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Abstract

We introduce new combinatorial quantities for concept classes, and prove lower and upper bounds

for learning complexity in several models of learning in terms of various combinatorial quantities.

In the setting of equivalence plus membership queries, we give an algorithm which learns a class

in polynomially many queries whenever any such algorithm exists. Our approach is flexible and

powerful enough to give new and very short proofs of the efficient learnability of several prominent

examples (e.g. regular languages and regular ω-languages), in some cases also producing new

bounds on the number of queries.
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1. Introduction

Fix a set X and denote by P(X) the collection of all subsets of X . A concept class C on X is a

subset of P(X). Neither X nor C are assumed to be finite, though this case is of particular interest.

In the equivalence query (EQ) learning model, a learner attempts to identify a target set A ∈ C by

means of a series of data requests called equivalence queries. The learner has full knowledge of C,

as well as a hypothesis class H with C ⊆ H ⊆ P(X). An equivalence query consists of the learner

submitting a hypothesis B ∈ H to a teacher, who either returns yes if A = B, or a counterexample

x ∈ A4B. In the former case, the learner has succeeded, and in the latter case, the learner uses

the new information to update and submit a new hypothesis. In this manuscript, we are interested

in the worst case number of required queries. We will also consider learning with equivalence and

membership queries (EQ+MQ). In a membership query, a learner submits a single element x from

the base set X to the teacher, who returns the value A(x), where A is the target concept. In this

setting, the learner may choose to make either type of query at any stage, submitting any x ∈ X
for a membership query or submitting any B ∈ H for an equivalence query. The learner succeeds

when they submit the the target concept A as an equivalence query.

In addition to applications, we consider several fundamental problems in these settings:

1. Give a characterization in terms of some simple combinatorial quantities of (C,H) for when

there is a bound on the number of required queries in the EQ or EQ+MQ model.

2. Determine simple combinatorial quantities in the EQ and EQ+MQ models which characterize

efficient learnability—that is, learnability in a polynomial number of queries.

3. Given a class C for which learning is possible when H = P(X), determine the class H of

minimal complexity which makes this possible, if one exists.
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BOUNDS IN QUERY LEARNING

Versions of problems 1) and 2) have been considered in a variety of models of learning; for

instance, finite Littlestone dimension characterizes learnability in online learning Littlestone (1988)

Ben-David et al. (2009) and finite VC-dimension characterizes learnability in the PAC model Blumer

et al. (1989). More recently, Alon et al. (2019) show that finite Littlestone dimension is required for

approximately differentially private learning (though the converse is open). Our main result, The-

orem 2.24, gives a complete characterization of when the classes (C,H) can be efficiently learned

in the EQ+MQ model in terms of simple combinatorial quantities associated with the classes, an-

swering the problem 2) in that model. This result involves establishing several new upper and lower

bounds for learning complexity in terms of our combinatorial quantities. These bounds, which we

describe next, turn out to be sufficient to answer the problem 1) in both the EQ and EQ+MQ models.

With Theorems 2.6 and 2.24, we give upper bounds for the number of queries required for

EQ and EQ+MQ learning a class C with hypotheses H in terms of the Littlestone dimension of C,

denoted Ldim(C), and the consistency dimension of C with respect to H, denoted C(C,H). We

also give lower bounds for the number of required queries in terms of these quantities. Littlestone

dimension is well-known in learning theory (Littlestone, 1988) and model theory.1

Consistency dimension is a more subtle invariant, which we detail in section 2. When H is taken

to be the power set P(X), C(C,H) = 1. For various examples of set systems with H = C, one has

C(C,H) = ∞. In 2.2, in solving problem 3), we define a new invariant, the consistency threshold of

C, and provide a construction (for arbitrary C) of a hypothesis class H which is not much more com-

plicated than C (e.g. it is of the same Littlestone dimension as C) such that C(C,H) ≤ Ldim(C)+1.
This provides a complete answer to problem 3) in the EQ+MQ model for both learnability and effi-

cient learnability and for learnability in the EQ model. In 2.3, we compare our bounds and invariants

to those previously appearing in the literature.

Consistency dimension has been used to study query learning, but had not been previously used

in conjunction with Littlestone dimension. In the EQ+MQ setting, Theorem 2.24 considers both

together and gives an upper bound of C(C,H) Ldim(C) on the number of queries, improving the

upper bound of dC(C,H) log2 |C|e in Hellerstein et al. (1996) and Balcázar et al. (2002) and gen-

eralizing to infinite classes. Moreover, together with appropriate lower bounds, Theorem 2.24 also

identifies consistency dimension and Littlestone dimension as the relevant quantities in classifying

efficient learnability in this setting.

In section 3 we demonstrate the practicality of our results by providing simple and fast proofs of

the efficient learnability of regular languages and certain ω-languages, reproving results of Angluin

(1987); Angluin and Fisman (2016); Fisman et al. (2018); Fisman (2018). Besides the conceptual

simplicity of the approach, the bounds in learning complexity resulting from our algorithm have

some novel aspects. For instance, our bounds have no dependence on the length of the strings

provided to the learner as counterexamples, in contrast to existing algorithms.

2. A combinatorial characterization of EQ-learnability

Often, one assumes that X is finite, and the emphasis is placed on finding bounds on the number of

queries it may take to learn any A ∈ C. We also consider the case where X is infinite, for which we

give the following definition.

1. In model theory, Littlestone dimension is called Shelah 2-rank, see Chase and Freitag (2019) for additional details.
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BOUNDS IN QUERY LEARNING

Definition 2.1 Let C and H be set systems on a set X . C is learnable with equivalence queries from

H if there exists some algorithm for the learner to submit hypotheses from H and some n < ω such

that any concept A ∈ C is learnable in at most n equivalence queries, given any teacher returning

counterexamples. Let LCEQ(C,H) be the least such n if C is learnable with equivalence queries

from H, and LCEQ(C,H) = ∞ otherwise.

LCEQ(C,H) is called the learning complexity, representing the optimal number of queries

needed in the worst-case scenario.

Learning complexity for learning a concept class C with membership queries from the base set

X or equivalence queries from the hypothesis class H is defined in the same manner and is denoted

by LCEQ+MQ(C,H).

