
1456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Joint Participant and Learning Topology Selection for
Federated Learning in Edge Clouds

Xinliang Wei , Member, IEEE, Kejiang Ye , Senior Member, IEEE, Xinghua Shi, Member, IEEE,
Cheng-Zhong Xu , Fellow, IEEE, and Yu Wang , Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds
poses challenges, especially when multiple models are concurrently
trained in resource-constrained edge environments. Existing re-
search on federated edge learning has predominantly focused on
client selection for training a single FL model, typically with a fixed
learning topology. Preliminary experiments indicate that FL mod-
els with adaptable topologies exhibit lower learning costs compared
to those with fixed topologies. This paper delves into the intricacies
of jointly selecting participants and learning topologies for multiple
FL models simultaneously trained in the edge cloud. The problem is
formulated as an integer non-linear programming problem, aiming
to minimize total learning costs associated with all FL models
while adhering to edge resource constraints. To tackle this chal-
lenging optimization problem, we introduce a two-stage algorithm
that decouples the original problem into two sub-problems and
iteratively addresses them separately with efficient heuristics. Our
method enhances resource competition and load balancing in edge
clouds by allowing FL models to choose participants and learning
topologies independently. Extensive experiments conducted with
real-world networks and FL datasets affirm the better performance
of our algorithm, demonstrating lower average total costs with up
to 33.5% and 39.6% compared to previous methods designed for
multi-model FL.

Index Terms—Edge computing, federated learning, learning
topology, participant selection.

I. INTRODUCTION

F EDERATED Learning (FL) [1], [2], [3], [4], [5], [6] stands
out as an efficient method for enhancing machine learning

(ML) performance and addressing privacy concerns for data
owners. It facilitates collaboration among multiple devices to
train a shared global ML model by aggregating local models.
This approach ensures that training data remains on individual
devices to safeguard user privacy, transmitting only essential

Manuscript received 11 December 2023; revised 26 May 2024; accepted
4 June 2024. Date of publication 13 June 2024; date of current version 24
June 2024. The work of Yu Wang was supported by the US National Sci-
ence Foundation under Grant CNS-2006604. Recommended for acceptance by
S. Wang. (Corresponding authors: Xinliang Wei; Kejiang Ye; Yu Wang.)

Xinliang Wei and Kejiang Ye are with the Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055,
China (e-mail: xl.wei@siat.ac.cn; kj.ye@siat.ac.cn).

Xinghua Shi and Yu Wang are with the Department of Computer and In-
formation Sciences, Temple University, Philadelphia, PA 19112 USA (e-mail:
mindyshi@temple.edu; wangyu@temple.edu).

Cheng-Zhong Xu is with the State Key Laboratory of IoTSC, Faculty of
Science and Technology, University of Macau, Macau 999078, China (e-mail:
czxu@um.edu.mo).

Digital Object Identifier 10.1109/TPDS.2024.3413751

model data, such as gradients. As smart sensing, mobile com-
puting, and wireless networking grow, there is a shift towards
deploying FL frameworks on edge clouds, catering to the agile
services required by mobile devices and users. This is partic-
ularly crucial for applications like mobile AI, Artificial Intelli-
gence of Things (AIoT), or Augmented Reality (AR) / Extended
Reality (XR) [7], [8], [9], [10], [11], [12].

Three types of FL frameworks have emerged based on the
learning topology used for model aggregation: centralized FL
(CFL), hierarchical FL (HFL), and decentralized FL (DFL).
CFL, the classical FL [9], employs a star architecture with a
parameter server (PS) dispatching the global model to workers
for collaborative training, as shown in Fig. 1(a). However, CFL
faces potential communication congestion and a single point
of failure at the PS. DFL [10], [13], on the other hand, elim-
inates the centralized PS, with workers communicating only
with their trusted neighbors, as seen in Fig. 1(b). While such
distributed P2P learning topology increases the robustness of
FL, it might suffer from high communication overhead and lack
of management [14]. HFL [15], [16], [17], [18], [19] introduces
middle-layer PSs in a hierarchical topology, effectively hiding
local updates within groups and enhancing privacy protection,
as shown in Fig. 1(c). Each topology has its advantages, making
the choice crucial for FL at the edge [10], [11], [20], [21],
yet research in this area is limited, often focusing on specific
learning topologies.

In participant selection for FL, various strategies have been
explored, particularly for CFL [21], [22], [23], [24], [25], [26],
[27], [28], [29]. This includes considering client sampling based
on training data distribution, diversity, or local update impor-
tance. Edge-based FL has addressed client selection, aiming
to complete FL training under time constraints. For example,
Chen et al. [24] considered client sampling in their FL solution
where the policy of selecting a client is based on its training
data distribution/diversity or the importance of its local updates.
Nishio and Yonetani [21] studied the client selection problem in
an edge-based FL where the edge server in a cellular network
acts as the PS and a set of mobile clients are selected as workers,
to select as many mobile clients to complete the FL training
under the time constraints. Deng et al. [17] have formulated
an optimization problem in a cluster-based HFL to minimize
communication costs incurred by edge or cloud aggregation. Wei
et al. [27], [28], [29], [30], [31] studied a participant selection
problem in either HFL or CFL aiming to minimize the total
learning cost in an edge cloud. While existing works have

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9136-2178
https://orcid.org/0000-0001-6133-407X
https://orcid.org/0000-0001-9480-0356
https://orcid.org/0000-0003-3511-0288
mailto:xl.wei@siat.ac.cn
mailto:kj.ye@siat.ac.cn
mailto:mindyshi@temple.edu
mailto:wangyu@temple.edu
mailto:czxu@um.edu.mo

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1457

Fig. 1. Examples of different learning topologies with 5 workers of an FL model in an edge network.

Fig. 2. Performace with different learning topologies and participants.

primarily focused on a single ML model with a specific learning
topology, this paper delves into a joint participant and learning
topology selection problem in multi-model federated learning
over edge clouds.

The challenges in multi-model FL over edge clouds include
concurrent training of multiple models, diverse edge device
resources, and shared networking/computing resources. Specif-
ically, first, in an edge cloud, concurrent training of multiple
FL models occurs, utilizing edge servers storing diverse data
types for FL model training. The heterogeneity of edge device
resources leads to varying learning costs for different partic-
ipant selections, comprising communication and computation
costs. Shared networking/computing resources create competi-
tion among models, with the participant selected for one model
influencing others and impacting the total learning cost. For in-
stance, Fig. 2 illustrates costs for participant selection strategies
(i.e., random (RAND), higher gradient norm (NORM) [22],
or loss value (LOSS) [23]) during multi-model FL. Notably,
NORM and LOSS consistently outperform random selection.
Existing FL works on edge clouds often focus on optimizing a
single global FL model, neglecting resource competition among
different models. Second, different learning topologies (CFL,
DFL, and HFL) result in diverse learning costs and perfor-
mances. Fig. 2 depicts multi-model FL performance over various
topologies and a mixed strategy (MIX), confirming MIX’s su-
periority over CFL, DFL, and HFL. Previous works typically
consider a specific learning topology, limiting FL training in
terms of computation and communication cost, especially in
resource-limited edge clouds. Both participant selection and
learning topology decisions impact the total learning cost in
a shared edge cloud. Motivated by this, we propose a joint
optimization of participants and learning topology selection for

multi-model FL over edge clouds. This involves addressing the
complex optimization problem with edge resource constraints,
formulated as an integer non-linear programming problem, to
minimize the overall communication and computation cost.

