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Abstract
Based on polymer scaling theory and numerical evidence, Orlandini, Tesi, Janse
van Rensburg and Whittington conjectured in 1996 that the limiting entropy of
knot-type K lattice polygons is the same as that for unknot polygons, and that
the entropic critical exponent increases by one for each prime knot in the knot
decomposition of K. This Knot Entropy (KE) conjecture is consistent with the
idea that for unconfined polymers, knots occur in a localized way (the knotted
part is relatively small compared to polymer length). For full confinement (to a
sphere or box), numerical evidence suggests that knots are much less localized.
Numerical evidence for nanochannel or tube confinement is mixed, depending
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on how the size of a knot is measured. Here we outline the proof that the KE
conjecture holds for polygons in the∞× 2× 1 lattice tube and show that knot-
ting is localized when a connected-sum measure of knot size is used. Similar
results are established for linked polygons. This is the first model for which the
knot entropy conjecture has been proved.

Keywords: lattice polymer, knot localization, self-avoiding polygon,
lattice link, DNA topology, lattice tube, nanochannel

1. Introduction

Interest in knotting and linking in ring polymers dates back to at least the 1930s, when genet-
icists Navashin and McClintock observed circular chromosomes linked by DNA replication
[32, 35]. In 1962, Frisch and Wasserman [25] and Delbrück and Fuller [17] conjectured that
sufficiently long ring polymers in dilute solution are knotted with high probability. The first
proof of the Frisch–Wasserman–Delbrück (FWD) conjecture was for a lattice polygon model
of ring polymers [40, 51]. The conjecture was later proved for a number of off-lattice polymer
models [19–21, 29]. More recently, the probability of knotting has been explored for models
of knot diagrams [13, 24, 55].

With the FWD conjecture proved, interest turned to studying the statistics for specific knot-
types. Studies of statistics of knotted polygons and entropic arguments [37] have led polymer
physicists to believe that the most likely configurations have the knotted components highly
localized in the chain [39], somewhat like pearls on a long string. In the simple cubic lattice,
where polygons have vertices in Z3 and edges of unit length, studying knot entropy involves
studying the number pn(K) of n-edge polygons with fixed knot-type K and its dependence
on K as n→∞. From the knot localization hypothesis, polymer scaling theory and numerical
evidence, Orlandini, Tesi, Janse van Rensburg andWhittington stated the following 1996 Knot
Entropy (KE) conjecture for lattice polygons.

Knot Entropy Conjecture ([36, 37]). For any given knot-type K, as n→∞, pn(K) satisfies
the asymptotic equation

pn (K) = BKn
fKpn (01)(1+ o(1)) , (1)

where 01 is the unknot, fK denotes the number of prime knot factors in the knot decomposition
of K and f01 ≡ 0. Moreover,

pn (01) = A01n
α01µn01 (1+ o(1)) , (2)

where α01 is called the unknot entropic critical exponent and µ01 is called the unknot expo-
nential growth constant. κ01 = logµ01 is the limiting entropy per monomer for the unknot and
is also called the unknot growth rate. BK, A01 and µ01 are potentially lattice-dependent.

Despite strong numerical evidence in support of this conjecture [37, 42], very little has
been proved analytically. For the simple cubic lattice Z3, it is known that the limit defining
µ01 exists and that µ01 < µ [51], where µ denotes the exponential growth constant for all n-
edge self-avoiding lattice polygons, regardless of knot-type. However existence of α01 and of
exponential growth constants for K ̸= 01 remain open problems. Establishing the validity of
the KE Conjecture, along with a result similar to (2) for all n-edge polygons regardless of
knot-type, would imply that the probability of a random n-edge polygon having knot-type K
scales with n like CK(

µ01
µ )nnσ+fK , for σ independent of K.
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Figure 1. Top: a schematic of a typical long narrow polygon with knot-type 31#31.
Bottom: a schematic of a connected sum of two Hopf links. In each, the ‘knotted parts’
or ‘linked parts’ (shaded) are highly localized compared to the length (or span) of the
whole embedding.

