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Abstract
International large-scale assessments (ILSAs) play an important role in educational research and policy making. 
They collect valuable data on education quality and performance development across many education 
systems, giving countries the opportunity to share techniques, organisational structures, and policies that 
have proven efficient and successful. To gain insights from ILSA data, we identify non-cognitive variables 
associated with students’ academic performance. This problem has three analytical challenges: 
(a) academic performance is measured by cognitive items under a matrix sampling design; (b) there are many 
missing values in the non-cognitive variables; and (c) multiple comparisons due to a large number of non- 
cognitive variables. We consider an application to the Programme for International Student Assessment, 
aiming to identify non-cognitive variables associated with students’ performance in science. We formulate it as 
a variable selection problem under a general latent variable model framework and further propose a knockoff 
method that conducts variable selection with a controlled error rate for false selections.
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1 Introduction
International large-scale assessments (ILSAs), including the Programme for International Student 
Assessment (PISA), Programme for the International Assessment of Adult Competencies (PIAAC), 
Progress in International Reading Literacy Study (PIRLS), and Trends in International 
Mathematics and Science Study (TIMSS), play an important role in educational research and pol
icy making. They collect valuable data on education quality and performance development across 
many education systems in the world, giving countries the opportunity to share techniques, organ
isational structures, and policies that have proven efficient and successful (Singer et al., 2018; von 
Davier et al., 2012).

PISA is a worldwide study by the Organisation for Economic Co-operation and Development 
(OECD) in member and non-member nations intended to evaluate educational systems by measuring 
15-year-old school students’ scholastic performance in the subjects of mathematics, science, and read
ing, as well as a large number of non-cognitive variables, such as students’ socioeconomic status, fam
ily background, and learning experiences. Students’ scholastic performance is measured by response 
data from cognitive items that measure ability/proficiency in each of the three subjects, and non- 
cognitive variables are collected through non-cognitive questionnaires for students, school principals, 
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teachers, and parents. In this study, we focus on the knowledge domain of science in PISA 2015, where 
science was the assessment focus in this survey. Given the importance of science education (Gov.UK, 
2015; National Research Council, 2012), it is of particular interest for educators and policymakers to 
understand what non-cognitive variables (e.g. socioeconomic status, family background, learning ex
periences) are significantly associated with student’s knowledge of science. Naturally, one would con
sider a regression model with students’ performance in science as the response variable and the 
non-cognitive variables as predictors and identify the predictors with non-zero regression coefficients. 
Seemly straightforward, constructing such a regression model and then selecting the non-null varia
bles is nontrivial due to three challenges brought by the complexity of the current problem. First, stu
dents’ performance in science is not directly observed but instead measured by a set of test items. The 
measurement is further complicated by a matrix sampling design adopted by PISA (Gonzalez & 
Rutkowski, 2010). That is, each student is administered a small subset of available cognitive items 
in order to cover an extensive content domain while not overburdening students and schools in terms 
of their time and administration costs. Consequently, one cannot simply calculate a total score as a 
surrogate for student science performance. We note that OECD provides plausible values, which 
are obtained using a multiple imputation procedure (von Davier et al., 2009), as a summary of 
each student’s overall performance in each subject domain. However, it is not suitable to use a plaus
ible value as the response variable when performing the current variable selection task. This is because 
the multiple imputation procedure for producing the plausible values involves the predictors through 
a principal component analysis step (Chapter 9, OECD, 2016b), due to which all the predictors are 
associated with the plausible values and thus, performing variable selection is not sensible. Second, 
students’ non-cognitive variables are collected via survey questions, which contain many missing val
ues. In fact, in the US sample considered in the current study, around 6% of the entries are missing, 
and the proportion of sample points that are fully observed is less than 26%. Consequently, it is vir
tually impossible to conduct the regression analysis without a proper treatment of the missing values. 
Finally, PISA collects a large number of non-cognitive variables. In the current study of PISA 2015 
data, we have 62 predictors, even though careful pre-processing is performed that substantially re
duces the number of variables. Due to the multiple comparison issues, it is a challenge to control 
for a reasonable error metric when conducting variable selection.

We tackle these challenges through several methodological contributions. We introduce a latent 
construct for science knowledge and use an Item Response Theory (IRT) model (Chen et al., 2023) 
to measure this latent construct based on students’ responses to science items. The relationship be
tween the latent construct and non-cognitive variables is further modelled through a structural model 
that regresses the latent construct onto the non-cognitive variables. This structural equation model is 
often known as the latent regression IRT model, or simply the latent regression model (Mislevy, 1984; 
von Davier & Sinharay, 2010). When there are many missing values in the non-cognitive variables, 
estimating the latent regression model is a challenge. To tackle this problem, we propose to model the 
predictors using a Gaussian copula model (Fan et al., 2017; Han & Pan, 2012), which allows the pre
dictors to be of mixed types (e.g. continuous, binary, ordinal). Thanks to the Gaussian copula model, 
we can estimate the latent regression model with a likelihood-based estimator. In dealing with mul
tiple comparisons, we consider the knockoff framework for controlled variable selection (Barber & 
Candès, 2015; Candès et al., 2018). More specifically, we adapt the derandomised knockoffs method 
(Ren et al., 2023) to the current latent regression model with missing values. This approach allows us 
to control the per family error rate (PFER), i.e. the expected number of false positives among the de
tections. We choose the derandomised knockoff method instead of the Model-X knockoff method 
because the latter is a randomised procedure that may suffer from a high Monte Carlo error. The de
randomised knockoff method leverages the Model-X knockoff method by aggregating the results 
from multiple knockoff realisations. To our best knowledge, this is the first time that missing data 
are considered in a knockoff approach with theoretical guarantees.

In real-world applications, especially in social sciences, missing data are commonly encoun
tered. In addition, many variables of interest, such as individuals’ attitudes, personality traits, 
and abilities, are latent constructs that are not directly observable. They are often defined by mul
tiple indicators and play the role of a response variable or predictors in a model (Chapter 4, 
Skrondal & Rabe-Hesketh, 2004). For example, the latent construct for students’ science knowl
edge is such a variable, and it serves as the response variable in the latent regression analysis of 
PISA data. While we focus on data from an education survey and a tailored latent regression 
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model, we describe the proposed knockoff method under a general latent variable model frame
work so that the proposed method can be applied to variable selection problems involving missing 
values, latent constructs or both. Model selection of latent variable models is usually performed 
based on information criteria, such as the Akaike information criterion (AIC; Akaike, 1974) 
and the Bayesian information criterion (BIC; Schwarz, 1978). These methods suffer from several 
issues under the current complex data setting. First, when the latent regression model involves 
many predictors, an information criterion needs to be combined with a search method, such as 
a stepwise selection method or a Lasso-type regularised estimation method. The search method 
is used to retain a smaller number of candidate models from the original model space that is ex
ponentially large so that the information criterion can be computed. Even so, this approach 
may be computationally infeasible when there exist many latent variables or missing values, as 
a search method needs to optimise many marginal likelihoods that involve high-dimensional inte
grals. For regularised estimation methods, the optimisation additionally involves non-smooth 
regularisation terms and thus can be computationally even more time-consuming. Moreover, step
wise selection methods are greedy algorithms that lack a theoretical guarantee for identifying the 
true model. Second, the computational burden with the information-criteria-based methods most
ly comes from handling missing data and latent variables. One may naturally wonder whether we 
can use a two-step procedure that first handles the missing data and latent variables using an 
off-the-shell missing data handling methods, such as imputation methods (Little & Rubin, 
2019; Van Buuren, 2018) and missing indicator methods (Cohen & Cohen, 1975; Dardanoni 
et al., 2015, 2011), and then applies an information criterion to the imputed or augmented 
data. Unfortunately, such a procedure lacks theoretical justification and is often practically infeas
ible or inaccurate. For example, the missing indicator method cannot be performed when some 
predictors are latent variables. In addition, a small simulation study in Section F.2 of the online 
supplementary material shows that the BIC performs poorly when calculated based on imputed 
data. Finally, the proposed method is more flexible, as it allows the users to choose the threshold 
for the PFER, allowing a trade-off between type I and type II error rates. This is an advantage that 
model selection based on an information criterion does not offer.

The remainder of the article is structured as follows. Section 2 provides the background on 
the central substantive question—how students’ knowledge of science is associated with their 
non-cognitive variables—and a description of the PISA 2015 data. In Section 3, we introduce 
the latent regression IRT model for studying the relationship between a latent construct of 
science knowledge and non-cognitive variables and a Gaussian copula model for handling 
missing predictors, which are of mixed types. Section 4 proposes knockoff methods for con
trolled variable selection under the latent regression IRT model with missing data. The pro
posed method is evaluated via a simulation study in Section 5 and then applied to data from 
PISA 2015 in Section 6. Finally, we discuss the implications of our results and possible direc
tions for future research in Section 7. Proof of theoretical results, details of computation, 
additional simulation studies, and further information about the PISA data are given in the 
online supplementary material.

2 Background and overview of PISA 2015 data
2.1 Academic achievement and non-cognitive predictors
The term ‘non-cognitive’ typically refers to a broad range of personal attributes, skills, and char
acteristics representing one’s attitudinal, behavioural, emotional, motivational, and other psycho
social dispositions. It is often used as a catch-all phrase encompassing variables that are potentially 
important for academic achievement but not measured by typical achievement or cognitive tests 
(Farkas, 2003). Social science researchers have devoted considerable research effort towards iden
tifying non-cognitive predictors of students’ academic achievement (e.g. Duckworth & Yeager, 
2015; Lee & Stankov, 2018; Richardson et al., 2012).

Science has changed our lives and is vital to the future prosperity of society. Thus, science edu
cation plays an important role in the modern education system (Gov.UK, 2015; National Research 
Council, 2012). Identifying the predictors of science education helps educators, policymakers, and 
other stakeholders understand the psychosocial factors behind science education, which may lead 
to better policies and practices of science education. PISA, which collects both students’ science 
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achievement and non-cognitive variables, provides a great opportunity for identifying the key non- 
cognitive predictors of science achievement.

2.2 PISA 2015 data
PISA is conducted in a 3-year cycle, with each cycle focusing on one of the three subjects, i.e. math
ematics, science, and reading. PISA 2015 is the most recent cycle that focused on science. It collected 
data from 72 participating countries and economics. Computer-based tests were used, with assess
ments lasting a total of 2 h for each student. Following a matrix sampling design, different students 
took different combinations of test items on science, reading, mathematics, and collaborative 
problem-solving. Test items involved a mixture of multiple-choice and constructive-response ques
tions. See OECD (2016b) for the summary of the design and results of PISA 2015.

