


pink boxes represent image patches with significant down-

ward bias in their logit scores. In these patches, the pixels

that actually belong to roads have an average logit score of

≈ 0.2. Meanwhile, the cyan boxes represent image patches

with significant upward bias in their logit scores. The lines

shown inside those boxes have an average logit score of

≈ 0.7. Having significant amounts of non-road pixels with

higher logit scores than actual road pixels is problematic –

binarization will produce final predictions with many false

negatives in the pink boxes and false positives in the cyan

boxes. This type of spatial bias in logit maps is not specific

to CoANet – it is a consistent trend for all segmentation net-

works we have tried. Meanwhile, the second column shows

how our proposed PatchRefineNet (PRN) has removed the

spatial biases.

Clearly, to handle spatial biases, the logit maps in dif-

ferent image patches should be handled differently (instead

of being binarized in the same exact way). One naive ap-

proach is to allow each image patch to have its own thresh-

old, and to have a neural network trained to predict what

that patch-specific threshold should be (e.g., if it believes

that logits are biased upward in an image patch, it can set

a higher threshold for that patch). However, such an ap-

proach has an important shortcoming – it is too rigid. Even

inside an image patch, there could be spatial variation in

the bias. For example, in an image patch that is generally

biased upwards, there will be many clusters of pixels with

upwardly-biased logit scores, but there can still be clusters

with downward biases or almost no biases. Binarizing such

a patch with a single threshold can often result in clusters of

false negatives/positives.

To address this problem, we propose PatchRefineNet

(PRN). One takes any segmentation network as a base and

puts PRN on top of it (the input to PRN is the logit map

produced by the base network). PRN learns the spatial bi-

ases of the base network and then adjusts the logit score

of each pixel to compensate. PRN uses two learning sig-

nals during training. The first is the ground truth labeling

of each pixel. The second is a novel learning signal from

a set of “pseudo-labels” designed as follows: (1) for each

image patch in a training image, one first finds an optimal

threshold for binarizing that patch; (2) then one uses these

patch-specific thresholds to binarize each patch. The result-

ing binarization of each pixel is the pseudo-label for that

pixel. Intuitively, these pseudo-labels train PRN to detect

the overall bias in a patch, while the ground truth learning

signal trains PRN to detect the exceptions (e.g., clusters of

pixels with a downward bias inside a patch that is generally

upward-biased).

In order to learn about spatial biases in the base net-

work, PRN splits an input logit map into k disjoint patches.

There is a global branch that processes the entire logit

map, which helps PRN understand the relationships be-

tween patches. There is also a local branch that processes

individual patches (to learn about local properties/biases in

a patch). Both branches produce logit maps which are then

averaged (resulting in the “final” logit map) and then thresh-

olded at 0.5 (for final binarized predictions).

Why don’t existing networks automatically correct their

own biases by training with the ground truth? We conjec-

ture this is because in their training, the loss at a pixel-only

level depends on the label and prediction for the pixel, hence

the networks are not very good at noticing general trends in

their errors for clusters of pixels. On the other hand, the

pseudo-labels used by PRN during training reflect collec-

tive trends in bias in different patches.

We train PRN separately from the base network for sev-

eral reasons. The first reason is that if a trained base network

already exists (e.g., a state-of-the-art from prior work), then

this reduces resource (e.g., electricity) consumption com-

pared to retraining everything from scratch. The next rea-

son is that once the base network is fixed, its logit maps for

each training image won’t change. Hence PRN can avoid

expensive re-computation of the pseudo-labels it needs. Fi-

nally, the learning signal from the novel pseudo-labels used

by PRN does not have a meaningful derivative with respect

to the weights of the base network – the pseudo-labels are

0/1-valued numbers computed from the logit map of the

base network; therefore the derivative with respect to the

weights of the base network is either 0 or the delta func-

tion and hence does not work well with stochastic gradient

descent-style optimization.