Experiments of DNA packing or DNA in nanochannels have motivated interest in the knot
and link statistics of polymers under confinement [2, 41]. Confinement conditions which have
been modelled include: ‘full’ confinement as in a sphere or capsid; restricting only two dir-
ections as in a nanochannel or tube; and restricting only one direction as in a slab [33, 38].
Numerical evidence for spherical confinement suggests that knots are much less localized than
for unconfined polymers [18]. However, an off-lattice study for tube confinement [34] at small
tube diameters was less conclusive. The occurrence of factors in composite knots followed a
Poisson distribution, consistent with the knot probability scaling formCK(

µ01
µ )nnσ+fK and with

knot localization, however large knot-sizes measured by arc-length appeared inconsistent with
knot localization. Recent lattice tube results for a connected-sum measure of knot-size show
however that the arc-length results of [34] are consistent with knot localization [6] (see figure 1
for a schematic). Numerical studies of the lattice tube model also led to the supposition that the
KE Conjecture holds for lattice tube polygons [8]. In this letter we give an outline of our recent
proof of the KE Conjecture for the smallest tube that admits non-trivial knots; the full details
of the proof are available at [9] and will be published separately. Here, we aim to highlight the
general ingredients of the proof and its consequences.

Lattice tube models have proved to be useful for modelling polymers under confinement
since the 1970s [27, 54].We focus on tubular sublattices of the simple cubic lattice. These have
been studied previously in various contexts [1, 3–8, 22, 44, 45, 48]. Unless stated otherwise, the
notation and definitions used here are as in [7]. For positive integersM1,M2, the semi-infinite
sublattice of Z3 induced by the vertex set {(x,y,z) ∈ Z3 : x⩾ 0,0⩽ y⩽M1,0⩽ z⩽M2} is
called the M1 ×M2 tube and denoted by TM1,M2 ≡ T.

We are interested in embeddings of simple closed curves, lattice links, in T and restrict to
those which occupy at least one edge in the plane x= 0. A lattice polygon or lattice knot is
a one component lattice link. We define pT,n(L) to be the number of n-edge embeddings of a
non-split link type L in T. We do not consider split links L, i.e. two or more separable simple
closed curves, since their n-edge embedding counts are not finite. For generalT, little is known
about pT,n(L) when L ̸= 01. However, in [28] there is a characterization of the link types for
which pT,n(L)> 0 for some n and it is shown that T∗ = T2,1 is the smallest tube that admits
non-trivial links. The links in T∗ are all 4-plats or connected sums of 4-plats. Figure 2(A)
illustrates a knotted polygon in T∗. Even though T∗ is narrow, polygons in T∗ are physically
relevant for modelling DNA in nanochannels.T∗’s dimensions (2× 1) are on the same order as
a polygon’s Kuhn length [6, 8] and thus comparable to channel sizes in DNA experiments [16].
Importantly all prime knots with 7 or fewer crossings and the majority for up to 9 crossings
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Figure 2. (A) Upper bound example. A 98-edge polygon of knot-type 31 (trefoil) in T∗.
The insert (E) enclosed in a 3-block is a 4-braid containing a half twist of 2 strings.When
inserted in (A) at the identified location, the 3-block converts the 31 into an unknot. (B) A
shifted knot diagram obtained from a 2-dimensional projection of the polygon in (A).
(C) The 4-plat diagram associated with the 31 polygon in (A). (D) A 4-plat diagram of
an unknot obtained by inserting a half twist at the location indicated with a dotted line
in (B) and in (C). (E) A lattice tube embedding of the corresponding half twist from
(D). (F) Lower bound example. An unknot polygon with eight 2-sections. (G) A trefoil
pattern enclosed in a 7-block which, when inserted at either of the 2-sections indicated
by arrows, yields a trefoil polygon in T∗. Note that the trefoil pattern could be modified
at its ends to be inserted at any of the other 2-sections of the original polygon.

can occur in T∗ since they are all 4-plats. The family of 4-plats includes all twist knots and the
T(2,n) torus links—knot and link types that are often observed in DNA experiments [52].