This study considers a subset of the PISA 2015 dataset. Specifically, to avoid modelling country het
erogeneity, we considered data from a single country, the U.S. After some data pre-processing which 
excluded observations with poor-quality data, the sample size is 5,685. PISA 2015 contained 184 
items in the science domain that were dichotomously or polytomously scored. Due to the matrix sam
pling design of PISA, on average, each student was only assigned 16.25% of the items.

In addition, we consider non-cognitive variables collected by the student survey, which provides 
information about the students themselves, their homes, and their school and learning experien
ces. We constructed 62 variables as candidates in variable selection. These variables include 11 
raw responses to questionnaire items [e.g. GENDER (gender), LANGAH (language at home)), 
34 indices that OECD constructed (e.g. CULTPO (cultural possession), HEDRES (home educa
tional resources)], and 17 composites that we constructed based on students’ responses to ques
tionnaire items [e.g. OUT.GAM (play games out of school), OUT.REA (reading out of school)]. 
We decided to include these constructed variables rather than the corresponding raw responses 
for better substantive interpretations. For some ordinal variables, certain adjacent categories 
were merged due to sample size considerations. Details of these 62 candidate variables are given 
in Section 6 and the online supplementary material. Unlike the cognitive items, students were sup
posed to answer all the items in the student survey. However, there are still many missing re
sponses in the student survey data. Among the candidate variables, 20 variables have more than 
5% of their data missing, and the variable DUECEC (duration in early childhood education 
and care) has the largest missing rate, 37.17%.

3 Model framework
In this section, we describe a general latent variable model framework, which includes the latent 
regression model for analysing PISA data as a special case. The model is defined through (a) a 
structural model, (b) a measurement model, and (c) a data missingness mechanism.

3.1 Structural model
We consider data collected from N observations. For each observation, there is a response variable 
θi and predictors Zi = (Zi1, . . . , Zip)⊤, where θi and some or all entries of Zi can be latent con
structs measured by observed indicators. We allow the variables in Zi to be binary, ordinal, con
tinuous, or a mixture of them. Without loss of generality, we assume that Zi1,…, Zip1 are 
continuous latent constructs, with p1 = 0 when all entries of Zi are observable. In the PISA appli
cation, each observation is a student, θi represents the student’s latent construct on science knowl
edge, and Zi contains observable non-cognitive predictors.

The structural model defines the joint distribution of (θi, Zi) through two steps—(a) the condi
tional distribution of θi given Zi and (b) the marginal distribution of Zi. A linear regression model 
is assumed for θi given Zi1,…, Zip. More specifically, for each variable j, we introduce a transform
ation gj(Zj). When Zj is an ordinal variable with categories {0, . . . , Kj}, the transformation func
tion gj creates Kj dummy variables, i.e. gj(Zj) = (I({Zj ≥ 1}), . . . , I({Zj ≥ Kj}))

⊤. For continuous 
and binary variables, gj is an identity link, i.e. gj(Zj) = Zj. We assume

θi|Zi ∼ N(β0 + β⊤
1 g1(Zi1) + · · · + β⊤

p gp(Zip), σ2), (1) 
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where β0 is the intercept, β1,…, βp are the slope parameters, and σ2 is the residual variance. Note that 
βj is a scalar when predictor j is continuous or binary and is a vector when the predictor is ordinal. 
Here, β0, β1,…, βp, and σ2 are unknown and will be estimated from the model. The main goal of 
our analysis is to find predictors for which ‖βj‖ ≠ 0. The structural model is depicted in Figure 1.

Since Zi may contain variables of mixed types, one cannot simply adopt a Gaussian assumption. 
Here, we consider a Gaussian copula model. This model introduces underlying random variables 
Z∗

i = (Z∗
i1, . . . , Z∗

ip)⊤, for which Z∗
1, …, Z∗

N are independent and identically distributed, following a 
p-variate normal distribution N(0, Σ). We assume that the normal distribution is non-degenerate, 
i.e. rank(Σ) = p. Each underlying variable Z∗

ij is assumed to marginally follow a standard normal 
distribution, i.e. the diagonal entries of Σ are 1. Each predictor Zij is assumed to be a transform
ation of its underlying variable Z∗

ij, denoted by Zij = Fj(Z∗
ij). For a continuous predictor j, let 

Fj(Z∗
ij) = cj + djZ∗

ij, where cj and dj are unknown parameters. For the latent constructs, we let Zij = 
Z∗

ij as their location and scale need to be fixed for identification, i.e. cj = 0 and dj = 1, j = 1, . . . , p1. 
For a binary or ordinal predictor j, let Fj(Z∗

ij) = k if Z∗
ij ∈ (cjk, cj,k+1], k = 0, . . . , Kj, where cj1, …, 

cjKj are unknown parameters, and cj0 = −∞ and cj,Kj+1 = ∞. Note that Kj = 1 for a binary variable 
and Kj > 1 for an ordinal variable. The predictor model is also illustrated in Figure 1.

We note that the above model specifies a joint distribution for Zi1, . . . , Zip. More specifically, 
let D ⊂ {1, . . . , p} be the set of dichotomous and polytomous predictors. We use Ξ as generic no
tation for the unknown parameters in the Gaussian copula model, including Σ and the parameters 
in the transformations between Z∗

ij and Zij. We further use ϕ(· ∣ Σ) to denote the density function of 
the multivariate normal distribution N(0, Σ). Then, the density function of Zi takes the form

f (z|Ξ)= ∫ . . . ∫
􏽙

j∈D

dz∗
j

􏼠 􏼡􏼨

× ϕ(z∗|Σ) ×
􏽙

j∉D

d−1
j

􏼠 􏼡

×
􏽙

j∈D

I(z∗
j ∈ (cj,zj−1, cj,zj ])

􏼠 􏼡􏼢 􏼣􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
z∗

j =
zj−cj

dj
,j∉D

⎫
⎪⎪⎬

⎪⎪⎭

.

(2) 

Figure 1. Path diagram for the general latent variable model framework. Variables within a circle represent 
unobserved or latent variables, while those within a rectangle represent observed variables. The measurement 
models are represented by the directed edges from θi to Yi and those from Zik to Wik , k = 1, 2, . . . , p1. The structural 
model is represented by the directed edges from Zij s to θi . The predictor model is represented by the directed edges 
from Z∗

ij to Zij and the undirected edges between Z ∗
ij s.
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3.2 Measurement model
We note that θi is a latent construct that is not directly observable. In addition, some variables in Zi 

may also be latent constructs. The latent constructs are defined by observable data through a meas
urement model. We now specify this measurement model based on complete data (i.e. no data are 
missing). The treatment of missing values is left to Section 3.3. Let Yi = (Yi1, . . . , YiJ)

⊤ be the indica
tors for θi. And let Wij = (Wij1, . . . , Wijlj )

⊤ be the indicators for Zij, j = 1, . . . , p1. The measurement 
model defines the conditional distribution of (Y⊤

i , W⊤
i1, . . . , W⊤

ip1
)⊤ given (θi, Zi1, . . . , Zip1 )

⊤. This 
conditional distribution is specified by assuming (a) Yi is conditionally independent of all the other 
variables given θi, (b) Wij is conditionally independent of all the other variables given Zij, for all 
j = 1, . . . , p, and (c) the conditional model of Yi given θi and those of Wij given Zij. These conditional 
models are visualised in Figure 1. We now elaborate on these conditional models.

Conditional model of Yi given θi. If θi is observable, then we just let Yi = θi, and in this case, the 
conditional model of Yi given θi is degenerate. Otherwise, when θi is a latent construct, a unidi
mensional linear factor model or IRT model (Chapter 3, Skrondal & Rabe-Hesketh, 2004) can 
be used for this conditional distribution, depending on the variable types in Yi. We assume that 
this measurement model satisfies the standard identifiability conditions. In the application to 
PISA data, students’ science performance in science, θi, is measured by cognitive items. In this ap
plication, Yi contains students’ responses to cognitive items, where the responses are either binary 
(correct/incorrect) or ordinal. In what follows, we describe the measurement model used in the 
scaling of PISA 2015 data (Chapter 9, OECD, 2016b). This model will be used in our simulation 
studies and application to PISA data.

More specifically, this model assumes local independence, an assumption that is commonly 
adopted in IRT models (Embretson & Reise, 2000). That is, Yij, j = 1, . . . , J, are conditionally in
dependent given θi. For a dichotomous item j, the conditional distribution of Yij given θi is assumed 
to follow a two-parameter logistic model (2PL, Birnbaum, 1968)

P(Yij = 1|θi) =
exp (ajθi + bj)

1 + exp (ajθi + bj)
, (3) 

where aj and bj are two item-specific parameters. For a polytomous item j with Kj + 1 categories, Yij 

given θi is assumed to follow a generalised partial credit model (GPCM, Muraki, 1992), for which

P(Yij = k|θi) =
exp

􏽐k

r=1
(ajθi + bjr)

􏼔 􏼕

1 +
􏽐Kj

k′=1
exp

􏽐k′

r=1
(ajθi + bjr)

􏼔 􏼕 , k = 1, . . . , Kj, (4) 

where aj, bj1, bj2, . . . , bj,Kj are item-specific parameters. In OECD’s analysis of PISA data, the item- 
specific parameters are first calibrated based on item response data from all the countries and then 
treated as known when inferring the proficiency level of students or the proficiency distributions of 
countries (Chapter 9, OECD, 2016b). We follow this routine when analysing PISA data. Specifically, 
the item-specific parameters are fixed to the values used by OECD for scaling PISA 2015 data1.

In the rest, we denote the conditional probability density/mass function of Yi given θi at Yi = yi 
as h(yi|θi; Δ), where Δ denotes the unknown parameters in this conditional model. In the PISA ap
plication, h(yi|θi; Δ) =

􏽑J
j=1 P(Yij = yij|θi), where P(Yij = yij|θi) follows (3) or (4) depending on 

whether item j is dichotomous or polytomous. As all the item parameters are pre-calibrated in 
this application, Δ becomes an empty vector and will not be estimated. In situations where the 
item parameters are unknown, Δ can be estimated from data; see Section F.1 in the online 
supplementary material for a simulation study under this setting.

Conditional model of Wij given Zij. When Zij is a latent construct, a unidimensional linear factor 
model or IRT model can be used for this conditional distribution, depending on the variable types 

1 The item parameters can be found from: https://www.oecd.org/pisa/data/2015-technical-report/PISA 
2015˙TechRep˙Final-AnnexA.pdf
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in Wij. We assume that these measurement models satisfy the standard identifiability conditions. In 
the rest, we denote the conditional probability density/mass function of Wij given Zij at Wij = wij as

qj(wij|Zij; Λj), j = 1, . . . , p1, (5) 

where Λj denotes the unknown parameters in this conditional model if they exist.

