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Comparing the Effectiveness of PPO and its
Variants in Training AI to Play Game

Luobin Cui1, IEEE, and Ying Tang2, Senior Member, IEEE

Abstract—Automated game intelligence is a crucial step in 
rapid game development. A promising research direction for 
automated game intelligence is reinforcement learning, and 
specifically, t he p roximal p olicy o ptimization ( PPO) algorithm. 
Two variants of the PPO, Maskable PPO and Recurrent PPO, 
further extend the capabilities of the PPO. We compare the 
performance of these three algorithms in the 2D game Mario 
and a 3D car racing game environment. We also evaluate their 
performance and applicability by comparing the experimental 
results of the original algorithm authors. With our results, we 
provide recommendations on PPO configuration d epending on 
the target game type, providing future developers with a bench-
mark to help them decide which algorithm is most applicable for 
their applications.

KEYWORDS—Game AI agents, deep learning, Proximal 
Policy Optimization

I. INTRODUCTION

Game artificial i ntelligence ( AI) a nd g ame t esting p lay a
crucial role in game development. In the early days, Develop-
ers needed to manually write rules and algorithms to define
decisions and behaviors of game AIs. As game evolved, the
complexity of game AI increases, so does the development
process that requires more time and effort. Game testing faces
a similar problem, where testing efforts significantly increase
as games become more complex.

The rise of machine learning and deep learning in recent
years has brought a dramatic change to games development
and testings [1]. By using deep neural networks and reinforce-
ment learning, AI agents can learn from data and automatically
optimize their behaviors [2]. This approach not only makes
game AI smarter but also speeds up the game development
process with reduced workload.

While these techniques are straightforward to build, they
might not fit all types of games as games vary in characteristics
and genes.

In action-adventure games, players complete level chal-
lenges by controlling the game character to perform actions
such as jumping, running, and attacking. Thus, the type of
game AI with a strong ability to react quickly and navigate on
these moves is desirable. Similarly, strategy games would like

This work was supported in part by the National Science Foundation under 
Grant 1913809 and the U.S. Environmental Protection Agency under Grant 
84034701

1Luobin Cui is with the Department of Electrical and Computer 
Engineering, Rowan University, Glassboro, NJ 08028 USA. Email: 
cuiluo77@students.rowan.edu.

2Ying Tang is with the Department of Electrical and Computer Engineering 
at Rowan University, Glassboro, NJ 08028, USA; and School of Information 
Science and Technology, Dalian Maritime University, Dalian, China. Email: 
tang@rowan.edu (the corresponding author).

to build the game, AI with long-term planning and decision-
making capabilities to develop effective strategies and respond
to player actions. To achieve speed and victory in racing
games, game AI must be able to drive and navigate with the
track perception [3], Therefore, it is important and challenging
in game development to choose the most suitable machine
learning technique for game AI with respect to game types
and genres.

To tackle this challenge, this paper explores on one
of widely used algorithms for game AI–Proximal Policy
Optimization(PPO)- with the focus on two recent variants,
Maskable PPO and Recurrent PPO, Although the superiority
of Maskable PPO and Recurrent PPO over the traditional PPO
has been evaluated since their inception, these tests are limited.
For instance, Maskable PPO was only applied to a strategy
game [4]. Thus, its applicability to other types of games is
unknown. A similar situation applies to Recurrent PPO, where
it was only tested through a series of mini-games. With this
consideration, this paper fills this gap, making the following
contribution:

• An empirical study is designed to analyze the perfor-
mance of Maskable PPO and Recurrent PPO in two types
of games: action and 3D racing games. We used Mario
for the action game.

• In addition to the strength of Maskable PPO and Recur-
rent PPO, their limitations are explored. Give tasks in
action games lack of timing dependency, it is difficult for
them to take good advantages of Recurrent PPO. For the
same reason, Recurrent PPO outperforms Maskable PPO
in racing games.

