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Abstract

Neutron stars may experience differential rotation on short, dynamical
timescales following extreme astrophysical events like binary neutron star merg-
ers. In this work, the masses and radii of differentially rotating neutron star
models are computed. We employ a set of equations of states for dense hyper-
nuclear and A-admixed-hypernuclear matter obtained within the framework of
CDF theory in the relativistic Hartree-Fock (RHF) approximation. Results are
shown for varying meson-A couplings, or equivalently the A-potential in nuclear
matter. A comparison of our results with those obtained for nonrotating stars
shows that the maximum mass difference between differentially rotating and
static stars is independent of the underlying particle composition of the star. We
further find that the decrease in the radii and increase in the maximum masses
of stellar models when A-isobars are added to hyperonuclear matter (as ini-
tially observed for static and uniformly rotating stars) persist also in the case of
differentially rotating neutron stars.
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1 | INTRODUCTION

As the densest observed stellar objects, neutron stars
provide a unique, naturally occurring laboratory for
studying matter at extreme pressures and densities not
reproducible by experiments. The matter within the core
of a massive neutron star can reach densities up to an
order of magnitude higher than nuclear saturation den-
sity. One physical mechanism for supporting massive neu-
tron stars is rotation, as rotating neutron stars can sus-
tain a higher rest mass than their nonrotating counter-
parts. While we assume the majority of rotating neutron
stars are rotating uniformly, some neutron stars may form
with considerable differential rotation following extreme
astrophysical events like core-collapse supernovas and
binary neutron star mergers (Morrison et al. 2004). The
state of differential rotation is short-lived, as stars will relax
to uniform rotation due to the shear viscosity of matter on
timescales that are much shorter than secular timescales.

Studies of differentially rotating neutron stars are of
particular interest in the context of binary neutron star
mergers following the recent first observation of a binary
neutron star merger, GW170817 (Abbott et al. 2017).
Binary neutron star mergers are likely to form differ-
entially rotating remnants as evidenced by general rel-
ativistic numerical simulations and expected from com-
plicated hydrodynamic motions during the coalescence.
A differentially rotating remnant star formed following
a merger event has been confirmed through numerical
simulation in the past (Fujibayashi et al. 2018; Shibata
& Kiuchi 2017; Shibata & Uryl 2000). As we move into
a new era of multi-messenger astronomy following the
GW170817 event, understanding not only the inspiral
phase but also the post-merger phase has the potential to
provide further information on the equation of state (EOS)
of dense matter, neutron star properties, and the remnant’s
evolution.

Following a binary neutron star merger, the remnant
star can take the shape of a hypermassive or supermassive
neutron star (Hotokezaka et al. 2013; Sarin & Lasky 2021),
or promptly collapse into a black hole. Differential rotation
is one mechanism that allows these stars to sustain total
masses considerably higher than both nonrotating stars
and uniformly rotating stars. These massive, differentially
rotating neutron stars may also deviate from spherical
or axial symmetry by exhibiting extreme triaxial defor-
mations. Both the structural deformation and differential
rotation allow the compact remnant to remain stable on
short, dynamical timescales, for masses that would render
configurations unstable in the static and uniform-rotation
cases.

The observable properties of a neutron star, like its
mass, are not only dependent on rotation. Additionally,

the underlying microphysics, given by the EOS, greatly
influences the overall structure of these objects. The cores
of neutron stars can reach densities up to a few times
nuclear saturation density, covering a density and tem-
perature regime not reproducible in laboratories and not
fully understood. The high-density regime is expected to
not only contain nucleons, but also other exotic degrees
of freedom like deconfined quark matter, hyperons, and
deltaisobars (A). These additional degrees of freedom have
been shown previously in numerical simulations to greatly
impact properties like the mass and radius of neutron stars.
In Li et al. (2018), the presence of A’s was shown to soften
the EOS in the low to intermediate-density region and
stiffen it at high densities, resulting in a slightly increased
maximum mass and considerably decreased radius for
non-rotating compact objects. In this work, we extend the
work done in Li et al. (2018, 2023) to explore differential
rotation’s impact on both stars containing hyperonic mat-
ter and A populations. The paper is organized as follows:
Section 2 describes the theoretical framework for modeling
differential rotation in neutron stars and for construct-
ing the dense matter EOS in covariant density functional
(CDF) theory. Section 3 presents calculated mass-radius
relations for differentially rotating stars containing both
hyperon and A isobar populations, and density maps indi-
cating at what depths different particle species appear
within these stars. Section 4 gives a summary of the work
presented.

