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Abstract

This work presents a novel approach to synthesize approx-
imate circuits for the ansatze of variational quantum algo-
rithms (VQA) and demonstrates its effectiveness in the con-
text of solving integer linear programming (ILP) problems.
Synthesis is generalized to produce parametric circuits in
close approximation of the original circuit and to do so off-

line. This removes synthesis from the (online) critical path
between repeated quantum circuit executions of VQA. We
hypothesize that this approach will yield novel high fidelity
results beyond those discovered by the baseline without syn-
thesis. Simulation and real device experiments complement
the baseline in finding correct results in many cases where
the baseline fails to find any and do so with on average 32%
fewer CNOTs in circuits.

1 Introduction

Variational quantum algorithms (VQAs) [11, 14] are a promis-
ing approach to solve relevant quantum chemistry [6, 14]
and optimization problems algorithmically [4] on quantum
computers. A VQA comprises a classical loop that repeatedly
executes a parameterized quantum kernel alternating with
classical optimization on the kernel’s output to identify new
parameters to consider.

VQAs, like other quantum algorithms, are limited in prac-
tice on contemporary hardware due to their sensitivity to
noise, such as stray particles striking the system and dis-
rupting the quantum state and leading to decoherence. The
longer a program runs, the more susceptible it is to noise and
to producing erroneous output. Because quantum comput-
ers typically observe higher error rates for two-qubit gates
than for single-qubit gates, quantum algorithms are best
expressed with circuits using as few two-qubit gates as possi-
ble. This constrains their application to the modeling of only
small molecular systems or small optimization problems in
terms of both ansatz and problem Hamiltonians.
Circuit-synthesis approaches [2, 19, 21, 22] can find

shorter circuits with fewer two-qubit gates that approxi-
mately implement a given Hamiltonian, but circuit synthesis
is a very time-consuming process. Synthesis, in essence, is
a nonlinear optimization problem that aims to approximate
a given fixed circuit, not a generalized parametric circuit.
Because VQAs are iterative and use different parameters

(single-qubit rotation angles) each iteration, invoking cir-
cuit synthesis on a per-iteration basis would dominate any
performance gains from the use of a quantum computer.

The state of the art in integrating VQAwith circuit synthe-
sis requires parameter optimization and circuit generation to
be applied in series [2, 13]: After the VQA parameters are op-
timized, an approximation is synthesized with an objective
of reducing both the depth of the synthesized circuit and the
number of two-qubit gates. This procedure repeats for each
iteration, and the synthesized circuit is discarded after each
iteration. Therefore, the major questions we ask are: 1. If syn-
thesis across iterations were to reveal a common pattern for
the ansatz, how could such knowledge be exploited? 2. Can
this common pattern be found after a handful of iterations
and result in fewer CNOTs (and therefore less susceptible to
noise) circuits than naive gate replacement/substitution rules
without incurring the cost of synthesis at every iteration?

This work develops a novel approach for VQAs with the
ability to produce circuits with fewer CNOTs than naive
gate replacement rules and by attempting to find and ex-
ploit a new QAOA ansatz pattern across iterations without
incurring the cost of synthesis at every iteration. By exploit-
ing synthesis, a latent parametric structure of the ansatz is
sought. This parametric ansatz is instantiated at run time
with low cost overhead between VQA iterations, effectively
taking synthesis out of the run-time loop. This makes it feasi-
ble to dedicate a quantum device to a VQA execution across
all iterations, as both classical optimization and ansatz instan-
tiation impose low overheads as opposed to circuit synthesis.

Our work demonstrates the feasibility of such an approach
by offline synthesis of approximate and parametric circuits
for the ansatz of VQA. The proposed approach is imple-
mented in the context of an existing quantum-programming
framework, NchooseK [20]. Experiments assess our ap-
proach’s effectiveness in simulation with and without noise
and also on physical quantum devices. Our work makes the
following contributions: 1. Circuit synthesis is generalized
to produce parametric circuits in close approximation of the
original circuit. 2. Synthesis is performed offline, and the
resulting circuit replaces the QAOA ansatz, removing it from
the critical path. 3. Simulation and real device experiments re-
sult in novel results beyond those discovered by the baseline
without synthesis, i.e., our approach produces valid solutions
when the baseline could not. 4. These benefits reduce CNOT
counts by up to 45% with an average reduction of 32%.
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2 Background

For brevity, we omit much of the basics of the gate model
of quantum computing introduced by Deutsch [3] and in-
clude only some of the most relevant pieces to this work.
Please reference the cited works for additional details on the
ommitted basics.

