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Abstract—With higher education pushing toward larger class
sizes, a large portion of current methodology focuses on one-
size-fits-all approaches that can effectively educate a large class.
However, when these approaches fail, students can be left behind
and fail classes due to simple misunderstandings. Inspired
by these issues, this paper proposes a modular reinforcement
learning system that can be used in intelligent educational
systems to inform personalized student support. Based on a
similar method detailed in prior work, this paper proposes
experience sharing with tutor agents as a computationally light
approach to improve reinforcement learning training speed
on the task of student support. We also provide preliminary
results obtained from student simulations to demonstrate the
effectiveness of the proposed method on reinforcement learning
agent performance.

Index Terms—intelligent systems, educational technology, re-
inforcement learning

I. INTRODUCTION

Recent advancements in artificial intelligence (AI) and
machine learning (ML) have opened up new potential in the
field of personalized education and automated student support
[1]-[3]. A large portion of current educational methodology
focuses on one-size-fits-all content that can lead to poor
learning outcomes when students fall significantly behind,
or have preferred learning methods that differ from the
general-purpose approaches. Compared to general-purpose
approaches, personalized education has been demonstrated as
an effective way to improve student education and engage-
ment with subject matter [4], [5], especially when coupled
with serious games and intelligent tutoring systems [6], [7].
Designing effective personalized lessons, however, is a time-
consuming process for educators. Furthermore, determining
what assistance a student requires is also difficult, especially
with large class sizes and limited instructor resources.

In our research, reinforcement learning (RL) has been of
particular interest for providing personalized recommenda-
tions to students within educational software due to its ability
to automatically learn new and optimized behaviors based on

This paper is supported in part by the National Science Foundation
(NSF) under grant #1913809, and by the U.S. Department of Education
Graduate Assistance in Areas of National Need (GAANN) under grant
#P2000A 180055.

Ying Tang
Dept. of Electrical and Computer Engineering
Rowan University
Glassboro, NJ, USA
tang @rowan.edu

prior interactions with students. Inspired by other recent suc-
cesses in using reinforcement learning for educational recom-
mendations [8], improving student engagement [9], tutorial-
like systems [10], and intelligent tutoring [11], we apply RL
to the task of personalized student assistance. By using RL
to add personalized support and recommendations into these
types of educational systems, the proposed approach aims
to augment existing technologies and lead to more effective
education. Additionally, the proposed system is designed to
be modular and easily extensible, allowing for any number
of topics or any system to interface and receive personalized
recommendations. Through reinforcement learning [12], the
system automatically learns new behavior on added topics.

Our developments in this paper are driven by both the
aforementioned need for more personalized educational soft-
ware through serious games and intelligent tutoring systems
and our findings from our prior work [13]. In our prior
exploration, we detailed a multi-agent reinforcement learning
approach to personalized student assistance that applied expe-
rience sharing to boost RL agent performance [13]. While our
prior results were promising, the system showed issues when
adding a large number of agents due to the computational
intensity of the experience sharing algorithm. Simply put,
with too many agents, it became impossible to conduct RL
updates in real-time. In this paper, we present a more modular
system that can work with a larger number of agents on a
large variety of domains, leveraging experience sharing to
boost overall system performance.

The proposed approach focuses on training a set of RL
agents each of which deals with a specific narrow domain
or topic. For example, in a system focused on mathematics,
specific agents would be designated to deal with addition,
subtraction, and multiplication. Despite their disparate do-
mains however, each agent operates on the same task of
observing student performance and providing appropriate
assistance. As stated, we use experience sharing as a form of
transfer learning [14] to improve data efficiency and increase
the learning speed of all agents by allowing them to share
past observations. To address the concerns raised in our prior
work, this paper uses a method we refer to as experience
sharing with tutor agents, allowing each RL agent to store a
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set of similar “tutors” that it can sample experience from.
In doing so, the number of required similarity calculations
is greatly reduced, decreasing the computational intensity of
the method while maintaining comparable performance.