To summarize, our main contributions are:

• We propose PatchRefineNet (PRN), a post-processing

network that sits on top of a base segmentation model and

learns to correct its spatial biases.

• PRN uses a novel learning signal that is computed from

binarizing each patch separately and optimally.

• PRN complements virtually any binary segmentation net-

work. In our experiments across different base models,

PRN consistently improves the mean Intersection over

Union (mIoU) [53] and mean Boundary Accuracy (mBA)

[9] by 2-3% over the base networks and hence there is

good reason to believe that it can help future state-of-the-

art networks improve their performance.

• We also explain how PRN can be extended to saliency de-

tection, few-shot segmentation, and multi-class segmen-

tation.

2. Related Work

Semantic Segmentation Architectures. Previous methods

for semantic segmentation [28, 32, 41, 43, 45, 69, 72] have

been successful in extracting contextual information with

wide fields-of-view [4, 6, 17, 24, 44] along with FCN’s [40]

bottom-up approach for better segmentation quality. This

includes feature pyramid methods [10, 19, 22, 39] that spa-
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Lps uses the pseudo-labels for the ground truth and can

be written as a sum: Lps = Lfocal +Lboundary , where

Lfocal is known as the focal loss [35] and Lboundary is

known as the boundary loss [69]. Both focal and bound-

ary loss are standard in image segmentation, however we

use the pseudo-labels, generated for patch-size parameter

P , in place of the ground truth in the computation of the

losses. Focal loss [35] is a variation of binary cross-entropy

loss that introduces a parameter γ (tuned using the same 100

DeepGlobe images as α in Equation 1). For a pixel i, let ci
be the output of the branch for that pixel (i.e., a logit value)

and let ỹi be the pseudo-label. Then

Lfocal = −

∑

i : ỹi=1

(1− ci)
γ log(ci)−

∑

i : ỹi=0

c
γ
i log(1− ci)

Boundary loss [69] is designed to improve predictions at

boundary pixels. It is computed as follows. Let C be the

matrix corresponding to the logit map output by a branch.

The squashed Laplace operator [69] applied to C is:

abs(tanh(conv(C,K)) where k =
(

0 1 0
1 −4 1

0 1 0

)

The boundary loss Lboundary [69] is the defined as the bi-

nary cross entropy between the squashed Laplace operator

applied to C and the squashed Laplace operator applied to

the target labels, which in our case are the pseudo-labels.

3.4. Extension to Multi­Class Segmentation

In this section, we explain how this technique could

be extended to multiclass semantic segmentation with m
classes. The output at each pixel, instead of being a sin-

gle logit, is now a m-dimensional vector produced by the

softmax activation. If we let x⃗i denote the pre-activation at

pixel i, then the output at the pixel is softmax(x⃗i).

The pseudo-label for a pixel becomes a m-dimensional

one-hot encoding vector. During training it can be gener-

ated as follows. Previously, the best threshold was used to

binarize each image patch. In the multiclass setting, the

threshold is replaced by a m-dimensional vector t⃗ and the

“pseudo-label class” for a pixel is chosen by the formula:

argmaxj (⃗t[j]+softmax(x⃗i)[j]) – this is the same as trans-

lating the softmax by the vector t⃗ and choosing class j if

the jth component is the largest. The pseudo-label is the

one-hot encoding of the chosen class.

The difficulty here is in choosing the optimal t⃗ for each

image patch in the training data. In the binary case, we were

only dealing with a threshold, and it was easy to try differ-

ent numbers between 0 and 1. However, this becomes inef-

ficient when searching for the optimal vector t⃗. Performing

this search efficiently is part of our future work, and our

goal in this paper is to evaluate how well PRN works in the

binary segmentation setting.

4. Experiments

In this section, we evaluate the ability of PRN to improve

the prediction of a base binary segmentation network. We

consider a variety of datasets and base networks (includ-

ing current and former state-of-the-art segmentation mod-

els) along with other postprocessing methods. Overall, PRN

consistently improves performance in mIoU by approxi-

mately 2-3% and thus is likely to help future models im-

prove their predictions as well, by reducing their spatial bi-

ases.