The major contributions of this work include:! Formulating a joint participant and learning topology se-
lection problem as an integer non-linear programming
problem, aiming to minimize the total cost of all models.
This approach allows different FL models to choose their
participants and learning topology, addressing resource
competition and load balancing in edge clouds.! Decoupling the problem into two sub-problems: partici-
pant selection and learning topology determination, instead
of directly solving the challenging joint optimization. An
effective two-stage method is proposed to iteratively solve
these sub-problems, selecting appropriate participants and
determining the learning topology for each model.! Conducting extensive evaluations with real-world datasets,
including a real-world network topology (EUA [32]),
three classical datasets [33] for the linear regres-
sion (LR) model (convex), and three classical image
datasets (CIFAR10 [34], Fashion-MNIST (FMNIST) [35],
MNIST [36]) for convolutional neural network (CNN)
model (non-convex), comparing the proposed method with
existing ones. Results show better performance in various
settings, confirming the effectiveness of jointly considering
both participant selection and learning topology selection
in a multi-model FL environment.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce our edge cloud model and FL processes at
the edge. Section III formulates the joint optimization problem,
followed by our proposed two-stage method in Section IV.
We provide evaluations of the proposed method in Section V.
Section VI reviews related work, and Section VII concludes the
paper with possible future directions.

II. PRELIMINARIES

A. Edge Cloud Model

We consider a typical edge cloud as a graph G(V,E) con-
sisting of N edge servers and L edge links, as shown in Fig. 1.
Each edge server vi ∈ V has a specific storage capacity ci, CPU
frequency fi and each edge link el ∈ E has a limited bandwidth
lbl. Here, we only consider CPU computation for simplicity,

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

1458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

TABLE I
SUMMARY OF NOTATIONS

but GPU or hybrid computation can be considered in a similar
fashion. We assume that mobile users trust the edge cloud and
upload their dataset to the edge server [9]. Moreover, various
security techniques (e.g., encryption algorithms and differential
privacy mechanisms) can be applied to prevent privacy leakage
during data transmission1. Each edge server can hold multiple
types and numbers of datasets from mobile users, such as images,
texts, and voices. We useDi,j to denote the local dataset at server
i for training model j. Table I summarizes the notations we used
in this paper.

B. Federated Learning at Edge

We assume that H FL models (denoted by M = {mj}) are
being trained at the edge cloud simultaneously. Each model
can adapt a distinct learning topology (one of CFL, DFL, and
HFL) to perform the FL process. To train each model mj , it
requests a number of participants (κj workers and one or a few
PSs if needed) who have sufficient resources (i.e., storage and
CPU frequency should be larger than the minimal storage µj

and CPU frequency χj of mj). In addition, we assume each
edge server can only perform FL training of one model at one
time. The training process of FL for each model mj , includes
three parts: (a) initializing and broadcasting the global model
of mj to each participant; (b) each worker performs the local
model computation using its own dataset; (c) aggregating the
local models from workers (and middle-layer PSs in HFL).

1) Initializing the Global Model: We initialize the global
model parameter for each FL model as ωj and send the global
model parameter to each selected participant.

2) Local Training on Workers: Let the local model parameters
of model mj on the server vi be ωi,j and the loss function on a

1In addition to data privacy, there are also significant developments on the
protection of model privacy in FL recently [37], [38], these works are orthogonal
to our work but can be integrated with our proposed framework. We leave such
study as one of our future works.

training data sample s be fi(ωi,j ,xs,ys), where xs is the input
data and ys is the required output value. Then the loss function
on the whole local dataset of vi is defined as

Fi(ωi,j) =
1

|Di,j |
∑

s∈Di,j

fi(ωi,j ,xs,ys). (1)

Generally, FL will perform round by round and we denote the
total number of global aggregation, local updates, and middle-
layer aggregation as α̂, β̂ and γ̂, respectively. In the α-th round,
each worker has to run a number of local updates to achieve a
local convergence accuracy θ ∈ (0, 1). At β-th local iteration,
each worker follows the same local update rule as

ωα,βi,j = ωα,β−1i,j − η∇Fi(ω
α,β−1
i,j), (2)

where η is the learning rate of the loss function. This process
will run until

||∇Fi(ω
α,β
i,j)|| ≤ θ||∇Fi(ω

α,β−1
i,j)||. (3)

Here, we set ωα,0i,j = ωj .
3) Aggregating the Local Model: For different learning

topologies, e.g. CFL, DFL, and HFL, the aggregation process is
distinct even though the aggregation method can be the same,
such as FedAvg [1].

If a model adopts CFL, one participant has to be chosen as
the PS. After β̂ local training, all workers send their local model
parameterωα,β̂i,j to the PS. The PS performs FedAvg to aggregate
the global model parameters as

ωαj =
∑

i∈Sj

Di,j

Dα
j

ωα−1,β̂i,j , (4)

whereDα
j =

⋃
i∈Sj

Di,j is the total number of data sample from
κj workers and Sj is the set of selected workers.

If DFL is adopted, every selected participant are worker who
exchanges and aggregates their local model parameterωα,β̂i,j with
their neighbors in the learning topology after β̂ local training.
The aggregation process at participant vi is

ωαi,j =
Di,j

Dα
j

ωα−1,β̂i,j +
∑

k∈Si,j

Dk,j

Dα
j

ωα−1,β̂k,j , (5)

where Dα
j =

⋃
i∈Sj ,k∈Si,j

Dk,j is the total number of data sam-

ples from the worker and its neighbors and ωα,β̂k,j is the model
parameters from the set of neighbors Si,j at α-th global round
after β̂ local updates.

HFL is similar to CFL but adds several middle-layer PSs
(group leaders) between the PS (at the top layer) and workers.
After β̂ local training, workers send their local model parameter
ωα,β̂,γi,j to the middle-layer PSs and then the middle-layer PSs
will aggregate the local model using averaging algorithms. After
γ̂ middle-layer aggregations, the middle-layer PSs will send
their group model parameters ωα,γ̂i,j to the top-layer PS for the
final aggregation. Assuming that Sj is the set of all selected
middle-layer PSs and Si,j is the set of all selected workers
connected to the middle-layer parameter server vi. Then the

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1459

middle-layer aggregation at vi is as follows.

ωα,γi,j =
∑

k∈Si,j

Dk,j

Dγ
i,j

ωα,β̂,γ−1k,j , (6)

where Dγ
i,j =

⋃
k∈Si,j

Dk,j is the total number of data samples
from the workers connected to the middle-layer PS vi. The
averaging aggregation at the top-layer PS is similar as follows.

ωαj =
∑

i∈Sj

Dγ
i,j

Dα
j

ωα−1,γ̂i,j , (7)

where Dα
j =

⋃
i∈Sj

Dγ
i,j is the total number of data samples

from the set of all middle-layer PSs.

C. Cost Model

Our cost model mainly consists of two parts: computation
cost and communication cost.

1) Computation Cost: Since it has been shown that model
aggregation is a much easier task compared with model
training, we mainly consider the cost of local training. Let
Ψi be the number of CPU cycles to process one sample
data at edge server vi and | · | is the size of dataset Di,j

for jth model at server vi. Then, the total β̂ local training
at vi is defined as

Clocal
i,j = β̂ · Ψi|Di,j |

fi
. (8)

2) Communication Cost: The communication cost mainly
consists of the transmission cost between two edge servers.
Let µj be the size of jth model mj and Pi,k be the shortest
path between server vi and vk. Then, the communication
cost [5] between two servers for model mj is defined by

Ccomm
i,k =

∑

el∈Pi,k

µj

lbl
. (9)

III. PROBLEM FORMULATION

We now introduce the formulation of the joint optimization,
and the theoretical bounds on FL convergence with different
learning topologies.

A. Problem Formulation

Before formulating our joint participant and learning topology
selection problem, we first introduce the decision variables and
optimization goal.