2.1 Quantum Computing Basics

A single-qubit gate is encoded as a 2×2 matrix. In its most
general form it can be represented as a continuous function
of three parameters:
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For example, the Hadamard gate is represented by
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Two-qubit gates are encoded as 4×4 matrices. For example,
the controlled-NOT (CNOT) gate flips the target qubit iff the
control qubit has value |1〉. CNOT has the following unitary
representation:

CNOT =
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In short, a quantum program inputting and outputting =
qubits can be represented by a single 2=×2= complex matrix.
The power of a quantum computer is that it does not need
to store nearly that much data.
A practical challenge is how to express a quantum pro-

gram or subroutine in terms of single- and two-qubit gates,
typically drawn from a hardware-specific set. Ideally, this
decomposition should require as few time steps and as few
two-qubit gates as possible. Although finding an optimal
decomposition is NP-hard, Sec. 2.4 discusses heuristics for
producing “good enough” quantum circuits.

2.2 Quantum Approximate Optimization Algorithm

The quantum approximate optimization algorithm (QAOA)
is a VQA that attempts to solve combinatorial problems and
was first proposed by Farhi, Goldstone, and Gutmann [4].
QAOA seeks optimal parameters {V,W} (each in turn a list
of ? values) for which some unitary U(V,W) can be applied
to an initial state to arrive at a final state that encodes the
optimal solution.

This is achieved by decomposingU(V,W) into two indepen-
dent unitary matrices, U(V) = 4−8VHB and U(W) = 48WHp . The
problem Hamiltonian, H% , implements a cost function whose
minimum is sought. Themixing Hamiltonian, H� , represents
a transition from one set of possible function-minimizing
states to another such set.

The goal is to find V andW parameters that minimize the ex-
pectation value 〈k (V,W) |H% |k (V,W)〉 (notation clarification:

〈q | ≡ |q〉†). The approach is to sample 〈k (V,W) |H% |k (V,W)〉
repeatedly on a quantum computer, then run a classical opti-
mizer such as COBYLA [15] on the samples to propose new
{V,W} values that are more likely to minimize the expecta-
tion value. The whole process repeats for a target number
or iterations or until some convergence criterion is met. The
QAOA loop is depicted as the blue flow in Fig. 2.

2.3 Quadratic Unconstrained Binary Optimization

One NP-hard problem that is well-suited to QAOA solution
is the quadratic unconstrained binary optimization (QUBO)
problem:

Minimize
G∈B=

G)&G , (4)

where & ∈ R=×= and G is an =-dimensional binary vector,
which maps conveniently to a quantum state. That is, G
can be replaced with |G〉 in the objective function to yield
〈G |& |G〉

2.4 Circuit Synthesis

Recall that quantum transformations (gates or entire circuits)
acting on = qubits can be represented as a unitary matrix
U ∈ C#×# with # = 2= . Circuit synthesis aims to find a
decomposition of U into small, unitary operators (typically 1-
and 2-qubit gates) that, once appropriately combined, result
in a circuit encoding the same transformation as U. Many
synthesis algorithms have been proposed [2, 13, 21, 22], each
making different trade-offs among metrics such as execution
time, circuit depth, 2-qubit gate count, and fidelity to the
input circuit.
Synthesis methods use norm-based distance metrics to

assess the similarity of U to its computed replacement U′;
the methods stop when the distance becomes sufficiently
small. The distance metric can be as simple as ‖U − U′‖ ≤ n
for some tolerance n . However, more recent approaches, such
as QUEST [13] and most algorithms included in BQSKit [22],
tend to use the Hilbert-Schmidt (HS) distance (Eq. (5)) as a
stopping criterion. This distance is induced by the HS inner-
product (Eq. (6)).

Δ(U,U′) = HSdist (U,U′) =

√
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)
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In general, the task of synthesis has exponential complex-
ity in the number of qubits. This is remedied by partitioning
the circuit into disjoint sub-circuits of capped width. These
partitions (or blocks), once recombined, encode the same
original circuit, as illustrated by Fig. 1. With partitioning,
replacements for each block can be synthesized separately
(and concurrently) and then stitched together to approximate
the whole circuit. This process reduces computation time at
the expense of reduced accuracy. If each block is Δ = Y8 then
the total error of the full circuit is bounded above by the sum
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each iteration can be expressed as 〈k |& |k 〉 (the expected
value of the circuit outputs). However, sincek collapses upon
measurement we approximate it by averaging over manyk
realizations (simulator or hardware shots). The generated
circuit, together with the objective function to encode the
problem Hamiltonian, serve as inputs to the baseline QAOA
as well as our methods as described in Algorithms 1 and 2.