II. SYSTEM DESIGN & PROPOSED METHODS

This section discusses our proposed methods and RL
agent configurations. Rather than use a single reinforcement
learning agent, we use a set of N agents that each operate
on an individual task. We separate out the overall learn-
ing space to limit the size of both the state and action
spaces, and to create agents that learn specialized behavior
for their individual tasks. However, overall performance is
still limited in this format, so we use weighted experience
sharing, allowing agents to share their experience with each
other to boost training while weighing the experience to
account for differences in system dynamics between agents.
Then, in this paper, we propose experience sharing with
tutor agents to address the computational complexity of the
experience sharing weight calculations to allow for real-time
computations.

A. Reinforcement Learning

Reinforcement learning (RL) is a machine learning method
where automated systems can learn optimal behavior through
interactions with the environment [12]. RL is typically a
cycle of behavior wherein the automated agent observes a
current environment state. From that state observation, the
agent selects some action and ends up in a new state. At this
point, the environment provides the agent with a numerical
reward. The end goal of reinforcement learning is to learn
a mapping function, often called a policy, that maps any
environment state to the best possible action that maximizes
the agent’s immediate and future rewards [12].

Reward r;
RL Agent
State s;
N Action
A a
New State ~
St+1
Environment
Reward
I+1] \

Fig. 1. The standard cycle of reinforcement learning.

RL agents follow a typical cycle of state, action, next state,
reward, as shown in Figure 1. In this paper, a tuple containing
a state, action, resulting state, and reward is referred to as an
experience tuple since it represents an agent’s past obser-
vation. RL environments also assume the Markov property,
where future state probabilities only depend on the current
state. Formally, RL problems are defined as Markov decision
processes (MDP) in the form < S, A, R, P, >:

1) S is the state space such that any state s € S is a valid
state that the agent could observe. Often, the observed
state at a given timestep is denoted s;, and the resulting
state upon taking an action is denoted s;1.

2) A is the action space defined such that any action a € A
is a valid action that the agent can select. The action
selected upon observing state s; is denoted ay.

3) R is the reward function defined as R(s,a,s')Vs, s’ €
S,a € A. Upon observing a state s;, selecting an action
at, and arriving at state s, 1, the agent receives reward
r = R(St, ag, St+1).

4) P is the transition probability function defined as
P(s,a,s')Vs,s’ € S,a € A that determines the
probability of arriving in state s’ given that action a was
taken from state s. P is difficult to know or predict as it
is often determined by unknown environmental factors.

5) 7 is the agent policy defined as 7(s|a) which deter-
mines the probability of selecting action a € A given
that state s € S was observed. Learning 7*, the optimal
policy, is the goal of the RL agent.

B. Proposed Agent Structure

In the proposed work, we assume a modular system that
contains N RL agents that each operative on a specific
subject. As mentioned previously, these subjects are meant as
discrete subsets of knowledge that combine to comprise an
overall learning space. For example, a system that focuses on
teaching basic physics might have a single agent that operates
on the property of friction and another agent that deals with
force. Compared to a single-agent approach, these N agents
are designed to share their knowledge to improve overall
learning speed, and the specifics of the MDP for the problem
of educational support is discussed below. Furthermore, a
single-agent approach would require a larger state/action
space to represent the various subjects, while each agent in
a multi-agent approach has a smaller overall learning space,
leading to quicker learning and better performance.

To support the experience sharing discussed in section
II-D, the agents are structured as follows: The agent state
space can be represented by a vector of student data, v with
|v| elements. Ideally, this student data should be representa-
tive of a student’s knowledge in relevant subject matter. For
example, variables in v could be score on a test, time taken
to answer given questions, emotion estimates from external
sensors, or other relevant educational data. We do assume that
[Vin| = |Vn|¥m,n € [1, N] in this work to enable experience
sharing as discussed in Section II-D.

The agents actions, then, represent student support. How-
ever, to support experience sharing, the agents’ actions need
to be standardized between agents to maintain identical
dimensionality. We could assume that |A,,| = |A,|Vm,n €
[1, N], but that would put a restriction on the amount of
help actions that could be created, and would leave some
agents with “empty” actions where other agents have support
to provide. To address this, the proposed system assumes
that all agents’ action spaces are identical, and that they
represent a set of m, properties that can inform an expert
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Fig. 2. The student support environment for multi-agent reinforcement learning.

or system on how best to provide assistance. For example,
such properties could include weights for basic and advanced
content, equations, images, videos, or even properties of
how the content is written, such as factual versus emotional.
Then, rather than taking the best action, the deep Q-network
can output a weight in [0.0, 1.0] for each action. This way,
|As.| = | A, | without requiring a strictly identical amount of
possible help actions in each subject. The entire environment
is visualized in Figure 2. Translating these weights into
proper student support is beyond the scope of this paper,
but recent technologies like ChatGPT [15] have made great
strides in the field of dynamic content generation.