1) Decision Variables: We use ai,j ∈ {0, 1} to denote
whether edge server vi is chosen as a participant (including both
workers and PS) of model mj . We use bj,k ∈ {0, 1} to denote
whether selecting the kth learning topology for model mj , here
k ∈ {1, 2, 3} represents CFL, DFL, and HFL topology. If CFL is
selected (i.e. bj,1 = 1), we use xi,j ∈ {0, 1} to indicate whether
vi is selected as the PS for model mj . Here, the selected PS vi
must be in the selected participants of mj , i.e., both ai,j and
xi,j = 1. If DFL is selected (i.e., bj,2 = 1), we do not need any
PS. Here we assume that DFL uses a simple nearest neighbor
method to determine the connection among κj workers. e.g., we

let each worker connect to a fixed number of closest neighbors
in the edge cloud. Then the link between workers vi and vl in
the learning topology can be defined by a binary indicator ιi,l.
This information will be used in our optimization. Note that
the study of learning topology formation is orthogonal to our
work, but other topology formation algorithms can be used in this
proposed framework. If HFL is selected (i.e. bj,3 = 1), we need
to pick one top-layer PS and ψj middle-layer PSs. We denote
yi,j ∈ {0, 1} and zi,j ∈ {0, 1} as the indicators of top-layer and
middle-layer PSs. Similarly, these selected PSs must be among
selected participants. The connection between workers and their
middle-layer PS is decided by network distance. i.e., each worker
selects the nearest middle-layer PS as its aggregator. We use ξi,l
to denote the connection between worker vi and its middle-layer
PS vl. In summary, ai,j and bj,k are the decisions on participant
selection and learning topology determination, while xi,j , yi,j
and zi,j are the roles of participants in their selected learning
topology. The relationship among ai,j , bj,k, xi,j , yi,j and zi,j
are enforced via constraints.

2) Optimization Goal: Our problem aims to minimize the
total learning cost of all models, enabling the training of more FL
models and enhancing the sustainability and cost-effectiveness
of FL training. We assume that each edge server will perform
β̂ round of local training and each model will perform α̂ global
aggregations. If HFL is chosen, it will perform α̂ aggregations
at top-layer PS and γ̂ middle-layer aggregations at each middle-
layer PS. Please note that the choice of α̂, β̂ and γ̂ will be
discussed in Section III-B. Therefore, the total computation cost
of all models is defined as follows,

Ccomp =
H∑

j=1

N∑

i=1

(α̂ · Clocal
i,j · ((ai,j − xi,j) · bj,1

+ ai,j · bj,2 + γ̂ · (ai,j − yi,j − zi,j) · bj,3)),

and the communication cost of all models can be written as

Ccomm =
H∑

j=1

N∑

i=1

N∑

l=1

(α̂ · Ccomm
i,l · (ai,j · ιi,l · bj,2

+ (ai,j − xi,j) · xl,j · bj,1
+ (γ̂ · (ai,j − yi,j − zi,j) · ξi,l + yi,j · zl,j) · bj,3)).

Then the total learning cost of all models is simply the
summation of computation and communication costs.

3) Joint Optimization: Our joint problem aims to select the
optimal participants and learning topology so that the total
learning cost of all models is minimized while satisfying the
lowest FL performance for each model, formulated as

min Ccomp + Ccomm (10)

s.t. ai,jµj ≤ ci, ∀i, j, (11)

ai,jχj ≤ fi, ∀i, j, (12)
∑

i

ai,j = κj + bj,1 + (1 + ψj)bj,3, ∀j, (13)

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

1460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

∑

j

ai,j ≤ 1, ∀i, (14)

∑

i

ai,jxi,j ·
∑

i

xi,j · bj,1 − bj,1 = 0, ∀j, (15)

∑

i

ai,jyi,j ·
∑

i

yi,j · bj,3 − bj,3 = 0, ∀j, (16)

∑

i

ai,jzi,j ·
∑

i

zi,j · bj,3 − ψ2
j bj,3 = 0, ∀j, (17)

∑

j

(yi,j + zi,j)bj,3 ≤ 1, ∀i, (18)

∑

k

bj,k = 1, ∀j, (19)

ai,j ∈ {0, 1}, bj,k ∈ {0, 1}, (20)

xi,j ∈ {0, 1}, yi,j ∈ {0, 1}, zi,j ,∈ {0, 1}, (21)

i ∈ [1, .., N], j ∈ [1, .., H], k ∈ [1, .., 3]. (22)

Here, Constraint (11) and (12) ensures that the storage and CPU
frequency of edge servers satisfy the FL model requirements.
Constraint (13) guarantees the number of participants of each
model is κj for DFL, κj + 1 for CFL, and κj + 1 + ψj for HFL.
Constraint (14) makes sure that each participant only works for
one model. Constraints (15)–(17) enforce that (i) for each model
the specific number of PS is 1 for both CFL and HFL and the
number of middle-layer PSs is ψj for HFL, and (ii) the selected
PSs for each model are indeed within the selected participants for
this model (such as, ifxi,j = 1 thenai,j must be 1). For example,
in Constraint (15) for CFL, the term of

∑
i xi,j makes sure only

one PS is selected for model mj , while the term of
∑

i ai,jxi,j

combined with Constraint (14) makes sure that there exists and
only exists a servervi for model j that bothai,j = 1 andxi,j = 1.
Meanwhile, Constraint (18) ensures that the PS and middle-PS
of HFL are different. Furthermore, Constraint (19) guarantees
that each FL model must select one learning topology. Decision
variables and their ranges are given by Constraints (20)–(22).

B. Theoretical Bounds on Convergence

To solve the optimization problem, we must examine how
the choice of participants and learning topology impacts the
FL training in terms of the number of local training and global
updates for a single model. Since the update of the global model
depends on the selected learning topology, we can only analyze
the expected convergence rate of FL. We first make the following
assumptions, as done in previous works [10], [13], [39], [40],
[41], [42], [43], [44].

Assumption 1. (Smoothness and Strongly Convex): All loss
functions Fi(·) are ζ-Smoothness and ε-strongly convex, where
0 < ε ≤ ζ. Thus, for all i, j, we have the following relationships.

ε||ωα,β+1
i,j − ωα,βi,j || ≤ ||∇Fi(ω

α,β+1
i,j)−∇Fi(ω

α,β
i,j)||;

||∇Fi(ω
α,β+1
i,j)−∇Fi(ω

α,β
i,j)|| ≤ ζ||ωα,β+1

i,j − ωα,βi,j ||.

Given the local training process (1) to (3), the convergence
rate of local model training satisfies as follows.

Fi(ω
α,β̂
i,j)− Fi(ω

α,∗
i,j) ≤ θ

β̂(Fi(ω
α,0
i,j)− Fi(ω

α,∗
i,j)), (23)

where ωα,∗i,j is the optimal local model at worker vi for model
mj at α-th global iteration.

Lemma 1: Analogous to previous works [9], [20], [43], with
Assumption 1 and the local convergence rate (23), the number
of local training to achieve a θ-local convergence accuracy is

β̂ ≥ 2

(2− ζη)ηε log
1

θ
, (24)

where η is the learning rate of the local loss function.
Assumption 2. (Bounded Gradient): For any worker vi, the

stochastic gradients are uniformly bounded by

Es∼Di,j ||∇fi(ωαj ,xs,ys)||2 ≤ ς2, ∀i, j.

Assumption 3. (Bounded Variance): The stochastic gradient
variance is bounded for any worker vi, i.e. there exists a constant
σi, such that

Es∼Di,j ||∇fi(ωαj ,xs,ys)−∇Fi(ω
α
j)||2 ≤ σ2

i , ∀i, j.

Here s is the data sample from dataset Di,j at vi for mj .
Assumption 4. (Data Heterogeneity): For any worker vi, the

local gradient ∇Fi(ωαj) and the global gradient ∇F (ωαj) are
uniformly bounded by

E||∇Fi(ω
α
j)−∇F (ωαj)||2 ≤ ν2, ∀i, ∀j.

Note that if data samples among workers are i.i.d setting, then
ν = 0; otherwise, ν is a positive constant.

Definition 1. (Weight Matrix): We can represent the learning
topology as an undirected graph, then we denoteW ∈ RN×N as
a symmetric doubly stochastic matrix, which can be computed
via W = I− L

λmax(L) , where L=D-A is Laplacian matrix. Here
D is the degree matrix of the adjacent matrix A of the learning
topology. Wij encodes whether workers vi connects vj in the
topology.