2 | BACKGROUND

2.1 | Modeling differential rotation
in neutron stars

To calculate the bulk properties of neutron stars, the stel-
lar structure equations must be solved in the framework
of Einstein’s theory of general relativity. These equations
are derived from FEinstein’s field equation and depend
on the stellar matter’s EOS, that is, the underlying rela-
tionship between pressure P and energy density e. In
general, modeling uniformly or differentially rotating neu-
tron stars is more complicated than modeling their non-
rotating counterparts. Rapid rotation of either kind can
deform the structure of the star, resulting in a flatten-
ing at the pole and expansion along the radius in the
equatorial direction. To account for this deviation from
spherical symmetry, the stellar structure equations for
rotating stars must be dependent on both the radial coordi-
nate r and the polar coordinate 6, assuming axisymmetry.
Rotation also results in more massive objects, as it is a
physical mechanism that stabilizes massive stars against
collapse; as a result, rotating neutron stars are able to

95UdIIT suowwo)) aAneal) djqedsijdde ayy £q paurdAoS aie sa[ore Y $asn Jo sa[ni 10J A1eIqiT duluQ AJ[IA\ UO (SUONIPUOI-PUBR-SULID} WO A3[1m " KIeIqI[aul[uo//:sdny) suonipuo)) pue swid I, ay) 33§ ‘[$70z/€0/Sz] uo A1eiqry autjuQ A[IA ‘0910£Z0T BUSB/Z00 0 [/10p/wod A[1m A1eiqiaurjuo//:sdny woly papeojumod ‘€-7 ‘b70T ‘v66£1TS1



FARRELL ET AL.

Astronomische 30f8

sustain roughly up to 20% more mass than their non-
rotating counterparts, depending on the underlying EOS
(Kalogera & Baym 1996). The increased mass of rotat-
ing stars alters the geometry of spacetime by introducing
a dependence on the star’s rotational frequency to the
line element and a self-consistency condition to the stel-
lar structure equations to account for the dragging of local
inertial frames (Weber 1999).

Modeling differential rotation in neutron stars
begins with the same metric as uniformly rotating stars,
which is dependent on both the radial coordinate r and
polar angle 6:

ds* = —e’"dt* + e**(dr* + r*dh)
+ e ?r?sin®0(d¢p — wdt)?, €))

where y, p, @, and w are metric functions, where drag-
ging of local inertial frames is accounted for by w. These
functions are dependent on r and 6, as well as the star’s
angular velocity Q. The metric functions are computed
from Einstein’s field equation

R — ZRg™ = 8aT", @)

where R*? is the Ricci tensor, R is the curvature scalar, and
g’ is the metric tensor. The energy momentum tensor,
T*°, is given by

T%° = (¢ + P) u*u’ + g“’P, 3)

where e and P are given by the underlying EOS.

Once the four metric functions are solved for, they are
used to solve the equation of hydrostatic equilibrium for a
barotropic fluid:

h(P) - hy, = %[yp +0p—7—p—In(l =)+ FQ)], (4)

where h(P) is the enthalpy, y, and p, are the value of the
metric potentials at the pole p, and v is defined as

v=(Q—-w)r sinfe’. (5)

The final term in Equation (4), F(Q2), defines the rotational
law for the matter. Previous work (Cook et al. 1992, 1994;
Komatsu et al. 1989) defines the rotation law as the linear
function

F(Q) = A*(Q. - Q), (6)

where Q. is the central value for the angular velocity. The
parameter A is used to determine the length scale over
which the frequency changes, and acts as a scaling factor
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of the degree of differential rotation (Morrison et al. 2004).
Substituting Equation (6) into Equation (4) gives

1 Q-0) (1—p) e
Q- = AlA=-s2-Q-w)?s>A—pu?)e?

], (7

where the rotational frequency Q can be then isolated
and solved numerically using a root-finding algorithm like
Newton-Rhapson. The parameters s and u in Equation (7)
are dimensionless representations of the radial and polar
coordinates. Additionally, Equation (7) uses a modified
version of the rotation parameter, A, which is scaled by
the equatorial radius r,: A = A/r,. Uniform rotation is
achieved in the limit A" — 0. Bulk properties of the
star, like mass, angular momentum, and rotational kinetic
energy, are calculated once a set of self-consistent solutions
to the above equations is found.

