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Abstract

This study investigates the properties of symmetric and asymmetric nuclear matter using the relativistic Brueckner–
Hartree–Fock formalism, examining both zero and finite temperatures up to 70MeV. Employing the full Dirac
space, we incorporate three Bonn potentials (A, B, and C), which account for meson masses, coupling strengths,
cutoff parameters, and form factors. The calculated properties of asymmetric nuclear matter form the basis for
constructing equation-of-state (EOS) models tailored for neutron stars. These models, in turn, enable the
computation of bulk properties for nonrotating, uniformly rotating, and differentially rotating neutron stars.
Notably, the EOS models studied in this paper are sufficiently versatile to accommodate the mass of the most
massive neutron star ever detected, PSR J0952–0607, estimated to be 2.35± 0.17Me. Furthermore, they yield
masses and radii for PSR J0030+451 that align with the confidence intervals established for this pulsar.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Compact objects (288); Nuclear astrophysics (1129)

1. Introduction

There is a particular interest in the fields of nuclear and
astrophysics to learn and model the equation of state (EOS) of
nuclear matter under extreme conditions. For superdense
nuclear matter, far beyond its saturation point, this knowledge
is paramount to the study of neutron stars whose core densities
can reach an order of magnitude higher than saturation density.
However, the unique internal conditions within a neutron star
are well beyond the reach of our terrestrial laboratories, namely
due to the extreme densities exhibited in the inner regions of
the star and because the matter is highly isospin-asymmetric
(N≠ Z; Blaschke & Chamel 2018; Lattimer 2019). Some
experimental constraints on neutron star matter have come from
ultra-relativistic heavy-ion collisions as conducted at the
RHIC (Müller & Nagle 2006), the LHC (Aad et al. 2008),
and FAIR (Spiller & Franchetti 2006), which probe the nature
of hot, symmetric nuclear matter (ANM). Extremely neutron-
rich matter has more recently been probed in studies of neutron
skin or giant monopole and dipole resonances, but these studies
are limited in nature (Roca-Maza et al. 2011). Unfortunately,
these experiments currently lack the temperature and density
constraints present within the core of a neutron star, meaning
the dense matter encountered within a neutron star cannot yet
be replicated by experiment. Other promising avenues to
constraining the knowledge of the EOS of neutron star matter
come from multimessenger astronomy; vital constraints have
come from telescopes like the Neutron Star Interior Composi-
tion Explorer (NICER; Gendreau et al. 2012) and NASA’s
Chandra Observatory (Garmire et al. 2003), or, more recently,
from the gravitational-wave observatories LIGO (Aasi et al.
2015) and Advanced Virgo (Acernese et al. 2014).

The EOS of dense neutron star matter can be solved
theoretically using different nuclear many-body theories which
broadly fall into two categories: phenomenological or ab initio.
Phenomenological models, based on density functional theories

with effective nucleon–nucleon (NN) interactions, are con-
structed to reproduce the empirical saturation properties of
finite nuclei and symmetric nuclear matter (SNM). In contrast
to the effective NN interactions used in phenomenological
models, ab initio methods employ realistic free-space NN
interactions, which are then applied to a nuclear many-body
system (see, e.g., Weber 1999; Baldo et al. 2010; Dutra et al.
2012, 2014; Spinella & Weber 2020; Sedrakian et al. 2022,
2023, and references therein.). The parameters of the NN
interactions are determined by scattering data of free nucleons
and the properties of the deuteron. These interactions are
characterized by a repulsive core at short distances, a strong
attraction in an intermediate range, and are predominantly
influenced by one-pion exchange at large distances.
Most ab initio calculations are constructed in a nonrelativis-

tic framework, which can simulate the saturation behavior of
SNM using high-precision, realistic NN potentials (Wang et al.
2020). To reproduce the saturation properties of nuclear matter,
nonrelativistic calculations must include the three-body force,
which makes calculations to extend the theory to heavier nuclei
very difficult. On the other hand, relativistic ab initio methods,
like the relativistic Brueckner–Hartree–Fock (RBHF) approx-
imation, can more closely reproduce empirical data than
nonrelativistic calculation; a two-body realistic NN potential
as a repulsive contribution obtained from the relativistic effect
negates the need to include the three-body force (Wang et al.
2021). Solving the nuclear many-body problem in a relativistic
framework is considerably more tedious (both theoretically and
numerically) than nonrelativistic methods. Because of this,
studies carried out using the RBHF approximation have
historically been relatively rare in the literature. However,
there is a growing body demonstrating that variations of the
RBHF approximation are successful in reproducing the
empirical saturation properties of SNM and finite nuclei,
including the works of ter Haar & Malfliet (1986), Poschenrie-
der & Weigel (1988), Brockmann & Machleidt (1990), Huber
et al. (1995), van Dalen et al. (2007), Shen et al. (2017), Tong
et al. (2018), Ring et al. (2021), and Tong et al. (2022).
The vast majority of EOS models for neutron star matter,