4.1. Datasets

We use the following four datasets for evaluation: Deep-

Globe [12] 1, Kvasir-SEG [27], DUTS [57], and FSS-1000

[32] on three types of tasks: binary segmentation (Deep-

Globe, Kvasir-SEG), saliency detection (DUTS), and few-

shot segmentation (FSS-1000).

DeepGlobe [12] is a large-scale road extraction dataset

that contains 6226 labeled images. We divide this into 4980

training images, 996 validation images, and 250 test images.

Kvasir-SEG [27] is a large-scale polyp segmentation dataset

with 1000 labeled images. DUTS [57] contains 10553 im-

ages for training and 5019 images for evaluation. We divide

these 5019 images into 4015 validation images and 1004

test images. FSS-1000 [32] contains 1000 classes with 10

images each. We divide the 1000 classes into 760 classes

for training, 192 classes for validation, and 48 classes for

testing. Each class contains 10 images out of which we use

5 images as support (labeled images to generalize from for

few-shot learning) and the other 5 as query (test images).

4.2. Evaluation Criteria

Similar to prior work in binary segmentation, we use

mean Intersection over Union [53] (mIoU) and mean

Boundary Accuracy (mBA) [9] as the evaluation metrics.

mBA, also called boundary mIoU, is a new measure pro-

posed by [9] which has a weaker bias toward large objects

than mIoU. It neither over-penalizes nor ignores errors in

small objects. Given the matrix of ground truth pixel labels

and (binarized) predicted labels, Boundary mIoU first com-

putes the set of the pixels that are within a distance d from

each contour (computed from [48]) in the ground truth and

in the predictions and then computes mIoU of these two

sets. We use d = 15 as recommended in [9]. We evaluate

the performance of PRN on Saliency detection [69] using

mean absolute error (MAE), along with mIoU and mBA.

4.3. Implementation Details

The base networks are trained according to the code and

implementation details provided in the respective papers.

1It must be noted that this is DeepGlobe Road Extraction dataset, not

DeepGlobe land cover classification dataset.
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The datasets we use are divided into training, validation,

and test sets as discussed in Sec. 4.1. The train set is used to

train the base model. The validation set is used to tune the

hyperparameters of the base model and to train PRN (the

validation set is never used for reporting). To make sure

comparisons are fair, we also try settings where the base

model include the validation data in training (Sec. 4.4.1).

The patch size used by the local branch of PRN is controlled

by the parameter P . The best choice is P = 64, which is

determined by a hyperparameter search on 100 randomly

augmented training images (see supplementary material for

additional details). This results in the local branch dividing

the input logit map into sixty-four patches of size 64 × 64.

Since the testing set was not used at all for choosing patch

size, it is appropriate to use P = 64 in the rest of our exper-

iments. Finally, the test set is used for reporting results.

Data augmentations such as random rotation, and hor-

izontal and vertical flips are used for training the models.

PRN is trained with the Adam [29] optimizer with an initial

learning rate of 8e−4, batch size of 4, and for a maximum of

300 epochs on an NVIDIA 2080 Ti GPU. The learning rate

is decreased until 5e−8. We use early stopping if its training

loss does not decrease for 10 epochs.

4.4. Ablation Experiments

We first present ablation studies using the DeepGlobe

[12] dataset and base network DLinkNet [72].

4.4.1 Role of the validation set.

Ordinarily, the base model would train on the training set

and tune hyperparameters on the validation set, which is

also used to train PRN (we emphasise that results are re-

ported on the test set only, which is disjoint from valida-

tion and train). PRN uses the validation data because this is

where the spatial bias of the base models become apparent.

