by greedily decreasing the local
convergence rate to get a minimal total cost with latest
mi} and zi; Let obj_val be the achieved objective
value (total learning cost of all FL models)

8: if obj_val > bound_val then

9: bound_ U(LI obj_ 11(1] count_ num =1
10: a:;'i_ Jz’ykL_Jkl’gj_QJ

11:  else if obj_val = bound_val then

12: count_num = count_num + 1

13:  end if

14: t=1+1

15: until count_num = max_occur or . = max_itr
y it t t
16: return 2; ;, y; ; and o]

(b)

Algorithm 3. Two-Stage Optimization Algorithm

1: Initialize max_itr, max_occur, bound_val

2

3: =1 and count_num = 0;

4: repeat

s:  Stage 1: Calculate 9:2:]-
fixed gt =l

6: Stage 2 Calculate g
and y

: Generate a random initial local convergence rate 9;

and yl

t,0

by solving P4 with

" by solving P3 with latest 2"
. Let obj_ ual be the achieved objective value

(total learnrng cost of all FL models)
7. if obj_val > bound_val then
8: bound_ Ual = ob] val count_ num = 1

t

9: 171—T]l,1/kl—1/k7,g7—0]
10:  else if obj_val = bound_val then
11: count_num = count_num + 1

122 end if
13: =1+1
14: until count_num = max_occur or . = max_itr

4 t mt t
15: return z; ;, y; ; and @

(c)

Fig.4. Proposed algorithms['l. (a) Three-stage optimization (THSO). (b) Three-stage greedy (GRDY). (c) Two-stage optimization

(TWSO).

w
P4: min Zw;
j=1
st (4)—(11).
Stage 2: Local Convergence Rate Decision. This is
the same with the third sub-problem P3 in three-
stage methods.

Here, we use an optimization solver (GEKKO)3
to solve the sub-problem P4 since it is a non-linear

problem with two integer variables. For P3, we still
use the PuLP solver. The detail of the two-stage
method is given by Algorithm 3 in Fig.4(c).

5.3 Time Complexity
We now analyze the time complexity of each of

the proposed algorithms. Here, we assume that the
time taken to solve P1, P2, P3, and P4 with N
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servers and W models is T}(N,W), Ty(N,W),
Ty(N,W), and T,(N,W), respectively. Given a deci-
sion of T Y and o}, we can calculate the total
learning cost with T, (N, W). Let € be the step length
of reducing the convergence rate in the stage 3 of Al-
gorithm 2. Then it is easy to prove the following theo-
rem regarding the time complexity of all proposed al-
gorithms.

Theorem 1. The time complexity of Algorithms
1-3 is bounded by O((Ty+T,+Ts) X max_itr),
O (N + (1/€)) X Toos X W X maz_itr), and O((T,+
Ty) x mazx_itr), respectively.

Note that in Algorithms 2, the time complexity of
stage 1 and stage 2 is bounded by O(N x T, x W)
and O ((1/€) x T, x W), respectively.

6 Performance Evaluation

In this section, we present our experimental setup
and evaluate the performance of our proposed meth-
ods via simulations.

6.1 Environmental Setup

Edge Cloud. In our edge computing environment,
we adopt different random topologies consisting of
20—40 edge servers where the distribution of servers
is based on the real-world EUA-Dataset. This
dataset is widely used in edge computing and con-
tains the geographical locations of 125 cellular base
stations in the Melbourne central business district
area. Fig.5 illustrates one example of topology used in
our simulations. In each simulation, a certain number
of edge servers are randomly selected from the
dataset. Each edge server has a maximal storage ca-
pacity ¢;, CPU frequency f;, and link bandwidth b, in
the range of 512 GB-1024 GB, 2 GHz—5 GHz, and
512 Mbps—1024 Mbps, respectively. We consider
O =5 different data types (e.g., image, audio, and
text) where the size S,, is in the range of 1 GB-
3 GB. Each type of data has been distributed in dif-
ferent edge servers and one edge server may store
more than one type of data. Furthermore, the total
number of time periods T is set to 30.