To prove the KE Conjecture for polygons in T∗, we prove upper and lower bounds on
pT∗,n(K) of the form in (1), differing only by a constant factor. We also establish similar results
for non-split links with two or more components in T∗. Since a knot is a 1-component non-
split link, from here on we will only distinguish between knots and multi-component non-split
links if necessary, or to connect to the KE Conjecture. The main result is as follows.

Theorem 1. Let L be any non-split link embeddable in the 2× 1 tube T∗. There exist positive
constants ϵ ∈ (0,1),bL ∈ R,dL ∈ Z,eL ∈ Z (independent of n) and an integer NL,ϵ > 0 such
that for any n⩾ NL,ϵ, there are bounds on pT∗,n(L) as follows:

1
2

(
⌊ϵ(n− eL)⌋

fL

)
pT∗,n−eL (01)⩽ pT∗,n (L)⩽ bL

(
n
fL

)
pT∗,n+dL (01) , (3)

where fL is the number of prime link factors in L. Also, there exist C1, C2 > 0 such that for all
sufficiently large n

C1n
fLpT∗,n (01)⩽ pT∗,n (L)⩽ C2n

fLpT∗,n (01) . (4)

4



J. Phys. A: Math. Theor. 57 (2024) 38LT01

When L=K is a knot embeddable in T∗, (4) gives (1) of the KE Conjecture, up to the term
BK. More generally, for any link L, the bounds of theorem 1 establish these important con-
sequences: the exponential growth constant for embeddings of L in T∗ is the same as that for
unknot polygons (as in (2) of the KE Conjecture), and the entropic critical exponent increases
by one for each prime factor of L. The latter assumes that the unknot entropic exponent αT∗,01
exists. Regarding (2), the exponential growth constant, µT∗,01 = limn→∞(pT∗,n(01))1/n, for
unknot polygons in T∗ is known to exist and the FWD conjecture holds [44]. The existence of
αT∗,01 remains an open problem, however there is strong numerical evidence that αT∗,01 = 0
[8, 23].

Our results about the exponential growth constants and entropic critical exponents for lattice
polygons with fixed knot-type are believed to hold for any tube size [8, 23], as well as in the
limit where the tube dimensions go to infinity (see [37, 42]). This is the first model for which
they are proven. For multi-component non-split links, the growth constant result is known for
embeddings in Z3 of links with only unknot components [46]. Theorem 1 for T∗ yields the
first results on the growth constants for all multi-component non-split links, and for how the
entropic exponent changes with the link-type. Numerical evidence for multi-component non-
split link embeddings in Z3 suggests that the results in theorem 1 also hold for the unconfined
case [10].

This letter is devoted to outlining the proof of theorem 1 and its connection to theKE conjec-
ture. The bounds in theorem 1 (3) are each obtained by considering ways to convert an embed-
ding of one link-type into an embedding of another link-type by insertions of sub-embeddings.
The mathematical challenges and approaches for the upper bound are quite distinct from those
for the lower bound. For the upper bound, the goal is to convert a non-trivial link L in T∗ to
an unknot polygon as indicated in figures 2(A)–(E). The mathematical challenge for the upper
bound is finding appropriate sub-embeddings (braid blocks) to insert at specific insertion loc-
ations in order to simplify the link. We solve this by using the classification of 4-plats [11, 43]
and by proving new results about 4-plat diagrams (see theorem 3). For the lower bound, the
goal is to convert an unknot polygon to an embedding of a non-trivial link L, as indicated by
the insertion in figures 2(F) and (G). A known result [6], given here in proposition 2, provides
suitable candidate sub-embeddings, called link patterns, which can be inserted at predefined
locations (2-sections) to obtain an embedding of L. However, the lower bounds of (3) and (4)
require that not only it be possible to insert the suitable link patterns, but that on average there
must be many locations (i.e. O(n)) where this can be done. In theorem 5 we prove this result
by establishing a pattern theorem for unknot polygons in T∗.