This raises the question of whether it is a fair setup –

would it be better to simply add the validation data to the

base model’s training set and not use PRN? To answer this

question, we consider the following 3 cases. (A) The base

network trains on training data and tunes hyperparameters

on validation data; PRN is not used. (B): The base network

is trained using the combined training and validation data;

we use the default hyperparameters from the DLinkNet

github repository [16]; PRN is not used. (C): The base net-

work trains on training data and tunes hyperparameters on

validation data; PRN is then trained on the validation data.

The results, reported on the test set (disjoint from train and

validation) are shown in Table 1.

As we can see, reserving some data for hyper-parameter

tuning is beneficial to the base network (case A improves

upon case B). Re-using this validation set to train PRN

shows a further, significant boost (case C is by far the best).

Experiments
DeepGlobe [12] test-set

mIoU (%) mBA (%)

A: Train on train set, tune

on validation, no PRN
61.3 49.8

B: Train on train and

validation set, no PRN
59.7 48.4

C: Train on train set, tune

on validation, yes PRN
64.4 56.6

Table 1. Evaluating the role of the validation set.

This validates our proposed setup for how different parts of

the data are used.

4.4.2 Ablation study of PRN design.

We next consider an ablation study of the rest of the de-

sign of PRN, including the benefit of using of global/local

branches and a loss function based on pseudo-labels.

It is becoming increasingly common to use global and

local branches to improve segmentation quality [8, 59]. In

the case of PRN, where we want to detect and correct patch-

specific spatial biases, local branches are clearly necessary

from the design perspective. At the top of Table 2, we com-

Configuration
DeepGlobe [72] test-set

mIoU (%) mBA (%)

Base Network: D-LinkNet [12] 61.3 49.8

Ablation of network design

Global branch only 61.7↑0.4 52.3↑2.5
Local branch only 63.5↑2.2 56.1↑6.3
Local + Global (ours) 64.4↑3.1 56.6↑6.8

Ablation of total loss function

Lgt only 62.0↑0.7 52.8↑3.0
Lps only 63.8↑2.5 57.2↑7.4
Lgt + Lps (ours) 64.4↑3.1 56.6↑6.8

Ablation of Region-specific loss Lps

Lfocal only 64.0↑2.7 51.9↑2.1
Lboundary only 62.2↑0.9 55.4↑5.6
Lfocal +Lboundary (ours) 64.4↑3.1 56.6↑6.8

Table 2. Ablation results for the design of PRN (P = 64).

pare performance when PRN includes a global branch only,

local branch only, and both branches together. As expected,

the local branch is much more important than the global

branch, with roughly a 2% better mIoU and 4% better mean

boundary accuracy. Also, as expected, there is a very slight

performance boost when the global branch is added to the

local branch, as this allows PRN to incorporate wider con-

text information from the global branch.

Now, recall that the loss function in each branch is a sum

of two losses Lgt whose learning signal comes from the

ground truth and Lps which comes from our pseudo-labels.
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The middle section of Table 2 shows the results of using

only the ground truth (Lgt), only the pseudo-labels (Lps),

or both (Lgt +Lps). Again we see that the pseudo-labels

are more important than using the ground truth, probably

because the base network is already trained with the ground

truth signal, while the pseudo-labels summarize new infor-

mation about systematic biases (as explained in Sec. 3.2).

As expected, combining the two losses leads to a slight im-

provement over using pseudo-labels alone since the ground

truth does contain information not present in pseudo-labels.

Finally, the loss over pseudo-labels, which is designed to

correct patch-wise spatial biases is a mixture of focal loss

[35] and boundary loss [69]. Both are used in the literature

to improve segmentation on fine structures, with boundary

loss focusing on the boundary. As we can tell from the bot-

tom of Table 2, focal loss is better at improving mIoU while

boundary loss is better at improving mean boundary accu-

racy, which is consistent with prior work. The combination

of the two losses gives us the best of both worlds.