3.3 Data missingness and statistical inference
In PISA data, as well as many other multivariate data in the social and behavioural sciences, there 
are often a substantial proportion of missing values. Here, we impose assumptions for data miss
ingness. First, we assume that entries of Yi are missing completely at random. This assumption is 
sensible in the PISA application, where the missing responses to cognitive items are due to the ma
trix sampling design of PISA. Second, we assume that Wi1,…, Wip1 do not have missing values. 
This assumption is made for simplicity and can be easily relaxed. Finally, we assume that the miss
ing data in (Zi,p1+1, . . . , Zip)⊤ are missing at random (MAR), which is a quite strong but common
ly adopted assumption in missing data analysis (Little & Rubin, 2019; Van Buuren, 2018).

More specifically, let wi be the realisation of Wi = (W⊤
i1, . . . , W⊤

ip1
)⊤, i = 1, . . . , N, and recall 

that Ξ denotes the unknown parameters of the Gaussian copula model and Λ1, …, Λp1 denote 
the parameters in the measurement models for Zij, j = 1. Let Bi be an index set containing all 
the indicators j such that Yij is not missing. We let Yobs

i = {Yij : j ∈ Bi} be the observed indicators 
for θi and let Ymis

i = {Yij : j ∉ Bi} be the missing ones. Similarly, we let Ai be the 
set indicating all the observed variables in (Zi,p1+1, . . . , Zi,p)⊤, and let Zobs

i = {Zij : j ∈ Ai} 
and Zmis

i = {Zij : j ∉ Ai}. Under the MAR assumption, the log-likelihood function for Ξ, Λ1, …, 

and Λp1 takes the form l1(Ξ, Λ1, . . . , Λp1 ) =
􏽐N

i=1 log fi(wi, zobs
i |Ξ, Λ1, . . . , Λp1 ), where fi(wi, 

zobs
i |Ξ, Λ1, . . . , Λp1 )= ∫ · · · ∫ f (zi|Ξ)(

􏽑p1
j=1 qj(wij|zij; Λj))(

􏽑
j∉Ai

dzij). Note that the integrals in 

fi(wi, zobs
i |Ξ, Λ1, . . . , Λp1 ) are with respect to Zmis

i .
The maximum likelihood estimator for Ξ, Λ1, . . . , Λp1 is given by

(Ξ̂, Λ̂1, . . . , Λ̂p1 ) =
arg max

Ξ,Λ1, . . . ,Λp1

l1(Ξ, Λ1, . . . , Λp1 )

subject to Σjj = 1, j = 1, . . . , p,

dj > 0, j ∉ D, cj1 < cj2 < . . . < cjKj , j ∈ D.

(6) 

We note that this optimisation problem involves high-dimensional integrals and constraints. We 
adopt a stochastic proximal gradient algorithm proposed in Zhang and Chen (2022). In this algo
rithm, the integrals are handled by Monte Carlo sampling of the missing values, and the unknown 
parameters are updated by stochastic proximal gradient descent, in which constraints are handled. 
The details of this algorithm can be found in the online supplementary material.

Given Ξ̂, Λ̂1, . . . , Λ̂p1 from (6), one can estimate the rest of the unknown parameters, including 
the regression coefficients in (1) that are of major interest. We denote β = (β⊤

1 , . . . , β⊤
p )⊤. Let yobs

i 
be the realisation of Yobs

i , i = 1, . . . , N. The log-likelihood for β, β0, σ2, and Δ takes the form

l2(β, β0, σ2, Δ)=
􏽘N

i=1

log ∫ · · · ∫
􏽙

j∉Ai

dzij

􏼠 􏼡

f (zi|Ξ̂)
􏽙p1

j=1

qj(wij|zij; Λ̂j)

􏼠 􏼡

fi(yobs
i |zi; β, β0, σ2, Δ)

􏼢 􏼣

,

(7) 

where fi(yobs
i |zi; β, β0, σ2, Δ) is the conditional density function of Yobs

i given Zi = zi

fi(yobs
i |zi; β, β0, σ2, Δ) =

1
������
2πσ2

√

􏼔

× ∫ · · · ∫ dθi

􏽙

j∉Bi

dyij

􏼠 􏼡

h(yi|θi; Δ) exp −
(θi − (β0 + β⊤

1 g1(zi1) + · · · + β⊤
p gp(zip))2

2σ2

􏼠 􏼡􏼣

.

(8) 
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We estimate β, β0 , σ2 and Δ by maximising l2(β, β0, σ2, Δ). Similar to the optimisation (6), 
the maximisation of l2(β, β0, σ2, Δ) also involves high-dimensional integrals. We carry 
out this optimisation using a stochastic Expectation-Maximisation (EM) algorithm2

(Nielsen, 2000; Zhang et al., 2020). The details are given in the online supplementary 
material.

4 Variable selection via knockoffs
4.1 Problem setup and knockoffs
As mentioned previously, our goal is to solve a model selection problem, i.e. to find the non-null 
predictors for which ‖βj‖ ≠ 0. We hope to control the statistical error in the model selection to 
assure that most of the discoveries are indeed true and replicable. This is typically achieved by 
controlling for a certain risk function, such as the false discovery rate, the k-familywise error 
rate, and the per familywise error (PFER); see Janson and Su (2016) and Candès et al. (2018). 
Let Ŝ and S∗ ⊂ {1, . . . , p} be the selected and true non-null predictors, respectively. The current 
study concerns the control of PFER, defined as E|Ŝ \ S∗|, where | · | denotes the number of ele
ments in a set.

The knockoff method is a general framework for controlled variable selection. The key to a 
knockoff method is the construction of knockoff variables, where the knockoff variables mimic 
the dependence structure within the original variables but are null variables (i.e. not associated 
with the response variable). They serve as negative controls in the variable selection procedure 
that help identify the truly important predictors while controlling for a certain risk function, 
such as the PFER. Many knockoff methods have been developed (Barber & Candès, 2015, 
2019; Candès et al., 2018; Fan et al., 2019, 2020; Janson & Su, 2016; Romano et al., 2020; 
Sesia et al., 2019). Many knockoff methods are based on the model-X knockoff framework 
(Candès et al., 2018), which is very flexible and can be extended to the current setting involving 
missing data and mixed-type predictors. However, one drawback of the model-X knockoffs is 
that it only takes one draw of the knockoff variables through Monte Carlo sampling. As a result, 
this procedure often suffers from high uncertainty brought about by the Monte Carlo error, even 
though the risk function is controlled. To alleviate this uncertainty, which has important implica
tions on the interpretability of the variable selection results, we adopt the derandomised knockoff 
method (Ren et al., 2023). This method can substantially reduce the Monte Carlo error by aggre
gating the selection results across multiple runs of a knockoff algorithm. In what follows, we first 
introduce the way of constructing knockoff variables under the joint model described in the above 
section and then introduce a derandomised knockoff procedure for controlling PFER.

4.2 Constructing knockoffs with missing data
We extend the concept of knockoffs to the missing data setting. To control the variable selection 
error with the knockoff procedure introduced below, a stronger MAR condition is needed. It is 
called the SMAR condition as introduced in Definition 1 below.

Definition 1 (SMAR condition). Let Xi = (X⊤
i1, . . . , X⊤

ip)⊤, such that Xij = Wij if j = 
1, . . . , p1 and Xij = Zij otherwise. Consider the conditional distribution of 
Ai given Xi. Let q(α|xi) denote the conditional probability mass function 
of Ai given Xi. We say the SMAR condition holds with respect to the non- 
null variables S∗, if q(α|x) = q(α|x′) holds, for any α, x = (x⊤

1 , . . . , x⊤
p1

)⊤ and 
x′ = (x′

1
⊤, . . . , x′

p
⊤)⊤ satisfying {xj:j ∈ {1, . . . , p} ∩ S∗} = {x′

j:j ∈ {1, . . . , p} 
∩ S∗}.

This SMAR condition says that the probability of being missing is the same within groups de
fined by the observed non-null variables. It is stronger than MAR because MAR only requires 

2 The stochastic proximal gradient algorithm used for the optimisation problem (6) can also be used to solve the cur
rent optimisation problem. The stochastic EM algorithm is chosen as it tends to converge empirically faster for the current 
problem.
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q(α|x) = q(α|x′) to hold, for any α, x = (x⊤
1 , . . . , x⊤

p1
)⊤, and x′ = (x′

1
⊤, . . . , x′

p
⊤)⊤ satisfying 

{xi : i ∈ α} = {x′
i : i ∈ α}, i.e. the probability of being missing is the same within groups defined by 

the observed variables, regardless of whether they are in S∗ or not. On the other hand, the 
SMAR condition is weaker than completely missing at random (MCAR), as MCAR implies 
that q(α|x) = q(α|x′) for all α, x, and x′. Throughout the rest, the SMAR condition is assumed.

Definition 2 (Knockoffs). Suppose that the SMAR condition in Definition 1 holds and the 
true values of Ξ, Λ1,…, Λp1 , β, β0, σ2, and Δ are known. Under the setting in 

Section 3, we say that (W̃i, Z̃
obs
i ) is a knockoff copy of (Wi, Zobs

i ), if there ex

ists a random vector W̃i = (W̃
⊤
i1, . . . , W̃

⊤
ip1

)⊤, where W̃ij = (W̃ij1, . . . , W̃ijlj )
⊤ 

for each j = 1, . . . , p1, as well as underlying variables Z∗
i = (Z∗

i1, . . . , Z∗
ip)⊤ 

and Z̃
∗

i = (Z̃
∗

i1, . . . , Z̃
∗

ip)⊤, such that 

(1) Zobs
i = {Fj(Z∗

ij) : j ∈ Ai} and Z̃
obs
i = {Fj(Z̃

∗

ij) : j ∈ Ai};

(2) Yobs
i , Wi, and Z̃

∗

i are conditionally independent given Z∗
i ;

(3) Let Zi = (F1(Z∗
i1, . . . , Fp(Z∗

ip))⊤. Then Zi follows the Gaussian copula 
model (2), Wij given Zij follows the conditional model (5) for each 

j = 1, . . . , p1, and Yobs
i given Zi follows the conditional model (8).

(4) Let Z̃i = (F1(Z̃
∗

i1), . . . , Fp(Z̃
∗

ip))⊤. Then for each j = 1, . . . , p1, the condi

tional probability density/mass function of W̃ij given Z̃ij is the same as (5).