especially those calculated using a relativistic framework like
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the RBHF approximation, are done at zero temperature.
However, finite-temperature EOS models are vital to under-
standing various astrophysical phenomena like core-collapse
supernovae, binary neutron star mergers, and proto-neutron
stars, as shown in the works of Moustakidis & Panos (2009),
Oertel et al. (2017), Carbone & Schwenk (2019), Chesler et al.
(2019), Schneider et al. (2019), Koliogiannis & Moustakidis
(2021), Wei et al. (2021), and Laskos-Patkos et al. (2022). In
this work, we extend the RBHF approximation in full Dirac
space to finite temperatures. For ANM, we produce EOS
models for dense neutron star matter at both zero and finite
temperatures, which are then used to calculate bulk properties
of nonrotating, uniformly rotating, and differentially rotating
neutron stars. The paper is organized as follows. The
theoretical framework of RBHF theory and the modifications
for the inclusion of temperature are shown in Section 2. The
theoretical framework for calculating the properties of neutron
stars, rotating and nonrotating, is discussed in Section 3.
Section 4 shows the calculated results, including properties of
nuclear matter at zero and finite temperature, and the resulting
bulk properties of neutron stars. Section 5 presents a summary
of the work.

2. Theoretical Framework: Relativistic Brueckner–
Hartree–Fock

The general theory for modeling nuclear matter in the RBHF
approximation is outlined in extensive detail in Poschenrieder
& Weigel (1988) and Weber (1999), but the essential structure
of the approximation is summarized here. Nuclear matter at
supranuclear densities can be described from the framework of
nuclear physics as a complex, many-body system whose
dynamics are governed by the Lagrangian density:

, 1N
M

M MN   ( ) ( )å= + +

where N denotes the Lagrangian of noninteracting nucleons
and M is the Lagrangian density of different free-meson fields
M= σ, ω, ρ, π, f, δ, η. MN describes the interaction between
nucleons and mesons; a complete description of the interaction
Lagrangians is given in Equations (2.3)–(2.12) in Poschenrie-
der & Weigel (1988). The interactions caused by various
meson fields in the proposed relativistic model are taken into
account by an effective relativistic single-particle potential or
self-energy (ter Haar & Malfliet 1987). The vital distinction of
RBHF theory is that nucleons in this system are treated as
effective Dirac particles, described by the Dirac equation.

To describe the properties of a dense, many-body system, the
formal structure of the RBHF approach is to solve a highly
nonlinear, coupled system of equations. The equations of
motion for the various particle fields within the many-body
system are derived from the Euler–Lagrange equation and
solved with using the Martin–Schwinger hierarchy of coupled
Green’s functions (Martin & Schwinger 1959). The coupled
system of equations involves first determining the two-point
Green’s function G1 for all baryons using the Dyson equation:
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= and γ0 and
γ i are the Dirac matrices. The influence of the surrounding
nucleons is expressed by the nucleon self-energy, Σ(p). Once

the two-point Green’s function is solved for, the in-medium
scattering matrix, referred to as the T-matrix, is solved for. It is
given by a Bethe–Salpeter-type integral equation:
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where V is representative of repeated sums of two-particle
interactions given by an OBE potential, which describes the
interaction among two nucleons in terms of the exchange of
scalar, pseudo-scalar, and vector mesons; the matrix elements
of the OBE potential V serve as an input to solve the matrix
elements of T. The momenta p¢ , p¢, and p″ denote the relative
four-momenta in the final, initial, and intermediate state,
respectively, and P is the total momenta. Finally, Λ is the
intermediate NN propagator, which takes the form of the
Brueckner propagator in the RBHF approach, given by
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Here, the step functions, represented by p pF(∣ ∣ )
Q - , account

for the Pauli exclusion principle, ensuring that intermediate
scattering states lie outside the baryon Fermi sea, characterized
by the Fermi momentum pF. As will be discussed in the
following section, the step functions are replaced by Fermi–
Dirac distribution functions at finite temperatures, given in
Equations (10) and (11). The last coupled equation in the
formal scheme is for the self-energy (mass operator) Σ,
given by an explicit sum over matrix elements, in terms of the
T-matrix and the two-point Green’s function:
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The integral equation that determines the T-matrix,
Equation (3), has 256 elements with respect to spin indices,
making the computation extremely complicated. A method to
simplify the numerical process is to introduce a complete basis
of particles (Φλ) and antiparticles (θλ), where λ=± 1/2 are the
helicity eigenvalues. The complete basis is self-consistent,
decouples the integral equations, and makes the two-body
propagator Λ diagonal. A full description of the self-consistent
basis can be found in Poschenrieder & Weigel (1988). The
coupled system of equations is derived from momentum-
dependent self-energies ω(p) computed in the full basis, but this
procedure can also be made less complicated by using
momentum-averaged self-energies (still as a self-consistent
calculation). The results shown in Section 4 will compare the
full momentum dependence calculations to momentum-aver-
aged calculations.
An elegant technique used to make the many-body equations

numerically tractable and to calculate the key quantities of
many-body systems is to utilize the spectral representation of
the G1 function (Poschenrieder & Weigel 1988). G1 can then be
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defined in Fourier space at zero temperature as
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where A represents the spectral function, which depends on the
single-particle energy ω. The quantity μ is the chemical
potential of a baryon, and η is used to circumvent a singularity
occurring as integrals are carried out in the complex plane. At
finite temperatures, the two-point Green’s function G1 is
instead expressed as (Huber et al. 1998; Weber 1999)
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with β= 1/kBT, where kB is the Stefan–Boltzmann constant and
T is the temperature. While the formal structure of the spectral
function A is unaltered when compared to zero temperature, A
has an implicit temperature dependence from G1.