The braid blocks and link patterns needed for the upper and lower bound arguments respect-
ively are each different types of lattice link blocks, where a block is a piece of a lattice link
between two half-integer constant x-planes. The span of a lattice link or any associated block
is the absolute difference between its smallest and largest x-coordinates. An s-block is a block
with span s. We say a lattice link has a j-section at a half-integer x-plane if the plane intersects
exactly j edges of the lattice link.

Additional definitions and an overview of the upper and lower bound arguments leading
to (3) of theorem 1 are given in sections 2 and 3, respectively. Arguments needed to obtain (4)
of theorem 1, consequences related to the size of the linked region and the broader impact of
all these results are discussed in section 4. We also discuss the challenges to extending the
arguments to larger tubes. Detailed proofs will be published separately [9].

5
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2. Upper bound in theorem 1: new knot theory and unknotting by braid-block
insertion

To establish the upper bound (3) of theorem 1, in this section we outline how to transition
between an embedding of a non-split link L in T∗ and a corresponding set of 4-plat diagrams,
one for each prime factor of L. The ultimate goal is to ‘unknot’ the embedding by a sequence
of fL insertions of braid blocks, where a braid block (braid s-block) is defined to be a block
(s-block) that corresponds to a 4-braid. This goal is achieved via the following theorem.

Theorem 2. Any lattice embedding of a non-split link L in T∗ can be converted to a lattice
polygon of the unknot in T∗ by fL insertions of braid s-blocks. The span (s) is bounded above
by 3c+ 8, where c is the maximum crossing number of the prime factors of L.

The crossing number of a link L is a topological invariant given by the minimal number
of crossings over all its diagrams. Importantly, the span s of the braid blocks in theorem 2 is
determined by the crossing numbers of the prime factors of L and does not depend on the size
of the lattice embedding of L. Figure 2(A) illustrates the theorem for a trefoil (crossing number
3) polygon in T∗ with n= 98 edges, along with an embedding of a braid 3-block (figure 2(E))
that, upon insertion at the identified location, converts the trefoil to an unknot polygon.

From theorem 2, the upper bound (3) of theorem 1 is obtained as follows. Using theorem 2,
we can insert a finite number of braid s-blocks to change an embedding of L into an unknot
polygon. Then pT∗,n(L)⩽

(n+dL
fL

)
pT∗,n+dL(01), where dL is a fixed number (the total number of

edges in the inserted parts) that is bounded above by a finite multiple of fL. The binomial term
in the upper bound accounts for the number of ways different embeddings of L could lead to
the same unknot polygon; this is bounded above by the number of places (polygon edges) the
inserted fL braid blocks could be located in the unknot polygon, namely

(n+dL
fL

)
. We then have(n+dL

fL

)
⩽ bL

(n
fL

)
for any constant bL > 1, for n sufficiently large.

To establish theorem 2, we obtain several intermediate results. We establish a way to go
between embeddings inT∗ and 4-plat diagrams. This first involves obtaining a shifted diagram
from the embedding, as described in [28, Definition 3] and illustrated in figure 2(B). We also
establish how to convert a 4-plat diagram of a link L into a diagram of the unknot by inserting
a braid word (theorem 3 below). We then use arguments as in [28] to construct an s-block
corresponding to any 4-braid word. Finally, the proof of theorem 3 indicates where to insert
the s-blocks and unknot an embedding of L in T∗. The proofs are outlined next.