2.2 | Equation of state

The models of dense matter EOS used in this work are
based on the framework of CDF theory, where meson-A
coupling values are varied and the calculations are carried
out with the relativistic Hartree-Fock (RHF) approxima-
tion. The Lagrangian of the model is given as

L =L+ Zm+ Line + 21, (8)

where £p represents free baryonic fields yg, &y, rep-
resents free meson fields ¢, Zine describes the inter-
action between baryons and mesons, and &) repre-
sents the contribution from free leptons. The baryons
accounted for include the spin-1/2 octet of nucleons N €
{n,p} and hyperons Y € {A,Z%", "%~} and the spin-3/2
zero-strangeness quartet A € {A*™%~} The mesons
accounted for include those regularly encountered in the
RHF approximation including the isoscalar-scalar meson
o, the isoscalar-vector meson w, the isovector-vector
meson p, and the pseudo-vector meson z, as well as two
hidden-strangeness mesons, ¢* and ¢, which describe the
interaction between hyperons. The leptons accounted for
are electrons e~ and muons p~.

The standard procedure for obtaining the density func-
tional begins with finding equations of motion from the
Euler-Lagrange equations for each particle species. These
take the form of the Dirac equations for the baryon octet
and leptons, the Rarita-Schwinger equations for the A’s,
and the Klein-Gordon equations for the mesons. The solu-
tions of these equations are used to generate the energy
density functional by evaluating each of the baryon self
energies, %, in the RHF approximation. In Dirac space, the
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self-energy can be defined as
(k) = Zs(k) + roZo(k) + ¥ - kZy (k), 9)

where Xg, ¥y, and Xy denote the scalar self-energy, the
time and space components of vector self-energy, respec-
tively, y, (4 = 0-3) are the Dirac matrices, and k is a unit
vector along the three-momentum k. The self-energies,
field equations, and the required charge neutrality condi-
tion are then used to determine EOS at zero temperature.
The full self-consistent procedure is outlined in greater
detail in Li et al. (2018), Sedrakian et al. (2023), and
Weber (1999).

The interaction between mesons and baryons,
described by &, in Equation (2.2), is parametrized by
meson-baryon coupling constants g,,5. The values for each
of the coupling constants are dependent on the type of
baryon and must be fitted to empirical data of nuclear and
hypernuclear systems. For the hypernuclear sector, the
coupling constant values are given by the SU(3) flavor sym-
metry quark model for vector mesons; for scalar mesons,
the coupling constants are fitted to empirical hypernu-
clear potentials. The meson-A coupling is parametrized
by A isoscalar potential V,, which is measured in units
of the nucleon isoscalar potential Vi = Zo (@) + Zs4(0).
Heavy-ion collision and scattering experiments provide
approximate upper and lower bounds on V, relating to
Vi, but there are no exact values defined for the isoscalar
potential. Following Li et al. (2018), three potential depths
Va are chosen at nuclear saturation density py as V =
2/3 Vn, Vn, and 4/3 Vy. These are consistent with infer-
ences of A potentials from terrestrial experiments and are
compatible with the lower limit on the maximum mass
of static compact stars Mroy > 2My. For comparison,
we also include a hypernuclear EOS constructed from
the framework of CDF theory which does not include A
particles, labeled “npY” throughout the text. The three
mixed A-hyperon EOS models parametrized by V, and
the purely hypernuclear EOS model npY are shown
in Figure 1.

3 | RESULTS

The EOS models described in Section 2.2 were used to
calculate the properties of differentially rotating neutron
stars. As demonstrated in Li et al. (2018), accounting for
A’s reduced radii of nonrotating stars when compared to
the hypernuclear only EOS, npY. Additionally, including
A’s increased slightly the masses of nonrotating stellar
sequences, where the larger by absolute value depth of
the potential V resulted in a higher maximum mass. In
the following sections, stellar sequences under different

— npY
6001 ___ 2/3 Vy
1.0 Vy
5004 —°" 4/3 Vy
— 400 A
£
3
= 300 A
a
200 A
100 A
7
4
0 T JI’ T T T T T T
0 250 500 750 1000 1250 1500 1750
€ (MeV/fm3)
FIGURE 1 Pressure P vs. energy density e for four equation

of state (EOS) models. The black curve, denoted “npY,” describes
hypernuclear matter that does not contain A isobars. The other
three curves contain both hyperons and A’s, parametrized by
different values of the potential depth V, (see text for more details).

degrees of differential rotation are calculated to compare
to the nonrotating mass and radius values shown in Li
et al. (2018) to explore if the same trends are replicated.
Furthermore, we calculate density maps of high-mass, dif-
ferentially rotating stars to demonstrate at what depth
specific particle species (hyperons and/or A’s) appear.