The system of coupled equations follows an iterative process
to determine solutions to the above equations. To begin, the
self-energy Σ can first be calculated using a simplified
approximation like the relativistic Hartree–Fock approach.
These calculated values are then used in the first step to
determine the spectral functions A and single-particle energies
ω. The T-matrix equations can be then solved to determine new
values for Σ to be used in the next iterative step until
convergence is achieved. Once converged, the properties of
nuclear matter (symmetric and asymmetric) which define the
EOS can be calculated.

2.1. Properties of Nuclear Matter at Zero and Finite
Temperature

When using the spectral representation described in the
section above, the properties of nuclear matter can then be
determined only by the self-energy Σ and spectral function A
(described in greater detail in Poschenrieder & Weigel 1988
and Weber 1999). Once a self-consistent solution to the
coupled system of equations is found, bulk properties of SNM
can be calculated and compared to empirical values at zero
temperature. Using the spectral decomposition of the two-point
G1 function, the number density ρ of the system follows as
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where A0 is the time-like component of the spectral function
and pF denotes the Fermi momentum. The energy per nucleon
E/A of the system is expressed as
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In the case of finite temperatures, the step functions Θ seen
in Equations (8) and (9) are replaced with Fermi–Dirac

distribution functions:
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where “1” indicates the positive-energy states and “2” indicates
the thermally excited negative-energy states. We remember that
at finite temperatures, the behavior of nuclear matter undergoes
important modification, attributed to thermal baryonic excita-
tions surpassing the Fermi surface. Contrary to absolute-zero
conditions where all states within the Fermi sea ( p pF∣ ∣ < ) are
fully occupied, higher temperatures induce partial occupancy
due to thermal excitations of positive- and negative-energy
states. This phenomenon significantly impacts various thermo-
dynamic attributes of dense stellar matter, including the EOS
and the entropy of hot neutron star matter. Both positive- and
negative-energy state distributions adhere to modified Fermi–
Dirac statistics, resulting in alterations in state occupancy for
both species, both below and above the Fermi surface, as
expressed by Equations (10) and (11). As T→ 0, the Fermi–
Dirac distribution for positive-energy states becomes

f p p , 121 1( ) ( ( )) ( ) m w Q -

and for negative-energy states f2→ 0.
Once the energy per nucleon and number density of the

system are calculated, the compressibility K of the matter can
be calculated as
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At zero temperature, the pressure P is also computed from E/A:
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For finite temperatures, the pressure is instead determined by
calculating the free energy per nucleon, denoted as F/A, which
is defined as

F T U T TS T, , , , 15( ) ( ) ( ) ( )r r r= -

where U is the internal energy (equal to the energy per nucleon
E/A with the thermal contribution) and S is the entropy of the
system (ter Haar & Malfliet 1986). The entropy is given by

S T d p f f f f,
1

2
1 ln 1 ln , 16
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p r
=
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where f is the Fermi–Dirac distribution. Both positive- and
negative-energy states contribute to S, but the negative-energy
contribution is very small ( f2<< f1). Therefore, Equation (16)
can be approximated with only the positive-energy state
contribution, or f= f1. In the results presented in this work,
the temperature is held fixed and entropy calculated. The
numerical procedure can be completed by instead holding
entropy fixed; see Farrell et al. (2023), for an example.
Once the entropy S, and subsequently the free energy F, are
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calculated, the pressure is derived at finite temperatures as

P T
F T

,
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. 172( ) ( ) ( )r r
r
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¶

¶

The total energy density ò of the system follows from the
energy per baryon as

E A m , 18 ( ) ( ( ) ) ( )r r r= +

where m is the nucleon mass.
In the case of ANM, an asymmetry parameter α, which

defines the asymmetry between the number of neutrons and
protons in the system, can be defined as

, 19
n p ( )a
r r

r
=

-

where ρn is the density of neutrons and ρp is the density of
protons. In the case of SNM, α= 0, and for pure neutron matter
(PNM), α= 1. For ANM, the energy per nucleon can be
expressed as a power series dependent on the total density of
the system ρ and the asymmetry parameter α (Tong et al.
2022):

E A E A E, , 0 4 . 20sym
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Esym is the nuclear symmetry energy, which is defined as

E
E A1

2

,
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¶
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and can be approximated as Esym(ρ)≈ E/A(ρ, 1)− E/A(ρ, 0)
(Li et al. 2021).

3. Theoretical Framework: Neutron Star Properties

The EOS of neutron star matter is described as a relationship
between the pressure P and energy density ò of the many-body
system within. This holds for the majority of neutron stars,
which can be described as zero temperature on the nuclear scale
(just a few MeV). However, following extreme events like a
core-collapse supernova or a binary neutron star merger, the
temperature of the system is much higher (on the order of
50–100 MeV) and therefore plays a critical role in the EOS.
The RBHF formalism is used to calculate the EOS of ANM
within a neutron star at both zero and finite temperatures. Once
an EOS model has been defined, the structural properties of a
neutron star can be calculated in the framework of Einstein’s
theory of general relativity.