A 4-braid can be defined as four disjoint strings in a rectangular cuboid, where the strings
start at four points in the left (x= 0) face of the cuboid and end at four points in the opposite
(right) face. Each string is required to run strictly rightwards, i.e. for any c the string meets the
plane x= c at most once. The 4-braid is studied using a 4-braid diagram obtained by projecting
the braid onto the xy-plane and resolving over and under crossings. A 4-braid diagram with no
crossings is said to be trivial. Any 4-braid, except the trivial one, can be obtained by joining
elementary braids σ1,σ2,σ3,σ

−1
1 ,σ−1

2 and σ−1
3 (see figure 3). A sequence of the letters σ±1

i ,
called a 4-braid word, represents a 4-braid and its corresponding 4-braid diagram. The empty
word with no letters represents the trivial braid. The sequence of letters used for a braid word
is written in simple exponential form, e.g. σai or σ−a

i . Two 4-braids are equivalent if they
are related by ‘level preserving’ isotopies, but they may be represented by different 4-braid
diagrams and braid words. In particular, we consider that a reducible word, σai σ

−b
i or σ−b

i σai
(a,b ∈ N), is different from the reduced one, σa−bi .

Given a 4-braid word w, its reverse word w is obtained by reversing the order of the ele-
mentary braids in w. The inverse word w−1 of w is obtained by reversing the order of letters

6
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Figure 3. Elementary braids.

Figure 4. Insertions of w0 = σ1σ
2
2 and ŵ0 = σ2σ

2
1 on 4-plat diagrams for the 9 crossing

4-plat 910. Unknot diagrams are obtained by these insertions.

and interchanging σi and σ−1
i . For example, (σ1σ2σ

−2
3 )−1 = σ2

3σ
−1
2 σ−1

1 . Note that the words
ww−1 and w−1w represent braids that are equivalent to the trivial braid. By convention, a 4-
braid word that does not contain any σ±1

3 is called a 3-braid word since one string in the braid
diagram has no crossings. The flipped word ŵ of a 3-braid wordw is obtained by interchanging
the 1’s and 2’s in the subscripts of the elementary braids in w.

To prove theorem 2 we establish that any 4-plat diagram can be changed into a diagram of
the unknot by inserting a specific 4-braid.

Theorem 3. For any 4-plat L, there exists a 3-braid word w0 such that any given 4-plat dia-
gram of L can be converted into a diagram of the unknot by inserting one of w0,w0, ŵ0 and
ŵ0. Moreover, w0 can be taken so that the number of crossings of w0 is at most the crossing
number of L.

In the case of the knot 910, w0 = σ1σ
2
2 satisfies the condition in theorem 3. Namely, any

given 4-plat diagram of 910 can be converted into a diagram of the unknot by inserting either
w0 = σ1σ

2
2 , w0 = σ2

2σ1, ŵ0 = σ2σ
2
1 or ŵ0 = σ2

1σ2. See figure 4. For a given link type L, there
can be many options for w0.

A key element of the proof of theorem 3 is the definition of seven types of 4-plat diagram
moves, and the proof that they preserve link-type. We then focus on a minimal-crossing 4-plat
diagram, D0, of L and find an inserting 3-braid word w0 of theorem 3. There is always one
choice for w0 that can be obtained from the inverse word for D0 (with its length bounded by
the number of crossings in L), however, shorter choices can exist as in figure 4.

The remaining proof of theorem 3 consists of showing that the cases for all other (minimal
and nonminimal-crossing) 4-plat diagramsD can be handled by deforming them toD0 using 4-
plat diagrammoves that reduce or preserve the crossing number.We get the following theorem.

Theorem 4. Suppose D and D0 are 4-plat diagrams of L, and D0 is a minimal-crossing dia-
gram. If a link K is obtained by inserting a 3-braid word w0 into D0, then K can be obtained
from D by inserting one of w0,w0, ŵ0 and ŵ0.

7
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Theorem 3 is obtained by takingK to be the unknot in theorem 4. The following proposition
allows us to connect theorem 3 to theorem 2.