• Our findings provide a valuable reference for the choice
of game AI

The rest of the paper is organized as follows. Section 2
briefly introduces the three PPO algorithms; Section 3 dis-
cusses our experiment set-up; Section 4 presents the evaluation
results, followed by our conclusion.

II. METHODOLOGY

A. Proximal Policy Optimization

The proximal policy optimization algorithm (PPO) is a
reinforcement learning algorithm proposed by Schulman et
al., 2017 [5]. The PPO algorithm is a deep reinforcement
learning algorithm based on policy gradients [6] that avoids
large policy updates that may harm performance by limiting
the deviation of new policies from old ones. The Trust Region
Policy Optimization (TRPO) [7] algorithm is a predecessor of
the PPO algorithm and uses a stricter restriction to control
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the magnitude of policy updates to ensure the stability of
learning. However, TRPO is difficult to implement and scale,
especially for discrete action spaces or auxiliary losses [8]. To
overcome these drawbacks, the PPO algorithm proposes new
objective functions and implements small batches of updates
in multiple training steps. First, the agent executes the current
strategy and uses the collected data to estimate a value function
in the strategy evaluation step. This value function is used
to calculate the dominance estimate, which represents the
advantage of an action over other actions in a given state.
Then, The strategy parameters are updated to maximize the
expected payoff. To ensure that the strategy update is not
too drastic, PPO introduces an alternative objective function
that combines the dominance of the new strategy with the
dominance of the old strategy. This approach aims to balance
the improvement of the new strategy with maintaining stability.
The objective function of PPO can be written as Eq. (1).

LPPO(θ) = Êt

[
min

(
rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At

)]
(1)

θ represents the parameter associated with the policy net-
work. The variable t denotes the specific time step under con-
sideration. The function At represents the advantage function
at time step t.rt(θ) denotes the likelihood ratio between the
new policy and the old policy at time step t, as defined by
Eq. (2).

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

πθ(at|st) represents the probability of selecting action at in
state st according to the new policy.

The objective function is designed to balance two objectives:
maximizing the expected reward and preventing the policy
from changing too much at once. The first term in the min
function encourages the policy to move in the direction of
higher advantage, while the second term restricts the size of the
policy update by clipping the likelihood ratio. The parameter
ϵ controls the degree of clipping.

In this paper, specifically, we focus on improved versions
of the PPO algorithm.

B. Maskable Proximal Policy Optimization

Maskable PPO is an improved version proposed by Huang
et al.,2020 in [4]. This algorithm improves the performance
of the PPO for continuous action control tasks by using
MAF to approximate the action probability distribution in the
continuous action space.

The objective function of the Maskable PPO is similar to
that of the PPO, but the mask parameter m is introduced in
the construction of the policy network and the value network.
Specifically, the output of the strategy network is πθ(a|s,m),
where θ denotes the parameters of the strategy network, a
denotes the action, s denotes the state, and m denotes the mask
parameter. The output of the value network is Vϕ(s,m), where
ϕ denotes the parameters of the value network. the objective
function of the Maskable PPO can be expressed as Eq. (3). (4).

L(θ, ϕ) = Et

[
min

(
X ∗AClip

t , X
)
− c1VϕY + c2H(πθY )

]
(3)

X =
πθ(at|st,mt)

πθold(at|st,mt)
, Y = (st,mt) (4)

where AClip
t is the pruned dominance function, c1 and c2

are hyperparameters, and H(πθ(st,mt)) is the entropy of the
strategy πθ(st,mt). By introducing the mask parameter m, the
Maskable PPO can share part of the neural network structure
between different tasks.

C. Recurrent Proximal Policy Optimization

The Recurrent PPO [9] is based on a variant of the PPO,
whose objective function is similar to that of the PPO, but
uses recurrent neural networks (RNNs) in the neural network
structure to process sequential data. Specifically, Recurrent
PPO uses RNN models such as LSTM to process data in
continuous state space and uses RNN to record past game
states during strategy updates to enhance the temporal and
memory capabilities of the strategy.