We create a customized synthesis workflowwithin BQSKit
to control exactly how the synthesis is performed. This work-
flow is described by Algorithm 3. The algorithm first uses

Algorithm 3:

Implementation of Instantiation Algorithm

Given an NchooseK environment, generate initial
parameterized circuit and associate objective

Ψ← ∅
repeat

Bind parameters to Qiskit circuit

Convert circuit to BQSKit

Attempt to instantiate existing template
if template exists AND instantiation within error

bound then

Use the template

else
Use BQSKit to synthesize a new template
circuit using CNOT and U3 gates

Convert template to Qiskit

Ψ← Ψ ∪ template circuit

Compute expected value of simulated counts

Classically improve initial parameters

until COBYLA optimizer terminates

Heuristically selectkopt from Ψ

Classically optimize expected value ofkopt (U) to find

optimal U
Output: Optimal circuit (fixed parameters)

BQSKit’s QuickPartitioner to create the blocks necessary for
improving synthesis time. This partitions the circuit by iterat-
ing over all gates and binning them together in a topological
order [22]. Then, for each of these partitions the algorithm
performs a pass of QSearch synthesis [2] followed by a gate-
removal pass. In the gate removal pass, a gate is removed if
the circuit can be instantiated within Δ = 10−10 of its initial
state. Finally, the blocks are reconstructed into a full cir-
cuit with an “Unfold” pass. Additionally, prior to all of these
passes, the algorithm employs a “Set Random Seed” pass to
fix a random seed over all randomizers within any of the
passes to ensure reproducibility. This also increases the like-
lihood that structurally identical subcircuits are generated
that differ only by rotational angles. All other operations use
existing functions provided by Qiskit and BQSkit.

5 Framework

In experiments to compare our parametric synthesis ap-
proachwith non-parametric non-synthesis NchooseK/QAOA
circuits, we utilize a subset of the benchmarks from Wilson
et al. [20]. During experiments, the objective is to generate
circuits that return valid solutions to these problems (both
graph-based and satisfiability problems) with high proba-
bility using each of the three aforementioned approaches
(baseline QAOA and Algorithms 1 and 2).

To this end, a number of input graphs are generated for
solving respective graph problems. These graphs are gener-
ated using three vertices in fully connected subgraphs. As
more of these subgraphs are added, at least two edges are
added to connect the new subgraph to the exiting graph. In
this way, we can generate graphs with vertices in any multi-
ple of three and use them to create NchooseK environments
for maximum cut (max cut) and minimum vertex cover (min
vert cover) as specific test cases.

For maximum cut, we aim to produce a partition of the
vertices such that we maximize the number of edges between
the partitions. This is accomplished in NchooseK by encod-
ing soft constraints such that adjacent vertices should be in
unique sets. The solution is a partition that maximizes the
satisfaction of the number of soft constraints.

For minimum vertex cover, we aim to produce the smallest
set of vertices for which the set of all edges incident to these
vertices includes all edges within the graph. This is encoded
within NchooseK as a hard constraint that one or both ver-
tices incident to each edge are selected. An additional soft
constraint searches for the minimum subset of vertices that
satisfies all hard constraints.
For both graph algorithms, each vertex in a graph cor-

responds to a qubit in the generated graph, and each edge
constraint corresponds to a two-qubit interaction within the
circuit.

Further, we consider a modified form of the 3-SAT satisfia-
bility benchmarks also used in NchooseK. Namely, we create
3-SAT problems over a set of variables, which we vary in
size from 3 to 7. From these variables, we generate 3-SAT
constraints by randomly selecting 3 variables and assigning a
negation to each of them with a probability of 0.5. Therefore,
the qubit counts in these problems do not scale as directly
as they did for the graph-based problems. For example, it is
possible for the problem with 3 variables to have 9 qubits:
one for each of the non-negated variables, one for each of the
negated variables, and an ancilla for each constraint. By lim-
iting the size of these problems, we ensure that the problems
can fit on the target quantum computer.

Using this framework, we generate problems ranging from
3 to 21 qubits and compare the solution sets generated by our
algorithms to the solutions generated byMicrosoft’s classical
Z3 theorem prover [18]. However, we do not compare these
results directly as Z3 provides only a single solution while
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number of CNOTs. At low qubit counts, our methods per-
form on par with the baseline. Beyond that, the benefits
of our approach become clearer for circuits of larger qubit
count, where we can see up to a 45% reduction in CNOT gate
count and an average reduction of 32%.