Proposition 1. Let w0 be a 3-braid word with c crossings. There is a span-3c braid block in
T∗ representing w0. Moreover, for each type of 4-section there is a braid block in T∗ with span
at most 3c+ 8 that represents w0 and can be inserted into the 4-section.

The proof of proposition 1 is constructive and uses similar arguments to those of [28]. This
proposition allows us to connect theorem 3 to theorem 2 provided that we are able to associate
4-plat diagrams to lattice embeddings. For the latter, we determine sufficient conditions for the
shifted diagram of an embedding of prime link L in T∗ to be a 4-plat diagram. We then show
that we can divide an embedding of any link L into a sequence of separate link embeddings, one
for each prime factor of L, and each with an associated 4-plat diagram. The resulting diagrams
allow for the direct identification of the insertion points for the braid blocks of proposition 1
into the original embedding of L.

3. Lower bound in theorem 1: a pattern theorem for unknots in T∗ and link
pattern insertion

We start with some definitions and review of known results. A connected sum pattern is a
lattice link block that starts and ends at a 2-section. Such a pattern is called a link pattern if
closing off each end of the pattern yields a non-trivial non-split link. Otherwise it is called an
unknot pattern. See figure 2(G) for an example of a link pattern for a 31 knot in T∗ with span
7. By definition, if a lattice embedding of L has a link pattern, then the corresponding link type
is a connected summand of L. Arguments in [6] establish the following results for any T.

Proposition 2 ([6, result 4]). For each link L embeddable in T, there is a link-pattern of L.

Figures 2(F) and (G) illustrate how a 31 link pattern can be inserted at a 2-section of an
unknot polygon to form a 31 polygon. An unknot polygon with at least one 2-section can be
decomposed into the connected sum of two unknots, allowing for the ‘insertion’ of any link
pattern (see figure 2(G)).

Proposition 3 ([28, corollary 2]). If a link type L can be embedded in T∗ then each prime
factor of L is a 4-plat. Furthermore, there is an embedding of L in T∗ which consists of a
connected sum of fL link-patterns, one corresponding to each prime factor of L.

Corollary 1. Consider a link L embeddable in T∗. Any unknot polygon with at least one 2-
section can be converted to an embedding of L by fL insertions of link-patterns at one or more
of the 2-sections of the polygon.

For the lower bound of (3) in theorem 1, we need to know that most unknot polygons
contain a sufficient number of 2-sections. We do this by establishing a pattern theorem for
unknot polygons using information from exact transfer-matrix calculations for polygons in
the tube T∗. In essence, a pattern theorem is a result stating that a particular type of lattice
object (polygon, walk, tree, etc), as its size n gets large, typically contains many copies of a
small piece (a pattern).

Pattern theorems have been used previously, for example, to prove the FWD conjecture for
polygons in tubes [4, 44] and to study linking probabilities for the case of two polygons which
span a tube [3]. Theorem 5 below can be understood as a pattern theorem for unknot polygons
in T∗. In particular this theorem establishes that for n sufficiently large, all but exponentially

8
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few n-edge unknot polygons (unknots in T∗) contain a density (ϵn) of 2-sections. Since an
unknot pattern can be inserted at any of these 2-sections, a pattern theorem results.

Theorem 5. Let pT∗,n(01,⩽k) be the number of unknots of length n in T∗ which contain at
most k 2-sections. Then there exists an ϵ> 0 such that

limsup
n→∞

1
n
logpT∗,n (01,⩽ϵn)< logµT∗,01 , (5)

where n is even and µT∗,01 is the unknot growth constant.

Theorem 5 is key to establishing the lower bound of (3). For this, consider L a prime link. Let
P be a connected sum pattern for L and let S be any 2-section. Then from corollary 1, P can be
inserted (additional edges may be needed) at S in a polygon (see for example figure 2(G)),
increasing the length of the resulting embedding by some constant ∆ depending on P
(but not S).