2.1. EQ-learnability from Littlestone and consistency dimension

The first key property is the Littlestone dimension of C, denoted Ldim(C).2 Its relevance to query

learning was identified by Littlestone himself.

Proposition 2.2 (Littlestone, 1988, Theorems 5 and 6) If LCEQ(C,H) ≤ d+1, then Ldim(C) ≤ d.

If H = P(X), then the converse holds.

Notice in particular that if Ldim(C) = ∞, then C cannot be learned with equivalence queries,

even with H = P(X). The assumption that H = P(X) makes learning straightforward, but

this may be too strong for many settings. However, without some additional hypotheses on H,

learnability may already be hopeless, even for very simple set systems. For instance, let C be the set

of singletons of the setX . If H = C, then we may take as long as |X| to learn ifX is finite, or never

learn at all if X is infinite. However, if the learner is allowed to guess ∅, this forces the teacher to

identify the target singleton immediately.

The strategy of Proposition 2.2 permeates both learnability and non-learnability proofs; identify-

ing a specific set amounts to reducing the Littlestone dimension of the family of possible concepts to

0; actually submitting the target concept before the Littlestone dimension reaches 0 can be thought

of as a best-case scenario that we cannot rely on. Non-learnability then amounts to an inability to

reduce the Littlestone dimension of the family of possible concepts to 0 through a series of finitely

many equivalence queries. The main purpose of this section is to give precise conditions on H and

C which characterize learnability.

Definition 2.3 Given a set X , a partially specified subset A of X is a partial function A : X →
{0, 1}.

• Say x ∈ A if A(x) = 1, x /∈ A if A(X) = 0, and membership of x is unspecified otherwise.

The domain of A, dom(A), is A−1({0, 1}). Call A total if dom(A) = X . We identify subsets

A ⊆ X with total partially specified subsets. The size ofA, |A|, is the cardinality of dom(A).

• Given two partially specified subsets A and B, write A � B if A and B agree on dom(A);
call A a restriction of B and B an extension of A.

• Given a set Y ⊆ dom(A), the restriction A|Y to A to Y is the partial function where

A|Y (x) = A(x) for all x ∈ Y , and is unspecified otherwise.

2. A definition of Littlestone dimension appears in the appendices.
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• Given a set system C on X , A is n-consistent with C if every size n restriction of A has an

extension in C. Otherwise, say A is n-inconsistent.3 A is finitely consistent with C if every

restriction of A of finite size has an extension in C—that is, A is n-consistent with C for all

n < ω.

• Given a set system C on X , x ∈ X , and j ∈ {0, 1}, let C(x,j) = {A ∈ C |A(x) = j}. That is,

C(x,0) = {A ∈ C |x /∈ A} and C(x,1) = {A ∈ C |x ∈ A}

The following definition is a translation into set systems of a definition that first appeared in

Balcázar et al. (2002).

Definition 2.4 The consistency dimension of C with respect to H, denoted C(C,H), is the least

integer n such that for every subset A ⊆ X (viewed as a total partially specified subset), if A is

n-consistent with C, then A ∈ H. If no such n exists, then say C(C,H) = ∞.

Observe that C(C,H) = 1 iff H shatters4 the set of all elements x ∈ X such that there are A0

and A1 in C such that x /∈ A0 but x ∈ A1. In this case, it is possible to learn any concept in C in

at most Ldim(C) + 1 equivalence queries, using the method of Proposition 2.2. So we may assume

that C(C,H) > 1.

The following simple but useful lemma states that the number of queries needed to learn a finite

union of classes is at most the sum of the number of queries needed to learn each class on its own.

Lemma 2.5 Suppose that for each i < n, Ci is a concept class on X and H is a hypothesis class

on X . Suppose that LCEQ(Ci,Hi) = mi. Then LCEQ(C,H) ≤
∑

i<nmi, where C := ∪i<nCi and

H := ∪i<nHi.

We can now give an upper bound for the learning complexity in terms of Littlestone dimension

and consistency dimension.

Theorem 2.6 Suppose Ldim(C) = d <∞ and 1 < C(C,H) = c <∞. Then LCEQ(C,H) ≤ cd.

Proof We proceed by induction on d. The base case, d = 0, is trivial, as then C is a singleton.

Suppose Ldim(C) = d + 1. Suppose there is some element x such that Ldim(C(x,0)) < d + 1
and Ldim(C(x,1)) < d + 1. Then by induction, any concept in C(x,0) can be learned in at most cd

queries with guesses from H, and the same is true for C(x,1). Then by Lemma 2.5, any concept in C
can be learned in at most 2cd ≤ cd+1 equivalence queries.

If no such x exists, then for all x, either Ldim(C(x,0)) = d+ 1 or Ldim(C(x,1)) = d+ 1. Let B
be such that x ∈ B iff Ldim(C(x,1)) = d+ 1.

If B ∈ H, then we submit B as our query. If we are incorrect, then by choice of B, the class

C′ of concepts consistent with the counterexample x0 will have Littlestone dimension ≤ d. By

induction, any concept in C′ can be learned in at most cd many queries, and so we learn a in at most

cd + 1 ≤ cd+1 queries.

3. We emphasize that, in this context, being n-inconsistent means only that there is some size n restriction that has no

extension in C. We do not mean that all size n restrictions have no extension in C.

4. Recall that a set system C shatters a set A if, for all B ⊆ A, there is C ∈ C such that C ∩A = B.
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If B /∈ H , then, since C(C,H) = c, there are some x0, . . . , xc−1 such that there is no A ∈ C
such that B|{x0,...,xc−1} � A. Then

C = (C(x0,1−B(x0))) ∪ . . . ∪ (C(xc−1,1−B(xc−1))),

and Ldim(C(xi,1−B(xi))) ≤ d for each i. Then, by induction, for each i, any concept in C(xi,1−B(xi))

can be learned in at most cd many queries with guesses from H. By Lemma 2.5, any concept in C
can be learned in at most cd+1 many queries with guesses from H.

On the other hand, Proposition 2.2 gives a lower bound of Ldim(C) + 1 ≤ LCEQ(C,H). There

is also a known lower bound for learning complexity in terms of consistency dimension:

Proposition 2.7 (Balcázar et al., 2002, Theorem 2) Suppose there is some partially specified sub-

set A which is n-consistent with C but which does not have a total extension in H. Then n <
LCEQ(C,H).