The key advantage of the Recurrent PPO is that by using
RNNs, it can better handle the ”temporal relationship and
continuity of game states, and can learn from past game
states to improve the generalization ability of the model. An
additional loss term is added to the objective function of the
Recurrent PPO to optimize the memory ability and sequence
prediction ability of RNNs. This gives it better performance in
handling reinforcement learning problems in continuous state
space.

III. EXPERIMENTS

The purpose of this study is to compare the performance
of the PPO, Recurrent PPO, and Maskable PPO in training
intelligent agents for playing the NES Mario game [10], and
a 3D strategy racing game. The racing game is made in the
Unity game engine. We also used ML-Agents Gym Wrapper
[11] to create the game training environment. The algorithms
are all from Stable-Baselines3 [12].

For the Mario game we conducted 12 experiments, in which
the standard and maskable PPO algorithms were trained using
two different policy networks, CNN Policy, and MLP Policy,
while the Recurrent PPO was trained using CNNLSTM policy
and MLPLSTM policy. The reason for the division into two
neural network structures, CNN and MLP, is that they each
have their advantages for different types of data and tasks.
CNN can accept two-dimensional or multidimensional shapes
of input data, and image data. CNN can efficiently process
local features in images using convolutional operations while
pooling layers can extract the spatial hierarchy of features.
MLP usually spreads the input data into one-dimensional
vectors and feeds them directly to the fully connected layer for
processing. The CNNLSTM policy and MLPLSTM policy are
based on the original one with the addition of long short-term
memory networks.
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In the default parameter experiments, we kept the algorithm
default parameters fixed and trained each of the three algo-
rithms using different policy networks. To further optimize
algorithm performance, we conducted hyperparameter opti-
mization experiments. In the optimization process, we trained
each set of parameters for 200,000 steps and tried 100 different
parameter sets. We used the Bayesian optimization algorithm
to find the best set of parameters. [13]

Each experiment ran for 10 million steps, and we focused
on evaluating the following three parameters:

• rollout/ep rew mean: Average reward is an important
indicator of the performance of a reinforcement learning
algorithm. In this experiment, this parameter will show
the performance of each algorithm in terms of average
reward at the end of each epoch, helping to evaluate the
efficiency of the algorithm.

• train/entropy loss: Entropy loss refers to the entropy
value of the current policy function, which is a balance
between determinism and randomness. The smaller the
entropy loss, the more deterministic the policy is, and
the larger the entropy loss, the more random the policy is.
In this experiment, this parameter will show the balance
between randomness and determinism in the algorithm.

• train/loss: Training loss is an important indicator of
model training performance. This parameter will show
the training loss performance of the algorithm in each
epoch. In this experiment, the training loss performance
will reflect the efficiency and stability of the algorithm
during the learning process.

In CNN Policy, we preprocessed the original game image,
converting it to grayscale, and overlaying it four times as input.
In MLP Policy, we read the original game image from memory
and processed it into state shape.

In the Racing game shown in Fig. 11, the player takes
the role of hemoglobin and drives the car through the blood
vessels. In the game, each level generates random elements
such as oxygen, lipids and cholesterol on the track. The
player’s goal is to transport oxygen and complete the task
of hemoglobin in the blood vessels. Bonus points are earned
by colliding with oxygen, which is obtained while reducing
acceleration and maximum speed. The hemoglobin zone will
cause the player to slip and make maneuvering more difficult.
Cholesterol will move around the track and if it collides with
the player, it will slow down the player’s forward speed,
requiring the player to pay attention to avoidance. The game
also sets a time limit, players need to complete the level within
the time limit while trying to get the highest possible score.