Now take any unknot polygon with n edges and at least ϵn 2-sections, with ϵ the same as in
theorem 5. By the above, the pattern P can be inserted at any one of those 2-sections, and the
resulting lattice embedding will have link type L. We thus have(

ϵn
1

)
[pT∗,n (01)− pT∗,n (01,⩽ ϵn)]⩽ pT∗,n+∆ (L) . (6)

However, from theorem 5 we have

lim
n→∞

pT∗,n (01)− pT∗,n (01,⩽ ϵn)
pT∗,n (01)

= 1 (7)

so that the numerator can be made arbitrarily close to the denominator for sufficiently large n.
Hence, for example, there exists N> 0 such that for all n⩾ N, 1

2

(
ϵn
1

)
pT∗,n(01)⩽ pT∗,n+∆(L).

This argument can be extended in a straightforward way to the case where L is composite
(see corollary 1) and the lower bound of (3) follows. Furthermore, taking L= 01 in the above
argument implies that all but exponentially few n-edge unknots in T∗ contain a density of
any given unknot pattern, and hence the first proof of a pattern theorem for unknot polygons
results.

As outlined below, we prove theorem 5 by establishing two intermediate results and then
combining them.

• Unknots with no 2-sections are exponentially rare:
Define pT∗,n to be the total (regardless of knot-type) number of n-edge polygons in T∗ with
at least one edge in the plane x= 0. It will be convenient to refer to logarithms of growth
constants. Given any growth constant such as µT∗ = limn→∞(pT∗,n)

1/n or µT∗,01 , we define
a corresponding growth rate, κT∗ ≡ logµT∗ or κT∗(01)≡ logµT∗,01 .
The key result here is that

κ̂T∗ (01)< κT∗ (01) , (8)

where κ̂T∗(01) (respectively κ̂T∗) is the growth rate of unknot polygons (respectively all
polygons) with no 2-sections. We show this by computationally proving two inequalities:
κ̂T∗ < 0.446287 and κT∗(01)⩾ 0.620044. The first of these follows by computing the trans-
fer matrix for polygons with no 2-sections and then deriving a bound on its spectral radius;
the second follows by computing the number of unknots of length 24 in T∗ (which happens
to be 119 796 593) and then using this to derive a lower bound on the growth rate.
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• 2-sections can be removed from unknots:
The main result here is that there exists a positive constant E such that

pT∗,n (01,⩽k) =
k∑
t=0

pT∗,n (01, t)⩽
k∑
t=0

2t
( n

2

t

)
pT∗,n+Et (01,0) . (9)

This follows by taking any unknot polygon with t 2-sections, breaking it apart at each 2-
section, and then joining all the pieces back together in a way that results in an unknot poly-
gon with no 2-sections and Et more edges. The factor 2t

( n
2
t

)
accounts for possible ambiguity

when reversing the process.
• Combining (8) and (9) to prove theorem 5:
Equation (5) of theorem 5 essentially follows by setting k= ϵn in (9) and taking n→∞.
Using Stirling’s approximation this gives

limsup
n→∞

1
n
logpT∗,n (01,⩽ϵn)⩽−ϵ logϵ−

(
1
2
− ϵ

)
log(1− 2ϵ)+ (1+ ϵE) κ̂T∗(01). (10)

The bound (8) is then used as a bound on the right hand side for ϵ> 0 small.

4. Consequences and discussion

In this section we highlight some of the consequences of theorem 1 and its proof and present
a general discussion of the results.

First, the arguments in sections 2 and 3 establish (3) of theorem 1. (4) can be obtained

from (3) by combining the well-known fact that lim
n→∞

log(anb )
logn = b with a new ratio limit result:

lim
n→∞

pT∗,n+m (01)
pT∗,n (01)

= (µT∗,01)
m
, (11)

for any given even m⩾ 2. The ratio limit (11) follows from the pattern theorem for unknot
polygons and arguments from [31].