Weight matrix W has the following properties: (1) W1 =
1,1TW = 1T ,W = WT ; (2) The n-th eigenvalue λn(W)
satisfies −1 < λn(W) ≤ · · · ≤ λ1(W) = 1.

With all these, the following theorem for the convergence
rate of different learning topologies under a single model can be
proved using similar proofs from [13], [39], [44].

Theorem 1: Given the participant selection matrix a, learning
topology selection matrix b, a set of parameter server selection
matrix x,y, z, optimal global model w∗j , and the following vari-
ables:Π = max(8ζε , β̂),ρ = (max{|λ2(W)|, |λn(W)|})2,σ =
1
κj

∑N
i=1(ai,j − xi,j − yi,j − zi,j)σi, then the convergence rate

of E[F (wα̂j)− F (w∗j)] can be given by

E[F (wα̂j)− F (w∗j)] ≤ bj,1A+ bj,2B + bj,3C, ∀j,

where

A = O
(
σ2

εα̂
+
ζν

εα̂
+
β̂2ς2(κj + 1)

κjεα̂
+

Πς2

εα̂

)
,

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1461

B = O
(
ζ

α̂
+
σ2

κj
+

κj
(1−√ρ)2 − 18κj

(
σ2(1−√ρ)2

1− ρ + ν2
)
,

C = O

⎛

⎝ 1 + σ2

√
κjα̂β̂γ̂

+
(ψj − 1)

α̂(σ2 + β̂γ̂ν2)−1
+

(κj − ψj)

α̂γ̂(σ2+β̂ν2)−1

⎞

⎠ .

Recall that the details of the proof can be found in [13], [39],
[44]. For each convergence rate analysis, they are all related
to the number of workers κj and the data heterogeneity ν.
As the number of workers increases, the convergence rate of
each method decreases. Also, the data heterogeneity impacts the
convergence performance where non-i.i.d setting (ν > 0) needs
more time to converge to the predefined accuracy.

Corollary 1: Let ϵ be the global convergence accuracy and
given the learning topology selection matrix b, to achieve
F (wα̂j)− F (w∗j) ≤ ϵ, the number of global iteration α̂ can be
approximated by

α̂ ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
1 + 1

κj

)
β̂2ς2 + σ2 + ζν + ς2

)
log 1

ϵ , if bj,1 = 1,

4ζ2κ5
j

σ6

(
σ2

1−ρ + 9ζ2

(1−√ρ)2

)2
, if bj,2 = 1,

(
1+σ2√
κj β̂γ̂

+
(
ψj − 1 + κj−ψj

γ̂

)
σ2

+
(
ψj γ̂ − γ̂ + κj−ψj

γ̂

)
β̂ν2

)
log 1

ϵ , if bj,3 = 1.

Note that, for DFL, some works [45] leverage the condi-
tion number of communication graph to represent the topology
of selected workers, so the number of global iterations can
also be approximated by α̂ = (ϱ+ (1 + ν) ζε) log

1
ϵ , where ϱ =

λmax(I−W)

λ+
min(I−W)

is the condition number of the topology. For HFL,
we loose the effect of the number of middle-layer aggregations
and the number of middle-layer PS for simplicity. We set a fixed
number for γ̂ and ψj based on the selected number of workers,
and use a fixed grouping strategy where each group has a fixed
number of workers.

IV. ALGORITHM DESIGN

In this section, we introduce the details of our algorithm
design. We start with a brief overview of the proposed two-stage
algorithm, then present the detailed methods used in two stages.
Finally, we will provide the complexity analysis of the proposed
algorithm.

A. Overall Algorithm

To solve the original joint optimization problem, we decom-
pose it into two separated stages and iteratively solve these
two sub-problems, as shown in Fig. 3. In Stage 1, we solve
the participant selection sub-problem for each model with an
initial learning topology or the learning topology determined by
Stage 2 in the previous iteration. In Stage 2, we determine the
learning topology for each model with the selected participants
from Stage 1. We iteratively process these two stages until it
reaches the maximum number of iterations or the same selection
appears at the maximal occurring times. Note that the processing
order of all models will affect the results. In our simulations, we

Fig. 3. The problem decomposition and the overall design of our proposed
algorithms.

simply adopt the first come first serve mode, i.e. first handling
the model that arrives earlier. The overall iterative algorithm is
given by Algorithm 1.

The selection of participants directly from all possible edge
servers in the edge cloud could lead to high computation over-
head. Therefore, we first generate a worker candidate list (Line 3
of Algorithm 1), denoted by client_listj for modelmj . Here, we
assume we choose ϖj servers into this list, and N > ϖj > κj .
Later, in Stage 1, we will pick κj workers from this client_listj
using different heuristics by running Algorithm 2, which can be
performed much more efficiently than an exhausting search over
all edge servers. As we mentioned before, the client selection
problem in FL has been well-studied. Some solutions prefer
to select workers based on the highest gradient norm [22] or
loss [23] value while others focus on the proportion of data size
in each client or the minimal completion time of each client.
Here, we adopt the idea of selecting edge servers with higher
loss value as FL worker candidates. For each model mj , we
generate ϖj FL worker candidates with the top ϖj high loss
values to form the client_listj (Line 3 of Algorithm 1). In Line
5, a random learning topology is initialized for each model.

B. Stage 1: Participant Selection

In the first stage, given the learning topology selection bj,k
of model mj , we would like to select the participants for mj

(including κj workers and possible PSs if CFL or HFL is used).
We use Algorithm 2 to select participants for each modelmj . (1)
It first selects κj workers from the candidates set client_listj
and decides PSs if needed from the remaining edge servers (Line
2/5/9). (2) Then it determines the specific topology for DFL/HFL
(Line 6/10). For DFL, we construct a topology in which each
participant connects to a fixed number of closest neighbors. For

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

1462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Algorithm 1: Overall Iterative Algorithm.
Input: Edge cloud with N servers V , H FL models M
Output: Participant selection ai,j , learning topology
selection bj,k, and PS assignments xi,j , yi,j , zi,j

1: Initialize remaining edge server list V r ← V
2: for mj ∈M do
3: Generate a candidate set client_listj with the top ϖj

highest loss values from V r

4: Initialize max _itr, max _occur, bound_val, and set
itr = 1 and count_num = 0

5: Randomly pick initial learning topology by setting bj,k
6: repeat
7: Stage 1: run Algorithm 2 to generate the new

participant selection ai,j and PS assignments (xi,j ,
yi,j , zi,j) based on current topology choice bj,k

8: Stage 2: run Algorithm 5 to determine the learning
topology bj,k and update PS selection based on
current participant selection from Stage 1. Let
obj_val be the achieved learning cost

9: if obj_val ≤ bound_val then
10: bound_val = obj_val; count_num++
11: Update decision variable a∗i,j , b∗j,k, x∗i,j , y∗i,j , z∗i,j
12: itr = itr + 1
13: until count_num = max_occur or itr = max _itr
14: V r ← V r/{vi|a∗i,j = 1}
15: return a∗i,j , b∗j,k, x∗i,j , y∗i,j , z∗i,j

Algorithm 2: Participant Selection for Model mj .
Input: Candidates set client_listj , learning topology bj,k,
and required number of workers κj of model mj

Output: Participant selection ai,j and role assignments
xi,j , yi,j , zi,j in learning topology

1: if bj,1 = 1 then
2: participant_listj = RandomSel() or GreedySel()
3: Update ai,j , xi,j with participant_listj
4: else if bj,2 = 1 then
5: participant_listj =RandomSel() or GreedySel()
6: Determine DFL topology for participant_listj
7: Update ai,j , ιi,l with participant_listj and the

topology
8: else if bj,3 = 1 then
9: participant_listj = RandomSel() or GreadySel()

10: Determine HFL topology for participant_listj
11: Update ai,j , yi,j , zi,j , ξi,l with participant_listj and

the topology
12: return ai,j , xi,j , yi,j , zi,j

HFL, after the PS decision, each worker will connect to the
closest middle-layer PS. (3) Last, it generates the participant
selection decision (both ai,j and xi,j , yi,j , zi,j) and updates the
related learning topology variables (ιi,l, ξi,l) for DFL/HFL (Line
3/7/11).