C. Deep Q-learning

To solve a Markov decision process, reinforcement learn-
ing focuses on determining an optimal policy 7*(s,a) that
the agent can follow to take the best possible action in
every state. The optimal policy can typically be determined
by selecting the action with the highest expected reward.
Expected reward, in turn, is estimated based on recordings
of past rewards. To estimate past rewards, agents focus
on predicting the Q-function, (Q(s,a), which predicts the
expected future reward in state s when selecting action a. In
deep Q-learning, the Q-function is approximated by a neural
network with weights 6; [16]. The weights are then updated
every time step when the agent obtains new experience. This
method also makes use of a second target network to stabilize
learning with weights ¢, where 9J; < 6, on a set interval of
more than one time step [17]. The second network stabilizes
predictions of future reward, which are used to compute
the cost function that network training aims to minimize,
as shown in Equation 1.

Cost + Q(st,a¢|0¢) — [req1 + 7 max Q(st+1,al9)] (1)

A main part of Deep Q-learning that is utilized by the
proposed method is experience replay [16]. Experience replay
improves data efficiency in deep Q-learning by storing a
replay memory of past experience, which we refer to as
M, for agent n € [1, N]. Each transition stored in memory
T = (s,a,s',r) stores a state s € S, chosen action a € A,
resulting state s’ € S, and obtained reward r = R(s,a,s’).

This memory can then be sampled at any time by the
agent for training, with the agent sampling a batch of b
transitions B = {T;}'_y = {(si,a:,85,7:)}_,. With the
replay memory, past data are reused for training, helping to
prevent the agent from “forgetting” past experiences. For our
purposes, the experience replay serves as a pool of data for
each agent that other agents can sample from, as discussed
in the following section.

D. Weighted Mutual Experience Transfer

A major issue with reinforcement learning approaches to
student assistance is the high data requirement to learn correct
behavior. Due to this, the agents will have highly suboptimal
performance in the early stages of training which may
negatively impact student education. Furthermore, data are
not readily available since gathering new interactions requires
student participation. Since all agents essentially operate
on the same task (provide assistance based on a student’s
performance), we apply experience sharing to augment the
amount of training data. With experience sharing, agents can
sample past observations from other agents to increase the
amount of training data they have access to.

In our prior work, we detailed a method we refer to
as mutual weighed experience sharing [13] This method
was inspired by transfer learning methods in reinforcement
learning [14], and in particular, learning from demonstrations
[18]. With learning from demonstrations, RL agents can be
pre-trained [19] or guided [20] by behavior created by a
human expert on tasks that would otherwise be challenging
to learn.

Unlike learning from demonstrations, which leverage ex-
pert knowledge to train agents, we instead use other agents’
experiences to train. Thus, when training, agent n € [1, V]
samples not just a batch B, = {T;}’_, but also a batch
B,,Ym € {1,2,...,n—1,n+1,..., N} from the other agents.
This gives a final combined training batch B* as shown in
Equation 2. Furthermore, this sampling process is visualized
in Figure 3.

B* = B, U{B,}¥{m € [1,N] : m #n} 2

But since we assume that the transition probabilities are
similar but not truly equal, we apply a training weight to de-
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Fig. 3. Training batch creation in weighted experience transfer.

prioritize experience from other agents. The proposed method
computes the centered kernel alignment (CKA) similarity
[21] between the neural network representations that estimate
the value functions in the deep reinforcement learning in
each of the N agents. CKA is computed as shown in
Equation 3, where K and L are kernel matrices derived
from a randomly sampled batch of training data, and HSIC
is the Hilbert-Schmidt independence criterion that computes
statistical dependence between the two matrices [22]. Then,
the similarity between agent m and n can be defined as
W, n, and the weighted training batch B* shown in Equation
4. Once the weights are calculated, they can be passed in
to the neural network to weigh those individual samples
accordingly.