In particular, if C(C,H) ≥ c, then there is some subset A which is (c − 1)-consistent with C
but which does not belong to H. Then c ≤ LCEQ(C,H). So C(C,H) ≤ LCEQ(C,H). In fact,

the proposition is stronger, and we will obtain a stronger bound in the form of strong consistency

dimension in section 2.3.

Furthermore, if C(C,H) = ∞, then C cannot be learned with equivalence queries from H.

Combining Theorem 2.6 and Propositions 2.2 and 2.7, we obtain the following:

Theorem 2.8 C is learnable with equivalence queries from H iff Ldim(C) < ∞ and C(C,H) <
∞.

2.2. Obtaining finite consistency dimension

We have established that finite consistency dimension is essential for EQ-learning. The central

question we answer in this subsection is: given C, can one obtain a hypothesis class H which is not

much more complicated than C with the property that C(C,H) is finite?

Definition 2.9 Fix a set system C on a set X . C has consistency threshold n < ∞ if, given any

hypothesis class H ⊇ C, we have that

C(C,H) <∞ iff C(C,H) ≤ n.

Lemma 2.10 Suppose A is a partially specified subset finitely consistent with C. Then there is a

total extension A′ � A finitely consistent with C.

Proposition 2.11 Let C,H be set systems and let A be a partially specified subset. The following

are equivalent:

(i) A is finitely consistent with C.

(ii) If C(C,H) <∞, then there is a total extension A′ � A in H.
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In particular, if C(C,H) <∞, then H contains all finitely consistent subsets. That is, extensions

of all finitely consistent partially specified subsets (equivalently, by Lemma 2.10, all finitely consis-

tent total partially specified subsets) are necessary to obtain C(C,H) < ∞. Consistency threshold

classifies when this is a sufficient condition.

Proposition 2.12 The following are equivalent:

(i) C has consistency threshold ≤ n <∞.

(ii) For all (total partially specified) subsets A, if A is n-consistent with C, then A is finitely con-

sistent with C.

(iii) If H contains all finitely consistent (total partially specified) subsets, then C(C,H) ≤ n.

In particular, if C has finite consistency threshold, then C(C,H) <∞ iff H contains all finitely

consistent subsets.

Corollary 2.13 Suppose C does not have finite consistency threshold. Then for arbitrarily large n,

there is some total subset An which is n-consistent but not (n+ 1)-consistent with C.

Finite consistency threshold is not strictly necessary to provide a positive answer to the central

question of this subsection; nevertheless, it does identify a clear qualitative dividing line. When C
has finite consistency threshold, H only needs to contain all finitely consistent subsets; letting H∞

be the set of all finitely consistent subsets, we obtain a minimum hypothesis class such that learning

is possible.

Where C does not have finite consistency threshold, more is required; we must add some hy-

potheses which are inconsistent with the concepts in C, and there is no minimal H such that learn-

ing is possible. However, for each m, we can replace “finitely consistent” with “m-consistent” to

obtain a class Hm such that C(C,Hm) ≤ m—let Hm be the collection of all subsets which are m-

consistent with C. Note that Hm is clearly the minimum hypothesis class such that C(C,H) ≤ m.

Note that for all m, H∞ ⊆ Hm. By Proposition 2.12, if C has consistency threshold n, then for

all m ≥ n, Hm = Hn = H∞. If C does not have finite consistency threshold, there is no minimal

H such that C(C,H) < ∞; by Corollary 2.13, if C(C,H) = m, then there is m′ ≥ m such that

Hm′ ( H.

By choosing m appropriately, given any C, we can find a hypothesis class such that C(C,H) <
∞ without increasing the Littlestone dimension; that is, Ldim(H) = Ldim(C).

Theorem 2.14 Suppose Ldim(C) = d < ∞. Then there is H such that C(C,H) < ∞ and

Ldim(H) = Ldim(C). Furthermore, we can find such an H such that C(C,H) ≤ Ldim(C) + 1.

2.3. From consistency to strong consistency

From an algorithms perspective, the result of Theorem 2.6 is unsatisfactory, since it is exponential

in Ldim(C). We give an example to show that, without modification, we cannot expect a significant

improvement.
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Example 2.15 Fix c > 2 and d. Let {aτ | τ ∈ [c]i, 1 ≤ i ≤ d} be distinct elements indexed by

finite nonempty sequences of length at most d from [c]. For σ ∈ [c]d, let Bσ = {aτ | τ ⊆ σ}. Let

C = {Bσ |σ ∈ [c]d}. Then Ldim(C) = d.

If we take C to also be our hypothesis class, then C(C, C) = c + 1. Indeed, the (total partially

specified) subset A = {a0} is c-consistent but not (c + 1) consistent with C, witnessed by the

restriction of A to {a0, a0,0, . . . , a0,c−1}, so C(C, C) ≥ c + 1. On the other hand, if A is a subset

(c + 1)-consistent with C, then, by induction on the length of τ , for each 1 ≤ i ≤ d, A contains

exactly one aτ with τ = i, so A ∈ C.

However, it may take as long as cd many equivalence queries to learn; if the teacher returns aσ
as a counterexample to hypothesis Aσ, then the learner can only eliminate Aσ.

The most promising modification is the following variant of consistency dimension, which also

appeared in Balcázar et al. (2002) in a slightly different form.

Definition 2.16 The strong consistency dimension of C with respect to H, denoted SC(C,H), is the

least integer n such that for every partially specified subset A, if A is n-consistent with C, then A
has an extension in H. If no such n exists, then say SC(C,H) = ∞.

We therefore make the stronger requirement that all partially specified subsets that are n-consistent

be consistent, rather than just all totally partially specified subsets. It is immediate from the defi-

nition that C(C,H) ≤ SC(C,H). At the smallest levels, consistency dimension and strong consis-

tency dimension are equal.

Proposition 2.17 If C(C,H) = 1, then SC(C,H) = 1. If C(C,H) = 2, then SC(C,H) = 2.

As the following examples show, consistency dimension and strong consistency dimension may

differ when C(C,H) ≥ 3.