3.1. Nonrotating Stars

For nonrotating stars, the stellar structure is described by the
Tolman–Oppenheimer-Volkoff equation (assuming G= c= 1;
Tolman 1939):

dP r
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r P r m r r P r
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which describes the pressure gradient within the star as a
function of the radius r. The gravitational mass m(r) contained
in a sphere of radius r can be found with

dm

dr
r r4 , 232 ( ) ( )p=

where at the origin m(0)= 0. Using a specified model for the
EOS, a star’s mass and radius can be determined by first
choosing a central value for density òC with a corresponding
pressure value PC, and integrating Equations (22) and (23) until
pressure vanishes, signifying the total radius R of the star.

3.2. Rotating Stars

The stellar structure of rotating stars is more complicated
than that of nonrotating stars for several reasons. Nonrotating
stars are assumed to be spherically symmetric, so their stellar
structure depends solely on the radial coordinate. However,
rapid rotation can deform the star’s shape by flattening at the
pole and expanding in the equatorial direction; to account for
this deformation, the stellar structure equations must also
include a dependence on the polar coordinate θ. While
spherical symmetry is broken in rotating stars, the assumptions
of stationary rotation, axial symmetry, and reflection symmetry
still hold, leaving the stellar structure equations independent
from time t and the azimuthal angle f. The metric of a rotating
neutron star can thus be written as

ds e dt e d dt

e d e dr , 24

2 2 2 2 2

2 2 2 2
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f w
q

=- + -
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n y

m l

where the metric functions (ν, ψ, μ, and λ) are dependent on the
radial r and polar θ coordinates, as well as implicitly on the star’s
rotational frequency Ω. The term ω is indicative of an additional
complication from rotation: the general relativistic effect of frame
dragging, where ω is the angular velocity of the local inertial
frames being dragged in the direction of the star’s rotation.
The vast majority of rotating neutron stars are believed to be

rotating uniformly or as a rigid body. The absolute upper limit
for a uniformly rotating neutron star’s rotational frequency is
the mass-shedding limit, set by the Kepler frequency ΩK. This
frequency can be defined in terms of the metric functions ψ and
ν, and the frame-dragging term ω as

⎜ ⎟
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and mass-shedding occurs when the angular velocity reaches ΩK

at the star’s equator. In general, rotating stars have the capacity to
be more massive than nonrotating stars, as rotation stabilizes the
star against gravitational collapse. The mass-shedding limit sets
the maximum allowed mass of a uniformly rotating neutron star,
which can be 20% higher than nonrotating stars for very stiff
EOS models (Lyford et al. 2003).
Following extreme astrophysical events like binary neutron

star mergers, neutron stars may instead form with an
appreciable amount of differential rotation due to complicated
hydrodynamic motions during the coalescence. In addition to
rotating differentially, remnant objects are expected to be
extremely hot, with temperatures on the order of 50–100MeV
(Perego et al. 2019). The physical implications of differential
rotation paired with thermal pressure allow stars to remain
stable in otherwise unstable configurations. Most notably,
differential rotation provides centrifugal support to stabilize the
star at higher masses than their uniformly rotating or
nonrotating counterparts, giving rise to so-called hypermassive
remnant stars (Morrison et al. 2004).
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Due to the complications introduced by rotation, there exists
no analytical solution for solving the system of equations
deriving the stellar structure of relativistic rotating objects.
Instead, numerical methods are employed. An in-depth review
of different schemes used to model uniformly rotating stars can
be found in Stergioulas (2003). For the context of this work,
models for uniformly rotating stars at the Kepler frequency are
computed using Hartle’s perturbative rotation formalism
(Weber & Glendenning 1992). The formalism described in
Cook et al. (1992, 1994) is employed to model differential
rotation in neutron stars. This formalism requires the choice of
a rotation law to describe the differential rotation profile; we
follow Cook et al. (1992) by choosing the following linear
rotation law:

F A , 26c
2( ) ( ) ( )W = W - W

where Ω is the nonconstant angular velocity and Ωc is its
central value. The parameter A is used to determine the length
scale over which the frequency changes, and acts as a scaling
factor of the degree of differential rotation (Morrison et al.
2004). In practice, it is convenient to parameterize calculations
using a version of this parameter scaled by the equatorial

radius, A r Ae
1ˆ =-

, where uniform rotation is obtained in the

limit A 0
1ˆ -

.

4. Results and Discussions

The saturation properties of dense SNM and ANM
are calculated at zero and finite temperatures. For this
investigation, calculations are carried out using the three
OBE potentials constructed by Brockmann and Machleidt
(Brockmann & Machleidt 1990), known colloquially as the
Bonn potentials (denoted by A, B, and C). The calculated EOS
models are then used to determine the bulk properties of
neutron stars.