Federated Learning Models. To verify the perfor-
mance of the federated learning process, we conduct a
set of federated learning experiments. We assume that
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Fig.5. Example of edge cloud topology with 20 edge servers
generated based on the real-world EUA-Dataset3!.

there are W different FL tasks (vision, audio, text, or
data) running in our environment simultaneously.
The number of FL workers x; required by each mod-
el is in the range of 3-7. Each FL task has a specific
model size p;, CPU requirement X;, and download
cost 7, in the range of 10 MB-100 MB, 1 GHz-
3 GHz, and 1-5, respectively. The global convergence
requirement and the two constant variables are set
based on [9]: ¢; =0.001, ¥, =15, and ¢, = 4. Three
classical datasets in scikit-learn 1.0.2[32] are used to
train linear regression (LR) models: the California
Housing dataset, the Diabetes dataset, and randomly
generated LR datasets. Each LR model is trained
with the loss of Mean Square Error (MSE). In addi-
tion, we are interested in the performance of the pro-
posed methods in non-convex loss functions. Hence,
three different types of datasets are used for these FL
tasks: Fashion-MNIST (FMNIST)33]) Speech Com-
mandsB4, and AG_ NEWSB3, Each of them is trained
with a CNN model. We assign random data samples
of these three datasets to clients in such a way that
each client has a different amount of training and
testing data. The Python library PyTorch (v1.10) is
used to build the model. All experiments are tested
on a Linux workstation including 16 CPU cores and
512 GB of RAM, and 4x NVIDIA Tesla V100 GPUs
interconnected with NVlink2. Detailed parameters of
both edge cloud and FL models are listed in Table 2.

Baselines and Metrics. We compare our proposed
algorithms (three-stage optimization THSO, three-
stage greedy GRDY, and two-stage optimization
TWSO) with four competitive methods?.

@Since our studied joint optimization is an MINLP problem, it is challenging to obtain the optimal solution even when the
problem is in a small scale. Therefore, we focus on comparison with existing simple heuristics and participant selection methods.
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Table 2.

Detailed Parameter Setting in Our Experiments

Parameter

Value or Range

Edge cloud parameter Number of edge servers N 20—40
v;’s storage capacity ¢; (GB) 512—1 024
v;’s CPU frequency f; (GHz) 2-5
e;’s link bandwidth b; (Mbps) 512—1 024
Number of different datasets O 5
Each dataset size |S; ;| (GB) 1-3
Federated learning parameter Number of time periods T’ 30
Number of FL models W 1-5
Number of m;’s FL workers x; 1-7
m;’s model size #; (MB) 10—100
m;’s CPU requirement X; (GHz) 1-3
m;’s downloading cost n; 1-5
m;’s global convergence requirement ¢; 0.001-0.1
Constant FL variables 99 and %0 15, 4

e ROUNDU. Tt selects the FL workers and the lo-
cal convergence rate for each model based on a ran-
domized rounding methodl. Since it does not consid-
er the PS selection, we use a random choice for PS at
the beginning.

e RAND. It randomly generates the parameter
server selection, the FL worker selection decision, and
the local convergence rate under certain constraints.

e DATAR3I, Tt selects the FL workers based on the
fraction of data at the servers and prefers the server
with more data. Since it ignores the PS and local con-
vergence rate selection, we randomly determine them.

e LOCALP4. Tt selects its top workers that will
(based on
estimation). Again random decisions are used for the
PS and local rate.

The main metrics used for evaluation are the av-
erage total FL learning cost and the average accura-
cy (or the average training loss and the average R2
score for LR) of FL models.

complete the local training first

6.2 Evaluation Results

Via extensive simulations, we evaluate the perfor-
mance of our methods mainly focusing on their cost
performances.

6.2.1 Performance Comparison—Total
Learning Cost

We first investigate different algorithms with a
different number of edge servers and global conver-
gence rates. We consider three FL models for three
different types of tasks (i.e., image classification,
speech recognition, and text classification) to be

trained simultaneously, where each FL. model has re-
quested five FL workers. Figs.6(a) and 6(b) show the
results of two groups of simulations. In the first
group, we set the number of edge servers to be from
20 to 40, while fixing the global convergence rate at
0.001. In the second group, we change the global con-
vergence rate from 0.001 to 1.1 with 30 edge servers.
We have the following observations.

First, clearly for both sets of simulations, our pro-
posed three algorithms (TWSO, THSO, and GRDY)
have better performance than the other four bench-
marks in terms of average total learning cost. Having
better performances than ROUND (which focuses on
worker selection and learning rate optimization) con-
firms the advance of our methods by considering the
PS selection in the joint optimization. The better per-
formances of our methods and ROUND compared
with DATA and LOCAL (which only focus on the
worker selection) show the advantage of joint opti-
mization. In all simulations, RAND has the worst per-
formance since it does not take any optimization.

Second, as shown in Fig.6(a), the average total
cost of every algorithm decreases first and increases
again as the number of edge servers increases. Initial-
ly, with more edge servers, all algorithms have better
chances to find a good solution to minimize the total
cost of all FL. models. On the other hand, the further
larger topology with more servers may also begin to
increase the average total cost due to larger transmis-
sion costs from workers to PS.