When we select a participant list participant_listj (Line
2/3/9 in Algorithm 2), we provide two options: random selection

Algorithm 3: RandomSel() - Random Selection.
Input: Candidates set client_listj , learning topology bj,k,
and required number of workers κj of model mj

Output: Participant list participant_listj (including
worker_list and PS lists ps, top_ps, mid_ps if needed)

1: worker_list = random(client_listj , κj)
2: if bj,1 = 1 then
3: ps = the closest one to the selected workers among all

remaining edge servers outside worker_list
4: else if bj,3 = 1 then
5: mid_ps = the closest ψj servers to the selected

workers among servers outside worker_list
6: top_ps = the (ψj + 1)-th closest server to the selected

workers among servers outside worker_list
7: return participant_listj (i.e., worker_list and PS

lists)

or greedy selection. In the random method, we randomly select
κj workers from the candidates set client_listj (Line 1 of Algo-
rithm 3). After that, for CFL we select a PS outsideworker_list
with the lowest communication cost to all workers; for HFL, we
select the top ψj servers outside worker_list with the least
communication cost to all workers as middle-layer PS and take
the (ψj + 1)th server as the top-layer PS. In the greedy method,
we first pick PSs from outside client_listj if needed (Line 2-3
Algorithm 4). Then we iteratively select an edge server that has
the minimal total cost from the candidates set client_listj until
we get κj workers (Lines 4–7).

C. Stage 2: Learning Topology Selection

In the second stage, given the selected participants (mainly
the workers worker_list) from Stage 1, we aim to determine
the better learning topology for them. Thus, we choose the PSs
for CFL/HFL (from remaining servers outside worker_list)
and determine the topology for DFL/HFL, then compare their
learning costs. Finally, the learning topology with the minimum
cost is selected and returned. Algorithm 5 shows the detail of
learning topology selection.

Recall that the study of the optimal learning topology con-
struction for DFL and HFL is orthogonal to our work, but other
topology formation algorithms can be used in this proposed
framework. For instance, we can leverage graph embedding to
construct an optimal topology for participants in DFL, while
considering the data heterogeneity.

D. Complexity Analysis

We now provide the complexity analysis of our algorithm.
Theorem 2: The overall time complexity of our proposed

algorithm is O(
∑H

j=1 Z(N logN + κjϖj)), where N and H
are the numbers of edge servers and models, κj and ϖj are
the numbers of required workers and candidate workers for jth
model, and Z is the maximal iteration max _itr.

Proof: In Algorithm 2, the participant selection is done in
one of two ways, either random selection or greedy selection

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1463

Algorithm 4: GreedySel() - Greedy Selection.
Input: Candidates set client_listj , learning topology bj,k,
and required number of workers κj of model mj

Output: Participant list participant_listj
1: worker_list = ∅
2: ps = the closest server outside client_listj to

client_listj
3: mid_ps, top_ps = the closest (ψj + 1) edge servers

outside client_listj to client_listj
4: for i = 1 to κj do
5: for ci in client_listj but not in worker_list do
6: Calculate total_cost(ci) if adding ci to worker_list

based on the topology choice bj,k
7: Let c∗i be the one leading to minimal total_cost(ci),

then add c∗i to worker_list
8: return participant_listj (i.e., worker_list and PS

lists)

Algorithm 5: Learning Topology Selection for Model mj .
Input: Worker list worker_list from ai,j , xi,j , yi,j , zi,j
Output: Learning topology selection bj,k, participant
selection ai,j , xi,j , yi,j , zi,j and learning topology

1: ps = the closest one to workers in worker_list among
remaining servers; calculate cfl_cost with this topology

2: Determine the DFL topology for worker_list and
calculate dfl_cost for this DFL topology

3: mid_ps, top_ps = the closest (ψj + 1) servers to
worker_list outside worker_list; determine the HFL
topology for worker_list and calculate hfl_cost

4: Choose the learning topology with the minimum
learning cost among cfl_cost, dfl_cost and hfl_cost;
update ai,j , bj,k, xi,j , yi,j , zi,j , ξi,l, ιi,l with the selected
topology

5: return ai,j , bj,k, xi,j , yi,j , zi,j and learning topology

(Line 2/5/7). Random selection needs O(N logN) to find the
closest servers as PSs (Line 3 or Lines 5–6 in Algorithm 3).
Greedy selection (Algorithm 4) also needs O(N logN) for PS
selection (Lines 2–3), plus O(κjϖj) for iteratively selecting
κj workers from client_list (Lines 4-7). Thus, the worst case
of time complexity for selection is O(N logN + κjϖj). Then
Algorithm 2 also needs to determine the topology if DFL/HFL
with a computational complexity of O(κ2j) or O(κjϖj). Since
ϖj > κj , this step takes up to O(κjϖj). In summary, the time
complexity of Algorithm 2 is bounded by O(κjϖj +N logN).

Algorithm 5 needs O(N logN) to find PSs and O(κ2j) or
O(κjϖj) to determine the DFL/HFL topology (Line 1/3).
Hence, its time complexity is O(N logN + κjϖj) too.

Overall, our proposed iterative algorithm (i.e., Algorithm 1) it-
eratively determines the participant selection and learning topol-
ogy (using Algorithm 2 and Algorithm 5, respectively) for H
models within the maximal iteration Z. Therefore, the total time
complexity is bounded by O(

∑H
j=0 Z(N logN + κjϖj)). !

V. PERFORMANCE EVALUATION

In this section, we provide a detailed performance evaluation
of our proposed algorithms based on simulations over real-world
network topology and machine learning tasks.

A. Simulation Setup

Edge Network: To generate edge cloud networks, we lever-
age a real-world EUA-Dataset [32] to form a more realistic
distribution of edge servers. This dataset is widely used in
edge computing and contains the geographical locations of 125
cellular stations in central Melbourne. We first randomly select a
certain number of stations in this dataset as the edge servers and
then determine all edge links to form the network topology based
on the distances among edge servers. Each edge server vi then
randomly assigned with a maximal storage capacity ci, CPU
frequency fi and link bandwidth bj in ranges of 512− 1, 024
GB, 2− 6 GHz, and 512− 1, 024 Mbps, respectively.

FL Models: To verify the FL performance over the edge, we
conduct a set of FL experiments, where multiple FL models (1−
5 models) need to be concurrently trained in our environment.
For each model mj , it requires κj workers (8− 16 workers),
and has a specific model size µj , CPU requirement χj in range
10− 100 MB, 1− 3 GHz, respectively. We also fix the number
of closest neighbors that each FL worker connects in DFL to 4
and the number of middle-layer PSs in HFL to 2 (i.e. ψj = 2).

Three classical datasets in scikit-learn 1.0.2 [33] are used to
train linear regression (LR) models: California Housing dataset,
Diabetes dataset, and randomly generated LR datasets. Each LR
model is trained with the loss of Mean Square Error (MSE). In
addition, we are interested in the performance of the proposed
methods in non-convex loss functions. Hence, three different
types of image datasets are used to train CNN models: CI-
FAR10 [34], Fashion-MNIST (FMNIST) [35], MNIST [36].
These are well-known ML datasets for image classifica-
tion/recognition tasks. For CIFAR10/FMNIST/MNIST datasets,
we train CNN models with two 5× 5/3× 3/2× 2 convolution
layers, respectively. For CIFAR10, the first layer has 6 output
channels followed by 2× 2 max pooling and the second layer
has 16 output channels. Then it follows three linear layers and
a softmax output layer. For FMNIST, the two layers have 32/64
output channels followed by 2× 2 max pooling. For MNIST,
the two layers have 16/32 output channels followed by 2× 2
max pooling. All datasets are distributed in non-IID settings.