4.1. Properties of Dense Matter at Zero Temperature

The Bonn potentials have previously been shown to produce
values for the bulk properties of SNM at zero temperature that
are in good agreement with empirical values (Brockmann &
Machleidt 1990; Huber et al. 1995; Weber 1999; Tong et al.
2022). For both the full momentum dependence and the
momentum-averaged calculations, values for the saturation
density ρ0, energy per nucleon E/A, Fermi momentum pF,

compressibility K, effective nucleon mass m*/m, and symmetry
energy Esym are given in Table 1. The corresponding empirical
values are shown for comparison, but it is worth noting the
empirical values for the saturation properties vary across the
literature.
The saturation density, ρ0, is found in a recent study to be

within the range 0.15–0.16 fm−3 (Lattimer 2023). This value
directly correlates to the Fermi momentum pF via

p2

3
, 27F

0

3

2
( )r

p
=

leading its empirical value to be ≈1.32 fm−1. The energy per
nucleon E/A is also given in Lattimer (2023) to fall within the
range −15 to −17MeV, but has been found with different
bounds throughout the literature. For the compressibility K,
Stone et al. (2014) provides a historical overview of the empirical
range from a variety of theoretical approaches, which is shown to
be as low as 100 and as high as 370 depending on the reference.
However, more recent studies like that of Garg & Colo (2018)
provide a more narrow uncertainty band on K, giving the
credible range of 220–260MeV. For the effective nucleon mass
m*/m, analyses of the isoscalar nucleon mass provide the range
0.7–0.9, but there is less consensus of the isovector nucleon
mass, with values ranging as low as 0.6 and as high as 0.93 (Li
et al. 2018). Baldo & Burgio (2016) provide values for the
symmetry energy Esym using different semiclassical methods but
finds a consensus centered around 32MeV.
Figure 1 depicts the energy per nucleon for the momentum-

dependent and momentum-averaged calculations resulting from
the three Bonn potentials. For both methods, the Bonn potential A
results are the closest to the empirical value for the binding and
symmetry energies, a finding that is consistent with other
implementations of the RBHF approximation. The calculated
compressibilities and effective masses for the three Bonn potentials
spread over a wide range of values; these two parameters
historically have had less consensus for their respective credible
ranges, so the larger distribution of values is unsurprising.
We next investigate ANM produced by the RBHF approx-

imation in order to produce an EOS for neutron star matter. For
ANM, results are shown for the full iteration procedure using
the momentum-dependent Σ. Following the theoretical descrip-
tion in Section 2.1, the energy per nucleon E/A of ANM,
defined in Equation (20), becomes dependent on the asymmetry

Table 1
Saturation Properties of SNM at Zero Temperature for Different Approximations Using the Bonn Potentials (A, B, and C)

Method for Self-energy Σ Potential ρ0 (fm
−3) E/A (MeV) pF (fm−1) K (MeV) m*/m Esym (MeV)

A 0.17 −14.08 1.36 281.64 0.675 32.07

Momentum-dependent B 0.16 −12.99 1.33 246.77 0.701 29.67

C 0.15 −12.30 1.30 227.99 0.725 27.26

A 0.17 −15.45 1.36 265.54 0.657 33.44

Momentum averaged B 0.16 −14.33 1.33 241.40 0.685 31.01

C 0.16 −13.63 1.33 225.31 0.692 28.86

Empirical value 0.15–0.16 −15–17 1.32 220–260 0.7–0.9 32

Note. The first approximation is carried out using a momentum-dependent self-energy, and the second uses a momentum-averaged self-energy. Empirical value ranges
are shown in the last row; see text for discussion and references.
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parameter α. When α= 0, there are an equal number of protons
and neutrons within the system (SNM), and when α= 1, the
system is PNM. In Figure 2, energy per nucleon is shown as a
function of density for varying values of α, along with the
calculated results of Akmal et al. (1998), known colloquially
as APR.

In the high-density regime of a neutron star, the asymmetry
between neutrons to protons is believed to be ≈0.8. Using the
energy per nucleon E/A with α= 0.8 and the corresponding
number density ρ, the pressure P and energy density ò can be
calculated using Equations (14) and (18), respectively. The
EOS models for the Bonn potentials A, B, and C following this
procedure are displayed in Figure 3. Despite the differences in
the saturation properties of the three potentials, the resulting
EOS models remain very similar.

4.2. Properties of Dense Matter at Finite Temperature

We extend the calculations of nuclear matter in the RBHF
approximation to finite temperatures, specifically for T= 10,

30, 50, and 70MeV. Modifications to the numerical scheme are
introduced to be consistent with the mathematical framework
described in Section 2.1. Due to the additional complexity of
the algorithm, we find solutions to be more stable numerically,
especially at higher temperatures, using the momentum-
averaged self-energy approximation.
The binding energies per nucleon E/A for four different

temperatures are shown in Figure 4, calculated using the Bonn
B potential. Each meson provides a thermal contribution to the
energy per nucleon, which grows larger as the temperature
increases. For finite temperatures, the energy per nucleon is
used to calculate the free energy per nucleon F/A, given in
Equation (15). When using the RBHF approximation at
temperatures �50MeV, we find the Bonn B potential provided
the most stable results. The free energies of SNM and PNM
from the Bonn B potential for four temperatures are displayed
in Figure 5.
Pressure is calculated from F/A using Equation (17). As for

zero temperature, the pressure and energy density are
calculated with the asymmetry parameter α= 0.8 for neutron

Figure 1. The energy per nucleon E/A for the three Bonn potentials (A, B, and C) compared to density ρ on the left and Fermi momentum pF on the right. The top row
with solid lines shows the momentum-dependent self-energy approximation completed in the full basis, and the bottom row with dashed lines is the momentum-
averaged approximation.
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star matter. The EOS, pressure vs. energy density, for varying
temperatures are shown in Figure 6. Temperature stiffens the
resulting EOS. Higher temperatures at low densities introduce
some level of numerical noise, as seen in Figure 6.