Example 2.18 Let X = {a, b, c, d, e}. Let

C = H = {{a, b, c}, {a, b, d}, {a, c, d, e}, {b, c, d, e}} .

One can verify that C(C,H) = 3, but the partially specified subset {a, b, c, d} with e unspecified

witnesses that SC(C,H) > 3.

Example 2.19 Continuing Example 2.15, observe that SC(C, C) = cd. In particular, the partially

specified subset A′ given by

A′(aτ ) =

{

0 |τ | = d

undefined otherwise

witnesses that SC(C, C) > cd − 1. Then we learn in at most SC(C, C) many queries. Moreover,

this demonstrates that consistency dimension and strong consistency dimension can differ by an

arbitrarily large amount (allowing Ldim(C) to vary), and that strong consistency dimension may

even be exponentially larger than consistency dimension.

Strong consistency dimension, like consistency dimension, categorizes equivalence query learn-

ing:
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Theorem 2.20 C is learnable with equivalence queries from H iff Ldim(C) ≤ ∞ and SC(C,H) <
∞. In particular, SC(C,H) ≤ LCEQ(C,H).

Proof For the reverse direction, use Theorem 2.6 and the observation that C(C,H) ≤ SC(C,H).
For the forward direction, use Propositions 2.2 and 2.7. In particular, if SC(C) ≥ c, then there

is a partially specified subset A that is (c− 1)-consistent with C but which has no total extension in

H. Then, by Proposition 2.7, c ≤ LCEQ(C,H).

Corollary 2.21 Suppose Ldim(C) <∞. Then C(C,H) <∞ iff SC(C,H) <∞.

The distinction between consistency dimension and strong consistency dimension is subtle, and

many previous results hold with little to no modification if one replaces consistency dimension with

strong consistency dimension. On the other hand, our work in section 3 will reveal the practical

difficulties associated with strong consistency dimension in complicated concept classes.

We have already seen in Theorem 2.20 that strong consistency dimension provides a better lower

bound for learning complexity. It is also known in the finite case that strong consistency dimension

also gives a stronger upper bound for learning complexity:

Theorem 2.22 (Balcázar et al., 2002, Theorem 2) Suppose C is finite. Then LCEQ(C,H) ≤
dSC(C,H) · ln |C|e.

In light of Example 2.19, one hopes that improved bounds on learning can be found in terms of

strong consistency dimension and Littlestone dimension when C is infinite. We are unable to show

this presently, but offer some evidence in this direction:

Proposition 2.23 Suppose Ldim(C) = d < ∞ and SC(C,H) = 2 < ∞. Then LCEQ(C,H) =
d+ 1.

The proof of Proposition 2.23 uses strong consistency in a key way, as the hypothesis is gener-

ated by extending a certain partially specified subset. Nevertheless, the conclusion holds under the

assumption that C(C,H) = 2, due to Proposition 2.17.

2.4. Adding membership queries and efficient learning of finite classes

Consistency dimension was originally derived from the notion of polynomial certificates, which

was used to characterize learning with equivalence and membership queries in the finite case by

Hellerstein et al. (1996). The following is an improvement of the upper bound on EQ+MQ learning

complexity of dC(C,H) log2 |C|e implicit in the proof of Theorem 3.1.1 in Hellerstein et al. (1996)

(stated explicitly in Balcázar et al. (2002)). Our bound replaces log2 |C| with Ldim(C).

Theorem 2.24 Suppose Ldim(C) = d < ∞ and C(C,H) = c < ∞. Then LCEQ+MQ(C,H) ≤
c′d+ 1, where c′ = max{1, c− 1}.

Proof 5

5. The algorithm is similar to that of Theorem 2.6. However, the applications of Lemma 2.5 are replaced with member-

ship queries.
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We proceed by induction on d. The base case, d = 0, is trivial, as then C is a singleton.

Suppose Ldim(C) = d + 1. Suppose there is some element x such that Ldim(C(x,0)) < d + 1
and Ldim(C(x,1)) < d + 1. Then by induction, any concept in C(x,0) can be learned in at most

c′d + 1 queries with guesses from H, and the same is true for C(x,1). Submit x as a membership

query. This tells us whether the target concept lies in C(x,0) or C(x,1), and then we require at most

c′d+ 1 many queries, for a total of c′d+ 2 ≤ c′(d+ 1) + 1 many queries.

If no such x exists, then for all x, either Ldim(C(x,0)) = d+ 1 or Ldim(C(x,1)) = d+ 1. Let B
be such that x ∈ B iff Ldim(C(x,1)) = d+ 1.

If B ∈ H, then we submit B as our query. If we are incorrect, then by choice of B, the class

C′ of concepts consistent with the counterexample x0 will have Littlestone dimension ≤ d. By

induction, any concept in C′ can be learned in at most c′d + 1 many queries, and so we learn the

target in at most c′d+ 2 ≤ c′(d+ 1) + 1 queries.

If B /∈ H , then, since C(C,H) = c, there are some x0, . . . , xc−1 such that there is no A ∈ C
such that B|{x0,...,xc−1} � A. (Observe that this cannot happen when c = 1. In fact, Proposition

2.17 and the proof of Proposition 2.23 imply that this cannot even happen when c = 2. In particular,

c′ = c− 1.) Then

C = (C(x0,1−B(x0))) ∪ . . . ∪ (C(xc−1,1−B(xc−1))),

and Ldim(C(xi,1−B(xi))) ≤ d for each i. By induction, any concept in each C(xi,1−B(xi)) can be

learned in at most c′d + 1 many queries. By submitting x0, . . . , xc−2 as membership queries, we

can determine some i such that the target belongs to C(xi,1−B(xi)) (if the result of each membership

query on xj isB(xj), then we know that i = c−1). We therefore learn in at most c′d+1+(c−1) =
c′(d+ 1) + 1 many queries.

We have a lower bound on learning complexity in terms of consistency dimension in this setting

analogous to Proposition 2.7:

Proposition 2.25 Suppose there is some (total) subset A which is n-consistent with C but which

does not have a total extension in H. Then n < LCEQ+MQ(C,H). In particular, C(C,H) ≤
LCEQ+MQ(C,H).

Finally, putting together the various upper and lower bounds from this section we give a char-

acterization of those problems efficiently learnable by equivalence and membership queries:

Theorem 2.26 Let (Cn,Hn) for n ∈ N be concept classes and hypothesis classes, respectively.