We conduct 6 experiments and will applied the MLP policy
throughout to train the entire game. For performance compari-
son, we choose a certain number of steps to test the game, and
we use 500 million (5e10) steps of the game as a benchmark
for comparison. By comparing different algorithms, we were
able to evaluate the performance of the AI in the game and
determine which algorithm was able to reach the point in the
most efficient way and achieve the highest score within the
specified number of steps. We are able to better observe and
analyze the differences in performance of different algorithms
when faced with specific tasks and constraints.

Fig. 1. Mario Mean Reward

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results

We trained Mario using three algorithms: PPO, Maskable
PPO, and Recurrent PPO and compared the performance
of each algorithm under four different parameter settings,
including the optimal and default parameters for CNN Policy
and MLP Policy.

We calculated the mean average reward of each algorithm
to evaluate the performance of the model. The experimental
results are shown in Fig.2.

In the picture, M stands for Maskable PPO, R stands for
Recurrent PPO, Opt stands for Preferred Parameters, and Def
stands for Default Parameters.

We can see that the performance of the Recurrent PPO in
the Mario game is poor, with all four curves relatively low.
This indicates that this algorithm is not suitable for this type
of game.

The Recurrent PPO is based on the recurrent neural network
(RNN) PPO, mainly used to deal with continuous action space
problems. The characteristic of RNN is that it can capture the
state and relationship of time series data, making it suitable
for tasks that require consideration of time series relationships.
However, in the Mario game, the state at each moment is
determined only by the current screen image and player
actions, without a strong time-series relationship. Moreover,
the state and action space in the Mario game are relatively
small and do not require complex models to handle. Therefore,
the Recurrent PPO may perform poorly when dealing with
this type of game, as it may introduce unnecessary time series
relationships into the model, increasing computational burden
and noise.

In addition, the Recurrent PPO also needs to deal with
longer time series data, which may lead to a more complex and
time-consuming training process, thus affecting the training
effect. The poor performance of the Recurrent PPO in the
Mario game may be due to its design features and algorithm
complexity being unsuitable for this type of game.

As shown in Fig.3, the performance of the default parame-
ters for PPO CNN Policy and Maskable PPO CNN Policy is
also poor. These results indicate that the performance of the
CNN Policy may not meet expectations in the Mario game
and that the default parameter settings cannot meet the needs
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Fig. 2. Mario Mean Reward

Fig. 3. Mario CNN Policy Mean Reward

of the game. The CNN Policy is usually used to process visual
information, such as image or video data. In the Mario game,
the input for each state is a screen image, and the screen image
of the Mario game is relatively small and does not change
dramatically. Therefore, in this case, using CNN for feature
extraction and processing may be too complex, leading to a
decrease in model performance. Generally, better results were
obtained after optimizing the parameters for MLP Policy.

Fig. 4. Mario MLP Policy Mean Reward

As shown in Fig.4, we compared the performance of the
MLP Policy policy with default parameters and optimized
parameters after 10 million steps. Surprisingly, the optimized
parameters performed worse than the default parameters in
terms of average score rate, but outperformed the default
parameters in terms of the highest score. This result may
be due to the optimized parameters causing the model to
focus more on achieving the highest score, at the expense
of the average score. It’s worth noting that the highest score
may be a relatively difficult goal to achieve in the game,
while the average score better reflects the model’s overall
performance throughout the game. The optimized parameters
also performed better than the default parameters in terms of
value loss, as shown in Fig.6. This indicates that the optimized
parameter model is better able to accurately predict the state
value function, thereby improving model stability and training
effectiveness.