4.3. Nonrotating and Uniformly Rotating Neutron Star
Properties

Once models have been defined for the EOS of neutron star
matter at both zero and finite temperatures, bulk properties like
mass and radius can be solved numerically.

At zero temperature, EOS models resulting from both the
momentum-dependent and momentum-averaged self-energy
calculations are used. To compute rotating and nonrotating
stellar models, an EOS that describes the neutron star from the

core to the crust must be specified. The RBHF approximation is
used for the high-density region. For the crust, we use Harrison
and Wheeler (Harrison et al. 1965, hereafter HW) for the outer
crust, and Negele and Vanutherin (Negele & Vautherin 1973,
hereafter NV) for the inner. Mass–radius relations for
nonrotating (dashed lines) and uniformly rotating (solid lines)
stars are shown in Figure 7, resulting from calculations that use
the momentum-dependent self-energy in the full basis for the
Bonn A, B, and C potentials. For all three models, the rotating
mass–radius relations are shown at their mass-shedding or
Kepler limit (Ω=ΩK). Additionally shown are the confidence
intervals for the mass and radius of PSR J0030+451, observed
by NICER and analyzed in Miller et al. (2019). The outer
contour is the 68% interval and the inner is 95%. Both the
nonrotating and rotating mass–radius relations fall in the 95%
confidence interval for all three potentials.
Bulk properties of nonrotating and uniformly rotating stars

(at their mass-shedding limit) constructed with the zero-
temperature EOS models are given in Table 2. For both
nonrotating and rotating stars, the maximum mass Mmax and
corresponding radius Rmax are shown. For both nonrotating and
rotating stars, the maximum masses shown in Table 2 are both
over 2 Me, as required by observational constraints. This is
unsurprising given the framework discussed in Section 2
accounts only for purely nucleonic matter. A discussion of the
inclusion of other baryons, specifically hyperons, and their
importance in describing a realistic depiction of neutron star
interiors is given in Section 5. Additionally, the Kepler
frequency ΩK and stability parameter T/|W| are provided for
the uniformly rotating stellar models. The stability parameter is
the ratio of rotational (T) to gravitational (W) energy. Stability
studies have previously specified the limit of T/|W|< 0.14 for
uniformly rotating stars to remain stable against secular
instabilities, and previous work finds this parameter in the
range 0.11< T/|W|< 0.13 for stars rotating at their respective
Kepler frequencies (Weber et al. 1991; Ou et al. 2004). For the
three Bonn potentials, both the momentum-dependent and
momentum-averaged approximations fall within the stable
range.
For finite temperatures, only models constructed using the

momentum-averaged self-energy approximation are used, as
discussed in Section 4.2. To solve for stellar models, the high-
density, finite-temperature EOS must also be fit to an EOS for
the crust. Popular models for neutron star crusts, like the
previously mentioned HW+NV, are all constructed at zero
temperature, meaning there is a discontinuity in the temperature
for the low-density and high-density regions of the star. In
massive neutron stars, the crust regions are thin and contribute
negligibly to the bulk properties like mass (Weber 1999), but
the connection of the zero-temperature crust to the finite-
temperature core can skew the determination of the radius. For
this reason, we focus only on higher-mass stars created by
fitting the finite-temperature EOS models constructed using the
RBHF approximation to the zero-temperature HW+NV EOS
for the crust.
Mass compared to central energy density òc for four

temperatures (T= 10, 30, 50, and 70 MeV) are shown in
Figure 8, calculated using the Bonn B potential. As mentioned
previously, the low-density portion of the higher-temperature
EOS models, especially T= 70MeV, do not have good
agreement with the zero-temperature HW+NV EOS, which
can be seen for the low-mass stars in Figure 8. As with the

Figure 2. Energy per nucleon E/A vs. density for ANM calculated with the
Bonn A potential at zero temperature. Shown are varying values of the
asymmetry parameter α ranging from 0 (SNM) to 1 (PNM), and compared to
the APR method shown with blue squares (SNM) and red circles (PNM).

Figure 3. Pressure P as a function of energy density ò for all three Bonn
potentials (A, B, and C) for ANM with α = 0.8 (see text for more details).
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zero-temperature constructed EOS models, the bulk properties
of nonrotating and uniformly rotating neutron stars constructed
with the finite-temperature EOS models using the Bonn B
potential are displayed in Table 3. Even with high tempera-
tures, the stability parameter T/|W| remains in the specified
range of 0.11< T/|W|< 0.13 for stars rotating at their
respective Kepler frequencies. Increasing the temperature leads
to higher-mass peaks, as shown in Table 3, but has an inverse
effect on the Kepler frequency ΩK. When compared to the zero-
temperature EOS from the Bonn B potential using the
momentum-averaged Σ in the RBHF approximation, the EOS

at 70MeV sees a 19.1% increase in mass for nonrotating stars
and a 17.3% increase for uniformly rotating stars.