(5) For any subset S ⊂ {1, . . . , p}, (Z∗
i , Z̃

∗

i )swap(S) and (Z∗
i , Z̃

∗

i ) are identically 
distributed.

Recall that Fj(·) is the transformation between each predictor and its underlying variable. 
In addition, the vector (Z∗

i , Z̃
∗

i )swap(S) is obtained from (Z∗
i , Z̃

∗

i ) by swapping the entries Z∗
ij 

and Z̃
∗

ij for each j ∈ S; for example, with p = 3 and S = {1, 3}, (Z∗
i1, Z∗

i1, Z∗
i3, Z̃

∗

i1, Z̃
∗

i2, 

Z̃
∗

i3)swap({1,3}) = (Z̃
∗

i1, Z∗
i2, Z̃

∗

i3, Z∗
i1, Z̃

∗

i2, Z∗
i3). We compare the current definition of knockoffs 

under a missing data setting with the standard definition for model-X knockoffs in Candès et 
al. (2018). The model-X knockoff framework assumes no missing data in predictors Zi, and 
Z1,…, ZN are independent and identically distributed. Therefore, the definition of model-X 
knockoff omits the subscript i. On the other hand, the current analysis depends on Ai, which 

differs across observations. Consequently, knockoffs are defined for each Zobs
i . When there 

are no unobservable predictors and no missing data, i.e. p1 = 0 and Ai = {1, . . . , p}, 
i = 1, . . . , N, the current definition coincides with the definition in Candès et al. (2018). Note 
that stronger conditions are needed for the construction of knockoffs when there exist missing 

data. These conditions (e.g. SMAR) are needed to ensure that the joint distribution of Yobs
i , Ai, 

Wi, Z
obs
i , W̃i, and Z̃

obs
i remains identical when swapping the null indices, which is essential for 

establishing the exchangeability property (Candès et al., 2018) for controlling variable selection 

error. Specifically, under Definition 2, (W̃i, Z̃
obs
i ) and Yobs

i are likely not conditionally inde

pendent given (Wi, Zobs
i ). Consequently, when constructing the knockoff variables 

(W̃i, Z̃
obs
i ), one needs information from not only (Wi, Zobs

i ) but also Yobs
i , to compensate 

for the missing information. In other words, the joint distribution of Yobs
i , Wi, and Zobs

i is 

needed to construct (W̃i, Z̃
obs
i ).

In what follows, we present an algorithm for constructing knockoffs (W̃i, Z̃
obs
i ) under 

Definition 2. To ensure the exact satisfaction of Definition 2, we assume that the true model pa
rameters are known. In practice, we plug an estimate of the parameters into the algorithm; see 
Section 4.4 for theoretical justifications and further discussions.
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Proposition 1 The output (W̃i, Z̃
obs
i ) from Algorithm 1 satisfies Definition 2.

The proof of this proposition is given in the online supplementary material. Figure 2 below gives 
the path diagram for the generation of knockoff copies. We provide several remarks on the algo
rithm. This algorithm allows for mixed types of predictors under a Gaussian copula model, which 
extends the multivariate Gaussian model for knockoff construction considered in Barber and 
Candès (2015) and Candès et al. (2018). When all the predictors are continuous, the Gaussian 
copula model degenerates to the multivariate Gaussian model. In that case, and if there is no miss
ing data, then Algorithm 1 coincides with the knockoff construction method in Candès et al. 
(2018), except that Candès et al. (2018) uses the mean absolute correlation (MAC) procedure 
to construct the S matrix.

When Wi or Zobs
i contains binary or ordinal variables, the sampling of Z∗

i is not straight
forward. However, we can obtain approximate samples via Gibbs sampling. Thanks to the 
underlying multivariate normality assumption, each step of the Gibbs sampler only involves 
sampling from univariate normal or truncated normal distributions. Details of the Gibbs 
sampler are given in the online supplementary material. We compute the diagonal matrix S 
in Step 2 of the algorithm using the MVR procedure (Spector & Janson, 2022), which tends 
to be more powerful than the MAC procedure adopted in Barber and Candès (2015) and 
Candès et al. (2018).

4.3 Variable selection via derandomised knockoffs
We now describe a knockoff procedure for variable selection with a controlled PFER. Suppose that 

knockoff copies (W̃i, Z̃
obs
i ), i = 1, . . . , N, have been obtained using Algorithm 1. For ease of ex

position, we denote Zobs = {Zobs
i }N

i=1, Z̃
obs

= {Z̃
obs
i }N

i=1, W = {Wi}
N
i=1, W̃ = {W̃i}

N
i=1, and 

Yobs = {Yobs
i }N

i=1. We define a knockoff statistic that measures the importance of each predictor.

Definition 3 (Knockoff statistic). Consider a statistic Tj taking the form Tj = 

tj((W, Zobs), (W̃, Z̃
obs

), Yobs) for some function tj, where (W̃, Z̃
obs

) 
are knockoffs satisfying Definition 2. This statistic is called a knockoff stat
istic for the jth predictor if it satisfies the flip-sign property; that is for any 

Algorithm 1 (Constructing knockoff copies)

Input: Observed data Yobs
i , Wi, and Zobs

i , i = 1, . . . , N, the true model parameters Ξ of the Gaussian copula 
model, the true parameters Λ1, …, Λp1 in the measurement models for Zij, and the true parameters 
β, β0, σ2, Δ in the conditional model of Yi given Zi.

Step 1: Sample underlying variables Z∗
i from their conditional distribution given Yobs

i , Wi, and Zobs
i .

Step 2: Sample Z̃
∗

i given Z∗
i , where (Z∗

i , Z̃
∗

i ) jointly follows a multivariate normal distribution with mean zero and 
covariance matrix

G = Σ Σ − S
Σ − S Σ

􏼒 􏼓

, 

where Σ is the correlation matrix in the Gaussian copula model, and S is a diagonal matrix specified in such 
a way that the joint covariance matrix G is positive semidefinite. The construction of S is based on the 
minimise the reconstructability (MVR) procedure (Spector & Janson, 2022).

Step 3: Obtain Z̃i from Z̃
∗

i , where Z̃ij = Fj(Z̃
∗

ij) for each j = 1, . . . , p.

Step 4: Sample W̃ij from the conditional distribution qj( · |Z̃ij; Λj) for each j = 1, . . . , p1.

Output: Knockoff copy (W̃i, Z̃
obs
i ), where Z̃

obs
i = {Z̃

obs
ij :j ∈ Ai}.
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subset S ⊂ {1, . . . , p},

tj {(W, Zobs), (W̃, Z̃
obs

)}swap(S), Yobs
􏼒 􏼓

=
tj (W, Zobs), (W̃, Z̃

obs
), Yobs

􏼒 􏼓

, j ∉ S,

−tj (W, Zobs), (W̃, Z̃
obs

), Yobs
􏼒 􏼓

, j ∈ S,

⎧
⎪⎪⎨

⎪⎪⎩

where {(W, Zobs), (W̃, Z̃
obs

)}swap(S) is obtained by swapping 

1. the entries of Wij and W̃ij for each j ∈ S ∩ {1, 2, . . . , p1}, i = 1, . . . , N;
2. the entries Zij and Z̃ij for each j ∈ S ∩ Ai, i = 1, . . . , N.

The flip-sign property in Definition 3 is key to guaranteeing valid statistical inference from finite 
samples. However, to achieve a good power, Tj should also provide evidence regarding whether 
‖βj‖ = 0. See Section 3 of Candès et al. (2018) for a generic method of constructing Tj and specific 
examples. In this study, we will focus on knockoff statistics constructed based on the likelihood 
function. More specifically, we incorporate the knockoff variables into the general latent variable 
model defined in Section 3. That is, the measurement model remains the same, while the structural 
model becomes

θi|Zi, Z̃i ∼ N(β0 + β⊤
1 g1(Zi1) + · · · + β⊤

p gp(Zip) + γ⊤
1 g1(Z̃i1) + · · · + γ⊤

p gp(Z̃ip), σ2), 

where Zi and Z̃i are defined in Definition 2. Since Z̃
∗

i and Yobs
i are conditionally independent given 

Z∗
i , the true value of γj is 0, j = 1, . . . , p, though these parameters will be estimated when con

structing the knockoff statistics. The general latent variable model corresponding to this is de
picted by the path diagram shown in Figure 3.

Suppose that the values of Ξ, Λ1,…, Λp1 , β0, σ2, and Δ are known. The likelihood function for 
(β, γ) under this extended latent regression model takes the form

l̃2(β, γ) =
􏽘N

i=1

log ∫ · · · ∫
􏽙

j∉Ai

dzij

􏼠 􏼡
􏽙

j∉Ai

dz̃ij

􏼠 􏼡

f (zi, z̃i|Ξ)

􏼢􏼨

×
􏽙p1

j=1

qj(wij|zij; Λj)

􏼠 􏼡
􏽙p1

j=1

qj(w̃ij|z̃ij; Λj)

􏼠 􏼡

fi(yobs
i |zi, z̃i; β, γ, β0, σ2, Δ)

􏼣􏼩

.

(9) 

Here, fi(yobs
i |zi, z̃i; β, γ, σ2, Δ) is the density function of the conditional distribution of Yobs

i given 

Figure 2. Path diagram for constructing (W̃i , Z̃
obs
i ).
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Zi = zi and Z̃i = z̃i; that is,

f (yobs
i |zi, z̃i; β, γ, β0, σ2, Δ) =

1
������
2πσ2

√ ∫ · · · ∫ dθi

􏽙

j∉Bi

dyij

􏼠 􏼡􏼢􏼨

× h(yi|θi; Δ) exp −
(θi − (β0 + β⊤

1 g1(zi1) + · · · + γ⊤
1 g1(z̃i1) + · · · + γ⊤

p gp(z̃ip))2

2σ2

􏼠 􏼡􏼣􏼩

.

In addition, f (zi, z̃i|Ξ) denotes the density function of the Gaussian copula model for (Zi, Z̃i), not
ing that this density function is completely determined by the parameters Ξ of the Gaussian copula 
model for Zi; see the online supplementary material for the specific form of f (zi, z̃i|Ξ).