Let cn = C(Cn,Hn). Let dn = Ldim(Cn). The classes Cn are learnable with at most polynomially

in n many equivalence queries from Hn and membership queries if and only if cn and dn are

bounded by a polynomial in n. If there is any algorithm for learning an arbitrary concept of Cn
using at most polynomially in n many membership queries and equivalence queries in Hn, then the

algorithm from Theorem 2.24 also learns Cn using at most polynomially many membership queries

and equivalence queries in Hn.

Proof In Theorem 2.24, we proved that LCEQ+MQ(C,H) ≤ c′d+1, where c′ = max{1,C(C,H)−
1} and d = Ldim(C). So, if cn and dn are polynomially bounded, then so is LCEQ+MQ(Cn,Hn).

In Proposition 2.25, we showed that LCEQ+MQ(C,H) ≥ C(C,H), so it follows that if cn is not

polynomially bounded then neither is LCEQ+MQ(Cn,Hn).
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Now suppose that dn is not polynomially bounded. By (Auer and Long, 1994, Theorem 2.1) 6

we have

LCEQ+MQ(C,H) ≥ LCEQ+MQ(C,P(X)) ≥ log

(

4

3

)

· LCEQ(C,P(X)).

By (Littlestone, 1988, Theorems 5 and 6), we can replace LCEQ(C,P(X)) with Ldim(C).
Thus:

LCEQ+MQ(Cn,Hn) ≥ log

(

4

3

)

· dn,

and it follows that LCEQ+MQ(Cn,Hn) is not polynomially bounded, completing the proof.

Finally, the upper and lower bounds of this section also yield a characterization of which infinite

classes are learnable in finitely many equivalence and membership queries.

Corollary 2.27 C is learnable with membership queries and equivalence queries from H iff Ldim(C) <
∞ and C(C,H) <∞.

3. Efficient learnability of regular languages

In a seminal paper, Angluin (1987) showed that regular languages are efficiently learnable with

equivalence queries plus membership queries, and in this subsection, we will use Theorem 2.24 to

give an alternate short proof of this fact.7 Let Ln,m be the class of binary regular languages on

strings of length at most m specified by a deterministic finite automaton on at most n nodes. The

L∗ algorithm of Angluin (1987) specifically uses O(n) equivalence queries and O(mn2) member-

ship queries. We let DFA2(n) denote the collection of (equivalence classes of) deterministic finite

automata accepting binary strings and having at most n nodes. The proof of the next proposition is

straightforward.

Proposition 3.1 The Littlestone dimension of DFA2(n) is at most O(n log n).

The proof of the following proposition reveals the connection between consistency and the

Myhill-Nerode theorem.

Proposition 3.2 C(DFA2(n)) ≤ 2
(

n+1
2

)

= n(n+ 1).

Proof Fix a subset C of binary strings and x, y binary strings. We say that z is a (C-) distinguishing

extension of x and y if xz ∈ C but yz /∈ C or vice versa. If x and y have no distinguishing extension,

then we say x and y are C-equivalent, and write x ∼C y. The Myhill-Nerode theorem (Nerode,

1958) says that a subset of binary strings of length m is the accept set of a finite automaton with

at most n nodes if and only if the number of ∼C classes is at most n. Thus, given any subset C

6. The inequality of Auer and Long (1994) gives a lower bound for LCEQ+MQ which improved on the lower bound

of
LCEQ(C,P(X))

log(1+LCEQ(C,P(X)))
from (Maass and Turán, 1990, Theorem 3). In fact, Theorem 3 of Maass and Turán (1990)

actually suffices for our purposes.

7. In the following sections, we only make use of proper equivalence queries, that is, H = C. We shall therefore let

C(C) := C(C, C), which we will call the consistency dimension of C (with analogous notation for strong consistency

dimension).

10
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of the binary strings of length m which is not a regular language recognized by an automaton with

at most n nodes, there are at least n + 1 ∼C-classes of elements. Pick representatives x0, . . . , xn
from n + 1 classes, and for each i < j, pick some zij that is a distinguishing extension of xi and

xj . Then restricting C to the partial assignment on {xkzij | i < j, k = i, j}, a domain of size

2
(

n+1
2

)

= n(n + 1) that witnesses that xi 6∼C xj for all i 6= j, we can see that this restriction

is inconsistent with the class of regular languages recognized by automata with at most n nodes.

Therefore C(DFA2(n)) ≤ n(n+ 1). 8

Now, by Theorem 2.24 and the previous two results, it follows that:

Theorem 3.3 The class Ln,m is learnable in at most O(n log n) equivalence queries and at most

O
(

n3 log n
)

membership queries.

It is interesting to note that contrary to L∗, when using the algorithm from Theorem 2.24, there

is no dependence on m, the length of the binary strings which the teacher is allowed to provide as

counterexamples9.

Theorem 2.6 now implies that Ln,m is learnable in at most (n(n + 1))O(n logn) equivalence

queries. Theorem 2.22 shows that a finite class C is learnable in at most dSC(C) · ln |C|e equivalence

queries. Since Angluin (1990) showed that Ln,m is not learnable in polynomially many equivalence

queries, it follows that SC(Ln,m) cannot be polynomial in n,m.

3.1. Learning ω-languages

In this section, we consider the natural extension to languages on infinite strings indexed by ω,

called ω-languages. For an alphabet Σ, we denote by Σω, the strings of symbols from Σ of order

type ω. Similar to the previous section, we consider an automaton, which consists of the collection

A = (Σ, Q, q0, δ), where Q is a finite collection of states, q0 is the initial state, and δ : Q×Σ → 2Q

is a transition rule. To form a language, an automaton is equipped with an acceptance criterion.10

Fix a subset F ⊆ Q. A run of a Büchi automaton is accepting if and only if it visits the set

F infinitely often. An ω-language is ω-regular if it is recognized by a non-deterministic Büchi

automaton. A run of a co-Büchi automaton is accepting if and only if it visits F only finitely

often. Let ψ : Q → {1, . . . , k} be a function, which we think of as a coloring of the states of

the automaton. Let c be the minimum color which is visited infinitely often. A run of a parity

automaton is accepting if and only if c is odd.