4.4. Differentially Rotating Neutron Star Properties

As discussed in Section 3.2, hypermassive neutron stars may
form with a considerable degree of differential rotation
following high-energy events like the merging of two neutron
stars. Differential rotation paired with thermal pressure from
high temperatures allows these stars to sustain total masses
considerably higher than both nonrotating and uniformly

Figure 4. Energy per nucleon E/A vs. density of ANM calculated with the Bonn B potential for four different temperatures: 10, 30, 50, and 70 MeV. For each
temperature, the asymmetry parameter α ranges from 0 (SNM) to 1 (PNM).
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rotating stars. These massive, differentially rotating neutron
stars may also deviate from spherical or axial symmetry by
exhibiting extreme triaxial deformations. The structural
deformation and differential rotation allow the compact
remnant to remain stable on short, dynamical timescales, for
masses that would render configurations unstable in the static
and uniform-rotation cases. The four finite-temperature EOS
models are used to determine bulk properties of differentially
rotating stars. In this section, we focus on the increase in mass
from uniform rotation as well as the potential structural
deformation caused by a high degree of differential rotation.

Mass compared to central energy density òc of differentially
rotating stars at four temperatures (T= 10, 30, 50, and
70 MeV) are shown in Figure 9, calculated using the Bonn B

potential. The differentially rotating models are constructed for
a high degree of differential rotation, characterized by setting
the rotation parameter A

1ˆ- = 1.0. For high degrees of
differential rotation, the stellar sequence finds a maximum at
a lower central density when compared to uniform rotation for
all four temperatures, and can fall below the mass-shedding
limit at higher densities. This trend is seen in other
implementations of the numerical scheme used (Morrison
et al. 2004). Additionally, as temperature increases, stable

Figure 5. Free energy per nucleon F/A vs. density for SNM (left panel) and PNM (right panel) calculated with the Bonn B potential. The plots show results for four
temperatures: 10, 30, 50, and 70 MeV.

Figure 6. Pressure P as a function of energy density ò calculated with the Bonn
B potential for ANM with α = 0.8. Shown are the zero-temperature EOS and
four models at temperatures 10, 30, 50, and 70 MeV. Figure 7. Mass–radius relations for rotating (solid lines) and nonrotating

(dashed lines) neutron stars from EOS models computed with the RBHF
approximation at zero temperature using the Bonn A, B, and C potentials.
Computations use the full basis and a momentum-dependent self-energy (see
text for more details). The black contours show the confidence intervals for the
mass and radius of PSR J0030+451 (Miller et al. 2019).
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Figure 8. Mass vs. central density òC from EOS models computed with the RBHF approximation at a range of temperatures (T = 10, 30, 50, and 70 MeV) using the
Bonn B potential. Nonrotating stellar models are shown on the left (dashed lines) and uniformly rotating models at the mass-shedding limit are shown on the left (solid
lines).

Table 2
Nonrotating and Uniformly Rotating Neutron Star Properties Calculated with the Zero-temperature EOS Models from the RBHF Approximation, Using the Three

Bonn Potentials

Nonrotating (Ω = 0) Rotating (Ω = ΩK)

Method for Self-energy Σ Potential Mmax (Me) Rmax (km) Mmax (Me) Rmax (km) ΩK (Hz) T/|W|

A 2.315 10.978 2.624 12.230 1916 0.116

Momentum dependent B 2.294 10.954 2.599 12.261 1908 0.115

C 2.282 10.937 2.587 12.248 1900 0.115

A 2.237 10.861 2.538 12.186 1910 0.114

Momentum averaged B 2.225 10.855 2.525 12.140 1906 0.114

C 2.203 10.824 2.501 12.117 1904 0.113

Note. Results are shown for EOS models constructed with momentum-dependent and momentum-averaged self-energy Σ. Bulk properties include the maximum mass
Mmaxand corresponding radius Rmaxfor both nonrotating and rotating stars, as well as the Kepler frequency ΩK and stability parameter T/|W| for rotating stars.

Table 3
Nonrotating and Uniformly Rotating Neutron Star Properties Calculated with EOS Models at Finite Temperatures from the RBHF Approximation, Using the Bonn B

Potential

Nonrotating (Ω = 0) Uniformly Rotating (Ω = ΩK)

Temperature (MeV) Mmax (Me) Rmax (km) Mmax (Me) Rmax (km) ΩK (Hz) T/|W|

10 2.388 10.900 2.702 12.112 1967 0.120

30 2.461 10.973 2.776 12.238 1958 0.122

50 2.541 11.439 2.861 12.887 1844 0.119

70 2.650 11.819 2.963 13.277 1803 0.113

Note. Bulk properties include the maximum mass Mmax and corresponding radius Rmaxfor both nonrotating and rotating stars, as well as the Kepler frequency ΩK and
stability parameter T/|W| for uniformly rotating stars.
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solutions are restricted to lower central densities, as shown in
Figure 9. For the calculated models, there is a significant
increase in the maximum mass for the differentially rotating
models constructed with A

1ˆ- = 1.0 when compared to the
uniformly rotating sequences at their respective mass-shedding
limit. There is an 11.8% increase in maximum mass for a
temperature T= 10MeV, an 18.8% increase for T= 30MeV, a
21.1% increase for T= 50MeV, and a 21.4% increase for
T= 70MeV. The increase in mass is largely dependent on the
rotation parameter A