Discussion: We believe that the absence of correct so-
lutions at larger numbers of qubits stems from two main
sources. First, at this scale we introduced enough partitions
through synthesis that the compounding errors from each
block may become significant as the number of qubits is
increased. This effect compounds further when using repeti-
tions of the synthesized ansatz in place of the standard QAOA
ansatz and, unfortunately, seems to counteract any gains that
may have been achieved by reducing CNOT counts. Prior
works [2, 13] benchmark their synthesis approaches with
some QAOA circuits, but neither use a QAOA circuit larger
than 10 qubits so they have not established any precedent
in terms of the scalability limitations of the baseline QAOA.
Furthermore, since each of our approaches seeks to improve
upon QAOA results by synthesizing approximations, it is
reasonable to expect that if neither baseline QAOA yields
valid solutions, nor will approximations of it especially when
using a local search optimizer. In other words, when QAOA
is close to a correct solution, our approach can improve upon
it even further.

7 Related Work

7.1 Synthesis Methods

Our work relies on BQSKit [22] for circuit synthesis. Prior
approaches using BQSKit exhibit a number of objectives.
QUEST tries to reduce the CNOT gate count during synthe-
sis to reduce noise [13]. QSearch [2] iterates over generated
synthetic circuits using heuristics and the HS metric com-
bined with subcircuit partitioning via QFAST. An algorithm
for parameterized circuit instantiation is used to reduce noise
in an optimization and gate-set retargeting approach [21].
Heuristics for reducing the number of CNOTs and consider-
ing topologies to avoid swaps are utilized via A* search for
synthesis [1]. These instantiation and retargeting methods
differ from our work in that we aim to find parametric cir-
cuits in an iterative manner, which removes synthesis from
the critical path within VQA methods.

7.2 Circuit Parameterization

Previous works [7, e.g.] promote parameterized compilation
techniques without the use of synthesis. Their techniques
focus on reducing compilation time beyond the existing opti-
mization levels available in Qiskit. Our work expands on this
by introducing synthesis as the parameterization technique
rather than manipulating the compiled (hardware ready)
circuit.
Precompilation techniques [17] use a template that they

adapt to a particular problem type and subsequently to a

particular problem instance. Our templates are not formed
as generic catch-alls for problem types, but rather are specif-
ically generated for each instance via circuit synthesis.

7.3 NchooseK

NchooseK [12, 20] was designed to provide a domain-specific
language to easily specify problems that can then be solved
on classical computers, quantum annealers, and circuit-based
quantum computers. It is based on the idea that a wide vari-
ety of constraints can be formulated as “ of these# Boolean
values must be true”. NchooseK enables the user to access the
power of quantum computers solely through the expression
of classical constraints. It relies on a QAOA-based quantum
solver, but in the form used in the experiments it returns
only the single most likely solution. Our work expands on
NchooseK to focus on the generation of a circuit that re-
sults in a high probability for potentially multiple optimal
solutions and very low probability for suboptimal solutions.

7.4 Other QAOA-based Work

The prevailing issue in QAOA is appropriate selection of the
parameters. Some work [5, 9] considers ways to improve
the formulation of the QAOA ansatz by iteratively fixing
parameters or by introducing additional angles to optimize
the ansatz. Their aim is to exploit structure as a means of
improving performance. Other work explores gradient-free
optimizers, which can handle the additional difficulties that
come with the presence of noise and the requirement of a
“black-box” evaluation of objective functions [8].

Work is being done to improve the performance of QAOA
algorithms on hardware [10, 19]. The focus here is on op-
timal ways to map these problems onto hardware, namely
by reducing the number of swaps necessary to execute the
circuit while increasing parallelism.

Our work is orthogonal to these approaches as it concerns
efficient QAOA circuit synthesis to improve noise resiliency
while removing synthesis from the critical path between
successive job executions of VQA methods.

8 Conclusions

We introduced and surveyed the current state of VQA ap-
proaches before presenting two novel circuit synthesis-based
algorithms for producing quantum circuits that increase
the probability of finding problem solutions. We show that
these algorithms can be applied in the context of QAOA and
confirm their viability over traditional QAOA. Generally, if
QAOA finds a solution, our algorithms increase the likeli-
hood of identifying either a better solution or an alternative
one. Sometimes, our methods find solutions when baseline
QAOA does not. Other times, our methods complement base-
line QAOA with additional solutions. These results are all
obtained with reduction in CNOT gate counts compared to
the baseline when transpiled to the same gate set.
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