Baselines: We compared our proposed algorithms (PS-LTS)
with two groups of baselines. In Group 1, all methods iteratively
determine the learning topology by Algorithm 5 while perform-
ing participant selection using different strategies.! RAND-LTS: Randomly select the participant.! NORM-LTS [22]: Select the participants with top κj high-

est gradient norm values for each model.! LOSS-LTS [23]: First sample ϖj candidate client with the
fraction of data at each client, and then select κj workers
with the highest loss values.

In Group 2, all methods use Algorithm 2 to select participants
but determine the learning topology in different ways.! PS-CFL: All models adopt CFL learning topology.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

1464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 4. Performance comparison (i.e., total cost, computation/communication
cost) of all methods.

! PS-DFL: All models adopt DFL learning topology.! PS-HFL: All models adopt HFL learning topology.
In addition, we include a pure random solution (RAND-

RAND), which randomly selects the participant and learning
topology for each model.

B. Evaluation Results

Overall Performance: Fig. 4 shows the overall average total
cost of all methods where 3 models are trained with 10 workers.
Clearly, our proposed PS-LTS outperforms other benchmarks by
a large margin and thus confirms the advantage of jointly con-
sidering participant selection and learning topology selection.
For example, PS-LTS achieves lower average total costs with up
to 33.5% and 39.6% compared to NORM-LTS and LOSS-LTS,
respectively. RAND-RAND has the worst performance since
it randomly determines the participants and learning topology
without any optimization. Within Group 1, NORM-LTS and
LOSS-LTS have smaller total learning costs than RAND-LTS.
This shows the advantage of considering gradient norm value or
loss value for participant selection. Compared with methods in
Group 2 where the same learning topology is used for every
model, our proposed method also shows clear advances by
adapting appropriate learning topology selection for each model.
Fig. 4 also shows that the communication cost dominates the
total cost in this experiment due to bandwidth constraints in the
edge network.

Learning Cost vs Resources and Max Iterations: We also
study the impact of different networking/computing resources
(such as network bandwidth and CPU frequency) in edge cloud
for our proposed method PS-LTS. As shown in Fig. 5(a) and
(b), with more bandwidth (or faster CPU frequency), the com-
munication (or computation) cost of our method can be reduced,
which also leads to a lower total cost. We also plot the result of
the impact of max iteration threshold max_itr for our method
in Fig. 5(c). With more iterations, the learning cost decreases,
since it has more chances to find a better solution with a lower
cost. However, the improvement becomes smaller when the max
iteration further increases.

Learning Cost vs Number of Edge Servers: Next, we investi-
gate the impact of the number of edge servers in the edge cloud
for all methods. In this setting, the number of edge servers varies
from 50 to 70, and we consider 3 models and 10 workers for
each model. Fig. 6 shows the comparison of our method against
baselines in both groups. From Fig. 6(a) and (b), we can observe

that the total cost of all methods (except RAND-RAND) declines
as the number of edge servers rises. This is reasonable since with
more servers it has chances to find better participants to join the
FL training leading to a lower total cost. It is not surprising that
NORM-LTS and LOSS-LTS perform better than RAND-RAND
and RAND-LTS while our proposed PS-LTS outperforms other
methods in terms of the average total learning cost.

Similar results also appear in Fig. 6(c) and (f) which plots
the detail of computation and communication costs. In Fig. 6(c)
and (e), LOSS-LTS has the highest computation cost since the
server with a higher loss value may own a larger local data.
Meanwhile, the communication cost of LOSS-LTS is close to
that of NORM-LTS. For the combined total cost, LOSS-LTS
still has a higher cost than NORM-LTS as shown in Fig. 6(a). In
Fig. 6(d) and (f), the computation cost of PS-DFL is very close
to our proposed method but it has the highest communication
cost due to the topology complexity of PS-DFL. Recall that
DFL forces each worker to connect to a fixed number of closest
workers, thus leading to a more complicated topology than CFL
and HFL. Furthermore, PS-HFL has the lowest communication
cost since each worker connects to the closest middle-layer PS
in HFL.

Learning Cost vs Number of Models: We also study the
influence of the number of FL models on the costs. Similarly,
we set 70 edge servers in edge cloud and aim to train 1− 5
models with 10 FL workers per model. Fig. 7 plots the results.
Obviously, with more models, all learning costs increase. Our
proposed method still performs better than other methods.

Learning Cost vs Number of Workers: Next, we further inspect
the performance impact of the number of workers. Here we train
3 models with the required worker number from 8 to 16 over an
edge cloud with 65 servers. As shown in Fig. 8, the total cost of
all methods rises with the increase in the number of workers. This
is reasonable since more workers cause more computation and
communication costs leading to a higher total cost. Additionally,
the gap between our proposed method and baseline methods
becomes smaller as the number of workers increases due to the
domination of the communication cost as shown in Fig. 4. Still,
our proposed method is the best among all methods.

Training Loss: We then investigate the training loss of our
method in federated learning experiments over LR datasets. We
introduce the R2 score metric to evaluate the performance of
LR model (convex) training. R2 score is the proportion of the
variance in the dependent variable that is predictable from the
independent variable(s). In this experiment, we concurrently
train 3 LR models with 3 different datasets. Each dataset is
split into 65 edge servers unequally (i.e. non-IID setting) and
the number of global training rounds is 100. We can see from
Fig. 9(b) and (d), that the training loss decreases as the number of
workers increases for each model. Fig. 9(a) shows the R2 score
of all LR models. Obviously, with more workers, the R2 score of
all models increases, which means all models are well-regressed.
However, model 2 has a worse R2 score (a negative value) in
fewer workers due to the small size of the training dataset. But
as the number of workers increases, the performance of model
2 becomes better.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1465

Fig. 5. Impact of (a) bandwidth, (b) CPU frequency, and (c) max_iter on our method.

Fig. 6. Impact of number of edge servers on costs: (a-b) total cost, (c-d)
computation cost, (e-f) communication cost.

Training Accuracy: Finally, we look into the training ac-
curacy of our method over some benchmarks in CNN model
(non-convex) training. Here, we apply to consider the training
of 3 FL models with an edge cloud of 65 edge servers, each
FL model uses different datasets (i.e., CIFAR10, FMNIST, and
MNIST) and adopts the non-IID setting. Fig. 10(a) shows the
accuracy of models for baselines (RAND-LTS, NORM-LTS,
LOSS-LTS) and our proposed method. We can find that the
training accuracy of all strategies is similar but recall that from
Fig. 8 our proposed method takes less cost to reach a similar
level of accuracy. In addition, Fig. 10(b) and (d) shows the
detailed training accuracy of three different models with dif-
ferent numbers of workers for our proposed method. We can
see that the training accuracy grows with more workers, but it

Fig. 7. Impact of number of models on costs.

Fig. 8. Impact of number of workers on costs.

Fig. 9. Training loss of LR models and impact from the number of workers: (a)
R2 scores of three LR models; (b) loss of LR over California Housing dataset;
(c) loss of LR over diabetes dataset; (d) loss of LR over the randomly generated
dataset.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

1466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 10. Training accuracy of CNN models and impact from the number of
workers: (a) accuracy of all strategies with 10 workers; (b)-(d) accuracy of three
models using our method with the different number of workers.

varies due to the non-IID setting and the unequal data partition
in the experiment. In some cases, more workers do not mean
more distinct data is being selected so the training accuracy may
drop a little as the number of workers increases. But overall all
three models (CIFAR10, FMNIST, and MNIST) share similar
trends.

VI. RELATED WORK

In this section, we briefly review related work in federated
learning at the edge, learning topology of FL, and participant
selection in FL.