More generally, combining arguments similar to those for lattice clusters in [31] with the
results of theorem 1 yields a general pattern theorem for the occurrence of unknot patterns in
embeddings of any non-split link L. This pattern theorem and the proof of theorem 1 provide
several ways to clarify the connection between the knot entropy results and the localization of
knots in polymers.

To measure knot/link localization, a measure of the size (number of edges) of the entangled
region and its comparison to the size of the whole embedding are needed. Several differ-
ent approaches have been suggested for defining the size of the knotted region in polygons
(e.g. [33]). A natural definition of this size for an n-edge embedding E with link-type L in a
tube is as follows [6]. First divide E at each 2-section to create a set of patterns which can each
be closed off into embeddings of links. Up to fL of the resulting embeddings will be non-trivial
links and the sizes of these non-trivial pieces can be summed to give the size of the linked part
of E. To talk about how localized the linked part is, one considers a set of n-edge embeddings
and then considers how the average size of the linked part grows as n→∞. If the size of the
linked part is o(n), then L is said to be ‘localized’ in the embeddings. Otherwise it is said to
be ‘not localized’. Further, if the size of the linked part is O(1), then L is said to be ‘strongly
localized’ in the embeddings.

10
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The general pattern theorem for embeddings of a non-split link L implies that all but expo-
nentially few n-edge embeddings of L contain a density (ϵn) of 2-sections. Dividing an embed-
ding with ϵn 2-sections into connected sum patterns, yields patterns with average size 1/ϵ.
Thus one expects the link patterns in this to have, on average, a similar size and hence be
O(1), i.e. strongly localized. Also, the upper bound proof of theorem 1 establishes that one can
unknot a link by the insertion of fL O(1)-size braid blocks. Therefore, in some sense the ‘essen-
tial’ parts of the link can be removed by making O(1) changes, another indication of strong
localization. Other connections between theorem 1 and knot localization will be explored in a
separate publication.

It is expected that bounds of the form in theorem 1 (4) hold for any tube size and in the limit
as the tube dimensions go to infinity, i.e. for Z3 [10, 37, 42]. Since (by arguments analogous
to those in [27, 47]) µ01 = limM→∞µTM,M,01 , proof of such bounds for arbitrary tubes could
lead to results for the unconfined case. Here we have outlined new strategies for both the
upper and lower bound results. Although these strategies do not immediately generalize to all
tube sizes, they provide promising new directions. Our proofs also identify some fundamental
mathematical challenges that remain. For example, the upper bound arguments do not easily
extend to a 3× 1 tube since the extra configurational freedom means that obtaining a 4-plat
diagram from an embedding of a 4-plat link will require additional combinatorial analysis.
For the lower bound, the challenge for extending to larger tubes is two-fold, both limited by
available computational resources. Firstly, the transfer-matrix for polygons in the tube would
be needed (these have been computed for tube sizes up to 5× 1 and 3× 2 [23]). Secondly,
an accurate count of unknot polygons up to a sufficiently large size is needed; in general this
involves generating polygons and checking their knot-type.

Modelling knotting and linking in tubes is of independent interest to scientists working at
the interface of polymer science and molecular biology. Recent experimental studies report on
the detection of complex DNA knots using nanopore sensors [30, 41]. These methods allow
researchers to detect knotting at length scales one order of magnitude larger than traditional gel
electrophoresis [49, 53], where the limit on knot and link type detection is in the 103 base pair
range [12, 14, 15, 26]. Experimental results have sparked interest in computational modelling
of DNA knot translocation through narrow channels (e.g. [50]; reviewed in [38]). The 2×
1 tube studied here gives a theoretical framework to study knotting and linking in narrow
channels. Our results provide a robust theoretical justification that knots and links confined to
narrow tubular regions tend on average to have the entanglements localized and separated from
each other in the tube. Indeed, the results for T∗ establish that knot factors occur as though
they were distributed binomially along an unknot polygon; this is consistent with the Poisson
distribution observed for a variety of tube sizes in the off-lattice model of [34].
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