CKA(K.L) = HSIC(K, L) &)
’ VHSIC(K,K)HSIC(L, L)

B* = (B,,1.0) U{(B, wmn)}V{m € [1,N] : m # n}
“)

E. Experience Sharing with Tutor Agents

One issue with the aforementioned approach to experience
sharing is the computational intensity of mutual sharing. As
the number of agents IV increases, there is a proportional
increase in the computation time needed to compute the
similarity values. Further, since similarity must be recom-
puted every time an agent is retrained, the reinforcement
learning updates become impossible to conduct in real-time,
as is required when integrating the system with educational
software, even with as few as 10 agents. To ensure that the
system is scalable and usable as an online learning approach,
this paper proposes instead to maintain a list of ¢ “tutor”
agents per agent that each agent can sample training data
from. Then, when retraining each agent, they only have to
compute ¢ similarity values while still gaining the benefits of
mutual experience transfer.

However, this approach creates a new problem; how to
update an agent’s tutors to reflect changes in the environment.
To address this issue, the agent must compute similarity
values of non-tutor agents to ensure that its chosen tutors are
still the most similar agents. To that end, the proposed method

adds an additional step of sampling j additional agents from
the total pool of agents. Similarity is computed between the
1 tutor agents and the j other agents, allowing the agent to
select the ¢ best agents from the pool to become the new
tutors. The full steps for updating an agent’s tutors are shown
in Figure 4. To further improve performance, tutor updates
can also be staggered from every training step to a set interval
of steps.

{1, Collect Candidate |

i Agents

i Similarity

i Tutor Agents
[Agenti1 ] [ Agent ip ] [ Agent

Tt ) (Fooni ] - [ o

j Sampled Agents

J

i Tutor Agents

Agent iy Agent
Agentn ¢ *_'_f_'f_'{f_'_'ﬁ_'f_'f_'_'_'_fqvfif_'f_'_fff_'f_'_'_'_fg_f_'_'_'_"

Agent j4 [ Agent jo ] [ Agentjj } ¥

pled Agents

! 3. Select i most
i similar agents as
i new tutors

i Tutor Agents

Agent jj Agent iy Agent j;

Fig. 4. Process of updating tutor agents for agent n

III. PRELIMINARY EVALUATION
A. Student Simulation

As mentioned in prior sections, student data are difficult to
collect since each instance of data requires a new student to
interact with an educational system. To verify the approaches
presented in this work, we instead focus on simulating
”student-like” behavior to provide a proof-of-concept of our
proposed methods. In this simulated student environment, a
virtual student interacts with our educational system similar
to how a real student would; first, the system records a set
of initial student data. In this case, a series of state variables.
In comparison to a real environment, these variables would
represent measurements such as score on a test, time taken to
answer questions or solve problems, index of questions given,
or emotion values estimated from a webcam. In practice,
these variables are all float values in the range [0.0, 1.0].

The actions in the simulation environment are set up as
discussed in Section II-A. The agent’s actions must then be
able to influence the simulated student’s performance in a
predictable but varied way, as we would expect from a real
student. To generate human-like responses, the simulated en-
vironment takes inspiration from behavior trees [23] through
a process shown in Figure 5. At the beginning of testing,
behavior trees are randomly generated to determine the sim-
ulated student’s response in each subject. The behavior trees
take in the student’s state vector as an input, with the output
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Fig. 5. Step-by-step process used to simulate student responses (left) and an
example behavior tree (right). The example data vectors and behavior tree
shown are significantly smaller than the real simulation for ease of viewing.

determining how the student’s data changes in response to
the agent’s chosen action. In the leaf nodes of the tree,
actions are rated on a scale from positive to negative, with
positive actions leading to a student response that moves them
closer to completing the section, while negative actions move
them further away from completion. With this approach, the
simulated responses are consistent between different tests.
Additionally, to help mimic human responses, some random
noise is also applied to ensure responses are similar but not
entirely consistent, creating a more challenging environment
for the RL agent to learn.

From these student responses, the agent is positively or
negatively rewarded based on the data vector’s proximity
to a “passing” grade. When positive actions are chosen, the
student’s data moves toward completion, creating a positive
reward for the agent. Negative actions, meanwhile, move
the student further away, creating a negative reward. Finally,
some actions fall in between positive and negative, meaning
they could create a positive or negative reward with a smaller
magnitude compared to positive and negative actions.