Third, as shown in Fig.6(b), as the global conver-
gence rate increases, the average total cost decreases.
This is reasonable since the larger global convergence
rate requests less local training or global update,
which leads to lower total learning costs.
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Fig.6. Performance comparison with (a) different number of edge servers, (b) different global convergence rates, (c) detailed costs of

different methods, and (d) single model vs multiple models!*?]

Fig.6(c) also plots the detailed costs of different
methods when 30 edge servers are considered, and the
global convergence rate is 0.001. It shows that the lo-
cal cost dominates the total cost, and consequently,
GRDY has a higher total cost than TWSO and
THSO as seen in Fig.6(a).

We also evaluate the effects of joint optimization
over multi-models compared with the separative opti-
mization with only a single model. In the latter case,
we still use TWSO and THSO but force them only on
a single FL model at a time, and thus sequentially
choose the decision for each model. Again we train
three FL. models when 30 edge servers are considered
and the global convergence rate is 0.001. Fig.6(d)
shows the comparison of determining the choices for
three FL models jointly or sequentially with TWSO
and THSO. We can clearly see the lower total cost
when we jointly optimize the decisions. This confirms

the effectiveness of jointly determining the selection
decision for multiple FL. models rather than sequen-
tially determining the decision for every single model.
6.2.2 Impact of FL. Model Number

Next, we look into the impact of different num-
bers of FLL models. We simultaneously run one to five
FL models. The number of edge servers and the num-
ber of FL workers are set to 30 and 5, respectively.
The global convergence rate is also set to 0.001. As
shown in Fig.7(a), the more FL models, the more the
average total learning cost. Our proposed algorithms
still perform better than the other four methods.
TWSO and THSO still enjoy a little performance im-
provement against GRDY. We also plot the detail of
three types of costs (i.e., communication cost, local
cost, and global cost) in Fig.7(b), Fig.7(c), and
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Fig.7. Impact of the number of FL models on costs!'”. (a) Average total cost. (b) Average communication cost. (c) Average local

update cost. (d) Average global aggregation cost.

Fig.7(d) respectively. We can observe that the com-
munication cost of GRDY is similar to those of
TWSO and THSO. However, GRDY has the highest
local cost and the lowest global cost compared with
the other algorithms. That is because GRDY greedily
runs more local training so that the number of global
updates can be reduced while satisfying the expected
global convergence rate.

6.2.3 Impact of FL. Worker Number

We further investigate the impact of a different
number of FL workers. We consider 30 edge servers
and train three FL models while the global conver-
gence rate is 0.001 as well. Results are reported in
Fig.8, which are similar to those with a different num-
ber of FL models. First, the average total cost of all
algorithms increases as the number of FL workers in-

creases since the more FL workers, the more resource-
consuming. Second, the proposed algorithms have bet-
ter performance than ROUND, RAND, DATA, and
LOCAL as shown in Fig.8(a). Last, GRDY has the
highest local cost while having the lower communica-
tion cost and global cost compared with other strate-
gies as shown in Figs.8(b)-8(d).

6.2.4 Impact of Model Processing Order in
GRDY

Remember that in GRDY (Algorithms 2) we need
to select the PS and workers for each model following
certain processing order among FL models. We now
study the impact of different processing orders in
GRDY. We test on two specific processing orders: the
default one with First-in-First-Serve (GRDY) and the
variation in which priority is given to the model with
a larger size (GRDY-Max). The experiments run un-



768

—o— TWSO
—e— THSO
—e— ROUND
—=— GRDY

Average Total Cost (X10°)
®)

1 2 3 4 5 6 7
Number of FL. Workers
(a)

—e— TWSO
150 17 —e— THSO
—s— ROUND
1251 —=— GRDY
—— RAND
1.00 17 —a— DATA

—+— LOCAL
0.75 A

0.50 A

0.25 A

Average Local Update Cost (X10?)

1 2 3 4 5 6 7
Number of FL. Workers
()

J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

g

X 1.50 1 —e— TWSO

+ —e— THSO

n

S 1251 —— ROUND

g —=— GRDY —— RAND

2 1.00 1 —e— DATA

2 —+— LOCAL

£ 0.75

=)

:

£ 0.50 1

0

& 0.25

[

g

Z 0.00{° | | | | | |
1 2 3 4 5 6 7

Number of FL. Workers
(b)

1.4

1.2

—o— TWSO
—e— THSO
—— ROUND -

4] ot~ ————t—5 =

1 2 3 4 5 6 7

1.04

Average Global Aggregation
Cost (Xx10%)

Number of FL. Workers
(d)

Fig.8. Impact of the number of FL workers on costs!'?l. (a) Average total cost. (b) Average communication cost. (c) Average local

update cost. (d) Average global aggregation cost.

der the edge cloud with 30 edge servers that have lim-
ited resources and significant differences. We run 20
different cases in each different number of maximum
iterations, and Fig.9 shows the experimental result.
First, as the number of maximum iterations increases,
the total cost of both two greedy algorithms decreas-
es since they have more chances to find a better solu-
tion with a lower cost. However, the improvement be-
comes smaller when the maximum iteration further
increases. Second, under the resource-limited scenario,
GRDY-Max performs better than GRDY in almost all
cases. This result confirms the necessity and superiori-
ty of selecting an optimal processing order in differ-
ent edge scenarios. In addition, we need to select an
appropriate maximum iteration to control the conver-
gence speed of our greedy algorithms.