3.1 | Stellar sequences

We first show results for stellar sequences with a con-
stant central density range in order to demonstrate the
expected increase in mass due to differential rotation.
Because the rotation parameter repeatedly appears as A7
in the equations described in Section 2, we follow the lead
of previous work which parameterized sequences by val-
uesof A" = 0.3,0.5,0.7,and 1.0 (Cook et al. 1992; Galeazzi
etal. 2012; Morrison et al. 2004). As mentioned previously,
uniform rotation is obtained in the limit A™* — 0, and an
upper bound of the scaled rotation parameter is A =10.
As differential rotation becomes more extreme in the star
(A_1 — 1.0), the maximum mass and equatorial radius of
a stellar sequence is expected to increase.

This is indeed the case for the EOS containing hyper-
onic matter (npY) and the three EOS which vary A poten-
tial (V) depths. Figures 2 and 3 show mass-radius (equa-
torial) relations for four degrees of differential rotation,
parameterized byA_l, compared to the nonrotating curves
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FIGURE 2 Mass-radius relations for the hyperonic equation FIGURE 3 Mass-radius relations for the mixed hyperon-A

of state (EOS) npY. The dashed black line shows the nonrotating
curve resulting from the Tolman-Oppenheimer—Volkoff (TOV)
equation, while the solid-colored lines are curves under different
degrees of differential rotation. Differential rotation is parameterized
by values of the rotation parameter, AT (see text for more details).

calculated with the Tolman-Oppenheimer-Volkoff (TOV)
equation; Figure 2 uses the hyperonic EOS model and
Figure 3 uses the EOS model with largest potential depth
value of V, = 4/3 Vy Li et al. (2018).

They highlight that the inclusion of A in the EOS
composition soften the EOS at lower densities and stiff-
ens it at higher densities. This impacts the corresponding
mass-radius relations for nonrotating stars by decreasing
the radius but increasing the maximum mass. When com-
paring the mass-radius curves under differential rotation
resulting from the hyperonic EOS in Figure 2 to those
resulting from the largest value of V} in Figure 3, the same
trend is observed. For the highest degree of differential
rotation (A_l = 1.0), the canonical 1.4 Mg, star contain-
ing A’s has a radius of 15.46 km for the EOS with V, =
4/3 Vy, compared to a radius of 17.65, reflecting the same
decrease in radius observed with the nonrotating curves
in Li et al. (2018).

The maximum masses of the hyperonic EOS and the
three EOS models containing both hyperons and A’s are
given in Table 1 for nonrotating (TOV) and differentially
rotating stars. For values of parameter A corresponding
to different degrees of differential rotation are used. Both
Table 1 and Figures 2 and 3 reflect calculated values for
stellar models at a fixed value of the ratio between the
polar and equatorial radius, 1y, = 0.7. For all employed
EOS models, we observe a similar 16%-17% increase in the

equation of state (EOS) with V, = 4/3 V. The dashed black line
shows the nonrotating curve resulting from the
Tolman-Oppenheimer-Volkoff (TOV) equation, while the
solid-colored lines are curves under different degrees of differential
rotation. Differential rotation is parameterized by values of the
rotation parameter, A! (see text for more details).

TABLE 1
four RHF EOS models which account for hyperons (npY) or

Maximum gravitational mass (in units of M) of

hyperons and A particles (given as values of the V, potential).

EOS

model TOV A'=03 A'=05 A'=07 A'=10
npY 2011 2183 2.253 2.319 2.356
2/3Vy 2034 2200 2.270 2.334 2.366
10Vy 2054 2216 2.287 2.355 2.386
4/3Vy 2103 2262 2.339 2.418 2.461

Abbreviations: EOS, equation of state; RHF, relativistic Hartree-Fock; TOV,
Tolman-Oppenheimer-Volkoff.

maximum mass of a maximally differentially rotating star
when compared to the maximum mass of a static (TOV)
star. This shows that the difference in particle composi-
tions that were accounted for has no significant impact on
how much the maximum mass will increase as the rotation
parameter A — 1.0.

3.2 | Particle composition

In this section, density distributions of massive, differen-
tially rotating stars are used to demonstrate where in the
star different particle species appear.
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FIGURE 4 Relative particle fractions Y; for the hypernuclear

EOS npY (top panel) and the hyperon-A admixed EOS with a
potential depth of 4/3 Vy (bottom panel).

Individual stellar models are constructed with a series
of set parameters: the central density, the ratio between
the polar and equatorial radius ry0, and the rotation
parameter A" which specifies the degree of differen-
tial rotation. The parameter ryy, reflects the structural
deformation observed with rapid rotation, which has been
extensively showed through numerical simulation (Hartle
& Thorne 1968; Huber et al. 1998; Weber 1999) to result
in a lengthening of the radius at the equator and shorten-
ing at the pole. In the case of differential rotation, more
extreme structural deformations can occur as i, — 0, in
some cases leading to the formation of toroidally shaped
objects (Lyford et al. 2003; Morrison et al. 2004). In this
section, we fix r1a10 at a value of 0.6, slightly lower than that
used in Section 3.1, resulting in massive, rapidly rotating,
ellipsoid-shaped stars.

