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ABSTRACT: We present hybrid multiconfiguration density coherence functional theory
(HMC-DCFT), and we optimize a density coherence functional by parametrization against a
diverse data set of 59 bond energies and 60 barrier heights. We compare the results to
calculations on the same data set by CASSCF, CASPT2, six Kohn−Sham and hybrid Kohn−
Sham exchange−correlation functionals, and three on-top functionals for pair-density
functional theory (PDFT) and hybrid PDFT. The new functional has better accuracy than all
compared methods.

Electronic structure calculations with a multiconfiguration
reference wave function are useful tools for calculations

on systems with strong static correlation because of their
inherently multiconfigurational nature.1−30 One usually carries
out such calculations in two steps. Typically one starts with a
multiconfigurational self-consistent-field (MCSCF) wave
function, such as a complete active space self-consistent-field
(CASSCF)31,32 wave function or a density matrix renormaliza-
tion group self-consistent field (DMRG-SCF)33,34 wave
function, or with a valence bond15 wave function, followed
by perturbation theory2,4,15,35 or multireference configuration
interaction (MRCI).1,5,7,13,17 The first step should recover the
static correlation energy, and inevitably, it will also recover
some of the dynamic correlation energy; in the second step,
called a multireference step since it starts out with a
multiconfiguration wave function as the reference function,
one attempts a more complete calculation that includes the
rest of the dynamic correlation energy. The second step is
often the more computationally expensive step, especially for
larger systems. The large computational cost for quantitatively
accurate wave function calculations with multireference
methods often makes their cost prohibitive. This provides
strong motivation to develop inexpensive alternative post-
MCSCF methods while still retaining high accuracy.
One possible way to make post-MCSCF calculations more

affordable is to combine multiconfiguration wave functions
with density functional theory. This has been proposed by
many authors (we gave 44 references in our original paper36 on
this subject), and we cite multiconfiguration pair-density
functional theory (MC-PDFT)36,37 as an example that has
proved successful and that serves as an especially relevant

background to the present paper. A generalization of MC-
PDFT is multiconfiguration nonclassical functional theory
(MC-NEFT).38,39 MC-NEFT calculates the total electronic
energy by separately evaluating a classical energy, Eclass, and a
nonclassical energy, Enc.

= +E E EMC NEFT class nc (1)

The classical energy, Eclass, which includes electronic kinetic
energy, electron−nuclear attraction, classical electron−electron
electrostatics, and nuclear−nuclear repulsion, is evaluated
conventionally from a multiconfigurational wave function.
The nonclassical energy, Enc, is approximated using a
functional called a nonclassical energy functional, which is a
functional of some properties (called ingredients) of the
multiconfigurational wave function. An especially important
difference between Kohn−Sham DFT40 (KS-DFT) and MC-
NEFT is the way they treat intrinsically multiconfigurational
hyper-open open-shell systems (for example, highly stretched
single bonds and other open-shell singlets or doublets with
three unpaired electrons). In the way it is usually employed,41

KS-DFT treats these with a broken-symmetry Slater
determinant that has unphysical magnetization density,
whereas MC-NEFT gives a physical description of the static
correlation, prompting the expectation that one can use the
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ingredients of the multiconfiguration wave function to obtain
systematically more accurate descriptions of intrinsically
multiconfigurational systems. We elucidated one of the reasons
why MC-NEFT works well by an energy decomposition
study.42

The original MC-NEFT was MC-PDFT,36,37 in which the
ingredients in the energy functional are the density ρ(r), which
is the diagonal element of the 1-particle reduced density matrix
(1-RDM) in the coordinate representation, and the on-top pair
density Π(r), which is the fully diagonal element of the two-
particle reduced density matrix (2-RDM) in the coordinate
representation. The resulting nonclassical energy functionals
are called on-top functionals. MC-PDFT has been found to
have good accuracy systems with strong static correla-
tion.23,43−45

We also developed a hybrid version46 of MC-PDFT, in
which the nonclassical energy functional is constructed by
mixing a portion of the MCSCF exchange−correlation energy,
EMC,XC, with the on-top energy, EOT

= + +E E XE X E(1 )HMC PDFT class MC,XC OT (2)

where X is a parameter, and EOT is the nonclassical energy
evaluated from the on-top functional. The hybrid MC-NEFT
based on the MC-PDFT framework is called HMC-PDFT,46

and it has shown improved accuracy over the straight MC-
PDFT method.44,46−48

Another example of MC-NEFT used machine-learned
nonclassical functionals based on MC-PDFT, and the resulting
theory was called a multiconfiguration data-driven functional
method (MC-DDFM);38 this showed promising results for
predicting excitation energies.
Multiconfiguration density coherence functional theory