Two ω-regular languages are equivalent if they agree on the set of periodic words (McNaughton,

1966), which allows for the possibility of recognizing the ω-language using finitary automata. This

is the approach of Angluin and Fisman (2016); Fisman et al. (2018), whose notation we follow

closely. A family of DFAs (FDFA) F is a pair (Q,P ) where Q is a DFA with |Q| states and P is

a collection of |Q| many DFAs, which we refer to as progress DFAs - one DFA Pq for each state q
of Q. Given a pair of finite words, (u, v), a run of our family of DFAs consists of running Q on u,

then running PQ(u) on v where Q(u) is the ending state of Q on u. The pair (u, v) can be used to

represent an infinite periodic word uvω.

8. Note that the same proof shows that the consistency dimension of DFAm(n) is also at most n(n+ 1).
9. We should also note that L∗ was improved by Schapire to give a better bound on membership queries (still depending

on m). Schapire (1991).

10. Numerous acceptance criteria have been extensively studied in the literature, and we refer the reader to Angluin and

Fisman (2016); Fisman et al. (2018); Fisman (2018) for overviews.

11
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Let FDFA(n,m) be the class of families of deterministic finite automata where the leading

automaton has at most n nodes and the progress automata each have at mostm nodes. It is not quite

true that once an ω-regular language has been reduced to an FDFA that one can use L∗ directly

to learn the various DFAs in the family (see Angluin and Fisman (2016, section 4)). It is also not

completely obvious what the bounds for Littlestone and consistency dimension are in terms of the

DFAs in the family, but the next two results give such bounds which imply the efficient learnability

of ω-regular languages.

Proposition 3.4 The class FDFA(n,m) has Littlestone dimension at most O(n log n+nm logm).

Proposition 3.5 C(FDFA(n,m)) ≤ 2
(

n(m+1)
2

)

= O(n2m2).

Using the previous two results together with Theorem 2.24, one can deduce the efficient learn-

ability of FDFA(n,m):

Theorem 3.6 The class FDFA(n,m) is learnable in at most O(n log n + nm logm) equivalence

queries and at most O((log n+m logm) · (n3m2)) membership queries.

We have formulated our bounds in terms of the number of states in the FDFA corresponding to

a given ω-language. In Angluin and Fisman (2016); Fisman et al. (2018) bounds on the number of

states of FDFAs in terms of the number of states of automata for ω-languages with various acceptors

are given. Specifically, the following bounds hold:

1. When A is a deterministic Büchi (DBA) or co-Büchi (DCA) automaton with n states, there

is an equivalent FDFA of size at most (n, 2n) (Fisman et al., 2018, 5.3).

2. When A is a deterministic partiy automaton (DPA) with n states and k colors, there is an

equivalent FDFA of size at most (n, kn) (Fisman et al., 2018, 5.4).

3. When A is an nondeterministic Büchi automaton (NBA) with n states, there is an equivalent

FDFA of size at most (2O(n logn), 2O(n logn)).

Any NBA can be translated into a DPA, and so 2) yields the efficient learnability of ω-regular

languages in terms of the number of states in a DPA (this translation also yields 3). However, the

translation from NBA to DPA is known to require an exponential increase in the number of states

in general (Piterman, 2006). From an FDFA of size at most (n, k) there is a translation into an

NBA with at most O(n2k3) states (Fisman et al., 2018, Theorem 5.8), and so it follows that the

exponential increase in states in moving from NBAs to FDFAs is necessary (Fisman et al., 2018,

Theorem 5.6).

Finally, we mention that Angluin and Fisman (2018) define restricted classes of ω-languages

for which right-congruence is fully informative, and isolate numerous classes (e.g. for each type

of acceptor from the previous subsection) of ω-languages for which an infinitary invariant of the

Myhill-Nerode theorem holds. This variant of Myhill-Nerode is sufficient to bound the consistency

dimension (and thus establish the learnability) of the classes in terms of the number of of right

equivalence classes of ∼L similar to the proof of Proposition 3.2.
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Appendix A. Littlestone dimension

a1

a5

a7

A8A7

a6

A6A5

a2

a4

A4A3

a3

A2A1

Figure 1: A binary element tree of

height three. Here ai ∈ X and Ai ∈ C.

The leaf labeled withA4 is well-labeled

if and only if a1 /∈ A4 and a2, a4 ∈ A4.

For all other ai, there is no requirement

about membership in A4.

Let C be a concept class on a set X .

Definition A.1 A binary element tree of height h is

a complete binary tree of height h whose non-leaf

nodes are labeled by elements of X and whose leaves

are labeled by sets in C (see Figure 1). The height of

the tree is the length of the path from the root to any

leaf.

Definition A.2 Given a binary element tree, a node

v1 is below a node v2 if v2 lies on the (unique) path

from v1 to the root of the tree. We say that v1 is left-

below v2 if v1 is below v2 and the first edge along

the path from v2 to v1 goes down and to the left. The

notion of right-below is defined analogously. When a

node labeled by b is left-below a node labeled by a,

we write a <L b. Similarly, when a node labeled by b
is right-below a node labeled by a, we write a <R b.
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Definition A.3 A leaf labeled by A ∈ C is properly

labeled if, for each node a that A is below, we have

a ∈ A if and only if a <R A.

Definition A.4 The Littlestone dimension of a set system C, Ldim(C), is the maximum integer n
such that there exists a binary element tree of height n where all leaves can be properly labeled by

sets in C. If there is no maximum n, we write Ldim(C) = ∞.

Appendix B. Proofs of results from section 2

B.1. Proof of Proposition 2.2

Suppose Ldim(C) ≥ d+ 1. We show that we can force the learner to use at least d+ 2 equivalence

queries. Construct a binary element tree of height d + 1 with proper labels from C witnessing

Ldim(C) ≥ d + 1. Given the first hypothesis H0 from the learner, return the element on the 0th

level on the tree as a counterexample. Continue this, returning the element on the ith level along

the path consistent with previous counterexamples as the counterexample to hypothesis Hi. We

will return d+ 1 counterexamples, and the learner still requires one more hypothesis to identify the

concept. Since this will occur for one of the proper labels A of the binary element tree, we have

forced the learner to use at least d+ 2 equivalence queries for some A ∈ C.