A knockoff statistic Tj is constructed based on ̃l2(β, γ). Specifically, consider the maximum like
lihood estimator based on l̃2(β, γ)

(β̃, γ̃) = arg max
β,γ

l̃2(β, γ). (10) 

Then, a knockoff statistic can be constructed as

Tj = sign(‖β̃†

j ‖ − ‖γ̃†
j ‖) max ‖β̃†

j ‖/
���
pj

􏽰
, ‖γ̃†

j ‖/
���
pj

􏽰􏽮 􏽯
, (11) 

where pj is the dimension of βj (or equivalently that of γj), and β̃†

j = Cov(gj(Zij))
1
2β̃j and γ̃†

j = 

Cov(gj(Zij))
1
2γ̃j are standarised coefficients.

Proposition 2 Assume that the values of Ξ, Λ1,…, Λp1 , β0, σ2, and Δ are known and 
the knockoffs satisfy Definition 2. Then Tj given by (11) satisfies 
Definition 3.

The proof of this proposition is given in the online supplementary material. Similar to the esti
mation of the latent regression model without knockoffs, the optimisation problem (10) can be 
solved using a stochastic EM algorithm. We remark that the statistic (11) is a special case of the 

Figure 3. Path diagram for the general latent variable model involving knockoff variables. The interpretation is 
similar to that of Figure 1. The directed edges from the knockoff variables Z̃ ij s to θi are drawn with dashed lines, as 
the true values of the corresponding coefficients are zero.
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Lasso coefficient-difference statistic given in Candès et al. (2018) when the Lasso penalty is set to 
zero. Since the sample size N is often much larger than p in ILSA applications, this likelihood- 
based knockoff statistic performs well in our simulation study and real data analysis. For higher- 
dimensional settings, a Lasso coefficient-difference statistic may be preferred; see Candès et al. 
(2018).

We now adapt the derandomised knockoff method (Ren et al., 2023) to the current problem. 
This method achieves PFER control by aggregating the results from multiple runs of a baseline 
algorithm proposed in Janson and Su (2016). This baseline algorithm is summarised in 
Algorithm 2 below.

Algorithm 2 (Baseline algorithm for PFER control Janson & Su, 2016)

Input: Observed data Yobs, W, and Zobs, a PFER level ν ∈ Z+, the true model parameters Ξ of the Gaussian 
copula model, the true parameters Λ1,…, Λp1 in the measurement models for Zij, and the true parameters 
β, β0, σ2, Δ in the conditional model of Yi given Zi.

Step 1: Generate knockoffs (W̃, Z̃
obs

) using Algorithm 1.

Step 2: Compute a set of knockoff statistics T1, . . . , Tp using equations (10) and (11).

Step 3: Compute the threshold τ = inf {t > 0 : 1 + |{j : Tj < −t}| = v}. We let τ = −∞ if the set on the right-hand side 
is an empty set.

Output: Ŝ = {j : Tj > τ}.

Proposition 3 Ŝ given by Algorithm 2 satisfies E|Ŝ \ S∗| ≤ ν, i.e. the PFER can be con
trolled at level ν.

Algorithm 3 (Derandomised knockoffs Ren et al., 2023)

Input: Observed data Yobs, W, and Zobs, the number of runs M of the baseline algorithm, a selection threshold 
η, a PFER level ν ∈ Z+, the true model parameters Ξ of the Gaussian copula model, the true parameters Λ1, 
…, Λp1 in the measurement models for Zij, and the true parameters β, β0, σ2, Δ in the conditional model of 
Yi given Zi.

Step 1: For each m = 1, . . . , M, run Algorithm 2 independently and obtain the selection set Ŝ(m).

Step 2: For each j = 1, . . . , p, compute the selection frequency Πj = 1
M

􏽐M
m=1 I(j ∈ Ŝ(m)).

Output: Ŝ = {j ∈ {1, . . . , p} : Πj ≥ η}.

Following the theoretical result in Ren et al. (2023) when the threshold η is chosen properly, 
Algorithm 3 guarantees to control PFER at level ν. We provide a simplified version of this result 
in Proposition 4 below.

Proposition 4 If for any η ∈ (0, 1), the condition P(Πj ≥ η) ≤ E[Πj] holds for every j ∉ S∗, 
then Ŝ given by Algorithm 3 satisfies E|Ŝ \ S∗| ≤ ν, i.e. the PFER can be con
trolled at level ν. In particular, assuming that the probability mass function 
of Πj is monotonically non-increasing for each j ∉ S∗, P(Πj ≥ η) ≤ E[Πj] 
holds for M = 31 and η = 1/2.

While noting that other choices are possible, we set M = 31 and η = 1/2, which is also the de
fault choice in Ren et al. (2023). We also note that the statistics Πj, j = 1, . . . , p, rank the import
ance of the predictors. The predictors with Πj ≥ η are selected as the non-null variables.

4.4 A three-step procedure when model parameters are unknown and its 
robustness
The knockoff procedure described previously requires the true joint model for Yi, Wi, and Zi, 
which is infeasible in practice. When the true model is known, the variable selection problem be
comes trivial since the null and non-null variables can be directly identified from the true model. In 
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practice, we first estimate the model parameters and then conduct variable selection based on the 
estimated model. This procedure involves three steps. First, estimate the parameters Ξ in the 
Gaussian copula model as well as the parameters Λ1, . . . , Λp1 in the measurement models for 
Zij. This is done by the maximum likelihood estimator (6). Second, estimate the parameters β, 
β0, σ2, and Δ based on the log-likelihood (7), where the estimated Gaussian copula model Ξ̂ and 
the estimated measurement models Λ̂1, . . . , Λ̂p1 are plugged in. Third, select variables by plugging 
the estimated parameters Ξ̂, Λ̂js, β̂, β̂0, σ̂2, and Δ̂ into Algorithm 2 or 3.

Empirically, simulation results in Section 5 show that PFER is well controlled when we apply the 
above three-step procedure. Theoretically, by plugging into the estimated model rather than the 
true model, the PFER can no longer be exactly controlled as described in Propositions 3 and 4. 
Following a similar proof strategy as in Barber et al. (2020), we show that this procedure is robust, 
in the sense that the resulting PFER is controlled near ν if the plug-in model is sufficiently accurate. 
Note that Barber et al. (2020) only consider the robustness of model-X knockoffs for controlling 
false discovery rate and does not cover PFER.

More precisely, we use P and Q to denote the true and plug-in models, respectively. Consider a 
pair of i and j, satisfying j ∈ ({1, . . . , p1} ∪ Ai). We consider Xi in Definition 1. We further let 

Xobs
i,−j = {Xik : k ∈ ({1, . . . , p1} ∪ Ai)\{j}}. We also define X̃i and X̃

obs
i similar to Xi and Xobs

i , re

spectively, but with Wij replaced by W̃ij and with Zij replaced by Z̃ij. Let Pij(xij|xobs
i,−j , yobs

i ) denote 

the conditional density function of Xij given Xobs
i,−j = xobs

i,−j and Yobs
i = yobs

i under the true model 

P. Let Qij(x̃obs
i,−j , x̃ij|xobs

i,−j , xij, yobs
i ) denote the conditional density function of (X̃

obs
i,−j, X̃ij) given 

Xobs
i,−j = xobs

i,−j , Xij = xij, and Yobs
i = yobs

i under the plug-in model Q. We define

K̂Lj =
􏽘

i:j∈({1,...,p1}∪Ai)

log
Pij(Xij|Xobs

i,−j , Yobs
i ) · Qij(X̃

obs
i,−j, X̃ij|Xobs

i,−j , Xij, Yobs
i )

Pij(X̃ij|Xobs
i,−j , Yobs

i ) · Qij(X̃
obs
i,−j, Xij|Xobs

i,−j , X̃ij, Yobs
i )

⎛

⎝

⎞

⎠.

Here, {i : j ∈ ({1, . . . , p1} ∪ Ai)} = {1, . . . , p} if j ∈ {1, . . . , p1}, and {i : j ∈ ({1, . . . , p1} ∪ 
Ai)} = {i : j ∈ Ai} otherwise. Note that the numerator inside of the logarithm corresponds to the 

true data generation mechanism for (Xij, X̃
obs
i ), and the denominator corresponds to that when 

switching the roles of Xij and X̃ij. K̂Lj can be viewed as an observed Kullback–Leibler (KL) diver
gence that measures the discrepancy between the true model P and its approximation Q, with 
K̂Lj = 0 when Q = P. We remark that this definition of K̂Lj is consistent with that in Barber et 
al. (2020). However, the K̂Lj in Barber et al. (2020) can be further simplified with a pairwise ex
changeable property of their procedure under a model-X knockoff setting without missing data, 
while this pairwise exchangeable property does not always hold for the current procedure due 

to the involvement of Yobs and thus, the current K̂Lj cannot be further simplified.

Theorem 1 Under the definitions above, for any ϵ ≥ 0, consider the null variables for 
which K̂Lj ≤ ϵ. If we use a modified Algorithm 2 that generates knockoffs 
under the plug-in model Q which is assumed to be independent of data, 
then the expected number of rejections that correspond to such nulls obeys 
E|{j : j ∈ Ŝ \ S∗ and K̂Lj ≤ ϵ}| ≤ νeϵ. In particular, K̂Lj = 0, when Q = P.

When P = Q, we can set ϵ = 0, and thus, Theorem 1 implies Proposition 3. This property of robust
ness carries over to the derandomised procedure. We define Π†

j = (
􏽐M

m=1 I(j ∈ Ŝ(m) and K̂L(m)
j ≤ 

ϵ))/M, where Ŝ(m) is the selection in the mth run of modified Algorithm 3 that generates knockoffs 
under the plug-in model Q, and K̂L(m)

j is the corresponding observed KL divergence based on the 
knockoffs from the mth run.

Theorem 2 Under the definitions above, for any ϵ ≥ 0, consider the null variables for 
which K̂L(m)

j ≤ ϵ for all m = 1, . . . , M. We use a modified Algorithm 3 where 
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knockoffs are generated under the plug-in model Q which is assumed 
to be independent of data, and obtain selections Ŝ. If the condition P(Π†

j ≥ η) 
≤ E[Π†

j ] holds for every j ∉ S∗, then E|{j : j ∈ Ŝ \ S∗ and K̂L(m)
j ≤ ϵ, m = 1, 

. . . , M}| ≤ νeϵ.
If the probability mass function of Π†

j is monotonically non-increasing for 
each j ∉ S∗, P(Π†

j ≥ η) ≤ E[Π†
j ] holds for M = 31 and η = 1/2.

5 Simulation study
In this section, we conduct a simulation study to evaluate the performance of the proposed knock
off method. We check if the PFER can be controlled at the targeted level when the three-step pro
cedure described in Section 4.4 is applied. The power of variable selection will also be assessed.