(MC-DCFT)39 provides another way to carry out MC-
NEFT. It not only uses the density ρ(r) but also uses the
density coherences ρ(r|r′), which are the off-diagonal elements
of the 1-RDM in the coordinate representation, to construct
the nonclassical energy functional. This is motivated by the
close connection between the unpaired electron density and
the density coherences.29,39,49−51 In our initial exploration of
MC-DCFT, we used density coherence functionals converted
directly from KS-DFT exchange−correlation functionals, and
we found that they have a systematic error due in part to the
quantitative differences between the unpaired-electron den-
sities and the needed effective spin densities; we also found
that the systematic error can be reduced by reparametrizing the
density coherence functional.
In the present work, we explore the question of whether we

can optimize a multiconfiguration nonclassical energy func-
tional by methods that have been successful for single-
configuration KS-DFT. We do this in the context of a hybrid
version of MC-DCFT, which will be called HMC-DCFT. In
HMC-DCFT, we have (as in eq 2)

= + +E E XE X E(1 )HMC DCFT class MC,XC DC (3)

The density coherence functionals for the present study are
written as functions of the unpaired densities defined by49−51

= [ | ]

=

D

n n

r r r r r

r

( ) 2 ( ) ( ) d

(2 ) ( )
i

i i i

2

2

(4)

where ni is the occupation number of natural orbital i, and χi(r)
is the magnitude of natural orbital i in the MCSCF reference
wave function. To obtain a functional form, we convert a KS
exchange-correlation functional, which is a functional depend-
ing on effective spin densities ρ̃α(r) and ρ̃β(r), by using

= + Dr r r( )
1
2

( )
1
2

( )
(5)

= + Dr r r( )
1
2

( )
1
2

( )
(6)

Once we obtain the effective spin densities and their gradients
using eqs 4−6, we use the KS-DFT functional to evaluate the
nonclassical energy, Enc. In the context of HMC-DCFT, this
becomes EDC in eq 3. There are two qualitative differences
between on-top functionals (giving the energy EOT) and a
density coherence functional (giving the energy EDC). First, in
an on-top functional, the nonclassical energy density at a point
r in space depends only on properties [ρ(r) and Π(r)] at that
point in space, whereas the density coherence is nonlocal,
depending on r′ as well as r. Second, EOT depends on both 1-
RDM and 2-RDM, whereas EDC depends only on the 1-RDM.
In this work, we used a CASSCF reference function. To

systematically develop or test a nonclassical energy functional,
we need a systematic method of selecting the active space that
minimizes the need for nonsystematic judgment. We therefore
used a systematic scheme to generate active spaces, and it is
described in the Supporting Information (SI), which also gives
the other computational details. Default initial guesses of
standard software are used for all CASSCF calculations, with
point group symmetry disabled. To minimize human judgment
in the entire computation, we did not attempt to achieve better
results by manually adjusting the initial guess orbitals or the
active space; we used the initial guesses provided by
OpenMolcas52 for one data set and Molpro53−55 for another
data set, and we used active spaces generated by the systematic
scheme. Prior to filtering (the filtering step is explained below),
the molecules and geometries are the same in both data sets,
but the initial guess orbitals and SCF algorithms are different.
We constructed the two data sets from diatomic dissociation

energies in ref 56, from diatomic and polyatomic bond
dissociation energies in data sets MR-MGM-BE4, MR-MGN-
BE17, MR-TM-BE12, SR-MGM-BE8, SR-MGN-BE107, and
SR-TM-BE15 in Minnesota Database 201957 (we excluded
atomization energies that involve dissociation of more than
one bond) and from the HTBH38 and NHTBH38 reaction
barrier height data sets of Minnesota Database 2019. Since all
electronic structure calculations in this study are without spin−
orbit coupling, we added experimental spin−orbit contribu-
tions when nonzero.
Bond dissociation energies are calculated by stretching a

bond to 8 Å. The calculation of a bond dissociation energy or
barrier height is a difference ΔE of two energies (stretched
molecule relative to equilibrium molecule or transition state
relative to reactants or products), and it therefore requires two
CASSCF calculations to generate the reference wave functions.
For developing and testing density functionals, we want to use
only calculations for which the CASSCF wave functions are
good zero-order wave functions (i.e., are based on good active
spaces) for the ΔE under consideration, so that the errors are a
measure of the quality of the density functional with a
reasonable active space rather than a measure of errors due to a
poor active space. Therefore, because the automatic active
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space scheme explained in the SI does not always produce a
good active space, we need to limit the calculations to those
cases where it does produce a good active space. A good active
space should yield a CASPT2 energy that is not too far from
the accurate one, and it should not lead to too large of a
difference between the CASSCF and CASPT2 energies. To
reflect this, our criterion for a good active space for a bond
energy or barrier height is that both of the following
inequalities are satisfied:

| | <E E(CASSCF) (CASPT2) 1.1 eV (25.4 kcal/mol)
(7)

| | <E E(CASPT2) (accurate) 0.4 eV (9.2 kcal/mol) (8)