4.5. Performance Evaluation

4.5.1 Binary segmentation.

We next evaluate the improvement that PRN provides when

combined with a variety of state-of-the-art and former state-

of-the-art networks for binary segmentation on the Deep-

Globe 2 and Kvasir-SEG datasets. Table 3 shows that PRN

provides consistent improvement by at least 2.3% in mIoU

and 2.6% mBA on both datasets for all networks, illustrat-

ing that they all have spatial bias, which PRN addresses.

This supports the hypothesis that PRN is likely to help fu-

ture networks to further improve their performance. Fig. 4

shows qualitative examples. The first two rows come from

the DeepGlobe test set with CoANet [41] as the base net-

work; the task is to identify roads in the image. The last

two rows are from the Kvasir-SEG test data with SSFormer-

S [56] as the base; the task is to identify polyps. The first

two columns show the logit map and binarized prediction,

respectively, of the base network. The yellow boxes high-

light areas of false positives and false negatives. The next

two columns show the logit map and binarized prediction

after PRN de-biases the base networks. The last column

shows the ground truth. For example, in the first row, the

left-most yellow box identifies a region where the base net-

work missed part of a road, resulting in two disconnected

road segments; this is a negative bias in that region that PRN

fixes. In the second row, the base network predicts that the

roads have an ‘A’ shape but the cross-bar is a false positive

that gets removed by PRN. The corrections made by PRN

are more clearly visible in the last two rows.

2It must be noted that this is DeepGlobe Road Extraction dataset, not

DeepGlobe land cover classification dataset. So, the results reported can-

not be compared with papers using the latter.

DeepGlobe [12] test-set

Methods mIoU (%) mBA (%)

U-Net [54]

(+) PRN

55.8

60.9↑5.1

37.6

47.4↑9.8

DeepLabV3+ [4]

(+) PRN

59.2

61.9↑2.7

47.6

55.9↑8.3

PSPNet [68]

(+) PRN

59.8

62.4↑2.6

48.2

56.6↑8.4

D-LinkNet [72]

(+) PRN

61.3

64.4↑3.1

49.8

56.6↑6.8

GLNet [8]

(+) PRN

62.8

65.4↑2.6

52.6

57.9↑5.3

ISDNet [20]

(+) PRN

64.8

67.3↑2.5

54.8

59.2↑4.4

CoANet [41]

(+) PRN

67.9

70.6↑2.7

58.4

62.1↑3.7

Kvasir-SEG [27] test-set

U-Net [54]

(+) PRN

41.5

47.8↑6.3

38.8

46.3↑7.5

ResUnet [13]

(+) PRN

46.8

52.9↑6.1

45.7

52.5↑6.8

ResUnet++ [28]

(+) PRN

55.9

61.7↑5.8

56.8

62.9↑6.1

SSFormer-S [56]

(+) PRN

86.8

89.1↑2.3

69.7

72.3↑2.6

Table 3. How PRN helps base networks for binary segmentation.

4.5.2 Comparison with other post-processing methods

Although the literature on post-processing methods is very

sparse, DenseCRF [70] and CascadePSP [10] are two no-

table postprocessing techniques for improving binary seg-

mentation. Our first comparison, to DenseCRF, shows that

PRN is much better at improving both mIoU and mBA. Due

to space restrictions, a small subset of our results in shown

in Table 4. More extensive comparisons with DenseCRF for

all datasets can be found in the supplementary material.

DeepGlobe [12] test-set

Methods mIoU (%) mBA (%)

CoANet [41]

(+) DenseCRF [70]

(+) PRN

67.9

69.0↑1.1
70.6↑2.7

58.4

59.6↑1.2
62.1↑3.7

Table 4. Comparison to DenseCRF [70] postprocessing.

.

CascadePSP [10] is another post-processing technique

that supports several different configurations, such as num-

ber of cascade levels in the global step and different im-

age crop sizes. In Table 5, we compare PRN with Cas-

cadePSP with different configurations. As an ablation ex-
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