6.2.5 FL Training Loss and Accuracy

Fig.10 shows the training loss of our method in re-

2.8
I GRDY
I GRDY-Max

1
wlirun
2A2-I HiiiHiii—

Number of Maximum Iterations

Total Cost (X10%)

Fig.9. Total cost comparison of two different processing orders
of FL models in GRDY and its variation GRDY-Max.

al-world federated learning experiments over LR
datasets. We introduce the R2 score metric to evalu-
ate the performance of LR (Linear Regression) model
(convex) training. The R2 score is the proportion of
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Fig.10. Training loss with LR models/tasks and the impact of the number of FL workers. (a) R2 score of three LR models.
(b) Training loss of Linear Regression over the California Housing dataset. (c¢) Training loss of Linear Regression over the diabetes
dataset. (d) Training loss of Linear Regression over a randomly generated dataset.

the variance in the dependent variable that is pre-
dictable from the independent variable(s). In this set
of experiments, we concurrently train three LR mod-
els with three different datasets. Each dataset is split
into 10 edge servers unequally (i.e., non-IID setting),
and the number of global training rounds is 100. We
can see from Figs.10(b)-10(d), the training loss de-
creases as the number of workers (r;) increases for
each model. Fig.10(a) shows the R2 score of all LR
models. Obviously, with more workers, the R2 scores
of all models increase, which means all models are
well-regressed. However, model 2 has a worse R2
score (a negative value) in fewer workers due to the
small size of the training dataset. But as the number
of workers increases, the performance of model 2 be-
comes better.

Fig.11 also reports the learning accuracy of our
method on more complex FL tasks with different
numbers of workers (due to space limitation, we only

show the one from THSO). Here, the datasets of three
FL models (image classification, speech recognition,
and text classification) are split into 30 partitions and
the number of the global update is set to 300.
Fig.11(a) shows the training accuracy of all three FL
models increases with the increasing number of itera-
tions. Figs.11(b)-11(d) show the detailed training ac-
curacy of three different models with different num-
bers of FL. workers. We can observe that with more
FL workers, the training accuracy of all models can
reach a higher value. However, when comparing the
result in Fig.8, the more FL workers, the more total
cost consumed. Hence, there is a trade-off between
the training accuracy and the total cost. Another in-
that for FMNIST and
Speech_Command, the accuracy increases with more

teresting observation is

FL workers, but for AG News, the accuracy is simi-
lar or the difference is very minimal. This may be due
to the simplicity of the AG News learning task. In
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Fig.11. Training accuracy with three FL tasks and the impact of FL workers!!?. (a) Accuracy of three FL models with 30 edge
servers and 5 workers. (b) Accuracy of image classification over FMNIST. (c) Accuracy of voice recognition in Speech Command.

(d) Accuracy of text generation in AG_News.

summary, one needs to consider the trade-off be-
tween the training accuracy and the total cost. If you
need more FL workers, it will incur more total cost
but get higher training accuracy, and vice versa.

7 Conclusions

In this paper, we mainly focused on multi-model
FL over an edge cloud and carefully selected partici-
pants (both PS and workers) for each model by con-
sidering the resource limitation and heterogeneity of
edge servers as well as different data distributions.
We formulated a joint participant selection and learn-
ing optimization problem to minimize the total FL
cost of multiple models while ensuring their conver-
gence performance. We proposed three different algo-
rithms to decompose the original problem into multi-
stages so that each stage can be solved by an opti-
mization solver or a greedy algorithm. Extensive sim-

ulations with real FL experiments showed that our
proposed algorithms outperform similar existing solu-
tions. In the future, we plan to further investigate: 1)
reinforcement learning based solutions for similar op-
timization problems in a more dynamic edge system,
2) the extension of proposed multi-stage methods over
multiple time-scales, where learning schedule and par-
ticipant selection can be optimized at fast and slow
timescales separately, similar to [22], 3) new quan-
tum-assisted methods for similar optimization prob-
lems/36], 4) new joint optimization problems where dif-
ferent FL models can choose different FL structures
(such as DFLIO or HFLP: 8 1)) and 5) similar joint
optimization problems but in a more complex edge

system with multiple edge operators.
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