Suppose Ldim(C) = d <∞. Let C0 = C. Inductively define Ci, i = 1, . . . , d as follows. Given

Ci, for any x ∈ X and j ∈ {0, 1}, let

C
(x,j)
i := {A ∈ Ci |A(x) = j},

and let

Bi := {x ∈ X | Ldim(C
(x,1)
i ) ≥ Ldim(C

(x,0)
i )}.

Submit Bi as the hypothesis. If Bi is correct, we are done. Otherwise, we receive a counterexample

xi. Set

Ci+1 := {A ∈ Vi |A(xi) 6= Bi(xi)}

to be the concepts which have the correct label for xi. Observe that at each stage, Ldim(Ci+1) <
Ldim(Ci). Therefore, if we make d queries without correctly identifying the target, then we must

have Ldim(Cd) = 0. Then Vd is a singleton, which must be the target concept.

B.2. Proof of Lemma 2.5

We give the proof for n = 2; then the result for n > 2 follows easily by induction.

To learn a target concept A ∈ C = C0 ∪ C1 with hypotheses from H = H0 ∪ H1, begin by

assuming that A ∈ C0. Attempt to learn A by making guesses from H0, according to the procedure

by which any concept in C0 is learnable in at most m0 many queries. If, after making m0 many

queries, we have failed to learn A, then we conclude that A /∈ C0, whence A ∈ C1. We can then

learn A in at most m1 many additional queries with guesses from H1.
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B.3. Proof of Proposition 2.7

By hypothesis, given any equivalence query H , the teacher can find some x ∈ dom(A) such that

H(x) 6= A(x). Moreover, since A is n-consistent with C, the teacher is able to return a counterex-

ample of this form for the first n equivalence queries. Thus C cannot be learned with fewer than

n+ 1 equivalence queries from H.

B.4. Proof of Lemma 2.10

Let X = {xα |α < |X|} be a well-ordering of X . Let A0 = A. We inductively define a �-chain of

partially specified subsets Aα, where each Aα is defined on dom(A) ∪ {xξ | ξ < α} and is finitely

consistent with C. For α a limit ordinal, set Aα = ∪ξ<αAξ. It is clear that Aα is finitely consistent

with C if all Aξ for ξ < α are.

At any successor stage α + 1, if xα ∈ dom(Aα), set Aα+1 = Aα. Otherwise, we must

extend Aα to xα while remaining finitely consistent with C. Assume for contradiction that neither

B0 := Aα ∪ {xα 7→ 0} nor B1 := Aα ∪ {xα 7→ 1} are finitely consistent with C. Then there are

finite sets Y0, Y1 ⊆ dom(Aα) such that B0|Y0∪{aα} and B1|Y1∪{aα} have no extension in C. But

Aα|Y0∪Y1 has an extension B in C, and B must be an extension of either B0|Y0∪{aα} or B1|Y1∪{aα},

a contradiction. So Aα has a finitely consistent extension to xα, and we set Aα+1 to be such an

extension.

We then take A′ = ∪ξ<|X|Aξ.

B.5. Proof of Proposition 2.11

(i) ⇒ (ii): LetA′ � A be a total extension finitely consistent with C. If C(C,H) <∞, thenA′ ∈ H.

(ii) ⇒ (i): We show the contrapositive. Suppose that A is not finitely consistent with C, wit-

nessed by some size n restriction A0, which is a �-minimal such restriction. We find some H such

that C(C,H) < ∞ but H contains no total extension of A. Let H be the collection of all (total

partially specified) subsets which are not extensions of A0. So A has no total extension in H. We

claim that C(C,H) ≤ n. Indeed, observe that given any (total partially specified) subset B that is

n-consistent with C, we have A0 6� B, and then B ∈ H.

B.6. Proof of Proposition 2.12

(i) ⇒ (ii) Assume for contradiction that there is some total A which is n-consistent but not finitely

consistent. Let m be minimal such that A is m-inconsistent. Then there is a size m restriction

A′ � A that has no extension in C. Then let H contain all subsets which do not extend A′.

We claim that C(C,H) = m. Note that A witnesses that C(C,H) ≥ m. On the other hand,

observe that given any partially specified subset B that is m-consistent with C, we have A′ 6� B,

and then it is easy to see that B has a total extension in H.

(ii) ⇒ (iii): If H contains all finitely consistent subsets, and all n-consistent subsets are finitely

consistent, then C(C,H) ≤ n holds immediately.

(iii) ⇒ (i): By Proposition 2.11, if C(C,H) < ∞, then H already has all finitely consistent

subsets. Then C(C,H) ≤ n.
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B.7. Proof of Theorem 2.14

Fix some m > d = Ldim(C). Let Hm be the collection of all subsets which are m-consistent with

C. It is immediate that C(C,Hm) ≤ m <∞.

Assume for contradiction that Ldim(Hm) > Ldim(C). Consider a binary element tree of height

Ldim(Hm) that can be properly labeled with elements of Hm; in particular, there is some leaf which

cannot be labeled with an element of C. Consider such a leaf. The path through the binary element

tree to this leaf defines a partially specified subsetA that is (d+1)-inconsistent with C. In particular,

any total extension is (d + 1)-inconsistent, so m-inconsistent, and so does not belong to Hm. This

contradicts our ability to label the leaf with an element of H.

In particular, recall that when C has finite consistency threshold n, A is n-consistent with C iff it

is finitely consistent with C. So setting Hm as above with m at least the finite consistency threshold

amounts to setting Hm to be the collection of all finitely consistent partially specified subsets. In

this case, Ldim(Hm) = Ldim(C) even if m ≤ d, as increasing the Littlestone dimension requires

adding something inconsistent with C.

Regardless of whether C has finite consistency dimension, we can let m = d + 1. Then

C(C,Hm) ≤ m = d+ 1.

B.8. Proof of Proposition 2.17

Observe that C(C,H) = 1 iff SC(C,H) = 1 iff H shatters the set of all elements x ∈ X such that

there are A0 and A1 in C such that x /∈ A0 but x ∈ A1.

Suppose that C(C,H) = 2. Let A be a partially specified subset that is 2-consistent with C.