Optimized parameters are likely to focus more on long-
term results. To improve the performance of the agent, it is
usually necessary to balance the trade-off between exploration
and exploitation. Under default parameters, the MLP Policy
policy may be more inclined to exploitation to achieve faster
score rates, but after long-term training, overfitting may occur,
resulting in the agent being unable to adapt well to new states.
Under optimized parameters, the MLP Policy policy may
focus more on exploration and learning new strategies, thus
achieving better long-term performance. This also explains
why the optimized parameters perform better in terms of
the highest score because they are better able to explore
the environment and find better strategies. In order to better

Fig. 5. Mario Entropy Loss

observe the results, both Fig.5. and Fig.6. have been smoothed.
Based on Fig.5., it can be seen that in each algorithm, as the
number of training steps increases, the entropy loss gradually
decreases and stabilizes at a low value. This indicates that
as the model learns and optimizes, the model’s confidence
in the current policy increases, thereby reducing the need for
exploratory behavior, i.e., the entropy of exploratory behavior
decreases. In both CNN Policy and MLP Policy, the entropy
loss under optimized parameters is lower than that under
default parameters, indicating that the model under optimized
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parameters is more confident and has less exploratory behav-
ior, making the model more stable.

Fig. 6. Mario Value Loss

In the 3d strategy racing game, we will focus mainly
on the mean reward. As shown in Fig.7. With parameter
defaults, both improved algorithms outperformed the original
PPO, suggesting that they can be trained and optimized more
efficiently in some respects. However, when hyperparameter
preferences were performed, surprisingly, Maskable PPO did
not outperform the original PPO. This may imply that in
some environments or tasks, the masking operation does not
yield significant performance gains. This finding emphasizes
the need to take into account the variability of different
environments and tasks when designing improved algorithms.

On the other hand, Recurrent PPO performs well with both
parameter settings and achieves the highest scores early on.
This suggests that the use of recurrent neural networks can
better capture sequence information in tasks with long-term
dependencies, which is more advantageous in games with
simple scene repetition, thus improving the performance of
the algorithm.

Fig. 7. 3d Strategy Racing Mean Reward

B. Analysis

The experimental results show that Recurrent PPO performs
poorly in the Mario game, but excels in the racing game. In

contrast, Maskable PPO outperformed PPO when training the
Mario game with complex operations, but did not show better
performance than regular PPO in the relatively simple racing
game.

The original authors of Maskable PPO compared Maskable
PPO and PPO in microRTS (a strategy game) and found
that Maskable PPO showed excellent performance in that
game. Although the two game types, game mechanics and
perspectives are not identical, they share similarities in op-
erational complexity and redundant information. Therefore,
when training game intelligence, choosing Maskable PPO can
speed up the progress of game training when faced with game
content redundancy.

The original authors of Recurrent PPO compared Recurrent
PPO with PPO in MuJoCo (a simulated physics environment
for things like robot walking and robot arms moving objects)
and CarRacing (a top-down racing game). again, Recurrent
PPO showed excellent performance. These games all share
a feature of individual game intelligence learning, involving
both physics simulation and driving behavior. In the 3D
strategy racing game tested, the learning actions through the
history of the intelligence contributed to the subsequent driving
performance. It can be seen that LSTM policies have better
performance in learning skill games.

Moreover, it is observed that the PPO with default param-
eters hardly produces good results under the CNN policy.
However, by optimizing the parameters, the performance of
the PPO significantly improves and even exceeds the scoring
rate of the MLP policy. This indicates that the parameters have
an important impact on the performance of the CNN strategy.

V. CONCLUSION

This paper compares the performance of three reinforce-
ment learning algorithms, namely PPO, Maskable PPO, and
Recurrent PPO, in training the 2D game ”Mario” and the 3D
strategy racing game. Maskable PPO performs well in both
games and outperforms the original algorithm. Recurrent PPO
performs better in the racing game than Maskable PPO, while
it performs poorly in the Mario game and fails to capture long-
term dependencies. The appropriate choice of PPO should be
based on the operational complexity and scene complexity of
the game. Given that Recurrent PPO consumes a significant
amount of memory, it is recommended that Maskable PPO
be preferred to achieve prompt training results. This study
provides valuable data and insights for algorithm selection in
the field of game AI development, as well as game testing. We
believe that these algorithms will find broader applications in
the future and hope that this research will contribute to further
advancements in this field.
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