As in Section 3.1, we construct density distribution
maps for the hyperonic EOS model and the V, = 4/3
Vn EOS model additionally containing A’s. Particle frac-
tions for both EOS models can be found in Figure 4.
For the hyperonic EOS model, the three hyperon species
accounted for are the A, the E7, and the X~ hyperons,
which appear in that order. Figure 5 shows the density map
of a 2.48 Mg, star constructed from the npY EOS model,

300
—109 150
-15 T T - - v 0
-15 -10 -5 0 5 10
km
FIGURE 5 Energy density map of a 2.48 M, differentially

rotating star constructed with hyperonic EOS npY. The star has an
Tratio = 0.6 and rotation parameter Al =07

MeV/fm3

FIGURE 6

Energy density map of a 2.55 M, differentially
rotating star constructed with hyperon-A admixed EOS with a
potential depth of 4/3 Vy. The star has an r,;, = 0.6 and rotation
parameter A" =0.7.

with the following set parameters: central density e, =
900 MeV, 0 = 0.6, and rotation parameter A =07
The A hyperon first appears at an equatorial radius, re,
of approximately 5 km and a density of 329.4 MeV fm~3
(shown in cyan); the A hyperon would be present from
this depth until the center of the star. The ¥~ and E~ both
appear at r. ~ 3 km and densities of 479.1 and 510.9 MeV
fm=3, respectively (shown in green). The £~ only appear
briefly due to their repulsive potential at nuclear satura-
tion density (Li et al. 2018), but the £~ would be populated
throughout the star up to its center.
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The density distribution map for a 2.55 Mg, star con-
structed with the mixed hyperon and A EOS with a poten-
tial depth of Vi, = 4/3 Vy is shown in Figure 6. The same
values for the central density, r,0, and rotation param-
eter A were used as in Figure 5. As shown in both
Figure 4 and figure 2 of Li et al. (2018), a larger value of
the potential V), results in a lowered onset threshold for
A’s, and their threshold density is much lower than the
one for the first hyperon. For the largest potential depth
Va = 4/3 Vy, the entire spin-3/2 zero-strangeness quar-
tet appears in the star. In this case, only the A and E~
hyperons appear. The £~ hyperon is effectively replaced
by the same-charge A~ isobar, as it is energetically more
favorable due to its large negative potential. In Figure 6,
the A~ appears at a density of 168.66 MeV fm~3, corre-
sponding to an r. of ~8 km (shown in royal blue). The
next species to appear, A°, appears at a density of 344.1
MeV fm~3 corresponding to an r, of approximately 8 km
(shown in cyan). The A and A* become present at den-
sities of 465.9 and 486.3 MeV fm™3 respectively, shown
in green at a radius of approximately 5 km. The particle
species to appear is the A**, at a density of 763.6 MeV fm 3
and radius of <3 km shown in red. All particles would be
present from the density they appear through to the center
of the star.

It is important to note here that neutrons, protons,
electrons, and muons are additionally present within the
stellar models discussed above but not shown explicitly in
Figures 5 and 6.

4 | DISCUSSION

In this work, we extended the previous work of Li
et al. (2018, 2023) that studied static and uniformly rotat-
ing stellar configurations of hyperonic and A-admixed
stars to stellar models that support differential rotation.
Specifically, we examined how the inclusion of A isobars in
the EOS of dense matter impacts the corresponding stellar
properties like mass and equatorial radius for nonvanish-
ing differential rotations. In Section 3.1, we demonstrated
that the inclusion of A’s in hypernuclear EOS results in
the reduction of the equatorial radius of the differen-
tially rotating star and an increase in its maximum mass.
These trends are consistent with analogous findings for
uniformly rotating and static compact stars. An interest-
ing finding is that when comparing the maximum masses
from the highest degree of differential rotation (where the
rotation parameter A ' = 1.0) to the lowest (A " = 0.3),
the magnitude of the increase in mass remained con-
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stant for all four EOS models considered. In particular,
the inclusion of A’s in the hypernuclear EOS does not
change the total amount of mass increase once the dif-
ferential rotation is allowed. In Section 3.2, density distri-
bution maps of massive, differentially rotating stars were
shown to demonstrate at what radial depth different par-
ticle species appear. The competition between the nucle-
ation of X~ hyperon and A~ isobar was demonstrated,
whose outcome depends on the value of the A™ potential in
nuclear matter.
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