The first inequality ensures that the energy difference at the
CASPT2 level does not deviate from CASSCF by a large
amount, while the second inequality (eq 8) ensures that
CASPT2 is able to accurately predict the energy difference.
The values of the parameters in both inequalities are based on
our experience with active space selection. We also excluded
active spaces for which a CASSCF or CASPT2 calculation did
not converge, and to reduce the computational effort of the
calculations, we also excluded active spaces larger than 12
electrons in 12 orbitals. After these filtering criteria, we have
119 accurate bond-energy or barrier-height active spaces, of
which 54 come from Molpro calculations (we refer to them as
Data Set 1 (DS1)) and 65 come from OpenMolcas calculations
(we refer to them as Data Set 2 (DS2)). Using the filtered
active spaces, DS1 has 27 bond energies and 27 barrier heights,
and DS2 has 32 bond energies and 33 barrier heights. The data
in these data sets are diverse, including both main-group and
transition-metal data (full details of the data sets are in Table
S2 of the SI).
We used the same functional form as the B97 and HCTH

series58−60 of KS-DFT functionals with a fourth-order
polynomial, which contains 15 parameters and optionally an
additional parameter for Hartree−Fock exchange. The
parameters were determined by minimizing the sum of the
squared deviation of the energy differences calculated at the
MC-DCFT level from the accurate energy differences for all
119 data points in the database:

| |
=

E E(MC DCFT) (accurate)
i

i i
1

119
2

(9)

To test a variety of possibilities, we optimized three versions of
the density coherence functional:

• rcHCTH: reparametrized converted HCTH functional.
This is an MC-DCFT functional converted from the
HCTH functional form with all 15 parameters
reoptimized.

• rcHCTH0: hybrid reparametrized converted HCTH
functional, with parameter X set to 0.25. Except for X,
the parameters in rcHCTH0 are the same as in
rcHCTH. The use of suffix 0 to denote X = 0.25
follows the same convention as used for PBE0 in KS-
DFT and tPBE0 in HMC-PDFT.

• rcHCTHh: hybrid reparametrized converted HCTH
functional, with the parameter X optimized against the
database. The suffix h denotes hybrid. The optimized
value of X turns out to be ∼0.46. In rcHCTHh, the
parameters are reoptimized simultaneously with X.

Full sets of parameters are listed in the SI.

The accuracy of various methods is summarized in Table 1
by using two metrics, namely, mean unsigned error (MUE)

and standard deviation from the mean of the unsigned error
(SDUE). We present results by the following methods for
comparison: for WFT methods, we consider CASSCF and
CASPT2; for KS-DFT functionals, we consider BLYP,61−63

HCTH/40760 (abbreviated below and in the tables�as is
usual in the literature�as HCTH), MN15-L,64 and PBE;65 for
hybrid KS-DFT (HKS-DFT), we consider B97-159 and
MN15.66 Note that MN15-L and MN15 are trained on the
Minnesota database, which includes the databases used in this
study. HCTH training included some of the bond dissociation
energies that are present in our databases, but its training set is
very different. In Table 1, we compare the accuracy for both
DS1 and DS2, where all 119 data points in both databases are
assigned equal weights when computing the overall MUE and
SDUE.
As shown in Table 1, all three new functionals significantly

outperform CASSCF, and both hybrid functionals outperform
CASPT2. All three functionals have improved accuracy
compared to four of the seven KS-DFT functionals, and the
fully optimized new functional, rcHCTHh, even outperforms
the best of the KS-DFT functionals in terms of overall error.
When we consider the many years of effort that went into
optimizing KS-DFT functionals and that this is a first attempt
at broad parametrization of a DCFT functional, the results are
even more impressive.
When we specifically compare rcHCTHh to its KS-DFT

counterpart functionals, which are HCTH and B97-1 (note
that B97-1 is essentially a hybrid version of HCTH), we see
the errors decrease by factors of three and two, respectively.
Not only does rcHCTHh have the lowest MUE among all the
methods considered, but also it has good performance for both
dissociation energy and barrier heights. By comparing the
standard deviation of the unsigned error in Table 1, as well as
the error distribution by a histogram of mean unsigned error
across various methods (Figures S2 and S3 in the SI), we see
that rcHCTHh not only has the lowest MUE, but the unsigned
errors of the individual data points also have the lowest
deviation from the MUE.