We set p = 100, J = 60, and consider N ∈ {1,000, 2,000, 4,000} for comparing power under 
different sample sizes. It leads to three settings. For each setting, we generate 100 independent rep
lications. The data are generated as follows. We divide the predictors into five blocks, each con
taining 10 continuous variables and 10 binary variables. Ordinal variables or unobservable 
variables are not included in this study for simplicity. In Section F.3 of the online 
supplementary material, we present a simulation study that includes unobservable variables.

We consider the following design for the correlation matrix Σ of the underlying variables Z∗
i , 

which is similar to the one used in Grund et al. (2021) that concerns analysing missing data in 
ILSAs. This correlation matrix mimics the correlation structure in ILSA data. (a) Within block 
1, the correlation between every pair of variables is 0.6. (b) Within block 2, the correlation be
tween every pair of variables is 0.6. For the 10-by-10 submatrix recording the correlations be
tween variables in blocks 1 and 2, the diagonal entries are set to be 0.3, and the off-diagonal 
entries are set to be 0.15. (c) Within block 3, the correlation between every pair of variables is 
0.6. The variables in block 3 have a correlation of 0.15 with each variable in blocks 1 and 
2. (d) Within block 4, the correlation between every pair of variables is 0.3. For the 10-by-30 sub
matrix recording the correlations between variables in block 4 and those in blocks 1 to 3, all the 
entries take a value of 0.15, except that the diagonal entries of the 10-by-10 submatrix 

Figure 4. Heatmap of the designed correlation matrix in the simulation study.
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corresponding to blocks 4 and 1 are set to 0.3. (e) Within block 5, the correlation between every 
pair of variables is 0.3. For the 10-by-40 submatrix recording the correlations between variables in 
block 5 and those in blocks 1 to 4, the entries are generated independently from a uniform distri
bution over the interval [0.1, 0.2]. The same correlation matrix is used in all 100 replications. The 
heat map of this correlation matrix is given in Figure 4. This correlation matrix has a maximal 
eigenvalue of 22.73 and a minimal eigenvalue of 0.11.

The rest of the Gaussian copula model is set as follows. For continuous variables, we set cj = 0 
and dj = 1. For the binary variables, we set their threshold parameters cj1 to take one of the values 
in ( − 1.2, − 0.3, 0, 0.3, 1.2) iteratively (i.e. c11,1 = −1.2, c12,1 = −0.3 and so on). Regarding the 
parameters in the structural model, we set the intercept β0 = 0, βj = 0.5 for j = 1, 22, 43, 64, 85, 
−0.5 for j = 11, 32, 53, 74, 95, and 0 for the rest of the variables. Under this setting, the non-zero 
coefficients are distributed uniformly among the variables. We further set σ2 = 1 for the residual 
variance.

Data missingness is generated following the SMAR condition. For each observation i, we gen
erate a random variable Ri from a categorical distribution with support {1, 2, . . . , 5}, satisfying 
P(Ri = k) = 0.2, for all k = 1, . . . , 5. The data missingness is determined by Ri and the non-null 
variables. Let S∗

k denote the set of non-null variables in the kth block. For observation i, when 
Ri = k, we let all the variables in S∗

k be observed. For each of the rest of the variables j, its prob
ability of being missing is given by (1 + exp (1 − (

􏽐
j′∈S∗

k
Zij′ )/2))−1. Under this setting, around 

33% of the entries of the data matrix for predictors are missing.
Finally, we generate the parameters in the measurement model with only dichotomous items. 

We sample aj’s from a uniform distribution U[0.5, 1.5], and bj’s from uniform distribution 
U[ − 2, 0], where the range of these distributions is chosen to guarantee that ajθi + bj to be in a 
suitable range. When generating the responses, a matrix sampling design is adopted. Here, all 
the items are divided into three equal-sized blocks. Each observation is randomly assigned one 
of the three blocks, and the responses to the rest of the two blocks are missing completely at 
random.

We apply the three-step procedure described in Section 4.4, including both the baseline proced
ure based on Algorithm 2 and the derandomised procedure based on Algorithm 3. In this simula
tion study, we assume that all item parameters are known and fix them to their true values in both 
(7) and (9). In addition, we include an l2-penalty on β in equation (7), as well as an l2-penalty on 
(β⊤, γ⊤)⊤ in equation (9) during the estimation to mitigate the problem of overfitting. More details 
are given in the online supplementary material. Different target levels are considered, including 
ν ∈ {1, 2, . . . , 5}. Our results are given in Table 1. Two performance metrics are reported, 

Table 1. Simulation results

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

N = 1,000 PFER Baseline 0.68 1.72 2.78 4.01 5.04

DRM 0.01 0.10 0.33 0.55 0.83

TPR Baseline 54.0% 65.5% 70.9% 74.2% 77.2%

DRM 59.9% 69.1% 74.6% 78.3% 80.7%

N = 2,000 PFER Baseline 1.28 2.52 3.63 4.98 5.85

DRM 0.06 0.33 0.69 1.15 1.60

TPR Baseline 81.7% 88.9% 91.1% 93.5% 94.0%

DRM 83.8% 90.3% 93.1% 95.2% 95.8%

N = 4,000 PFER Baseline 0.76 1.84 3.06 4.17 5.41

DRM 0.14 0.53 0.95 1.51 1.95

TPR Baseline 95.3% 98.9% 99.2% 99.4% 99.5%

DRM 97.7% 99.4% 99.6% 99.6% 99.7%

Note. Here, ‘Baseline’ refers to the baseline algorithm, Algorithm 2, and ‘DRM’ refers to derandomised knockoffs, 
Algorithm 3. ν refers to the nominal PFER level.
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Table 2. Results from applying Algorithm 3 to PISA data

Name Type Description Estimate SE

ν = 1

ANXTES C Personality: test anxiety. −0.0542 0.0097

BELONG C Subjective well-being: sense of belonging to school. −0.0454 0.0108

DISCLI C Disciplinary climate in science classes. 0.0657 0.0104

CPSVAL C Collaboration and teamwork dispositions: value cooperation. −0.0862 0.0110

EBSCIT C Enquiry-based science teaching and learning practices. −0.0561 0.0117

EISCED O ISCED (International Standard Classification of Education) level 
student expects to complete. (0/1/2 = [level 2 or 3A]/[level 4 or 5B]/ 
[level 5A or 6])

0.1733   
0.0615

0.0350   
0.0299

ENVAWA C Environmental awareness. 0.0640 0.0109

ENVOPT C Environmental optimism. −0.0886 0.0090

EPIST C Epistemological beliefs. 0.0887 0.0101

GENDER B Student’s gender. (0/1 = female/male) 0.1884 0.0211

JOYSCI C Enjoyment of science. 0.0889 0.0124

OUT.JOB B Whether work for pay outside the school. (0/1 = no/yes) 0.2076 0.0290

OUT.PAR B Whether talk to parents outside the school. (0/1 = no/yes) −0.1373 0.0307

OUT.SPO B Whether exercise or do a sport outside the school. (0/1 = no/yes) 0.1966 0.0223

OUT.STU B Whether study for school or homework outside the school.  
(0/1 = no/yes)

0.1188 0.0202

PERFEE C Perceived feedback. −0.1373 0.0125

REPEAT B Whether the student has ever repeated a grade. (0/1 = no/yes) −0.2391 0.0350

SCI.CHE B Whether attended chemistry courses in this or last school year.  
(0/1 = no/yes)

0.1109 0.0207

TMINS C Learning time in class per week (minutes). 0.0949 0.0098

UNFAIR C Teacher unfairness. −0.0542 0.0108

LANGAH B Whether language at home different from the test language.  
(0/1 = no/yes)

−0.1022 0.0280

TDSCIT C Teacher-directed science instruction. 0.0504 0.0112

EISEIO C Student’s expected International Socio-economic Index of 
occupational status.

0.0448 0.0109

OUTHOU C Out-of-school study time per week (hours). −0.0448 0.0106

COOPER C Collaboration and teamwork dispositions: enjoy cooperation. 0.0537 0.0113

INSTSC C Instrumental motivation. −0.0388 0.0097

SCIEEF C Science self-efficacy. 0.0408 0.0105

FISEIO C ISEI (International Socio-economic Index) of occupational status of 
father.

0.0436 0.0122

MISEIO C ISEI (International Socio-economic Index) of occupational status of 
mother.

0.0373 0.0113

CULTPO C Cultural possessions at home. 0.0388 0.0114

CHONUM O Whether can choose the number of school science course(s) they study. 
(0/1/2 = no, not at all/ yes, to a certain degree/yes, can choose freely)

0.0995   
−0.0288

0.0230   
0.0361

SCI.PHY B Whether attended physics courses in this or last school year.  
(0/1 = no/yes)

−0.0718 0.0201

SKIDAY O The frequency student skipped a whole school day in the last two full 
weeks of school. (0/1/2 = [none]/[one or two times]/[three or more 
times])

−0.0398   
−0.1312

0.0198   
0.0452

(continued) 
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Table 2. Continued  

Name Type Description Estimate SE

CHODIF O Whether can choose the level of difficulty for school science course(s). 
(0/1/2 = no, not at all/ yes, to a certain degree/yes, can choose freely)

0.0677   
0.0459

0.0227   
0.0305

DAYPEC O Averaged days that student attends physical education classes each 
week. (0/1/2/3 = [0]/[1 or 2]/[3 or 4]/[5 or more])

−0.0561   
0.0150   

−0.0740

0.0361   
0.0409   
0.0278

ADINST C Adaption of instruction. 0.0243 0.0140

ν = 2

SCI.EAR B Whether attended earth and space courses in this or last school year. (0/ 
1 = no/yes)

−0.0549 0.0221

OUT.NET B Whether use Internet outside the school. (0/1 = no/yes) 0.0663 0.0254

ARRLAT O The frequency of arriving late for school in the last two full weeks of 
school. (0/1/2 = [none]/[one or two times]/[three or more times])

−0.0731   
−0.0118

0.0211   
0.0349

GRADE O Student’s grade. (0/1/2 = lower than modal grade/not lower than 
modal grade/higher than modal grade.)