A. Federated Learning at the Edge

Federated learning [7], [8], [9], [10], [11], [21] has been
emerging as a new distributed learning paradigm in edge com-
puting. Most existing works of FL at the edge focus on the
convergence and adaptive control of FL or the resource alloca-
tion and learning scheduling within the edge network/system.
For example, Wang et al. [7] focused on FL’s convergence
and adaptive control in edge computing without participant
selection. They proposed a control algorithm to determine the
trade-off between local update and global parameter aggregation
to minimize the loss function. Jin et al. [9] considered a joint
control of FL and edge provisioning problems in distributed
cloud-edge networks and proposed a method to control the status
of edge servers to minimize the long-term cumulative cost of
FL while satisfying the training models’ convergence. Nishio
and Yonetani [21] studied the client selection problem in an
edge-based FL where the edge server in a cellular network acts as
the PS and a set of mobile clients are selected as workers, to select
as many mobile clients to complete the FL training under the time
constraints.

B. Different Learning Topology

Most prior works focused on the classical CFL learning
topology [1], [2], [3], [7], [9]. Sattler et al. [2] proposed a
new compression framework called sparse ternary compression
(STC) to meet the requirement of the CFL environment from
non-I.I.D data. Ji et al. [3] studied the device sampling problem
in CFL and proposed a communication-efficient algorithm to
reduce the overall communication cost during the FL training by
dynamic sampling and top-k selective masking method. On the
other hand, some works also concentrated on DFL [10], [13],
[45] and HFL [11], [16], [17], [20]. Meng et al. [10] focused
on the FL model training using decentralized P2P methods in
edge computing. They also select the FL workers from the edge
network and dynamically form the decentralized topology (no
PS) for FL training by a reinforcement learning method. Luo et
al. [20] considered a client-edge-cloud HFL where the cloud acts
as the top-tier parameter server to aggregate the FL models from
edge servers and edge servers work as middle-layer parameter
servers to aggregate the partial models from mobile clients.
As stated before, all of these works only considered a specific
learning topology in FL training and also did not consider the
competition among multiple FL models.

C. Participant Selection in FL

Participant selection [22], [23], [24], [25], [26], [27], [28],
[30], [31], [46], [47], also known as client selection or sam-
pling, has been well studied in FL. For example, Qu et al. [46]
studied the client selection problem in HFL scenario and pro-
posed a context-aware online algorithm based on the Multi-
Armed Bandit (MAB) framework. This framework leverages
clients’ computational and transmission information to select a
subset of clients to maximize the training utilities. Similarly,
Li et al. [26] considered client selection as the contextual-
combinatorial MAB framework with fairness requirement and
proposed a deadline-aware task replication for surplus client
scheduling policy. Cho et al. [47] considered the biased client
selection problem and proposed a power-of-choice algorithm
and its variants to minimize communication and computation
overheads. Wei et al. [27], [28], [29], [30], [31] studied a
participant selection problem in either HFL or CFL aiming to
minimize the total learning cost in an edge cloud. However, all
of these works only considered a specific learning topology for
all models, either CFL or HFL.

Overall, previous works only consider one FL model or a
specific learning topology when conducting FL training or se-
lecting FL participants. In this work, we are the first to consider
adaptive learning topology and participant selection for multi-
model FL scenarios. By carefully selecting the training partic-
ipant and learning topology for all FL models, one can effec-
tively manage resource competition and load balancing in edge
clouds.

VII. CONCLUSION

This paper investigates the problem of jointly selecting par-
ticipants and adaptive learning topologies for multiple federated

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: JOINT PARTICIPANT AND LEARNING TOPOLOGY SELECTION FOR FEDERATED LEARNING IN EDGE CLOUDS 1467

learning models being trained concurrently in edge clouds. We
formulate the problem as an integer non-linear programming
problem and propose a two-stage iterative algorithm to solve
it by breaking it into two sub-problems. In Stage 1, we solve
the participant selection problem based on the initial or Stage
2-derived learning topology via different heuristic algorithms.
In Stage 2, we establish the learning topology for each model
based on Stage 1’s selected participants, and then choose the best
one. This iterative process continues until certain conditions are
satisfied. Through extensive simulations and actual FL experi-
ments, we demonstrate that our proposed algorithm outperforms
existing methods with up to 33.5% and 39.6% lower average
total costs in a multi-model FL environment.

As a concluding remark, we expect that our proposed algo-
rithm can be further extended to solve larger-scale FL scenarios
and can be deployed in a real edge testbed. Moreover, we
will investigate potential reinforcement learning approaches and
privacy protection mechanisms to enhance and complement our
proposed framework to support secure large-scale FL in dynamic
edge clouds.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., PMLR, 2017, pp. 1273–1282.

[2] F. Sattler, S. Wiedemann, K.E. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID data,” IEEE
Trans. on Neural Netw. Learn. Sys., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[3] S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and selective
masking for communication-efficient federated learning,” IEEE Intell.
Syst., vol. 37, no. 2, pp. 27–34, Mar./Apr. 2022.

[4] Z. Jiang, W. Wang, B. Li, and Q. Yang, “Towards efficient synchronous
federated training: A survey on system optimization strategies,” IEEE
Trans. Big Data, vol. 9, no. 02, pp. 437–454, Apr. 2023.

[5] Z. Tang, S. Shi, B. Li, and X. Chu, “GossipFL: A decentralized federated
learning framework with sparsified and adaptive communication,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 3, pp. 909–922, Mar. 2023.

[6] Y. Li, F. Li, S. Yang, C. Zhang, L. Zhu, and Y. Wang, “A co-
operative analysis to incentivize communication-efficient federated
learning,” IEEE Trans. Mobile Comput., pp. 1–16, Mar. 2024,
doi: 10.1109/TMC.2024.3373501.

[7] S. Wang et al., “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–
1221, Jun. 2019.

[8] M. N. Nguyen, N. H. Tran, Y. K. Tun, Z. Han, and C. S. Hong, “Toward
multiple federated learning services resource sharing in mobile edge
networks,” IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 541–555,
Jan. 2023.

[9] Y. Jin, L. Jiao, Z. Qian, S. Zhang, and S. Lu, “Learning for learning:
Predictive online control of federated learning with edge provisioning,” in
Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[10] Z. Meng, H. Xu, M. Chen, Y. Xu, Y. Zhao, and C. Qiao, “Learning-driven
decentralized machine learning in resource-constrained wireless edge
computing,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[11] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge comput-
ing,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[12] D. Xu et al., “Edge Intelligence: Empowering intelligence to the edge of
network,” Proc. IEEE, vol. 109, no. 11, pp. 1778–1837, Nov. 2021.

[13] X. Lian, C. Zhang, H. Zhang, C. J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case study
for decentralized parallel stochastic gradient descent,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5336–5346.

[14] L. Yuan, L. Sun, P. S. Yu, and Z. Wang, “Decentralized Federated Learning:
A Survey and Perspective,” 2023, arXiv:2306.01603.

[15] A. Wainakh, A. S. Guinea, T. Grube, and M. Mühlhäuser, “Enhancing
privacy via hierarchical federated learning,” in Proc. IEEE Eur. Symp.
Secur. Privacy Workshops, 2020, pp. 344–347.

[16] H. Yang, “H-FL: A hierarchical communication-efficient and privacy-
protected architecture for federated learning,” in Proc. 30th Int. Joint Conf.
Artif. Intell., 2021, pp. 479–485.

[17] Y. Deng et al., “SHARE: Shaping data distribution at edge for
communication-efficient hierarchical federated learning,” in Proc. IEEE
41st Int. Conf. Distrib. Comput. Syst., 2021, pp. 24–34.

[18] J Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for efficient
hierarchical federated learning in wireless edge networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 11, pp. 2687–2700, Nov. 2021.

[19] J. Liu, X. Wei, X. Liu, H. Gao, and Y. Wang, “Group-based hierarchical
federated learning: Convergence, group formation, and sampling,” in Proc.
52nd Int. Conf. Parallel Process., 2023, pp. 264–273.