0.6
0.5
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L.f

0.2
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Fig. 6. Comparison of average reward over 10 agents between multi-agent,
conditional experience sharing, and experience sharing with tutor agents,
with 3 tutor agents.

B. Results

Evaluation of the proposed system mainly serves as a
proof-of-concept before the system is implemented into an
intelligent tutoring system or serious game. To that end, our
evaluation focuses on verifying two aspects of the proposed
method: 1) The proposed experience sharing method allows

0.55

0.45

0.35
0.25
/IV

0.15 I/

=1 Tutor

3 Tutors
0.05
| 5 Tutors
—
005 IMASITRIEEIRLIHBIREST 7 Tutors
A A A Ao AN NN
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-0.25

Average Reward over all Agents

-0.35

-0.45
Training Step

Fig. 7. Average cumulative reward for 10 agents comparing different
numbers of tutor agents.

TABLE 1
STATISTICAL COMPARISON OF TUTOR AGENT EXPERIMENT FROM THE
MANN-WHITNEY U TEST.

Experiment Effect Size Interpretation
1 Tutor vs. 3 Tutors 0.373 Moderate improvement
3 Tutors vs. 5 Tutors 0.194 Small improvement
5 Tutors vs. 7 Tutors 0.109 Small improvement
7 Tutors vs. 9 Tutors 0.010 No change

agents to perform more optimally in the early stages of train-
ing compared to a multi-agent method with no experience
sharing; and 2) The proposed tutor sampling achieves com-
parable performance to mutual experience sharing despite its
massively decreased computational expense.

Initial experiments were conducted with 10 agents to verify
early system performance. All parameters were held constant
between methods. As shown in Figure 6, both conditional
experience sharing and experience sharing with tutors had
improved performance when compared to a standard multi-
agent approach. This improvement can be attributed to the
similarity between the environments; while not identical, the
environment dynamics are similar. Thus, agents that share
experience are able to benefit from a much larger training
pool even though the extra data may not be fully reliable.

Further experiments were conducted to show the effect
of number of tutor agents on overall agent performance,
as shown in Figure 7. In this experiment, 10 agents were
used to test 1, 3, 5, 7, and 9 tutor agents. As shown, there
are diminishing returns on number of tutor agents, and our
results showed a significant improvement between 1 tutor
and 3 tutors, with 3, 5, 7, and 9 tutors having no significant
difference between them. Table I shows the effect sizes
between experiments. This shows that a low number of tutors
relative to the total number of agents achieves comparable
performance to a high number with a significantly lower
computational requirement.

Finally, to further show system scalability, Figure 8 shows
agent performance as measured by average reward on 10, 20,
and 30 agents. As shown, agent performance is consistent
regardless of the number of agents used; in fact, system
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Fig. 8. Average agent reward over 250 training steps for 10, 20, and 30
agents and 3, 5, and 7 tutor agents, respectively, comparing the proposed
method with a multi-agent approach without experience sharing.

performance tends to increase slightly with more agents due
to each agent having a larger number of potential tutors.

IV. CONCLUSIONS

This paper presents a modular system for using reinforce-
ment learning to create intelligent, automated educational
systems. We’ve demonstrated that the proposed experience
sharing method achieves comparable performance to our
prior method with significantly decreased computational
complexity. Furthermore, we’ve also demonstrated that the
system is scalable and offers improved performance over a
standard multi-agent approach. Overall, we hope that the
proposed system provides a solid starting point for other
researchers in this area to develop modular automated educa-
tional systems that can help students learn more effectively
and efficiently with a lower resource cost to instructors.

As mentioned in Section II-A, there are a few constraints
placed on the system that could be relaxed in future work.
Mainly the constraint of assuming that each agent has an
identical state space. This assumption helps to enable expe-
rience sharing, but it may not be viable for larger systems
that collect a wider variety of student data. Furthermore, it
may be beneficial to other researchers if the system could
share experience between comparable systems. As such,
more exploration is needed into additional transfer learning
methods that can help to bridge this gap. One additional area
of future work is the system to translate action weights into
student assistance, as mentioned in Section II-A. Through the
use of methods like natural language processing and fuzzy
logic, or technologies like ChatGPT, such a system should
be entirely feasible and would greatly benefit methods like
the one proposed in this paper.
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