0.1125   
−0.0090

0.0368   
0.0242

HEDRES C Home educational resources. −0.0216 0.0108

INTBRS C Interest in broad science topics. 0.0232 0.0120

CHOCOU O Whether can choose the school science course(s) they study.  
(0/1/2 = no, not at all/yes, to a certain degree/yes, can choose freely)

0.0516   
−0.00612

0.0223   
0.0291

OUT.VED B Whether watch TV/DVD/Video outside the school. (0/1 = no/yes) 0.0400 0.0204

DUECEC O Duration in early childhood education and care of students.  
(0/1/2/3 = [less than two years]/[at least two but less than three 
years]/[at least three but less than four years]/[at least four years])

0.0496   
−0.0313   
−0.0797

0.0268   
0.0313  
0.0416

ν = 3

SCI.GEN B Whether attended general, integrated, or comprehensive science 
courses in this or last school year. (0/1 = no/yes)

0.0372 0.0210

EMOSUP C Parents’ emotional support. −0.0180 0.0114

DAYMPA O Number of days with moderate physical activities for a total of at least 
60 minutes per week. (0/1/2/3/4/5/6/7 = 0/1/2/3/4/5/6/7)

0.0070   
0.0453   
0.0457   

−0.0218   
−0.0048   

0.0555   
0.0006

0.0446   
0.0457   
0.0405   
0.0370   
0.0344   
0.0363   
0.0340

Unselected

OUT.MEA B Whether have meals before school or after school. (0/1 = no/yes) 0.0373 0.0195

OUT.GAM B Whether play video-games outside the school. (0/1 = no/yes) 0.0222 0.0230

TEASUP C Teacher support in science classes of students’ choice. 0.0112 0.0126

FISCED O Father’s education in ISCED level. (0/1/2/3/4 = [none or ISCED 1]/ 
[ISCED 2]/[ISCED 3B or 3C]/[ISCED 3A or 4]/[ISCED 5B]/[ISCED 
5A or ISCED 6])

0.0057   
0.0051   

−0.0145   
0.0445

0.0433   
0.0343   
0.0304   
0.0360

MISCED O Mother’s education in ISCED level. (0/1/2/3/4 = [none or ISCED 1]/ 
[ISCED 2]/[ISCED 3B or 3C]/[ISCED 3A or 4]/[ISCED 5B]/[ISCED 
5A or ISCED 6])

−0.0376   
0.0314   

−0.0418   
0.0382

0.0520   
0.0355   
0.0270   
0.0280

MOTIVA C Achievement motivation. 0.0082 0.0100

OUT.FRI B Whether meet or talk to friends on the phone outside the school. (0/1 = 
no/yes)

0.0105 0.0216

(continued) 
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including (a) the average PFER, which is calculated by averaging |Ŝ \ S∗| over 100 replications and 
(b) the average True Positive Rate (TPR), which is calculated by averaging |Ŝ ∩ S∗|/|S∗|. As we can 
see, the baseline algorithm controls the PFER around the nominal level, while the derandomised 
knockoff method tends to be more conservative, which gives an average PFER much smaller 
than the nominal level. On the other hand, the derandomised method tends to be more powerful 
than the baseline algorithm in the sense that it typically achieves a higher average TPR. This phe
nomenon is consistent with the findings in Ren et al. (2023) under linear and logistic regression 
settings.

6 Application to PISA 2015
We now apply the proposed method to the PISA 2015 dataset described in Section 2. Our results 
are given in Table 2. In this table, the predictors are ranked according to the value of Πj when ν = 1, 
from the largest to the smallest. For each predictor, we give the variable name, the variable type 
(continuous, binary, or ordinal), and a brief explanation of the variable. Further details about 
these variables are given in the online supplementary material. In addition, we present the esti
mated coefficients of these variables under the full model (i.e. the model with all the predictors) 
and their standard errors based on a non-parametric bootstrap procedure with 200 replications. 
For each continuous variable, the standardised estimated coefficient is given, which is the esti
mated coefficient multiplied by the standard deviation of the corresponding variable. Variable se
lection results with nominal PFER levels ν = 1, 2, 3 are given in Table 2, for which 36, 45, and 48 
predictors are selected, respectively. Note that by the construction of the derandomised knockoff 
method, these selection results are nested, in the sense that the variables selected with ν = t are also 
selected with ν = t + 1, t = 1, 2, . . .. We also point out that for the first 20 variables (ANXTES to 
UNFAIR), Πj = 1, i.e. the variables are always selected by the baseline algorithm, and for the last 
11 variables (FISCED to WEALTH), Πj = 0, for any ν = 1, 2, 3, i.e. they are never selected by the 
baseline algorithm.

We comment on some of the variable selection results. Several variables in the data concern the 
socioeconomic status of students’ families, including the parents’ occupational statuses (FISEIO, 
MISEIO), cultural possessions at home (CULTPO; e.g. books), parents’ education levels (FISCED, 
MISCED), home educational resources (HEDRES), and family wealth (WEALTH), where 
FISEIO, MISEIO, FISCED, and MISCED are ordinal variables, and HEDRES, CULTPO, and 
WEALTH are continuous variables. These variables are positively correlated with each other (cor
relations/polyserial correlations between 0.22 and 0.69). It is interesting that parents’ occupation
al statuses, cultural possessions, and home educational resources seem to be important in 

Table 2. Continued  

Name Type Description Estimate SE

OUT.HOL B Whether work in the household outside the school. (0/1 = no/yes) −0.0040 0.0222

OUT.REA B Whether read a book/newspaper/magazine outside the school. (0/1 = 
no/yes)

0.0159 0.0244

SCI.APP B Whether attended applied sciences and technology courses in this or 
last school year. (0/1 = no/yes)

0.0024 0.0293

SCI.BIO B Whether attended biology courses in this or last school year. (0/1 = no/ 
yes)

−0.0148 0.0248

SCIACT C Index science activities. 0.0060 0.0114

SKICAL O The frequency of skipping some classes in the last two full weeks of 
school. (0/1/2 = [none]/[one or two times]/[three or more times])

−0.0192   
−0.0090

0.0204   
0.0390

WEALTH C Family wealth. 0.0053 0.0108

Note. The variables are ordered according to the value of Πj when ν = 1, from the largest to the smallest. For variables 
with the same Πj values, they are ordered alphabetically. Continuous, binary, and ordinal variables are indicated by C, B, 
and O, respectively. For an ordinal variable Zj, a coefficient corresponds to a dummy variable I(Z ≥ k), for each 
non-baseline category k = 1, . . . , Kj.
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explaining students’ performance in science (statistically significant and selected when ν ≤ 2). 
Given the rest of the variables, it is found that the higher occupational status of the father/mother 
or the more cultural possessions is associated with better science performance. However, 
HEDRES has a negative coefficient, which seems to be counter-intuitive and is worth further in
vestigation. On the other hand, parents’ education levels and family wealth seem to be less import
ant (statistically insignificant and not selected even when ν = 3). These results may be interpreted 
by a hypothetical mediation model as shown in Figure 5, which remains to be validated using add
itional data and statistical path analysis. That is, WEALTH naturally has direct effects on 
CULTPO and HEDRES, which may have direct effects on students’ science achievement.

Moreover, FISCED and MISCED naturally have a direct effect on FISEIO and MISEIO, respect
ively, and also possibly have direct effects on CULTPO, HEDRES, and WEALTH. However, there 
may not be direct paths from WEALTH, FISCED, or MISCED to students’ science achievement. 
Students’ science achievement may be largely influenced by genetic factors (e.g. intelligence) and 
environmental factors (e.g. education resources inside and outside home). It is possible that 
FISEIO, MISEIO, CULTPO, HEDRES, and the other variables in the current analysis have pro
vided good proxies to these genetic and environmental factors. Given these variables, FISCED, 
MISCED, and WEALTH tend to be conditionally independent of students’ science achievement. 
Several variables consider students’ behaviours attending school, including whether the student 
has ever repeated a grade (REPEAT), the frequency of a student skipping a whole school day in 
the last two full weeks of school (SKIDAY), the frequency of the student arriving late for school 
in the last two full weeks of school (ARRLAT), and the frequency of the student skipping some 
classes in the last two full weeks of school (SKICLA), where REPEAT is a binary variable, and 
the other three are ordinal variables. These variables are positively correlated with each other (tet
rachoric/polychoric correlations between 0.07 and 0.53). The signs of the estimated coefficients are 
all consistent with our intuition. For instance, a student tended to perform worse on the test if they 
had ever repeated a grade or if they often arrived at school late. Among these variables, REPEAT, 
ARRLAT, and SKIDAY seem to be important variables in the sense that they are all selected with 
ν ≤ 2. On the other hand, given these variables as well as the rest of the variables, the variable 
SKICAL seems to be irrelevant (not selected even with ν = 3, and the coefficients are not significant).

A few variables are related to teachers and their teaching style, including enquiry-based teaching 
and learning (EBSCIT), teacher-directed science instruction (TDSCIT), perceived feedback 
(PERFEE), teacher unfairness (UNFAIR), adaptive instruction (ADINST), and teacher support 
in science classes of students’ choice (TEASUP), all of which are continuous variables. Among 
these variables, ADINST, EBSCIT, TDSCIT, PERFEE, and UNFAIR are selected by our procedure 
with ν = 1, while TEASUP is not selected. Variable UNFAIR has a negative coefficient, suggesting 
that teacher unfairness is associated with poor student performance after controlling for the other 
variables. ADINST has a positive coefficient, suggesting that teachers’ flexibility with their 
lessons—tailoring the lessons to the students in their classes—tends to improve students’ science 
performance. In addition, it is interesting to see that TDSCIT has a positive coefficient while 
EBSCIT has a negative coefficient, which suggests that enquiry-based teaching and learning 
seem to have a negative effect on students’ science achievement while teacher-directed instruction 
has a positive effect. It is possible that enquiry-based teaching and learning can broaden students’ 
interests and increase their enjoyment of science (correlation between EBSCIT and JOYSCI is 0.16 
and that between EBSCIT and INTBRS is 0.13) but may be less efficient in developing students’ 
science knowledge than teacher-directed instruction. Thus, a blended instruction model that 

Figure 5. A hypothetical path diagram for several socioeconomic variables and science achievement.
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combines the two teaching modes may be preferred. Finally, PERFEE has a negative coefficient, 
which may seem counter-intuitive at first glance, as providing informative and encouraging feed
back is essential for improving student outcomes. This result may be due to the confounding of 
school types, which are not included in the current analysis. That is, students in disadvantaged 
schools may be more likely to report that their teachers provide them with feedback (Chapter 
2, OECD, 2016a). These students also tended to perform worse on the test, which resulted in a 
negative coefficient estimate.