[20] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge associa-
tion and resource allocation for cost-efficient hierarchical federated edge
learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6535–6548,
Oct. 2020.

[21] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf. Com-
mun., 2019, pp. 1–7.

[22] O. Marnissi, H. E. Hammouti, and E. H. Bergou, “Client selection in fed-
erated learning based on gradients importance,” 2021, arXiv:2111.11204.

[23] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learn-
ing: Convergence analysis and power-of-choice selection strategies,”
2020, arXiv: 2010.01243.

[24] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” 2020, arXiv: 2010.13723.

[25] A. Li, L. Zhang, J. Tan, Y. Qin, J. Wang, and X.-Y. Li, “Sample-level data
selection for federated learning,” in Proc. IEEE Conf. Comput. Commun.,
2021, pp. 1–10.

[26] Y. Li, F. Li, L. Chen, L. Zhu, P. Zhou, and Y. Wang, “Power of redundancy:
Surplus client scheduling for federated learning against user uncertainties,”
IEEE Trans. Mobile Comput., vol. 22, no. 9, pp. 5449–5462, Sep. 2023.

[27] X. Wei, J. Liu, X. Shi, and Y. Wang, “Participant selection for hierarchical
federated learning in edge clouds,” in Proc. IEEE Int. Conf. Netw. Archit.
Storage, 2022, pp. 1–8.

[28] X. Wei, J. Liu, and Y. Wang, “Joint participant selection and learning
scheduling for multi-model federated edge learning,” in Proc. IEEE Int.
Conf Mobile Ad-Hoc Smart Syst., 2022, pp. 537–545.

[29] X. Wei, J. Liu, and Y. Wang, “Joint participant selection and learning
optimization for federated learning of multiple models in edge cloud,” J.
Comput. Sci. Technol., vol. 38, no. 4, pp. 754–772, 2023.

[30] X. Wei, L. Fan, Y. Guo, Y. Gong, Z. Han, and Y. Wang, “Quantum assisted
scheduling algorithm for federated learning in distributed networks,” in
Proc. 32nd Int. Conf. Comput. Commun. Netw., 2023, pp. 1–10.

[31] X. Wei, L. Fan, Y. Guo, Y. Gong, Z. Han, and Y. Wang, “Hybrid quantum-
classical Benders’ decomposition for federated learning scheduling in
distributed networks,” IEEE Trans. Netw. Sci. Eng., pp. 1–13, Apr. 2024.

[32] P. Lai et al., “Optimal edge user allocation in edge computing with vari-
able sized vector bin packing,” in Proc. 16th Int. Conf. Service-Oriented
Comput., 2018, pp. 230–245.

[33] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[34] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Tront, 2009.

[35] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” 2017, arXiv:
1708.07747.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[37] C. Ma et al., “On safeguarding privacy and security in the frame-
work of federated learning,” IEEE Netw., vol. 34, no. 4, pp. 242–248,
Jul./Aug. 2020.

[38] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 3454–3469, 2020.

[39] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Representations,
2020, pp. 1–26.

[40] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” 2019, arXiv: 1908.07782.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TMC.2024.3373501

1468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

[41] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learn-
ing and communications framework for federated learning over wireless
networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269–283,
Jan. 2021.

[42] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchi-
cal federated learning,” in Proc. IEEE Int. Conf. Commun., 2020, pp. 1–6.

[43] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,” IEEE
Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Mar. 2021.

[44] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD,” in Proc.
Conf. Assoc. Advance. Artif. Intell., 2022, pp. 8548–8556.

[45] X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear convergent de-
centralized optimization with compression,” in Proc. Int. Conf. Learn.
Representations, 2021, pp. 1–30.

[46] Z. Qu, R. Duan, L. Chen, J. Xu, Z. Lu, and Y. Liu, “Context-aware online
client selection for hierarchical federated learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 12, pp. 4353–4367, Dec. 2022.

[47] Y.J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client
selection in federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2022, pp. 10351–10375.

Xinliang Wei (Member, IEEE) received the BE and
MS degrees in software engineering from SUN Yat-
sen University, Guangzhou, China in 2014 and 2016,
respectively and the PhD degree in computer and in-
formation sciences from Temple University, Philadel-
phia, USA in 2023. He is an assistant professor in
Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences. His research interests include
edge computing, federated learning, reinforcement
learning, and Internet of Things. He is a recipient of
Outstanding Research Assistant Award from College

of Science and Technology (2022) and Scott Hibbs Future of Computing Award
from Department of Computer & Information Sciences (2023) with Temple
University.

Kejiang Ye (Senior Member, IEEE) received the BS
and PhD degrees from Zhejiang University in 2008
and 2013, respectively. He is currently a professor
and the deputy director of the Research Center for
Cloud Computing, Shenzhen Institute of Advanced
Technology (SIAT), Chinese Academy of Sciences
(CAS). Before joining SIAT, he was a postdoctoral
research associate with Carnegie Mellon University
(CMU), from 2014 to 2015, and was a research fellow
with Wayne State University (WSU), from 2015 to
2016. His research interests include cloud computing,

Big Data, and industrial internet.

Xinghua Shi (Member, IEEE) received the BEng and
MEng degrees in computer science from the Beijing
Institute of Technology, China and the MS and PhD
degrees in computer science from the University of
Chicago. She is an associate professor with the De-
partment of Computer and Information Sciences and
a core faculty member with the Institute for Genomics
and Evolutionary Medicine, Temple University. She
was trained as a postdoctoral scholar and genetics
fellow with Brigham and Women’s Hospital, Harvard
Medical School, and Broad Institute. Her research

interests include machine learning, bioinformatics, data privacy, and Big Data
analytics in biomedical research. Her research has been supported by NSF
(including an NSF CAREER award), NIH, DoD and Wells Fargo Foundation.

Cheng-Zhong Xu (Fellow, IEEE) received the BSc
and MSc degrees in computer science and engineer-
ing from Nanjing University in 1986 and 1989, re-
spectively, and the PhD degree in computer science
and engineering from The University of Hong Kong
in 1993. He was a professor of electrical and computer
engineering with Wayne State University and the di-
rector of advanced computing and digital engineering
with the Shenzhen Institutes of Advanced Technology
(SIAT). He is currently the dean of the Faculty of
Science and Technology, University of Macau, and a

chair professor of computer and information science. He also holds a courtesy
position as the director of the Center for Cloud Computing, SIAT, Chinese
Academy of Sciences. He published two research monographs and more than
300 papers in journals and conference proceedings, including more than 50
in IEEE/ACM transactions; his publications received more than 12800 citations
with an H-index of 60. His main research interests include parallel and distributed
computing, with an emphasis on resource management for system performance,
reliability, availability, power efficiency, and security, and in Big Data and data-
driven intelligence applications. He was the Best Paper Nominee or Awardee
of the 2013 IEEE High Performance Computer Architecture (HPCA), the 2013
ACM High Performance Distributed Computing (HPDC), IEEE Cluster 2015,
ICPP 2015, GPC 2018, and UIC 2018.

Yu Wang (Fellow, IEEE) received the BEng and
MEng degrees in computer science from Tsinghua
University and the PhD degree in computer science
from the Illinois Institute of Technology. He is a
professor and chair of the Department of Computer
and Information Sciences, Temple University. His
research interest includes wireless networks, smart
sensing, and mobile computing. He has published
more than 300 papers in peer-reviewed journals and
conferences. He is a recipient of Ralph E. Powe Junior
Faculty Enhancement Awards from Oak Ridge Asso-

ciated Universities (2006), Outstanding Faculty Research Award from College
of Computing and Informatics with the University of North Carolina at Charlotte
(2008), fellow of IEEE (2018), ACM distinguished member (2020), and IEEE
Benjamin Franklin Key Award (2024). He has served as associate editor for IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Cloud
Computing, among others.

Authorized licensed use limited to: Temple University. Downloaded on November 17,2024 at 00:31:22 UTC from IEEE Xplore. Restrictions apply.