1ˆ- and, in turn, the choice of rotation law.
As discussed in Section 3.2, the results displayed here use a
linear rotation law (the so-called “j-constant law”), though
other studies, like that in Hanauske et al. (2017), find nonlinear
rotation laws may be better suited to describe the rotation
profile of a hypermassive remnant star

Structural deformation from rapid uniform rotation has been
demonstrated through numerical simulation rapid rotation
(Hartle & Thorne 1968; Huber et al. 1998; Weber 1999) to
result in a lengthening of the radius at the equator and
shortening at the pole. In the case of differential rotation, more
extreme structural deformations can occur as the ratio of polar
to equatorial radius in the star tends toward zero, in some cases
leading to the formation of toroidally shaped objects (Lyford
et al. 2003; Morrison et al. 2004). Using the EOS model at
T= 70MeV, density and frequency contour plots are shown in
Figure 10 constructed with a rotation parameter A

1ˆ- = 1.0. This
stellar model has a quasi-toroidal shape as shown by the
density contours, where the densest regions of the star are
beginning to shift from the center. The high degree of
differential rotation is demonstrated in the frequency map,
where the range of frequency within the star spans 3600 Hz.

5. Summary and Conclusions

In this paper, we present a comprehensive investigation into
the properties of SNM and ANM, employing self-consistent

calculations utilizing the effective scattering matrix within the
full Dirac space, following the methodology outlined in
Poschenrieder & Weigel (1988) and Weber (1999). Specifi-
cally, we utilized the Bonn potentials (A, B, and C) for the
OBE interaction. Our study begins with the examination of
SNM, where we conduct calculations of saturation properties at
zero temperature, yielding results that align well with empirical
values from diverse sources. Subsequently, our analysis
extends to ANM, as detailed in Section 2.1, laying the
groundwork for constructing EOS models pertinent to neutron
star matter.
Expanding our investigation to include finite temperatures,

we adapted the two-point Green’s function within the RBHF
scheme, as elucidated in Section 2.1. Here, employing the
Bonn B potential, we derive results up to 70MeV. We
highlight here that when modeling certain hot astrophysical
systems, like the remnant star formed from a binary neutron
star merger event, temperatures above 70MeV may be
necessary. The results presented in this work are, however,
limited by the stability of the numerical scheme, and future
work should entail studies at higher temperatures. Analogous to
our zero-temperature analysis, the properties of ANM at finite
temperatures serve as the foundation for constructing EOS
models tailored to varying temperature regimes relevant to
neutron stars.
Subsequently, we leveraged the zero- and finite-temperature

EOS models to compute bulk properties of both nonrotating
and rotating neutron stars, with uniformly rotating models
computed up to the mass-shedding limit (Ω=ΩK). Our
investigation reveals that while the saturation properties of
SNM varied among the Bonn potentials at zero temperature,
attributed to differences in the tensor force primarily provided
by the pion, these variations did not markedly impact resulting
neutron star properties, as evidenced in Figure 7.
Furthermore, the incorporation of finite-temperature effects

introduced additional contributions to the system’s pressure,
resulting in a discernible increase in the mass peak for both
nonrotating and rotating stellar models, as illustrated in
Figure 8. Comparing the maximum mass of the zero-
temperature EOS utilizing the Bonn B potential to the
corresponding EOS at 70MeV, we observe a comparable
increase in mass for both nonrotating (19.1%), uniformly
rotating (17.1%), and differentially rotating (21.4%) stellar
sequences. This underscores the significance of temperature
effects in neutron star models, particularly in delineating their
mass and associated properties.
It is noteworthy that the EOS studied in this paper are

sufficiently versatile to accommodate the mass of the most
massive neutron star ever detected, PSR J0952–0607, estimated
to be 2.35± 0.17Me (Bassa et al. 2017; Romani et al. 2022),
and lead to masses and radii for PSR J0030+451 that are in
agreement with the confidence intervals established for this
pulsar (Miller et al. 2019).
As discussed in Section 4.3, the high maximum masses for

both nonrotating and rotating stars resulting from the EOS in
this paper are unsurprising as our implementation of the RBHF
approximation is restricted to purely nucleonic matter. How-
ever, the inclusion of other baryons, specifically hyperons, is
essential for a more realistic depiction of neutron star interiors
and results in a softening of the EOS. While the theoretical
framework used in this paper does not currently facilitate the
study of hyperons in neutron star matter, we refer to the work

Figure 9. Mass vs. central density òC for differentially rotating stellar models
from EOS models computed with the RBHF approximation at a range of
temperatures (T = 10, 30, 50, and 70 MeV) using the Bonn B potential. The
differentially rotating models are constructed with a high degree of differential
rotation where the rotation parameter A

1ˆ- = 1.0; see text for more details.
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of Katayama & Saito (2015) as an example of an implementa-
tion of the RBHF approximation that includes hyperons.
However, it should be noted that the effect of negative-energy
states of baryons is only partly accounted for, potentially
explaining the significant deviations in nuclear matter proper-
ties such as energy per nucleon and compressibility from
established values, which are well reproduced in our study.
Consequently, direct comparison becomes complex. Despite
this, viewing this study as a reference point, the inclusion of
hyperons could potentially decrease the maximum mass of a
purely nucleonic neutron star by approximately 15%–20%.
Consequently, the maximum mass of the nonrotating neutron
stars presented in this work would be reduced to around 2 Me.
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