We wish to find a total extension of A in H. It suffices to find a total extension B � A that is

2-consistent with C.

Let X = {xα |α < |X|} be a well-ordering of X . Let A0 = A. We inductively define a

�-chain of partially specified subsets Aα, where each Aα is defined on dom(A)∪{xξ | ξ < α} and

is 2-consistent with C. For α a limit ordinal, set Aα = ∪ξ<αAξ. It is clear that Aα is 2-consistent

with C if all Aξ for ξ < α are.

At any successor stage α+1, if xα ∈ dom(Aα), setAα+1 = Aα. Otherwise, we must extendAα

to xα while remaining 2-consistent with C. Assume for contradiction that neitherB0 := Aα∪{xα 7→
0} nor B1 := Aα ∪ {xα 7→ 1} are 2-consistent with C. Then there are y0, y1 ∈ dom(Aα) such that

B0|{y0,xα} and B1|{y1,xα} have no extension in C. But Aα|{y0,y1} has an extension B in C, and B
must be an extension of either B0|{y0,xα} or B1|{y1,xα}, a contradiction. So Aα has a 2-consistent

extension to xα, and we set Aα+1 to be such an extension.

We then take ∪ξ<|X|Aξ to be our total extension.

B.9. Proof of Theorem 2.22

As this was originally framed in the setting where concepts were represented by strings, we give an

abbreviated translation of the original proof into the language of set systems. This proof demon-

strates the utility of constructing a partial hypothesis and taking some complete extension.
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Let c = SC(C,H). At stage i, let Ci ⊆ C be the set of remaining possible target concepts. Let

Ai be the partially specified subset given by

A(x) =











1 x belongs to more than c−1
c
|Ci| many C ∈ Ci

0 x belongs to less than 1
c
|Ci| many C ∈ Ci

undefined otherwise.

Observe that A is c-consistent with C—given any Y := {x0, . . . , xc−1} ⊆ dom(A), for each j,
less than 1

c
|Ci| many remaining concepts disagree with A on xj , so less than c1

c
|Ci| = |Ci| many

concepts disagree with A on some xj . So some concept agrees with A on Y . So A is c-consistent.

So we can find some B ∈ H such that B � A, and we submit B as our hypothesis. By choice

of A, if we receive a counterexample, we will have |Ci+1| ≤
c−1
c
|Ci|. Repeating this dc · ln |C|e

many times is enough to identify and submit the target concept.

B.10. Proof of Proposition 2.23

We know by Proposition 2.2 that d+ 1 is a lower bound. We show that it is also an upper bound.

Let C0 = C. Inductively define Ci, i = 1, . . . , d as follows. Construct the partially specified

subset Ai where

Ai(x) =











0 Ldim(C
(x,0)
i ) = Ldim(Ci)

1 Ldim(C
(x,1)
i ) = Ldim(Ci)

undefined otherwise.

(B.1)

We claim that Ai has an extension in H . By our assumption that SC(C,H) = 2, it suffices to check

that A is 2-consistent with Ci. Suppose for contradiction that there are a0, a1 ∈ dom(Ai) such that,

without loss of generality, Ai(a0) = Ai(a1) = 0, but there is no extension of Ai|{a0,a1} in Ci. Then

observe that C
(x0,0)
i ⊆ C

(x1,1)
i , whence

Ldim(Ci) ≥ Ldim(C
(x1,1)
i ) ≥ Ldim(C

(x0,0)
i ) = Ldim(Ci),

so Ldim(C
(x1,1)
i ) = Ldim(Ci). But we also have Ldim(C

(x1,0)
i ) = Ldim(Ci), a contradiction, as

we could then construct a binary element tree with proper labels from Ci of height Ldim(Ci) + 1
with x1 at the root.

Let Bi ∈ H be a total extension of Ai. Submit Bi as the hypothesis. If Bi is correct, we are

done. Otherwise, we receive a counterexample xi. Set

Ci+1 := {B ∈ Ci |B(xi) 6= Bi(xi)}.

Observe that at each stage, Ldim(Ci+1) < Ldim(Ci). Therefore, if we make d queries without

correctly identifying the target, then we must have Ldim(Cd) = 0. Then Cd is a singleton, which

must be the target concept.

B.11. Proof of Proposition 2.25

We first show that n < LCEQ+MQ(C,H). If the learner submits x as a membership query, the

teacher returns A(x) if possible, that is, if there is a concept B ∈ C which agrees with the previous

data and satisfies B(x) = A(x).
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By hypothesis, given any equivalence query H , the teacher can find some x ∈ dom(A) such

that H(x) 6= A(x), and the teacher returns a counterexample of this form if possible, that is, if there

is a concept B ∈ C which agrees with the previous data and satisfies B(x) = A(x).
Moreover, since A is n-consistent with C, the teacher is able to return data of this form for the

first n queries. Thus C cannot be learned with fewer than n+ 1 equivalence queries from H.

From this, it follows that C(C,H) ≤ LCEQ+MQ(C,H).

Appendix C. Proofs from section 3

C.1. Proof of Proposition 3.1

In Ishigami and Tani (1997, Proposition 1), it is shown that |DFA2(n)| ≤
n2n2nn

n! ≤ 2O(n logn).
From this, it follows that the Littlestone dimension of DFA2(n) is at most O(n log n).

C.2. Proof of Proposition 3.4

The number of FDFAs of size (n,m) is clearly at most |DFA2(n)| · |DFA2(m)|n. That is

|FDFA(n,m)| ≤ |DFA2(n)| · |DFA2(m)|n.

It follows that

Ldim(FDFA(n,m)) ≤ log(|DFA2(n)| · |DFA2(m)|n)

and using Ishigami and Tani (1997, Proposition 1), the desired bound follows.

C.3. Proof of Proposition 3.5

A run of an FDFA on (u, v) can be simulated by the run of an appropriate automaton in the class

DFA3(n · (m+ 1)). To see this, input word u$v where $ is a new symbol (recall we are assuming

u, v are binary) to a DFA which has the same diagram as the FDFA but with an edge labeled with $
from each state of the leading automaton to the initial state of the corresponding progress DFA. Now

it follows by Proposition 3.2 that the consistency dimension of FDFA(n,m) is at most 2
(

n(m+1)
2

)

.
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