Several variables concern students’ attending of science courses in this or last school year, in
cluding chemistry (SCI.CHE), physics (SCI.PHY), earth and space (SCI.EAR), biology 
(SCI.BIO), general, integrated, or comprehensive science (SCI.GEN), and applied sciences and 
technology (SCI.APP). All these variables are binary. Among these variables, SCI.CHE and 
SCI.PHY are selected with ν = 1, SCI.EAR is selected with ν = 2, SCI.GEN is selected with 
ν = 3, and the rest are not selected even with ν = 3. For the selected variables, SCI.CHE and 
SCI.GEN have positive coefficients, while SCI.PHY and SCI.EAR have negative coefficients. We 
suspect that these results may be due to the different curriculum settings at different types of 
schools, which are not included in the current model. Besides, there are also variables that measure 
students’ opportunity to learn science at school. In particular, data are available on whether stu
dents can choose the number (CHONUM) and level of difficulty (CHODIF) of science courses, 
and whether they can choose specific science courses (CHOCOU) at school. It turns out that 
CHONUM and CHODIF are selected with ν = 1, while CHOCOU is selected with ν = 2. More 
specifically, the estimated coefficients for CHOCOU, CHONUM, and CHODIF suggest that stu
dents with some freedom to choose the subject, number, and level of difficulty of science courses 
tended to perform better in the test.

Students’ science achievement may also be related to their activities and received support outside 
of school. The current analysis includes variables on whether a student studies for school or home
work (OUT.STU), talks to parents outside the school (OUT.PAR), works for pay (OUT.JOB), ex
ercises or does sports (OUT.SPO), uses internet (OUT.NET), watches TV/DVD/Video 
(OUT.VED), plays video games (OUT.GAM), has meals (OUT.MEA), meets or talks to friends 
(OUT.FRI), works in the household (OUT.HOL), and reads a book/newspaper/magazine 
(OUT.REA) outside the school, and whether they receive emotional support from their parents 
(EMOSUP). All these variables are binary. Among these variables, OUT.STU, OUT.PAR, 
OUT.JOB, OUT.SPO, and are selected with ν = 1, OUT.NET and OUT.VED are selected with 
ν = 2, EMOSUP is selected with ν = 3, and the rest are not selected. Among the selected variables, 
variables OUT.STU, OUT.JOB, OUT.SPO, OUT.NET, and OUT.VED have positive coefficients, 
suggesting that students with these outside-of-school activities also tended to perform better in the 
test after controlling for the rest of the variables. On the other hand, it is counter-intuitive that 
OUT.PAR and EMOSUP have negative coefficients, though the coefficient for EMOSUP is not 
statistically insignificant. This is worth future investigation.

Furthermore, the data contain variables that concern students’ perceptions or attitudes towards 
science and related topics. They include the level of enjoying cooperation (COOPER), the level of 
valuing cooperation (CPSVAL), environmental awareness (ENVAWA), environmental optimism 
(ENVOPT), epistemological beliefs about science (EPIST), enjoyment of science (JOYSCI), instru
mental motivation (INSTSC), science self-efficacy (SCIEEF), and interest in broad science topics 
(INTBRS). All these variables are continuous. They are all selected. Specifically, INTBRS is se
lected with ν = 2, and the rest are selected with ν = 1. The correlation between CPSVAL and 
COOPER is 0.45. It is interesting that CPSVAL has a negative coefficient, suggesting that control
ling for the other variables, students who more appreciate the value of cooperation and teamwork 
tended to perform worse in the test. In contrast, COOPER has a positive coefficient, implying that 
controlling for the other variables, students who enjoy cooperation and teamwork tended to per
form better. Variables ENVAWA and ENVOPT have a correlation −0.14. Interestingly, 
ENVAWA has a positive coefficient, and ENVOPT has a negative coefficient. Moreover, 
INSTSC, which measures students’ perception that studying science in school is useful to their fu
ture lives and careers, has a negative coefficient. It seems slightly counter-intuitive. However, such 
a result is possible, given that variables like JOYSCI and INTBRS have been included in the regres
sion model (correlation between INSTSC and JOYSCI is 0.34 and correlation between INSTSC 
and INTBRS is 0.24). It may be explained by a mediation model in Figure 6, where INSTSC 
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has positive direct effects on JOYSCI and INTBRS, both of which further have positive effects on 
students’ science achievement. However, given JOYSCI and INTBRS, the direct effect of INSTSC 
on science achievement is negative, possibly due to that INSTSC also brings pressure and stress to 
students when they learn science.

Finally, science achievement may also be related to other psychological factors. Specifically, the 
current analysis considers students’ test anxiety level (ANXTES), sense of belonging to school 
(BELONG), expected education level (EISCED), expected occupational status (EISEIO), and mo
tivation to achieve (MOTIVA), all of which are continuous except that EISCED is ordinal. All 
these variables are selected with ν = 1, except for MOTIVA, which is not selected even when 
ν = 3. For most of these variables, the signs of the estimated coefficients are consistent with our 
intuition. Specifically, ANXTES has a negative coefficient, suggesting a higher level of test anxiety 
is associated with poorer performance, controlling for the rest of the variables. EISCED and 
EISEIO have positive coefficients, which suggests that higher anticipation of the future is associ
ated with high science achievement. However, it is less intuitive that BELONG has a negative co
efficient, which may be due to not accounting for the school effect.

7 Discussions
In this article, we considered identifying non-cognitive predictors of students’ academic perform
ance based on complex data from ILSAs that involve many missing values, mixed data types, and 
measurement errors. This problem can naturally be formulated as a variable selection problem. 
However, existing statistical methods are not applicable due to the complex data structure. For 
instance, variable selection methods for linear regression do not solve the current problem due 
to that (a) the response variable—students’ academic achievement—is not directly observable 
but measured by cognitive items and (b) there are many missing values in the predictors. We ad
dressed these challenges by proposing a new model which combines a latent regression model and 
a Gaussian copula model. Furthermore, we proposed a derandomised knockoff method under a 
general latent variable model framework which includes the proposed latent regression model 
as a special case. This method tackles the multiple comparison issues of variable selection by con
trolling the PFER, a familywise error rate for variable selection. Theoretical properties of the pro
posed method were established. We focused on an application to PISA 2015 data, with the 
response variable being students’ proficiency in the science domain. This analysis involved 
5,685 students, 184 science items, and 62 non-cognitive variables that are of mixed types and con
tain many missing values. To our best knowledge, this is the first variable selection study of ILSAs 
that involves a dataset as large as the current one. With PFER level set to be ν = 1, 2, 3, the pro
posed procedure selected 36, 45, and 48 variables, respectively. The model selection results are 
sensible, and signs of the parameter estimates for most of the selected variables are consistent 
with our intuition. The variable selection and parameter estimation results were examined from 
the perspectives of family socioeconomic status, school attending behaviours, teacher-related fac
tors, science course resources and choices at school, out-of-school activities, perception and atti
tude towards science and related topics, and other psychological factors. These results provided 
insights into non-cognitive factors that are likely associated with students’ science achievement, 
which can be useful to educators, policymakers, and other stakeholders.

The current analysis has several limitations that will be addressed in future research. First, the cur
rent application only considers the US sample and the science domain in PISA. It is of interest to inves
tigate how the result of model selection varies across countries and knowledge domains. In particular, 
we expect the selection results to be substantially different across different countries due to cultural and 

Figure 6. A hypothetical path diagram for INSTSC, JOYSCI, INTBRS, and science achievement.
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socio-economic differences. In addition, the non-null predictors for different knowledge domains may 
also differ, which can suggest tailored education strategies for different domains. Second, it is also of 
interest to extend the current analysis to other ILSAs, such as the TIMSS and PIRLS, to see how the 
results change with slightly different test designs and different student age groups.

The proposed method may be very useful for the scaling and reporting of ILSAs. First, the vari
able selection results establish a pathway between students’ achievement in each subject domain 
and its possible influencing factors/causes. These results provide evidence that assists educators, 
policymakers, and related stakeholders to make informed education decisions. Second, it may im
prove the scaling methodology of ILSAs. Currently, a latent regression model is used in most ILSAs 
to estimate the performance distributions of populations (e.g. countries). This model, which is 
similar to the latent regression model in the current study, borrows information from non- 
cognitive background variables to compensate for the shortage of cognitive information. 
However, unlike the current model, the latent regression model adopted in ILSAs does not directly 
regress on the background variables. Instead, it first conducts a PCA step to reduce the background 
variables’ dimensionality and then incorporates the derived PCA scores as predictors in latent re
gression. This approach is often criticised for lacking interpretability, as the principal components 
often lack substantive meanings. Instead of performing PCA, we recommend reducing the dimen
sionality of the background variables by variable selection and then fitting the latent regression 
model with the selected predictors. With the theoretical guarantee of our variable selection method 
and by reporting the selected variables, the estimation and reporting of performance distributions 
become more transparent and interpretable.

While we focus on an application to ILSAs, the proposed method also receives many other 
applications. For example, the method can also be used to identify neural determinants of vis
ual short-term memory and to identify demographic correlates of psycho-pathological traits 
(Jacobucci et al., 2019). Moreover, the proposed Gaussian copula model can be used with other 
regression models, such as linear and generalised linear regression models, for solving estimation 
and variable selection problems involving massive missing data and mixed types of variables. It 
is thus widely applicable to real-world problems involving missing data, which are commonly en
countered in the social sciences, such as social surveys, marketing, and public health.

From the methodological perspective, there are several directions worth future development and 
investigation. First, the current model fails to account for possible multilevel structures in the data; 
for example, students are nested within schools. From the analysis of PISA data, the signs of some 
estimated coefficients are not consistent with our intuition, which is likely due to not accounting for 
the school effect. Therefore, we believe that it is important to extend the current model by introdu
cing random effects to model multilevel structures. New computation methods need to be devel
oped accordingly. Second, the current analysis requires a relatively strong condition on data 
missingness, which is weaker than MCAR but stronger than MAR. In social science, data may often 
be missing not at random. In that case, one may simultaneously model the complete data distribu
tion and the missing data mechanism (e.g. Kuha et al., 2018). Such a joint model can be incorpo
rated into the current analysis framework for generating knockoffs and further controlling variable 
selection errors. Third, the knockoff method may be coupled with the multiple imputation method 
for missing data analysis, as the knockoff variables can naturally be viewed as missing data. Thus, 
one may extend the state-of-the-art multiple imputation methods (Liu et al., 2014; Van Buuren, 
2018) to simultaneously impute missing data and knockoff copies and then use the imputed data 
for solving the variable selection problem. Finally, this article focuses on the PFER as the perform
ance metric for variable selection. Other performance metrics may be explored, such as false discov
ery rate and k family-wise error rate, which may be more sensible in other applications. Making use 
of recent developments on knockoff methods (Ren & Barber, 2022; Ren et al., 2023), we believe 
that it is not difficult to extend the current method to these error metrics.
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