Table 1. Errors (kcal/mol) for Both DS1 and DS2

Dissociation
energy MUE

Barrier
height
MUE

DS1
MUE

DS2
MUE

Overall MUE
± SDUE

Wave function theory
CASSCF 15.4 12.6 15.2 13.0 14.0 ± 7.5
CASPT2 4.9 3.2 4.1 3.9 4.0 ± 2.6
KS-DFT
PBE 6.7 9.7 8.1 8.3 8.2 ± 5.3
BLYP 6.1 8.6 7.5 7.3 7.4 ± 4.8
HCTH 5.8 5.9 5.9 5.8 5.9 ± 3.8
MN15-L 3.2 1.4 2.3 2.3 2.3 ± 2.5
HKS-DFT
B97-1 3.4 4.6 4.0 4.1 4.0 ± 3.0
MN15 2.8 1.3 2.1 2.0 2.0 ± 2.7
MC-DCFT
rcHCTH 4.6 3.8 3.8 4.6 4.2 ± 3.3
HMC-DCFT
rcHCTH0 4.1 3.3 3.7 3.7 3.7 ± 3.2
rcHCTHh 2.0 1.8 1.8 2.0 1.9 ± 1.5
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Since Molpro does not have the capability of running MC-
PDFT calculations, we can only compare to MC-PDFT for
DS2; we do this in Table 2, where we also include the accuracy

of three MC-PDFT and HMC-PDFT methods, namely, tPBE,
tBLYP, and tPBE0. Note that none of these three functionals
are parametrized against DS2, and the tPBE functional is
translated from the PBE functional with no additional
parametrization. The table shows that the tPBE0 functional
of MC-PDFT has an MUE 1.7 times larger than that of the
new rcHCTHh functional, and tBLYP and tPBE have even
larger MUEs.
To demonstrate that the functional still needs improvement,

we calculated the potential energy curve of N2 using rcHCTHh
with the same active space and basis set as used for bond
energy calculations. The result is given in Figure 1. Although
the N2 dissociation energy is part of the training data, no
potential curves were used for parameter optimization. The
figure shows that the rcHCTHh, PBE0, and experimental67

curves agree well with each other on the repulsive well and
near equilibrium, but the difference is larger between 2.0 and
2.5 Å. Both rcHCTHh and tPBE0 overestimate the energy in
this region, with the rcHCTHh curve having a larger deviation
from the accurate curve. The experimental curve has an
estimated error of less than 0.02 eV (∼0.5 kcal/mol) at shorter
bond distances (∼1.7 Å) and an estimated error of less than
0.2 eV (∼5 kcal/mol) in other regions.67 The energy
overestimations of rcHCTHh and tPBE0 dissociation curves
are larger than the uncertainty of the experimental curve. We
found a similar overestimation of the energy at intermediate
geometries in dissociation curves in our previous work.39 This
shows that more work is needed to improve the accuracy of the
density coherence functional, as might be expected since the
present parametrization set contains only bond energies and
barrier heights.
We have presented our initial effort on developing a more

broadly accurate density coherence functional through para-
metrization over a diverse database; the database contains 119
bond dissociation energies and reaction barrier heights. This
study reveals the potential of the HMC-DCFT theoretical
framework to achieve high accuracy while maintaining low
computational costs. The new functional, rcHCTHh, has an
overall mean unsigned error of 1.9 kcal/mol over the entire
database, which outperforms all other computational methods
tested, including modern Kohn−Sham functionals, three of our
previously developed MC-PDFT functionals, and the much
more expensive CASPT2 method. This shows that HMC-
DCFT is a promising electronic structure method. However,
we recognize that further optimization on an even more
diverse data set is required to provide a more universal
functional.
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Table 2. Errors (kcal/mol) for DS2 Only

Dissociation energy
MUE

Barrier height
MUE

DS2 MUE ±
SDUE

Wave function theory
CASSCF 13.5 12.6 13.0 ± 7.2
CASPT2 4.8 3.0 3.9 ± 2.6
KS-DFT
PBE 6.7 10.0 8.3 ± 5.0
BLYP 5.8 8.8 7.3 ± 4.6
HCTH 5.5 6.2 5.8 ± 3.6
MN15-L 3.2 1.5 2.3 ± 2.5
HKS-DFT
B97-1 3.4 4.8 4.1 ± 2.9
MN15 2.7 1.3 2.0 ± 2.8
MC-PDFT
tBLYP 7.9 3.0 5.4 ± 4.4
tPBE 4.3 3.5 3.9 ± 3.3
HMC-PDFT
tPBE0 5.0 2.0 3.5 ± 2.8
MC-DCFT
rcHCTH 5.2 4.0 4.6 ± 3.7
HMC-DCFT
rcHCTH0 4.4 3.0 3.7 ± 3.4
rcHCTHh 2.3 1.7 2.0 ± 1.7

Figure 1. Potential energy curve of N2 at rcHCTHh and tPBE0 levels
compared to the accurate curve.67 The active space has 10 active
electrons in 10 active orbitals, and the ma-TZVP basis set68,69 is used.
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